of the Russian-Germans to
the Russian-Germans to
of the Russian-Germans to
of the Russian-Germans to

76: August 16, 1876.

a remedies and types of treat-

atape-recorded Interviews with

and fall of 1960.

clubs. Petticoat Pioneers of the

Federafon of Women's Clubs)

Medical Folklore (New York:

Boor·gene .r·pund

Munde der Russlanddeutschen

71), p. 126.

URBAN SERVICES IN EARLY NORTH DAKOTA:
THE ADVENT OF MUNICIPAL WATER SYSTEMS, 1880-1900

by
Frank E. Vyzralek, State Archivist
North Dakota State Historical Society

Water is the one food element which the body demands
with an insistence and continuity not approached by the need
of any other thing.¹

The truth is this quotation explains in large part why nineteenth
century Americans viewed the semi-arid Great Plains of North America
with great trepidation and initially wrote the whole region off, stamping
their maps with the words "Great American Desert." Eventually, as the
frontier diminished explorers found the region habitable although its
climate provided an uncertain and not particularly reliable source of
moisture.

Much depended on the year, for the plains are prone to a boom or
bust system where a resident might wallow in mud one year and be dry as
dust the next. Thus, during 1873 when the Northern Pacific Railroad began
building its main line west from Fargo "construction parties were obliged
to advance like an army across the desert, bringing all their materials and
provisions over the road they were building from a base of supplies ever
becoming more and more distant." General W. B. Hazen, military
commander at Fort Buford, Dakota Territory, that same year, was so impressed
by the lack of rainfall that he began a personal campaign in the national
press to discourage prospective settlers. Little wonder then that the first
immigrants to the west side of the Red River of the North tended to hug the
rivers and streams and established their farmsteads under the comforting
branches of riverine woods.²

Of course, these early settlers soon discovered that the stories of
Dakota's dryness were as exaggerated as those broadcast
by land promoters
claiming heavy annual rainfall to be the norm. A little experimentation
revealed that shallow wells reached the water table with ease; one could
find plenty of water for human consumption, the trick being to find enough
to grow a crop.

Most of Dakota's cities and towns are by location, at least, pro-
ducts of railroad construction. While the nineteenth century railroad was
the only means of rapid and dependable transportation, its builders on the
Northern Plains were also sensitive to locating their stations (and the
cities which subsequently grew up) at the best sources of available water.
Along the Northern Pacific's main line all of today's larger towns--Fargo,
Valley City, Jamestown, Bismarck, Mandan and Dickinson—are located at
river crossings. On the Great Northern the same was true of Grand Forks,
Devils Lake, Minot and Williston, all of which began as serving points
and grew into substantial communities. Between these points sidings were
established often where wells or handy potholes would provide convenient
sources of water, since the locomotives of the 1870's and 1880's were both small and thirsty.

Indeed, the railroad water tank was often the chief source of water for early residents of North Dakota's railroad towns and company management seldom objected unless it was in extremely short supply. But most townspeople of the day obtained their water from tank-wagon dealers who sold it from door to door. After being drawn from the Missouri River, water was sold at Bismarck for twenty-five cents a barrel, sediment and all. At Grand Forks water dealers had at least one unusual hazard to contend with—having their pumps run over by passing steamers. As time went on more wells, both privately and publicly owned, were driven and the door-to-door water salesman began to disappear. In his place came citizen pressure for water piped directly to each house.

Like the railroads, early residents of North Dakota's prairie towns found the rivers a simple and handy source for a municipal water system. The first of these were thus established at the Red River towns of Fargo, Grand Forks and Wahpeton along the eastern border and at the capital city of Bismarck on the Missouri. Notable also is that most were privately owned, a fact attributable not so much to the spirit of nineteenth century private enterprise as to restrictions in Dakota Territory law designed to prevent the rapid accumulation of heavy municipal bonded debt.

Fargo got northern Dakota's first water system during 1880 when the city council awarded a franchise to the Fargo Water & Steam Co., which by the end of the year had installed a system of mains throughout the business district and close-in residential areas to serve the city's several thousand people. Powerful steam-driven pumps on the riverbank in a city park forced turbid Red River water into a brick, one million gallon settling basin and from there directly into the mains. A brief period of sedimentation was the only concession toward purification. In its early years, the water company built extensions as rapidly as requested and even developed a residential sub-division of its own.

