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Chapter 1
 

Introduction
 

The belief that there is a relationship between electricity and magnetism may go 

back as far as Thales (Meyer 46), a Greek philosopher around 600 B.C. It is known that 

Thales studied electric and magnetic effects. However, it is not known for sure to what 

extent he studied them since none of his writings have survived (Knierim). 

By the late 18th century there was mounting evidence that electricity and 

magnetism were somehow related. Benjamin Franklin had observed magnetic effects 

caused by lightning. Pieces of steel were magnetized by lightning and discharges from 

electrical machines. Boze reported that he had reversed and destroyed the polarity ofa 

magnet through the use of electricity (Meyer 46). Beccaria proposed that the magnetic 

properties of the Earth were caused by the flow of an "electric fluid" flowing around the 

Earth (Meyer 46). 

In 1819, while performing a demonstration for his students, Hans Oersted, a 

Danish physicist, noticed that a compass placed near a wire was deflected when he closed 

the circuit (Weisstein[c]). This discovery is thought to have been an accident, but it 

probably wasn't for two reasons. First, Oersted studied Naturphilosophie under 

Schelling and believed that all of nature was interconnected. This view could have 

motivated Oersted to place the compass near the wire to show that the two seemingly 

different phenomena were more closely related than previously thought (Weisstein[c]). 

Another reason why Oersted probably did not come upon this discovery by accident was 

that Romagnosi had discovered the same effect seventeen years earlier. However, 
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Romagnosi did not pursue this discovery any further and allowed Oersted to take credit 

tor showing that a current carrying wire creates a magnetic field (Meyer). 

After Oersted published his findings in 1820, there was a flood of physicists 

researching this newfound relationship (Meyer 48). Most notable ofthese were the 

French physicists Jean Baptiste Biot, Felix Savart and Andre Ampere, and the English 

physicist Michael Faraday. 

Jean Baptiste Biot, in collaboration with Felix Savart, developed the first 

mathematical description of what is now called the magnetic field. However, the modern 

field description of electric and magnetic phenomena did not come about until 1845 with 

the work of Michael Faraday (Weisstein[bJ). 

Biot and Savart's initial work was with a long straight wire. They found that, in 

modern SI units, the magnitude of the magnetic field follows the equation 

Isl=~ (1-1 ) 
21r r 

where lSi is the magnetic field strength, f is the current, and r is the perpendicular 

distance from the wire (Meyer 49). Equation 1-1 is a specific case of the general 

equation 

B(r ) = Jio! I. dl x (r2 - ~) 
2 (1-2)

41r j 1-r2 - fj_1 3 
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where dl is a vector length element of the wire, ~ is the vector position of dl ,r2 is the 

vector position ofthe point where the magnetic field is to be calculated, and I is the 

current through the wire. 

Equation 1-2 assumes that the current is along a single line. A more general 

version of Equation 1-2 is to assume that the current is spread over a volume. In this 

case, Equation 1-2 needs to be written in terms of a current density ](p): 

B(r ) =&! J(P) x (r2 - ~ ) (1-3)2 4;r :r 1_ _1 3 dV. 
r2 - r\ 

Equation 1-3 is generally called the Biot-Savart law, but it is sometimes called 

Ampere's law, or in its non-vector form, LaPlace's fonnula. The name Ampere's law, 

however, is usually reserved for the following related equation: 

V2 X B(r2 ) = JioJ. (1-4) 

This is the differential form of Ampere's law. Sometimes it is useful to express 

Ampere's law in integral form. This can be done by integrating each side of Equation 1­

4 over a surface that crosses the path of the current. (This surface is referred to as an 

Amperian surface.) Then apply Stoke's theorem to get 

fB.dl =Jio J] .dA (1-5) 
C 5 
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where dA is a vector in the direction normal to the surface whose magnitude is a 

differential area of the Amperian surface, and dl is a differential length along the 

perimeter of the Amperian surface. For a single wire, Equation 1-5 simplifies to 

fB.dT = flo] . (1-6) 
c 

This is the form of Ampere's law that is usually seen in introductory textbooks. 

Andre Ampere's work very closely paralleled the work ofBiot and Savart. 

Though Ampere's work was more thorough, he found the same relationship between 

currents and magnetic induction (Jackson 169). In fact, Ampere's Law can be derived 

from the Biot-Savart law (Reitz et al 204-205). 

The biggest difference between Ampere's work and the work ofBiot and Savart 

is that Biot and Savart dealt with finding the relation between current and iJ directly. 

Ampere found this relation by studying the forces on adjacent current carrying wires. 

Now there is a question of what is the direction of the magnetic field around a 

current carrying wire. Ampere believed that the magnetic field was radial like the 

electric field. This idea was later disproved by Michael Faraday who showed that 

magnetic fields form concentric loops around a current carrying wire (Weisstein[aJ). 

A drawback of the Biot-Savart law is that, while it is true for all points in space, 

in practice it can only be applied when there is a symmetry that simplifies the integration. 

Typical examples include the field of a straight wire and the axial field of a circular loop 

or solenoid. In cases where there is not sufficient simplifying symmetry to allow the 

Biot-Savart law to be solved, approximations have to be used. 
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The scope of this research concentrates on the magnetic field of a circular loop of 

wire, particularly the off-axis field. There is no analytic solution to the Boit-Savart law 

for the offaxis field. However, an approximate solution can be found by geometrically 

approximating the circular loop with a many-sided regular polygon. The individual 

contributions of each side of the polygonal loop can be added to find the approximate 

field produced by a circular loop (Grivich and Jackson). 
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Chapter 2
 

Theory: Approximating the Magnetic Field of a Circular Loop
 

For a circular loop of wire, the Biot-Savart law can only be solved analytically on 

the axis. The only region where an analytic solution exists is along the axis of the 

circular loop. For all other points, a numerical approximation must be found. In this 

chapter, one method of performing this approximation will be discussed. 

One such numerical solution is to approximate the circular loop geometrically. In 

geometry, one way to define a circle is a regular polygon with an infmite number of sides 

and whose interior angles are equal to 180 degrees. This defmition is not very instructive 

in visualizing a circle, but in terms of finding a way to geometrically approximate a circle 

with a regular polygon, this is a good way to view a circle. 

Consider the interior angles of a regular polygon. The relationship between the 

interior angle Bint and the number of sides n in that polygon is as follows: 

B = 180 360
1111 --~ (2-1) 

n 

From this equation it is evident that as the number of sides increases the interior angles 

start at 60 degrees for an equilateral triangle (n=3) and asymptotically approach 180 

degrees quickly (Figure 2). The closer the interior angles are to 180 degrees the better 

the polygon approximates a circle. 