A similar system was built at Grand Forks during 1882 involving an initial 3,500 feet of underground pipe. There, however, the mains and pumps were city-owned with steam being purchased under a 15-year franchise with a local flour mill. The system was installed at a cost of $12,275.

The Wahpeton water works, constructed in 1885, was another joint venture but in this case the city issued $20,000 of its own bonds to help finance the efforts of the private Wahpeton Water Co. As built, the plant allowed Red River water to run by gravity flow into a 40-foot deep "settling well," from which it was pumped into the mains. Unfortunately, the building of the Wahpeton system was, from beginning to end, the child of conniving promoters and naive city councilmen which resulted in a physical plant smaller than that of Grand Forks but with a debt of more than $80,000. In nineteenth century business terms, there was more water in the stock
of the 1870's and 1880's were often the chief source of a railroad towns and company as in extremely short supply. their water from tank-wagon other being drawn from the Missouri City-

fifty cents a barrel, sediment at least one unusual hazard to er being drawn from the Missouri river by passing steamers. As time industry owned, were driven and disappear. In his place came to each house. of North Dakota's prairie towns for a municipal water system. The Red River towns of Fargo, on border and at the capital city to is that most were privately the spirit of nineteenth century kota Territory law designed to principal bonded debt. later system during 1880 when the Bismarck Water Co. completed what was then the most elaborate and expensive system in Dakota. Water was pumped from the river up to a rock-lined reservoir on a hill above the city. After being given sufficient time to settle—the Missouri River has often been described as too thick to drink and too thin to walk on—gravity brought it down a feeder pipe to the city distribution system. The Bismarck Water Company's plant was viewed as a proud asset to the community and the local press seldom lost an opportunity to describe it in glowing and reverential terms.

Soon after becoming territorial capital in 1883, Bismarck issued a water franchise to a local hotelman and promoter, Eber H. Bly, who put his first efforts into drilling an artesian well on the heights overlooking the city. Six months later the only result was a 1,300-foot deep dry hole. In 1886 Bly, now joined by political boss Alexander McKenzie, obtained another franchise and the following year the Bismarck Water Co. completed what was then the most elaborate and expensive system in Dakota. Water was pumped from the river up to a rock-lined reservoir on a hill above the city. After being given sufficient time to settle—the Missouri River has often been described as too thick to drink and too thin to walk on—gravity brought it down a feeder pipe to the city distribution system. The Bismarck Water Company's plant was viewed as a proud asset to the community and the local press seldom lost an opportunity to describe it in glowing and reverential terms.

Though records are non-existent, it seems clear that the business of the private water companies in North Dakota was not particularly profitable. In Fargo, for example, the city fathers wrung a number of concessions during franchise negotiations which subsequently proved damaging. Several public fountains were required to serve out-of-town visitors as well as the city's many horses. Meters were allowed, but the company was forced to sell at a flat monthly rate. Within months, the management was complaining bitterly that to avoid the expense of a hook-up and rental rate, residents were carrying water from the fountains or the taps of willing friends. To add insult to injury, enterprising local water dealers often drew their supply from these sources rather than buying from the company. The franchise ordinance not only outlawed this procedure but made provision for arrest and fines, but in practice it proved difficult to enforce. The water company later forced an amendment through the council allowing meters, but the devices proved extremely unpopular and were the source of much of the agitation which later forced them to sell out. When that occurred during 1890 it was learned the company had only 466 connections in a city with a population of 9,500.

Water quality also left much to be desired. Being untreated, the Fargo water often carried a nasty smell; one writer noted that "a forgetful traveler, awakening in the dark hours at a hotel and being unable to remember in what town he was in, should merely open a faucet over his wash basin, and the odor of the first cup of outflowing water would at once inform him that he was at Fargo." Drinking water was often purchased bottled from Minnesota or drawn from nearby wells and sold from a tank-wagon on the street. The well water, however, "was exceedingly hard and considerable discussion was carried on from time to time as to the desirability of using a water carrying a large amount of solids in solution." It was considered an improvement over water drawn from the mains.

While Wahpeton residents had many of the same complaints, their preoccupation was with merely keeping the water system functioning at all.
Their plight is perhaps the classic example of the difficulties facing an overcapitalized private company trying to serve a town with too few residents. While most of the company stock was owned locally, the bondholders were from Eastern states. When revenues were insufficient to pay interest, the situation became one of intense pressure from a trust company representing the bondholders, on the one hand, and a frantic scramble by stockholders and the city government, on the other, to keep an important local utility in business. In defending "a little raise in the water rent," an editor pointed out that "the price...is much less than we had to pay when we bought "Adam's ale" by the barrel." A public subsidy appeared in the form of a city offer to pay for public watering troughs; previously the city got this and other water free in return for their earlier bond investment.

Inevitably, perhaps, the New Hampshire Trust Co. foreclosed on behalf of the bondholders during the summer of 1889 and took over operation of the plant. Later developments are vague—Wahpeton's three newspapers simply quit talking about the matter—but there is abundant evidence that rates went up while the services performed diminished.11

Grand Forks semi-public water works became a full municipal system, the first in North Dakota, during 1895 when the city built its own power plant. The blessings of city ownership proved mixed; while rates dropped somewhat the demand for extensions skyrocketed and their location and extent often became the subject of intense political maneuvering. The city was left with both high bonded debt and municipal operating expenses.12

The Bismarck Water Company was probably the most successful of the state's private firms. Certainly it was the longest-lived, surviving until 1921 when it was sold to the city. Much of this success can probably be credited to Alexander McKenzie, who took over full ownership in 1898 when the company was reorganized as the Bismarck Water Supply Co. McKenzie was a typical late nineteenth century political boss, who made his fortune through influence peddling, land jobbing and political manipulations. Through the shrewd use of secret hook-ups and free water supplies, McKenzie was able to keep local progressives seeking to take over his system off balance until after his death. To his credit, the Bismarck water works was not inexpensive to operate and the constant repairs needed were often not reflected in increased rates.

The unstable glacial soil covering the bluffs on which the settling reservoir stood were constantly crushing pipe through slides and settling; one repair job required 100 men working up to their waists in icy water for thirty days at the bottom of a deep trench. To make matters worse, the hill on which the reservoir stood overlooked the Northern Pacific's Missouri River bridge, the latter resting on three massive stone piers. Over a period of years, leaking water percolated through the subsoil until it reached the hard clay strata under the easternmost bridge pier. When the clay became wet enough the pier began moving slowly but inexorably toward the west bank, a situation viewed with some alarm by the railroad's management. The solution involved cofferdamming the pier, digging out the wet soil
the difficulties facing a town with too few revenues were insufficient to sustain services. The one hand, and a frantic pressure from a trust on the other, to keep defending "a little raise in the price... is much less than we [subsidy] for public water supplies; free in return for their earlier assistance in solving the problems. Wahpeton’s three newspapers were owned locally. The one hand, and a frantic pressure from a trust on the other, to keep defending "a little raise in the price... is much less than we [subsidy] for public water supplies; free in return for their earlier assistance in solving the problems.

Shreve Trust Co. foreclosed on its of roughly $200,000 and took over operation of Wahpeton’s three newspapers. There is abundant evidence that diminished. In 1885 when the city built its own system, city revenues were ineficient and rates skyrocketed and their location was too close to private concerns. The municipal operating expenses were probably the most successful of the longest-lived, surviving one. Of this success can probably be attributed to the constant political maneuvering. The municipal operating expenses were probably the most successful of the longest-lived, surviving one. Of this success can probably be attributed to the constant political maneuvering. The Dakota sandstone which lies at depths ranging from 400 to 1,800 feet below the surface. This forms an excellent aquifer which is charged with water from the foothills and eastern slopes of the Black Hills and Rocky Mountains. Between the Missouri escarpment and the Red River Valley this sandstone is covered by a thick and continuous layer of impermeable shale. In the early 1880’s drillers began to penetrate this layer of rock, bringing water to the surface in gratifying quantities and with sometimes spectacular force. These were artesian wells, in which the water rose considerably above the ground water table through natural hydrostatic pressure since their sources in the far-distant mountains were at a lower elevation than the prairie well-sites. What made residents so enthusiastic about them was not only that they seemed to present an endless quantity but that the pressure appeared to negate the need for expensive pumping equipment. When the flow of the first Dakota artesian wells appeared undiminished after several years, it gave rise to some extravagant theories particularly on the part of promoters and speculators. Writing in 1887, P. F. McClure, Commissioner of Immigration for the Dakota Territory, was moved to declare that "a cessation of the flow because of the exhaustion of the supply may be considered as disproved by science and history." In fact, history and science was to prove him thoroughly wrong but for a time the artesian wells seemed a gift from the gods to the water-conscious denizens of the eastern Dakotas.