.This method of approximating the magnetic field of a circular loop has two main 

strengths. First, a circular loop can be approximated by a polygon with relatively few 
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sides. Also, the polygonal loop is made up of many straight wire segments which allows 

for the magnetic field to be calculated at all points in space. 

Section 2-1 

Calculating the magnetic field of a straight wire segment 

What is the magnetic field at some arbitrary point P created by a straight, current 

carrying wire segment oriented along the x-axis (Figure 3)? The solution can be found on 

page 866 ofSerway's Physics for Scientists and Engineers. 

Start with the Biot-Savart law, 

Jj = f-lal f ciS x r (2-2)4n r 2· 

Because there is cylindrical symmetry, assume that the point of calculation is in the x-y 

plane. So, the cross product is 

ciS x r = k .dx sin e. (2-3) 

Substitute this result into Equation 2: 

Jj =kf-lo J fdxsin e (2-4)
4n r 2 • 
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Since rand () depend on x, this integral cannot be evaluated unless the integrand is in 

terms ofjust one variable. The following relationships will allow Equation 4 to be 

integrated : 

a 
r = sin () = a csc () , (2-5) 

a 
X=X 

p 
--­ (2-6)

tan () 

where x p is the x coordinate of the point of calculation (POC). So, 

dx: =a .d (). csc2 
() • (2-7) 

Substitute Equation 5 and Equation 7 into Equation 4 to get 

2iJ =kJio! Ja csc (). sin (). d() (2-8)
4Jr (acsc())2 . 

This simplifies to 

13 =kJ!:L
! 0,Isin () . d () . (2-9) 

4Jr a °, 

This integrates 'to 



9 

13 = k f-lo 
l 

(COSe
l

- COS(2 ) (2-10)
4n a 

where the variable a is the perpendicular distance between the wire segment and the 

POe. 

Equation 10 is a compact solution, but what are the cosines? To answer this 

question, the first thing to do is to define some vectors. Two of these vectors, AI and 

A2 , originate at the point of calculation and terminate at the ends of the wire segment.
 

Another vector fJ corresponds to the wire segment itself. These three vectors form a
 

triangle. e l is an interior angle of this triangle and the angle between A, and fJ.
 

So
 

AI' f3 cosel = (2-11)
IAI I·I;31 

e2 is the exterior angle between ~ and jJ. 

A2 • f3 
2 (2-12) 

cos e = 1~1'1;31 

It might be easier to describe the angles in terms of coordinates instead of vectors 

or angles. The wire segment originates at the origin and terminates at x=l. The point of 

calculation is at the point (x, y). Given this configuration, then: 
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X 
(2-13)cosel=(2 2)112' 

X + Y 

(X -I) 
(2-] 4) 2 1/2cose = [(x-IY + / ] 

If Equation 13 and Equation 14 are substituted into Equation 10, and remembering that 

y=a, we get: 

- 'Jio] [x (x - I) J (2-15)B =k- 1/2 - 2 1/2'

4n y (x 2 + y2) [(x-I) + y2] 

Now we have an equation for the magnetic field of a straight wire segment that is put in 

terms ofthe coordinates of the pac. 

It would be interesting to look at a couple ofgraphs of this equation. The first 

graph is B vs. x with constant y (Figures 4 and 5). Then there are a couple ofgraphs ofB 

vs. y with constant x that are of interest. One is with x such that the graph crosses the 

wire segment (Figure 6). The other graph is such that the x is outside the wire segment 

(Figure 7). Since we are only interested in the behavior of the magnetic field as the 

coordinate changes, in the graphs all the constants in Equation 15 are set to 1. These 

graphs show how the magnetic field around a wire segment behaves. 

In order to compute the magnetic field for a current carrying polygon, it is 

important to know how to relate the coordinate systems to each other. The next section 
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will discuss how to relate a coordinate system defined by a side of a polygonal loop to the 

coordinate system defmed by the center of the loop. 

Section 2-2 

Translating and rotating coordinate systems 

In the last chapter, an equation to calculate the magnetic field ofa straight current 

carrying wire placed along the x-axis from x =0 to x =I was derived. This equation is in 

terms of the coordinates of the POC (point of calculation). If the current-carrying wire is 

not oriented along the x-axis (e.g., the sides ofa current-carrying regular polygon 

centered at the origin), it is possible through translations and rotations to create a 

coordinate system to match the conditions assumed in Chapter 2. This section steps 

through fmding that coordinate system. 

Take a straight wire segment placed randomly in the x-y plane. The current in the 

wire originates at (Xl' Yl) and terminates at (x2,Y2 ). Define the angle () to be the angle 

between the wire segment and the positive x-axis. 

The conditions assumed in Chapter 2 are that the origin is the point oforigin of 

the current in the wire segment, and the x-axis is parallel to the wire segment. This 

defines the coordinate system that is translated and rotated from the original coordinate 

system in which the magnetic field is easily calculated. However, the end points of the 

wire segment and the POC are defined in the original coordinate system. So what are the 

coordinates of the end points and the POC in this new coordinate system (Figure 8)? 

For initial simplicity, assume that the POC is in the x-y plane. With this condition 

the magnitude of the magnetic field can be found with only one translation and one 
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rotation. The direction of the magnetic field is also defined by this condition to be in the 

± z direction. The positions of the end points of the wire segment in the new coordinate 

system can be found by examination of the conditions for calculation. The point (XI' Yl) 

becomes the origin in the new coordinate system. The point (x2,Y2) becomes the point 

(/,0) in the new coordinate system. 

The coordinates of the POC in the new coordinate system are not as easily found 

as the coordinates of the endpoints. The translation and rotation have to be applied to the 

POCo In the original coordinate system, the position of the POC will be labeled (xo' Yo). 