The first artesian well, 918 feet deep, was apparently drilled at Aberdeen during 1882 and became the basis for the city’s early water system. The first successful city well in northern Dakota came in at Ellendale four years later at a depth of 1,100 feet. Moreover the water arrived at the surface under a pressure of 115 pounds per square inch, spouting into the air like a runaway oil well.

Yet the mere drilling of an artesian well was not always a guarantee of success. The sandstone strata was simply too deep for existing equipment to reach in many parts of Dakota at the time. About 1890 Mandan drilled an expensive artesian well that was noted for its depth—2,000 feet—and its failure to bring up any water under any pressure whatsoever.

Even in areas where water seemed certain to be found the process
was often nerve-wracking and uncertain, particularly to the drilling con-
tractor and the city councilmen who were financing the endeavor. The
experience at Jamestown, a city of about 2,000 in east-central North
Dakota, makes a good illustration. Although located on its namesake the
James River, that stream was deemed too unreliable and polluted for a
good municipal supply so in July 1886 the city council contracted for an
artesian well. The cost was based on the depth at which water would be
found--$4 per foot down to 1,000 feet, $5.75 a foot thereafter.

New Years Day, 1887, found the bore at 1,000 feet and a special
council meeting authorized another 300 feet of drilling. That depth was
reached by mid-February and another special meeting wrought a lively
discussion between citizens and aldermen over the prospects of finding
water. The council nervously approved another 200 feet, noting that with
the $5,000 budgeted already spent “they would have to rustle [some] more
money.” Then began a series of equipment breakdowns that stretched local
nerve to the breaking point; the mayor and several councilmen were denied
re-election in the annual spring campaign.

Scarcely ten days later, however, with less than 25 feet remaining
on the renewed contract, the well blew in with a pressure of 95 pounds per
square inch. The completed well produced water at a rate of 375 gallons a
minute and cost the city less than $7,000. And it maintained sufficient
pressure to power the local water system until 1903.

As the city moved ahead with plans to install a distribution system
it came up against a bugaboo which bedeviled other cities--statutory
restrictions on both bonded debt and taxing authority for municipal improve-
ments. It was finally decided to go ahead with construction in anticipation
that subsequent legislatures would “legalize” their deeds and before the end
of 1887 more than a half-mile of 8-inch water main was in use.15

The legal difficulties facing Dakota’s cities stemmed partly from the
lack of a general municipal incorporation act and partly from laws preventing
cities from levying special assessments in order to tax abutting property
which would benefit from improvements. In the latter case, the only recourse
was to lay a general tax on all property and face the inevitable opposition
from non-benefitting landowners. In the former, it was necessary for any
community desiring to incorporate to obtain a special charter from the terri-
torial legislature, a process which left them at the mercy of non-sympathetic
rural lawmakers as well as jealous representatives from sister cities.

Even while the Jamestown city fathers were puzzling over their situa-
tion the 1897 legislature of Dakota Territory took the first steps toward
remedying the region’s water problems. The first action was passage of a
comprehensive law governing the drilling, financing and maintenance of
artesian wells which, though aimed primarily at aiding rural users did con-
tain provisions useful to municipal systems.

Of greater significance to the territory’s municipalities were measures
particularly to the drilling con-
nancing the endeavor. The
0,000 in east-central North
th located on its namesake the
lable and polluted for a
erty council contracted for an
depth at which water would be
75 a foot thereafter.
ere at 1,000 feet and a special
drilling. That depth was
uested a lively
over the prospects of finding
ther 200 feet, noting that with
uld have to rustle some
breakdowns that stretched local
veral councilmen were denied
with less than 25 feet remaining
with a pressure of 95 pounds per
water at a rate of 375 gallons a
it maintained sufficient
ill 1903.
to install a distribution system
bedevilled other cities—statutory
authorities for municipal improve-
with construction in anticipation
their deeds and before the ord-
er main was in use.15
15

cities stemmed partly from the
and partly from laws preventing
order to tax abutting property
the latter case, the only recourse
face the inevitable opposition
er, it was necessary for any
special charter from the territo-
ity at the mercy of non-sympathetic
atives from sister cities.

are were puzzling over their situa-
took the first steps toward
first action was passage of a
innovating and maintenance of
at aiding rural users did con-

ur’s municipalities were measures
drawn up by and introduced at the behest of the Fargo Board of Trade. One
was a long but carefully written city incorporation act, designed to equal-
ize the rights of urban communities as well as strengthen their taxing and
bonding capacity. The second specifically authorized municipal water
works and fire-fighting systems and allowed an excess mill levy, condi-
tional upon approval at the polls, where necessary to pay for them. It
passed after amendments extended its benefits to all incorporated com-
nunities over 1,000 in population. The latter enactment proved the foun-
dation stone for municipal water systems in Dakota and not only firmly
established the principle that water utilities ought to be publicly-owned
but made such ownership financially feasible.16

Subsequent legislation gave it additional strength. Delegates to
North Dakota’s constitutional convention during the summer of 1889 wrote
in a clause limiting municipal debt to 4% of assessed valuation but allowed
an additional 4% “without regard to the existing indebtedness” for building
or buying water works.17

During the decade which followed, North Dakota lawmakers added
more municipal water legislation to the codes. Special levies against
abutting property to pay up to half of a plant’s operating costs were allowed
while municipal officials were forbidden to sell any part of a water system
without voter approval. More notable, an 1895 statute extended the right
to finance and operate a water works to unincorporated towns and com-
nunities. Finally, the 1899 session noted emphatically that “there is now no
law authorizing cities, towns and villages to raise sufficient revenue for
water works” and pushed the mill levy authorization to an impressive 7 per
cent of assessed valuation.18

As a result of these legislative manipulations both private water
companies at Fargo and Wahpeton were soon city-owned. At Fargo passage
of the 1897 law had been intended not so much as a bid for municipal take-
over as a means of acquiring new concessions from the Fargo Water &
Steam Co. By April 1890, however, the situation had changed radically.
North Dakota was now a well-fermented state and the legislative fight dur-
ing the winter of 1889-90 to keep out the Louisiana Lottery had turned many
citizens against out-of-state corporations. Newly elected Mayor Wilbur
Hall, an attorney, declared in his inaugural address the firm belief “that
the city should own and control the water works.” When the company
seemed unwilling to come to terms the city went ahead with plans to con-
struct its own competing plant. A bargain was then struck which for a time
was itself jeopardized when the city’s bonding capacity, even under the
liberalized legislation, seemed insufficient for the purchase. The diffi-
culties were worked out under the impetus of a 90 per cent favorable vote
in the bond issue election and on September 23, 1890 the city of Fargo
took charge of its water works.19

The escalating cost of building a city water distribution system, as
exemplified by Fargo’s problems, probably explains why despite favorable
laws few new municipal water plants were installed prior to the end of the
nineteenth century. Generally poor economic conditions following the Panic
of 1893 were also a factor; North Dakota in the mid-1890's was not an auspicious place to incur new debt even though the depression meant cheaper construction costs. Whatever the reason only Lisbon, a community of about 1,000 in the state's southeastern corner, built a water system during that era. Citizens had little apparent fear of the depression, voting a $10,000 water works bond issue in October 1895 by an impressive 124-17 majority. Though located in the Sheyenne River valley, Lisbon chose to drill a well and pump its water to a tank overlooking the city. The water system proved so popular that work had barely commenced before residents of a new subdivision across the river were clamoring for its extension. New bonds were sold and by 1896 the city had a complete water system with two miles of mains and a fully-equipped fire department, all at a cost of $16,000.

Viewed from the safe distance of nearly a century, perhaps the most amazing aspect of our ancestor's life in North Dakota cities was that the water they drank, even that from the best of the city water plants, was totally unfiltered and untreated. Since much of it came from heavily polluted rivers, such as the Red, early health authorities could hardly be faulted for "waiting for the other shoe to drop" when their warnings against water-borne disease went unheeded. True, later studies did strongly suggest that river water as well as ice taken from that water had a natural tendency to purify itself and the citizenry seemed hardly bothered by the occasional case of fever.