First translate the original coordinate system to create a primed coordinate system 

in which the origin has been moved to (XI' YI)' In this coordinate system the x-

component of the POC position will become 

X 
, 
= XI -xo· (2-16) 

The Y component of position becomes 

Y 
, 
=YI - Yo· (2-17) 

Since the translation is only in the X-Y plane, it doesn't affect the z-component of the 

POC: 

z' = Z. (2-18) 
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Now the primed coordinate system has to be rotated by an angle of () to align the 

wire segment along the positive x-axis. The coordinate system is being rotated about the 

z-axis so the z-component is unchanged. To find the x- and y-components in this double-

primed coordinate system we have to apply a rotation matrix to the primed position 

vector of the POC: 

[x:,) =[x',)[ co.s () sin (}) . (2-19) 
y y -sm(} cos(} 

So, 

" , () ,. ()x = x cos + y sm , (2-20) 

" , . () , ()y =-x sm + y cos , (2-21) 

z " = z (2-22) 

Or in terms of the Oliginal coordinate system 

X"=(X1-Xo)cos(}+(YI- yo)sin(}, (2-23) 

y" = -(XI - Xo)sin () + (y, - Yo )cos (), (2-24) 

z " = z. (2-25) 
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ecan be put in terms of the coordinates. This gives 

x" = (XI -XO)(x2 -XI) + (YI - YO)(Y2 - y,) (2-26) 
((x2 - XI Y+ (Y2 - YI Y)1/2 ((X2 - XI Y+ (Y2 - YI Yt ' 

" _ (XI - XoXYz - YI) + (X2 - XI Xy, - Yo) 
(2-27)

Y - (( )2 ( )2 )1/2 (( )2 ( )2 )1/2 ' X2 -XI + Y2-YI X2-XI + Y2-YI 

z " = z. (2-28) 

This result assumes that the POC and the wire segment are in a plane that is parallel to 

the X-Y plane. If the POC has a z-coordinate that is different than the z-coordinate of the 

wire segment, another rotation is needed. This time the rotation is around the x" - axis. 

This rotation can be done using a rotation matrix similar to that in Equation 4, but 

there is a much simpler way. Since the rotation is around the x" - axis, the 

X" - coordinate does not change. From the conditions for calculation we know that 

zm = O. The ylII - coordinate is simply the perpendicular distance between the POC and 

the wire segment. 

So, 

XIII = (XI - XoXX2 - XI) + (YI - Yo XY2 - y,) 
(2-29) 

((x2 - XI Y+ (Y2 - YI Yr ((x2 - XI Y+ (Y2 - YI Yr ' 
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'"_{[_ (X,-XO)(Y2-Y') + (X2-X,XYI-YO) ]2 +[z -z r}1/2 (2-30) 
Y - ( 2 2)1/2 { )2 ( )2 )1/2 1 0 ,(x2- XI) + (Y2 - Y, ) \(x2- XI + Y2 - Y, 

zm =o. (2-31 ) 

This can now be substituted into Equation 2-15 for the magnetic field of a straight 

wire segment: 

f.101 [X"' (x'" - L) J (2-32)
2B = 4;ry'" (X",2 + y",2 )1/2 - [(X'" -lr + y,"2 r • 

This gives the magnitude of the magnetic field at any position relative to a straight wire 

segment provided the wire segment is parallel to the X-Y plane. 

The direction of the magnetic field is in the zm direction, but what is the direction 

in the unprimed coordinate system? This can be found using a cross product. The first 

vector of the cross product is the vector that cOimects the POC to the point oforigin of 

the wire segment. This vector will be referred to as P : 

p = (x 0 - Xl )i + (y 0 - Y, ) J+ (z0 - Z 1) fc . (2-33) 

The second vector in the cross product is a vector that corresponds to the wire segment 

labeled S: 
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S=(X2-xl)i +(Y2 -YI)}+(Z2 -zJk" (2-34)
 

A unit vector in the same direction as this cross product gives the direction of the 

magnetic field at the POc. So the transfonnation of 2m into the unprimed coordinate 

system is 

2m = pxS (2-35)
IlpxSII" 

So the magnetic field at POC is 

m 
- 1'01 [x (XIII -I) J PxS (2-36)TB = 4;ry'" (X",2 + ym2 yl2 -1(xm _/)2 + y",2 r "1lpx sll" 

By making the necessary substitutions to put x"',y"',P andS in terms of the 

unprimed coordinate system, it is obvious that this is a tedious calculation. If there is 

only one wire segment, this idea of using rotations and translation does not make a lot of 

sense because the coordinate system can be chosen to simplify the magnetic field 

calculation. When there is more than one wire segment (i.e., a regular polygon), this 

technique is necessary in order to find the position of the POC relative to each wire 

segment. 
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Section 2-3 

A program in MATLAB to calculate the magnetic field 

For a regular polygon the calculation of the magnetic field is tedious due to the 

calculation having to be performed several times (once for each side of the polygon). For 

a polygonal loop that is used to approximate a circular loop, the tedium increases with the 

addition of each side. More sides added to the polygon results in a better approximation 

to a circle, but it also results in a significant number of manual calculations. One way to 

alleviate the tedium involved in performing these calculations manually is to write a 

computer algorithm to perform them. This allows for the magnetic field to be calculated 

in a fraction of the time it would take to do it manually. 

The following is a listing of MATLAB code that performs the required 

calculations to approximate the magnetic field of any regular polygon, centered about the 

z-axis. The comments in the code (shown in green and proceeded by a percent sign) 

explain the function of each section of the program. 

glecalcl - A program tha~ calCulates the magnetic field of a 
r polygonal loop centered about the z-axis 

help singlecalcl; 
first COUPle of lines initialize the proQram. 

~This section defines mu and asks for user-defined conditions for the
 
calr:ulation.
 
mu = 4*pi*10 A (-7)
 
n = input('Enter number of sides ')
 
r = input('Enter the l-adius in meLers ')
 
N = input('enter the number of turns ')
 
I = input('enter the current in Amperes ')
 
xcord = input('enter the x coordinate ')
 
ycord = input('enter the y coordinate ')
 
z = input('enter the z coordinate ')
 

i=O; 
j=l; 
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1 'This loop produces an ox3 matrix. Each row of this matrix 
;orresponds Lo the coordinaLes of each vertex of the polygon. 

2~This loop also initializes the matrix tic that will later be a 
list of direction vectors. 

3 while i<n 
4 A(i+l,:)= [r*cos(2*i*pi/n), r*sin(2*i*pi/n), 0]; 

tic(i+l,:)= [i i i]; 
6 i=i+1; 
7 en 
8 i=O; 

9	 %This section returns an nx3 matrix. Each row each row 
corresponds to a vector that represents each side of the polygon 
~The direction of these vectors indicate the direction of the 
current. 

11 while i<n-l
 
12 side(i+l,:)=A(i+2,:)-A(i+1,:);
 
13 i=i+1;
 
14 end
 

side(n, :)=A(l, :)-A(n, :); 
16 i=O; 

17 %This loop calculates the length of each sidp and returns an nxl 
matrix listing the length of each side. 

18 ~Since the loop is a regular polygon, each row of this matrix is 
the same. 

19 while i<n 
L ( i +1, : ) =s q r t (5 um (5 ide (i +1, : ) . A 2) ) ; 

21 i=i+1; 
22 end 
23 i=O; 

24	 %The nxl matrix theta is a list of the angles of each side of the 
polygon relative to the positive x-axis. 
%Note that when i~O, the angle calculated does not correspond to 

he first side of the polygon. 
26 ~The way this issue was resolved is subtle and will be pointed 

out.. 
27 while i<n 
28 theta(i+1, :)=pi/2-pi/n+i*2*pi/n; 
29 i=i+1; 

end
 
31 i=O;
 

32	 %Now he translation, rotation, an calculation of the magnetic 
field can be performed.
 

33 whil i<n
 
34 k=O;
 

~This loop translates and rotates coordinate system to find the
 
location of the POC relative to each side of the polygon.
 

36 aThe angle matrix theta starts on the nth side. The first
 
translation assumes that theta start at the first side.
 

37 tThis discrepancy is partialJy resolved by rotati~g the
 
oordinate systems an additional 180 degrees.
 

38 ,The problem is only Pdrtiallv resolved because now Lhere is a
 
ion problem.
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39	 while k<n 
40	 xcord l(k+l, :)= A(k+l,l)-xcord; 
41	 ycord_1(k+l, :)= A(k+1,2)-ycord; 
42 xcord_2(k+l, :)=xcord_l(k+l, :)*cos(theta(k+1,:) )+ycord 1(k+1, :)*si 

n(theta(k+J,:) ); 
43 ycord_2(k+1, :)=­

xcord_1(k+1, :)*sin(theta(k+1,:) )+ycord 1(k+1, :)*cos(theta(k+1,:)) 

44	 k=k+1; 
45	 end 
46	 k=O; 

47	 'In this section, a couple of things are calculates. First is an 
nx3 matrix representing the position vectors of the poe in the 
third primed coordinate system for each side. 

48 't,Second an oxl ma trix ')f the magni tudes of l:he previous ly 
mentioned position vectors 

49 \Lastly is an nx3 matrix listing of unit vectors that with a 
little reordering give the direction of each sides contribution 
to the maanelic field. 

50 \"hi If' k<n 
51 zcord(k+1, :)=z; 
52 cord(k+l,:)=[xcord, ycord, z]; 
53 magcord(k+1, :)=sqrt(sum(cord(k+l,:) ."2)); 
54 P (k+1, : ) =A (k+1, : ) -cord (k+1, : ) ; 
55 magP(k+l,: )=sqrt (sum(P(k+l,:) ."2)); 
56 perp (k+l, :) =sqrt (ycord_2 (k+1, :) . "2+zcord (k+1, : ) . "2) ; 
57 if ycord_2(k+l, :)<0 
58 perp(k+1, :)=-l*perp(k+l, :); 
59 en 
60 kevin(k+1, :)=cross(P(k+1, :),side(k+l, :)); 
61 direction(k+1,: )=(kevin(k+1,:) ./(sqrt(sum(kevin(k+1,:) ."2)))); 
62 k=k+1; 
63 en 

64 ,This is the actual calculation of the magnitude of the magnetic 
field. The aforementioned sign problem is resolved by switching 

he order o[ the angles in this calculation. 
65 8(i+1, :)=abs(mu*I*N/(4*pi*(perp(i+l,:)) )*( (xcord_2(i+1, :) ­

L (i +1, : ) ) . / sqrt (perp (i+1, : ) . "2+ (xcord_ 2 (i+1, : ) - L (i +1, : ) ) . "2) ­
(xcord_2 (i+1, :)) /sqrt (perp (i+1,:) . "2+ (xcord_2 (i+1,:)) . "2))); 

66 This reorders the direction vectors so that direction matches 
the magnetic field calculation 

67 if i>O 
68 tic(i+1,:)=direction(i,:); 
69 else 
70 tic(l, :)=direction(n, :); 
71 end 

72	 tThe variable b is an nx3 matrix in 
contribution to the magnetic field 

73	 b(i+l,l)=B(i+l,:).*tic(i+l,l); 
74	 b(i+1,2)=B(i+l,:).*tic(i+l,2); 
75	 b(i+1,3)=B(it1,:).*tic(i+l,3); 
76	 i=i+1; 
77	 en 

which each row is the vector 
for each side. 
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78	 %Btot is the total magnetic field of a current carrying polygon 
in Cartesian cOurdinates
 

79 Btot(j,l)=sum(b(:,l));
 
80 Btot(j,2)=sum(b(:,2));
 
81 Btot(j,3)=sum(b(:,3));
 

82 ~Cartesian coordinates are not very conducive to visualizing the 
magnetic field. 

83 ~The symmetry of the polygon makes it reasonable to convert into 
cylindrical coordinates. 

84 B R(j,1)=Btot(j,1)*xcord/(sqrt(xcord A 2+ycord A 2) )+Btot(j,2)*ycord/ 
(sqrt(xcord A 2+ycord A 2) ) 

85	 B Theta(j,l)=­
Btot(j,2)*xcord/(sqrt(xcord A 2+ycord A 2))+Btot(j,1)*ycord/(sqrt(xco 
rd A 2+ycord A 2) ) 

86	 B_Z(j,1)=Btot(j,3) 

Section 2-4 

Calculations to be used for quantitatively testing the MATLAB code 

There are three calculations that can be used to test how well the code from 

Section 2-3 approximates the magnetic field of a circular loop. First is the calculation of 

the on-axis magnetic field. This is the only region where the magnetic field is known 

exactly. The magnetic field can also be approximated at points "far" from the loop. The 

last area the MATLAB code can be tested only applies to the radial component of the 

magnetic field near the axis of the loop. 

Even though the last two regions that will be used to test the code are only 

approximations, they are still useful in deciding how well the polygonal approximation 

works. The basis for this is that these approximations give results that are close to the 

actual value of the magnetic field within the regions where they were meant to be used. 

If the polygonal approximation gives acceptable results compared to these 

approximations, then there is good reason to believe that the polygonal approximation 

also gives acceptable results to the unknown true value in those regions as well. 
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Section2-4.1 

To calculate the on-axis magnetic field of a circular loop start with the Biot-

Savart law (Figure 8-5 Reitz, et. al.): 

B(r ) =~1! dl x(r2 -~) 
2 (2-37)

4n J1 1- I' .r2-~ 

Make the following substitutions: 

dl = a(- f sin f) +.J cosf)~f), 

r2 - ~ =-fa cosf) - }a sin f) + fez , (2-38) 

2 2)1/2 
r2 -rl =(a +z

1 I 

to get 

-( ) = f.1o 2IT a(- f sin f) + .J cos f))X (- fa cos f) - }a sin f) + fez )d
B r2 1 f () 3/2 

LJ (2-39) 
4n 0 a 2 + Z2 

(7 • 

Performing the cross product in the numerator gives 

B(r ) =~ /flT ~za cos f) + }za sin f) + ka
2 

) (2-40)2 4n (2 2) 3/2 d f) . o a +z 
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The [ and J tenns of this equation integrate to 0 leaving 

- - ~ 
B(r2 )-k 

( 2)
J.1 o a

l( )3/2
4n a 2 +Z2 

2nJ
de 

0 

(2-41 ) 

or 

13(1'2) 
J.1 01 

=2 
(a 2 

) 

(a2 + Z2 )3/2 
k. (2-42) 

Equation 2-42 shows the on axis magnetic field of a circular current carrying loop of wire 

(Reitz, et. al. 200). 