The other shoe finally did drop at Grand Forks in November of 1893 and within days the city was in the grip of a major typhoid epidemic, more than fifty families being struck simultaneously. There were relatively few doctors, only one small hospital and the nature of the disease was so poorly understood that starvation was considered an effective treatment. Although one doctor quickly diagnosed the problem as typhoid fever this was hushed up by the local booster press which first denied the existence of any epidemic and then identified it as influenza or "la grippe," as it was known in those days. The Grand Forks Herald stubbornly referred to the affliction as "the prevailing malady" and called against newspapers in neighboring towns which carried counts of the dead and ill. Even after the cause was officially recognized the Daily Herald triumphantly carried stories blaming the epidemic on malaria and sewer gas, and once stated authoritatively that very few deaths had occurred—this in a week when its own columns had carried numerous typhoid-victim obituaries.

A special committee appointed by the city council soon pinned the blame where it belonged—on a sewage-infected city water system. Modifications to the water plant had moved the intake to the mouth of the Red Lake River, which entered the Red at Grand Forks, and carried significantly less sediment. "This served to exchange the sewage of Fargo and the farms of the Red River for the sewage of Crookston, (Minn.) only twenty-six miles away on a smaller and more rapid stream." And Crookston had suffered from a year-long typhoid epidemic.

To the credit of all, once the cause of the outbreak was pinpointed...
In the mid-1890's was not an uncommon occurrence only Lisbon, a small town in the Screven County's eastern corner, built a little apparent fear of the bond issue in October 1895 located in the Sheyenne and pump its water to a tank so popular that work had to be divided across the river dams were sold and by 1899 the miles of mains and a fully-16,000-20

In North Dakota cities was that test of the city water plants, a much of it came from heavily with authorities could hardly drop" when their warnings. True, later studies did.

Grand Forks in November of 1893 a major typhoid epidemic, more likely. There were relatively the nature of the disease was so dened as an effective treatment. problem as typhoid fever that which first denied the existence influenza or "la grippe," as the Herald stubbornly referred and rallied against newspapers of the dead and ill. Even after the Herald triumphantly carried a sewer gas, and once stated cured--this in a week when its victim obituaries.

The city council soon planned the needed city water system. Muriel intake to the mouth of the Red Forks, and carried significance: the sewage of Fargo and Crookston, [Minn.] only the rapid stream." And Crookstonemic.

of the outbreak was pinpointed little time was lost in combating it. All water was ordered boiled, infected quarters were to be sterilized and local health authorities were given ample enforcement powers. Looking toward more long-term measures, the city council sent a committee headed by City Engineer W. S. Russell to study contemporary methods of water purification. Russell's report urged construction of a sand filter modeled upon designs used in Europe and at Lawrence, Massachusetts, where a state-sponsored purification experiment had been going on for five years. In July 1894 the council authorized the filter's construction after standing off several alternate (and cheaper) plans, including one that "might not keep out the germs, but it would make the water clear." By the end of the year Grand Forks citizens were drinking the first artificially purified water in this part of the United States.21

While a rush to install filters would seem a natural reaction by other Dakota cities to the Grand Forks disaster, nothing of the kind occurred. The reason can be ascribed in equal parts to cost ($40,000 for the Grand Forks sand filter) and a belief that it couldn't happen here. It did, of course--Walhalla experienced a typhoid outbreak of lesser proportions during the winter of 1905-06 caused by polluted river water, which prompted the city to turn to wells for its source of supply. On the other hand, the state's largest city, Fargo, continued to safely serve its citizens Red River water until well into the twentieth century.22

As the twentieth century dawned, then, it can be safely said that nearly all of North Dakota's urban places with a population greater than 1,000 had municipal water distribution systems of one form or another.

But, if a water works is one of the most common trappings associated with an urban place, this is a startling statistic. How does it square with the comment of a major urban study published in 1899 which placed North Dakota with six other non-urban states? How could it be true of a region whose settlement was delayed significantly by fears that its semi-arid climate simply would not support a sizable population?23

First, while the two decades leading up to 1900 were of only average rainfall, plentiful supplies of both surface and ground water made it possible to establish and operate a city water works successfully on the semi-arid plains. Water to support a series of small urban centers is one thing; water sufficient to support an entire agricultural industry is something altogether different. Dakota's reputation for dryness has been built on crop failures, not municipal water shortages.