Section 2-4.2 

The second calculation that can be used to test the MATLAB code is the 

approximation for the radial component near the axis of the current carrying circular loop 

(problem 8-12, page 215 in Reitz, et. al.). This is achieved by analyzing the divergence 

of the magnetic field. In cylindrical coordinates the divergence of 13 is 

V'.13=O=~~(rB,)+~ aBe + aBz . (2-43) 
r ar I' ae az 

Due to symmetry 

I aBe =0. (2-44)-; ae 

Therefore, 
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- 1 a aszv'S=--(rS )+-. (2-45)
r ar ' az 

Now, apply the product rule to the radial component to separate it into two derivatives: 

- 1 as as 
v·s=-s +-'+-' (2-46)

r' ar az' 

By Gauss's law, equation 2-46 is equal to zero, so 

°=~ s, + as, + asz • (2-47) 
r ar az 

Try as a solution to Equation 2-47 

s, =co +c,r+c2r2 +c3r) +... (2-48) 

where CO,c"c2 'c) ... are functions ofz. 

As r --t 0, the terms higher than the linear term can be neglected. Also, as r goes 

to zero, S, must also go to zero. This means that Co = 0, leaving 

S, ~clr. (2-49) 

Substitute Equation 2-49 and its derivative into Equation 2-47 to find: 
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1 as, 
c, ="2 az 

Since r is small, the z-component of the magnetic field is approximately equal to the on-

axis field: 

2 
B(r ) ;::: fl0 1 (a ) • 

2 2 (a 2 + Z 2 ) 3/2 k , 

so 

as, _ 3flo1 a 2 z 

&--2-(Z2 +a2r/2 · 

Therefore, 

3fl01 a 2 
Z 

(2-50)
C I = 4 (z 2 + a 2 ) 5/2 ' 

so, 

s ;::: 3fl01 a 
2
zr 

(2-51) 
r 4 (Z2 + a 2r/2 

Equation 2-51 gives an approximate value for the radial component of the magnetic field. 

The limitation to this approximation is that it only works for r « a , and there are no 

available analytical tests to show its accuracy. 

Section 2-4.3 

The next area in which the MATLAB code can be tested is the magnetic field far 

from the current carrying loop (Reitz, et. al. 210). Rather than using the Biot-Savart law 

to approximate the magnetic field, it is easier to start with the vector potential: 

A(r ) = fl01 f _d~ . (2-52)2 
4n h-~I 
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For r2 » r l , the denominator of Equation 2-52 can be approximated by rewriting it as in 

Equation 2-53 and expanding in powers of r.jr2 : 

~ ~I-I = (2 2 
-

2- - )-1/2I r2- r l r2+ r j r j ' r2 , (2-53) 

-:: _1-1 - 1 [ ~ . ;::2 ] 
1
'2 -'1 -- 1+-2 +.... (2-54) 

r2 r2 

Equation 2-54 is the expansion to first order in fj / r2 • Substitute this result (2-54) into 

Equation 2-52 to get 

A(;::2) = llaI{~fd~ +~fd~(~ .r;)+ ...}. (2-55)
4n r2 r

2 

The first integral goes to zero and the second integral is one term of 

(~ x d~ )x r; =-~ (r2.d~ )+ d~ (~ .r2). (2-56) 

Consider the differential of ~ (~ .r2 ) for a small change in ~. This is 

d[fj(r; '~)]=~(r2 ·d~)+d~(r2 .~). (2-57) 
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Equation 2-57 is an exact differential. Ifwe add Equation 2-56 and equation 2-57 

together we can solve for d~ (r2 • ~) to get 

d~(~ .~)=~(~ xd~)x~ +~d[rl(r2 .~)]. (2-58)
2 2 

Substitute Equation 2-58 back into equation 2-55 to get 

A(r2)= JioI{~f[~(~ xd~)xr2 +~d[rl(r2 .~)]]}. (2-59) 
4n ~ 2 2 

Since d[fj (r2 • ~)] is an exact differential it does not contribute to the integral, so 

A-(- ) JioI { I ! I (- d-) -} (2-60)r2 =- -3r- fj x r\ x r2 ,
4n r2 2 

or 

A(r2)=&{~f~Xd~}X \. (2-61 ) 
4n 2 r ' 

2 

The bracketed part of Equation 2-61 is defmed as the magnetic dipole moment, in. 

Therefore Equation 2-61 can be rewritten as 

A(r2) = Jio iiI. x r2 (2-62)4n -r.-3 
2 
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Now we have an expression for the vector potential of a current carrying loop at 

distances much greater than the dimensions of the loop. From this vector potential we 

can find the magnetic field by noting that 

B(r2 ) =Vx ,4(1'2). (2-63) 

Substituting Equation 2-62 into 2-63 we get 

B(r2 ) =~ Vx [iii x '\ I. (2-64)
4n 1'2 ) 

Applying the vector identity, 

v x (X x Y) = (V. 9)x -(V. X)y + (9 . '1)x - (X. '1)y, (2-65) 

to Equation 2-64 gives 

- J.1o - 1'2-: - - - 1'2- [-1'2 - J- - - 1'2 ­B(rJ=- '1.-3 m-('1.m)-3 + -3·'1 m-(m·'1)-3- . (2-66)[[4n 1'2 1'2 1'2 1'2 

The magnetic dipole moment is a property of the magnetic field source and is, in this 

case, constant at the POCo Therefore, the derivatives of iii in Equation 2-66 are zero. 

This leaves 
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- =-J-Lo [(m0 
- ) r2 [ - r2 (2-67)B(r2 ) - v -3 + m V· -3J] 

0 

4n ~ ~ 

By utilizing the fact that 

a _m} r2mX---3--3mxx2-S' (2-68) 
aX2 1'2 1'2 

the first bracketed tenn in Equation 2-67 can be transfonned into 

(m V)~ = m_3(m o r2 )r2 
o 

0 

(2-69)3 3 5 
1'2 1'2 I'2 

The second tenn is 

_[- r ] _[3 _ 3r2 ]m vo-2 =m --I' 0- =0 (2-70)3 3 2 S . 
1'2 1'2 1'2 

That leaves 

13(1'2) =&...[_ m+ 3(m 'Jr2 ] (2-71 ) 4n 3 
0

S 0 

1'2 1'2 

Equation 2-71 shows the magnetic field ofa distant current-carrying loop. It depends 

only on the magnetic dipole moment of the loop. 
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To use Equation 2-71 to find the magnetic field of a circular loop it is necessary to 

fmd the magnetic moment of a circular loop. This calculation is fairly simple for a 

circular loop. The magnetic dipole moment is defined as 

m=!A (2-72) 

where A in Equation 2-72 is NOT the vector potential. A is the area vector of the 

circular loop. For a circular loop 

2Iinl = In rl n (2-73) 

where r l is the radius of the circular loop and nis a unit vector parallel to the area vector 

(A ). 

Ifwe combine equation 2-71 and Equation 2-73 we get an equation for the 

magnetic field far away from a circular loop of wire: 

B(r ) = !!..Q.. [_ In r l
2 
n+ 31n r\2 (n .r2) r2] (2-74)2 4n 3 5·r2 r2 

To test the validity ofthis approximation we can compare the results for Equation 

2-74 in the case of the POC being on the axis of a circular loop to the expected analytic 

result of Equation 2-42: 

B(r ) = fLo I (a 2 ) ~ (2-42)2 2 (a2 + Z2 )3/2 k . 
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First, rewrite Equation 2-74, factoring out the constants and confining the 

geometry to match the geometry defmed in Equation 2-42 (fj = a, n= k): 

2 2 
B(r ) = JLol [_ a k+ 3a (k .12 h] 

2 (2-75)4 ,3 5 . 
'2 r2 

Combining the bracketed tenns and simplifying where necessary we get 

li(r,) = I'°t'fl (2-76a)
2 r2 

or 

li(z) " I'D! [a'i] (2-76b)
2 Z3 

Does this result match Equation 2-42? The major assumption in this approximation is 

that r2 »fj (z» a). Ifwe apply this assumption to Equation 2-42, we can obtain the 

same result. Start with Equation 2-42: 

JLol (a
2

) k. (2-42)B(r2 ) =2 (a 2 +Z2)3/2 

Since z» a, we can rewrite Equation 2-42 as, 
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B(r ) ~ 1-'0 
1 II ' (2-77)2 

2 (Z2)Yz k 

which simplifies to Equation 2-76b, 

B(z) ~ 1-'0 
1 [a 

2 k] (2-76b)2 J.z 

So, yes Equation 2-75 is a valid approximation of the magnetic field at large distances 

away from the source loop. 
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Chapter 3
 

Results
 

In this chapter, the results of the calculation described in the previous chapter will 

be presented and analyzed. All calculations were perfonned using a variation of the 

MATLAB code listed in Chapter 2. The approximation of the field will be tested both 

qualitatively and analytically. For the analytical evaluation there are three areas in which 

this approximation can be examined. Those areas are: on the axis of the loop, near the 

axis 0 f the loop, and the field "far" outside the loop. 

With all the possible variations of the approximation, there are many parameters 

that are user controlled. The basic parameters are: the current, the number oftums in the 

loop, the number of sides in the polygon, the "radius" (the distance from the center of the 

polygon to each vertex), and the position(s) of the POCo The main difference in all the 

approximations is related to the POc. There are four basic variations of the basic Matlab 

program. Each variation has a specific way in which it allows the user to vary the 

parameters. Variation I allows the user to input the exact location of the POC, but it only 

calculates the magnetic field at that one point. Variations 2,3 and 4 create three maps of 

the magnetic field, one for each of the components (I'. e. and z). The maps from second 

variation show the magnetic field in a plane parallel to the x-y plane at a user defined z­

coordinate. The maps in the third variation show the magnetic field in a plane parallel to 

the y-z plane at a user defined x-coordinate. The maps for the fourth variation shows the 

field in the x-z plane at a user defined y-coordinate. 

Variations 2, 3 and 4 output three graphs, one for each component, in cylindrical 

coordinates, of the magnetic field. For qualitatively checking the output of these 
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programs, the r- and z-components appear quite accurate for any number of sides higher 

than twenty-five. It is more useful to look at the B-component ofthe magnetic field as 

the number of sides increases. 

In a plane just above the polygonal loop the B-component of the magnetic field 

should go to zero as the number of sides increases. This is evident in Figures 9b-lSb. In 

Figure ISb (just above a 200-sided polygon) the B-component is very close to zero. In 

fact, as n increases the B-component becomes so small that all that is visible in the map in 

Figure ISb are numerical artifacts caused by a loss of precision when adding each side's 

contribution to the magnetic field. However, the actual magnitude of the B-component of 

the magnetic field in these areas is on the order of at least 10-5 times less than the 

magnitude of the other components of the magnetic field so the B-component of the 

magnetic field is essentially negligible. This fact gives good evidence that it is 

reasonable to use a polygon to approximate the magnetic field. 

As a further check on the accuracy, the axial field ofthe approximation was 

compared to the analytic solution of the Biot-Savart law for a circular loop. This check 

produced some interesting results. 

It was originally expected that, as z increased, the axial field of the polygon would 

approach that ofthe circular loop. This, however, is not the case. The percent error in 

the field, as z increased, approached a constant rather than zero (Figure 16). As it turns 

out, this error is related to the difference in the area between the polygon and the circle. 

This matches the results from Reitz, et. al. p 210. For large distances, the magnetic field 

approximately matches the magnetic field of a magnetic dipole. The magnetic field of a 

dipole depends only on the current and the area ofthe loop. 
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An interesting observation, resulting from the error analysis of the axial field, was 

that for z values much greater than the radius ofthe polygonal loop the percent error 

decreased proportionally with l~> (Figure 17). This decrease in the error corresponds to 

the difference in the areas between the polygon and the circle. The difference in the areas 

between a circle and a polygon decreases as X2 ' 

One result that came out of the error analysis was that for any fmite number of 

sides to the polygon there were two points (spaced symmetrically around the loop) that 

yield a percent error of zero. For z smaller than that value the field is overestimated. For 

z larger than that point the field is underestimated. For an inscribed po lygon, the points 

of the loop are closer to the axis than the points along a circular loop. For all points on 

the axis the magnitude of the field produced by a part of the polygonal loop is greater. 

The direction, however, is slightly different. At small z, the magnitude ofthe field for the 

polygon wins out over the one for the circular loop. At large z, the field of a polygonal 

loop is more horizontal than that of the circle. This means that the vertical component of 

the field for the circle is greater than that of the polygon, so the polygonal approximation 

is less than the actual magnetic field. 