Second, the Weber study was largely a statistical one and based its results on the proportion of a state's population living in cities of 10,000 and upward. Since no North Dakota City had reached that level by 1890, statistically the state was deemed to have no urban population.

In the final analysis, it was probably the demand of the residents of North Dakota's small urban centers that their cities had all the trappings of urban life, even if they lacked the population, which created this
paradox. Municipal water was considered an important amenity and was
given an appropriately high priority when tax time came along. And it
may also have been a convenient (and irrefutable) means of clumsily
their noses at outsiders who dared call Dakota dry!
an important amenity and was tax time came along. And it

6 The best description of the construction of Grand Forks first water system, including the political infighting and maneuvering which accompanied it, can be found in the Grand Forks Daily Herald for the months of June, 1882 to January, 1883. Other early contemporary descriptions are found in Grand Forks Illustrated, (Detroit, Mich., 1891), 7; The Early History of Grand Forks, North Dakota, (Larimore, N.D.: Printed by H. V. Arnold, 1918), 142-143 and The Record (Fargo), October, 1886, 6-7.

7 The story of Wahpeton's early water system can be found in the columns of its early newspapers, the Wahpeton Times, Dakota Globe and Richland County Gazette. Unfortunately, no files exist for the promotional period prior to 1885. The Gazette is perhaps the best source.

8 The Bismarck Tribune for the years 1883, 1886 and 1887 is probably the best source for the ill-fated artesian well and subsequent construction of the city system. See also Hanson, "Growth of City of Bismarck Water Utilities," 11, and "City of Bismarck vs. Bismarck Water Supply Co.," in Formal Case File No. 1506, Records of the North Dakota Public Service Commission. North Dakota State Archives, Bismarck, N.D. The latter records in great detail the results of a complaint brought by the city charging excessive rates and poor service and includes data on events, 1313-23, leading up to the city's purchase of the system. Feature stories printed by the Daily Tribune and the weekly Bismarck Capital during this period also shed light on the system's construction and early history.
28

2 Fargo Daily Argus, January to March, 1887, particularly the report of the Board of Trade published in the February 21, 1887, edition.

11 Richland County Gazette (Wahpeton), March 30, April 6, October 5, 1888, April 12, July 12, 1889.

13 Since no company records have survived the best sources on the later years of the Bismarck company are those cited in note 8 above. For a modern slant on problems facing a water works drawing from the Missouri River see Harry Hanson, "Sand Bars and the Bismarck City Water Plant Intake," Official Bulletin, XXXIII-3 (September, 1965), 22.

15 Events attending the drilling of Jamestown's artesian well and subsequent developments, including the political pressures involved, are best described in the issues of the Jamestown Daily Argus, July, 1886 to July, 1887. See particularly the issues of February 19, April 19, 27, May 10 and July 7. Helpful in assessing the system's later years is Alfred Swanson, "A Brief History of Jamestown Water System," Official Bulletin, XXXII-I (October, 1973), 12.

16 Session Laws of Dakota, 1887, Chapters 73 and 105. Fargo Daily Argus, January 26, February 7, 12, 17, 1887.
March, 1887, particularly the re-
February 11, 1887, edition.

ules of Water and Sewage Devel-
XXXVIII-11 & 12 (May-June,
Ruby, "A Brief History of the
son), March 30, April 6, October
wer Works System," Official
(Official Bulletin, XXXXX-4
swer, 1886,
he best sources on the
example cited in note 8 above. For
 works drawing from the Missouri
le Bismarck City Water Plant
ember, 1965), 22.

ndered by the discovery of artesian
, (Pierre, D.T.: Department of
ich McClure's quotation is taken.
ent is found in Howard E. Simpson,
 to Artesian Waters," Quarterly
ther useful sources are Richard J.
uation of the Soil Thereby,"
ument No. 41. Part 1 (Washington:
, "Final Geological Reports
 between the Ninety-Seventh
 the Rocky Mountains," being
, Nelson H. Dayton, "Pre-
ition of the Dakotas," United
ual Report, Part II (Washington
, 639-644 and Herbert A.
rinted as part of Report to
rol. (Grand Forks, 1920).

emstown's artesian well and subse-
pressures involved, are best
Daily Alert: July, 1886 to July, 1887.
April 10, 14, 27, May 10 and July
f years is Alfred Swanson, "A
 Official Bulletin, XXXX-4
chapters 73 and 105. Fargo Daily