This point of zero error (PZE) is limited (Figure 18). As the number of sides 

increases, the PZE approaches a value of "'% ;:::; 0.707. By graphing the point of zero 

error vs. n and using the graphical analysis abilities in LoggerPro, the PZE approaches its 

value as l'hz2' This result, while interesting, doesn't reveal much since the error in the 

magnetic field goes to zero at the same rate that the PZE approaches "'% ;:::; 0.707. 
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Another test for the polygonal approximation is to compare it to the near axis 

approximation. As shown in the previous chapter, the r-component of the magnetic field 

near the axis of a circular current carrying loop is: 

B ~ 3Jio! azr (2-51 ) 
I' 4 (Z2 +a2t2 

For n = 200 the polygonal approximation matches this linear approximation for the 

radial component of the field to within less than 10 percent for r values less 0.23m with a 

1m radius loop at z=O.l m (Figure 19). 

The linear approximation for the radial component is only meant to work for 

values of r that are much smaller than the radius of the current carrying loop. Using 

r=0.23m in the linear approximation with a=l m is pushing the limits of the 

approximation; however, the percent difference between the linear approximation and the 

polygonal approximation gives a good indication of the value ofthe polygonal 

approximation for calculating the magnetic field of a circular loop. 

Another indication that the polygonal approximation is valid is to look at the 

difference between the radial component ofthe polygonal approximation and the linear 

approximation. The graph ofthis difference versus radial position consists ofthe higher 

order terms in the series used to develop the linear approximation: 

B,_ =co+c,r+c2r 2 +c,r3 + ... (2-48) 

In fact, the graph of the difference versus radial position is mostly the cubic term ofthis 

senes. 
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The final test of the reliability of the polygonal approximation is to look at the 

field far from the loop by comparing it to the magnetic dipole approximation for a 

circular loop of wire: 

i3(r2)=~[- Im/ii + 3Im/(ii.r2)r2] (2-74)
4n ' 3 5' 

'2 r2 

As seen with the axial field, the percent difference between the polygonal approximation 

and the dipole approximation goes to a constant value as the distance from the loop 

increases (Figure 20). The value of the percent difference is equal to the percent 

difference in the area of a circle compared to that of the approximating polygonal loop. 

Also as the number of sides (n) in the polygon increases the percent error decreases 

approximately as /;>. This is expected since at large distances the area plays the 

predominant role in the magnitude of the field produced by a current carrying loop, and 

the percent difference in the area ofa circle compared to that of an inscribed polygon 

goes as X2 • 
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Chapter 4
 

Conclusions
 

The Biot-Savart law cannot be solved analytically at all points in space for a 

circular loop of wire. The only place where the Biot-Savart law can be solved is on the 

axis of the loop. For all other points in space it can only be approximated. One way in 

which this is done is to approximate the circular loop as a many-sided regular polygon 

and solving the Biot-Savart law directly for each side. The magnetic field for the loop is 

then the vector sum of the contributions of each side. 

To do tills approximation manually is computationally intensive. To reduce the 

effort required to perform this approximation, it is feasible to automate the process in 

MATLAB. Automating the magnetic field approximation also allows for easily mapping 

the magnetic field. 

By its nature, the magnetic fields are difficult to visualize. Having a program that 

can map the magnetic field can be an invaluable asset. Having a map of the magnetic 

field allows a person see how each component of the magnetic field varies with position. 

There are limitations to the programs discussed here. The first limitation is that 

they only map the magnetic field one plane at a time. For each version of the program 

one component of the position is kept constant. This is done for a couple of reasons to 

shorten the runtime of the program and, more importantly, if one component of the 

position is kept constant when the magnetic field is mapped it frees up one axis of the 

graph to be used to show the magnitude of the field. 
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Time is another limitation of the programs. Automating the calculations certainly 

cuts down the amount of time it takes to get results compared to running through the 

calculations by hand, but it is still an issue, especially in the case where maps of the 

magnetic field are created. For a 200-sided polygon a map consisting of a 200 x 200 

square grid, it still takes about twenty-four hours for the simulation to make all the 

calculations and return results on a Dell Optiplex GX280 with a 2.80 GHz Pentium 4 and 

1 GB of RAM. 

For all the results, the polygon that was used to approximate the circular loop was 

inscribed in a circle that matched the circular loop. What if, instead of inscribing the 

polygon, it is circumscribed around the circular loop? The result of this condition is that 

the elTor in the axial field is reduced to approximately half of the inscribed loop. As 

expected the elTor also decreases no slower than ;-;:2' 

Using an inscribed polygon overestimates the magnetic field close to the loop and 

underestimates the magnetic field far away. A circumscribed polygon does just the 

opposite. It underestimates the field close and overestimates far away. Given that the 

elTor for a circumscribed po lygon goes to half the value of the elTor of an inscribed 

polygon as z approaches infmity, it may be useful to combine these approximations with 

a weighted average to approximate the magnetic field. The usefulness of this is that it 

will reduce the elTor at the far limit to zero. It will also reduce the elTor near the loop on 

the axis. A disadvantage of using a weighted average is that it increases the space around 

the loop where the approximation is not valid. However, for a sufficiently large number 

of sides, this space is only negligibly larger than either of the individual approximations. 

Another disadvantage of using this weighted average is that it doubles the already lengthy 
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calculation time and since, for large n, the inscribed polygonal approximation is really 

close to the actual axial magnetic field, reducing the time of calculation is more 

advantageous than decreasing an already small error. 
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Appendix A
 

Derivation of Ampere's law from the law of Biot and Savart
 

Ampere's law is derived from the Biot-Savart law by first assuming that there is a 

steady current. That is to say, 

v·J=o. (A-4) 

Then take the curl with respect to r2 of both sides of the Biot-Savart law: 

V2 X 13(r
2

) = V2 x [L! ] (~ ) x (r2 - ~ ) ] (A-5)4Jr j 1-: _1 3 dV. 
'2 - r1 

This becomes 

V2X 13(r ) =L J[[V2.(r2 - ~ ) J] -(V .])(r2 - ~ )
2 

4Jr v Ir2 - il 2 !r2 -r1!3 

(A-6)+[~2 -:I~. v2J] -(]. VJ[~2 -~~J]dV.
h -r,1 h -rll 

The second term of equation (1-6) is zero due to equation (1-4). The third term of 

equation (1-6) is zero because the derivative is taken with respect to r2 , and](r) is only 

a function of ~. Equation (1-6) then becomes 
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V2XB(r2 )=Lf[(V2 ' ~2 -~~JJ-(J'V2)(~2 -~~J]dV. (A-7) 
4n v h - rI h - rllJ 

Now make the following changes. Express the first term as a Dirac delta function. 

Multiply the second term by negative one and change the derivative to differentiate with 

respect to ~: 

V2x B(r2 ) =L f[4n.J6(r2 - -(J. VI )(~I -~2 ~JJ dV. (A-8) 
4n v 

rJ ) h - rll 

The flrst term here integrates immediately to 4n J. The second term of this equation is 

zero (Reitz et al 204). 

We can use the fo \lowing vector identity to show that the second term of equation 

(1-8) is zero. For the x-component of r, and r2 , 

VI.[J (~I - ~2/ J=(~I -~23) VI.J+ (J .V1)[ (~I - ~\) J. (A-9)
h -rll h -r,1 h -rll 

v·J = O. So, 

(J.V,)[(~I-;2/J=VI'[J(~I-~23)1. (A-10)
h-/II h-rJI j 

Substitute this into equation (1-8) to yield 
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V2 X B(r2)= /-lOJ - JvI . [J (~I - ~2/JdV. (A-II) 
v h -rll 

Now we can use the divergence theorem on this integral: 

v, x B(r,) = fio] - fj~l -x,) ] do. (A-12) 
s r2 -fjl 

The surface integral corresponds to the normal component of J. Therefore this term 

must be zero. If this integral were not zero, there would be a net flow of current out ofthe 

region (Cook 141). Equations A-9 through A-12 can be repeated for the y- and z-

components with the same results, so we end up with 

V2 X B(r2)= /-loJ· (A-l3) 

This is normally referred to as Ampere's law before James Clerk Maxwell added in a 

term for the displacement current. 

Sometimes it is useful to express Equation (1-13) in integral form. This can be 

done by integrating each side over a surface that crosses the path of the current. This 

surface is referred to as an Amperian surface 

JVx B.dA = /-lo JJ .dA (A-14) 
s s 

where dA is a vector in the direction normal to the surface whose magnitude is a 

differential area ofthe Amperian surface. 
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Applying Stokes's theorem to the left side of this equation, we get 

JV x 13.dA =ff3·if (A-IS) 
s c 

where dl is a differential length along the perimeter of the Amperian surface. This 

changes a surface integral over an open surface into a path integral around a closed path. 

Substituting equation (1-15) into equation (1-14), we get the integral for of 

Ampere's law: 

f13 .dl = J.10 J] .dA . (A-16) 
c s 

For a single wire, J is a constant so we can simplify the right side of equation A­

16 to J.101. So, for a single wire the integral form of Ampere's law is 

f13 .dT =J.1oI . (A-17) 
c 

Solving equation (A-l7) for a long straight wire will yield the same result as in 

equation (A-I). This verifies that equation (A-3) and equation (A-l3) are equivalent in 

that, though developed independently, they both yield the same result: 

1131= J.101 (A-18)2m- . 
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Figure 1. Diagram for the magnetic field of an infmitely long straight wire with current 
(1) at a distance (r) from the wire. 
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Figure 2. Graph of interior angles ofa regular polygon as a function of the number of 
sides. 
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Figure 3. Diagram for the calculation of magnetic field for a straight wire segment. 



•••• 

49 

Scaled magetic field vs. x-position y=1/16
 

---- --30­

"'C 
(I) 

'i= 
(,J

(I) -
t: 
0) 
ca 
E 

"'C 
(I) 

ca 
(,J
 
fI)
 

-1 -0.5 o 0.5 

x-position 

'\-.•
••
•
•
•

1 1.5 

Figure 4. Graph showing the shape of the magnetic field (Equation 16) ofa wire 
segment one meter in length as a function of horizontal position x keeping vertical 
position y positive and constant. 
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Figure 5. Graph showing the shape of the magnetic field (Equation 16) of a wire 
segment one meter in length as a function of horizontal position x keeping vertical 
position y negative and constant. 
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position x constant and crossing the wire segment. 
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Figure 7. Graph showing the shape of the magnetic field (Equation 16) of a wire 
segment one meter in length as a function of vertical position y keeping horizontal 
position x constant and crossing the x-axis outside the wire segment. 
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Figure 9. These show the magnitudes ofeach component of the magnetic field for a 
hexagon (1 m from center to vertex) as a function of position in cylindrical coordinates. 
(a) r-component vs. position. (b) B-component vs. position. (c) z-component vs. position. 
For all of these graphs z=O.25m. 
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Figure 10. These show the magnitudes of each component ofthe magnetic field for a 12­
sided polygon (1 m from center to vertex) as a function of position in cylindrical 
coordinates. (a) r-component vs. position. (b) B-component vs. position. (c) z-component 
vs. position. For all ofthese graphs z=O.25m. 
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Figure 11. These show the magnitudes of each component of the magnetic field for a 25­
sided polygon (1 m from center to vertex) as a function of position in cylindrical 
coordinates. (a) r-component vs. position. (b) O-component vs. position. (c) z-component 
vs. position. For all of these graphs z=O.25m. 
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Figure 12. These show the magnitudes of each component of the magnetic field for a 50­
sided polygon (1 m from center to vertex) as a function of position in cylindrical 
coordinates. (a) r-component vs. position. (b) B-component vs. position. (c) z-component 
vs. position. For all of these graphs z=0.25m. 
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Figure 13. These show the magnitudes ofeach component of the magnetic field for a 75­
sided polygon (l m from center to vertex) as a function ofposition in cylindrical 
coordinates. (a) r-component vs. position. (b) B-component vs. position. (c) z-component 
vs. position. For all of these graphs z=O.25m. 
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Figure 14. These show the magnitudes of each component ofthe magnetic field for a 
lOO-sided polygon (1 m from center to vertex) as a function of position in cylindrical 
coordinates. (a) r-component vs. position. (b) B-component vs. position. (c) z-component 
vs. position. For all of these graphs z=O.25m. 
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Figure 15. These show the magnitudes of each component of the magnetic field for a 
200-sided polygon (1 m from center to vertex) as a function of position in cylindrical 
coordinates. (a) r-component vs. position. (b) B-component vs. position. (c) z-component 
vs. position. For all of these graphs z=0.25m. 
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Figure 16. The percent error in the on-axis field of a 200-sided polygonal loop compared 
to the on-axis field ofa circular loop graphed as a function ofz. 
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Figure 17. The percent error in the axial field ofa polygonal loop at a fixed position z=O 
graphed as a function of the number ofsides (n). 
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Figure 18. A graph showing the position ofthe point of zero error graphed as a function 
of the number of sides (n) in the polygonal loop. 
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Figure 19. The percent difference between the polygonal approximation (200 sides) and 
the linear approximation for the radial component of the magnetic field graphed as a 
function ofthe distance from the axis of the loop (r) at z=0.01 m. 
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Figure 20. The percent difference between the polygonal approximation and the dipole 
approximation for the magnetic field "far" from a circular loop graphed as a function ofx 
and y with z =10m. 
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