THE EMPORIA STATE Research Studies

THE GRADUATE PUBLICATION OF THE KANSAS STATE TEACHERS COLLEGE, EMPORIA

Background and Academic Preparation Of the Mathematics Teachers in the Public High Schools of Kansas 1957-1958

By John M. Burger

The Emporia State Research Studies

KANSAS STATE TEACHERS COLLEGE EMPORIA, KANSAS

Background and Academic Preparation of the Mathematics Teachers in the Public High Schools of Kansas 1958-1959

By John M. Burger

VOLUME 7 March 1959 NUMBER 3

THE EMPORIA STATE RESEARCH STUDIES are published in September, December, March and June of each year by the Graduate Division of the Kansas State Teachers College, Emporia, Kansas. Entered as second-class matter September 16, 1952, at the post office at Emporia, Kansas, under the act of August 24, 1912.

KANSAS STATE TEACHERS COLLEGE
 EMPORIA - KANSAS

. OWN E. KING, J.
President of the College

THE GRADUATE DIVISION
Laurence C. Boylan, Chairman

EDITORIAL BOARD

Ted F. Andrews, Professor of Biology and Head of Department
William H. Seller, Professor of Social Science and Chairman of Division
Charles E. Walton, Associate Professor of English
Green D. Wyrick, Associate Professor of English

Editor of this issue: Oscar J. Peterson

This publication is a continuation of Studies in Education published by the Graduate Division from 1930 to 1945.

Papers published in this periodical are written by faculty members of the Kansas State Teachers College of Emporia and by either undergraduate or graduate students whose studies are conducted in residence under the supervision of a faculty member of the college.

ACKNOWLEDGMENTS

The writer wishes to acknowledge the assistance of Dr. Adel Throckmorton, Dr. Floyd Herr, and Dr. Everett Samuelson, all of the Kansas State Department of Public Instruction, and Dr. Standlee Dalton of Fort Hays Kansas State College, Dr. C. R. Baird of Kansas State Teachers College of Pittsburg, Mr. James K. Hitt of the University of Kansas, and Mr. Ellsworth M. Gerritz of Kansas State College. The writer would also like to thank the many members of the local staff for their assistance and suggestions and especially Dr. Oscar J. Peterson, Dr. Nathan Budd, Dr. Marion L. Steinmetz, and Mr. Dixon Smith.

The writer especially acknowledges President John E. King's support of the study. Without his enthusiastic support of the effort to obtain factual information on the academic preparation of teachers, this report could not have been made.

Background and Academic Preparation of the Mathematics Teachers in the Public High Schools of Kansas 1957-1958

By John M. Burger*

INTRODUCTION

A conference on Mathematics and Science Education in U.S. Public Schools was held in Washington, D.C., on February 10-11, 1958. It was sponsored by the American Association for the Advancement of Science, American Association of School Administrators, Council of Chief State School Officers, National Association of Secondary School Principals, and the Scientific Manpower Commission. In the official report on this conference, Circular 533, U.S. Department of Health, Education and Welfare, Mr. James R. Killian, Jr., Special Assistant to the President for Science and Technology, pointed out that quality is the important consideration in the development of scientists, and that superior students should be identified early in order that the high schools might instruct them properly. The high school teacher often is the person who stimulates the student to study a particular field.

Mr. Reuben G. Gustavson, President, Resources for the Future, Inc., remarked that college science departments often fail to consider the student's high school background. Students with a specific high school course are placed in the same class with those who did not have that high school course, and all are taught as if none had the high school preparation. Mr. M. H. Trytten, Director, Office of Scientific Personnel, National Academy of Science, discussed the Russian educational system, including the training of teachers. He stated that Russians preparing to become mathematics teachers are required to take courses in theory of numbers; complex variables, projective geometry, and mathematical analysis. He also stated that one question before the American people is whether we collectively want to meet the Russian challenge, not whether we can.

Mr. J. Darrell Bernard, Professor of Education, New York University, made remarks at the same conference which may apply to the situation in Kansas. He said, "Schools should consider the redeployment of their teachers for more effective science teaching. There have been instances where teachers with minors in mathematics or science have been left (available) to teach in this major field at a time when less qualified teachers were employed to "cover" the mathematics or science classes . . . Many of our very best science teachers have found that they must become administrators if they desire to go beyond the maximum of the salary sched-

[^0]ule of their schools. The teaching services of many excellent science teachers have been lost in this way. When there is a critical shortage of good science teachers, this practice is questionable."

At the same Washington conference Mr. Howard F. Fehr, Professor of Mathematics, Teachers College, Columbia University, discussed the training of mathematics teachers, pointing to the fact that, "The College Entrance Examination Board Commission on Mathematics spent almost three years with mathematicians, educators, and teachers working out a program." It can be seen that this revision of the curriculum and course content in mathematies predates the hysteria period of the Russian "Sputnik."

Discussions of the quality of presentation of mathematics in our high schools frequently lead to vague generalities concerning inadequate preparation and lack of interest on the part of mathematics instructors.

The purposes of this study were (1) to investigate the academic preparation of the teachers of mathematics in the public high schools of Kansas; (2) to present data concerning their teaching background and teaching assignments; and (3) to compile certain information according to the college from which the teachers were graduated.

PREVIOUS STUDIES

Previous studies of a comparable nature made at Emporia are: Weldon N. Baker and Merle E. Brooks, "Background and Academic Preparation of the Teachers of Science in the High Schools of Kansas, 1955-56" and Harold V. Sare, "Background and Academic Preparation of the Social Science Teachers in the High Schools of Kansas, 1956-57." Other studies are in progress.

A questionnaire, circulated by the Research Division of the National Education Association in March, 1958, gave information on the national situation concerning mathematics and science. A preliminary report was published in the N.E.A. Research Bulietin, October, 1958. The complete report was received after this study had been completed and had been sent to the printer.

METHODS

The official records of 1,037 teachers of mathematics in the public high schools of Kansas during the academic year 1957-58 were studied. The data were compiled from the High School Principal's Organization Reports on file in the accreditation office of the State of Kansas Department of Public Instruction and from college transcripts of courses and grades, on file in the certification office of the Department of Public Instruction.

The principal's reports list degrees and advanced work for 1,037 mathematics teachers. Transcripts were found, as listed by the principals, for 962 , or 92.8 per cent, of the 1,037 teachers. There were 13 individuals for whom no transcripts were available.

The records are complete except for (1) those teachers who hold a life certificate and need not keep their transcript records up to date; (2) those teachers who were teaching prior to the date after which records had to be filed with the Department of Public Instruction and who, consequently, have no transcript in Topeka, and (3) those teachers who hold a renewable certificate and usually feel no obligation to keep their records current until time of required renewal.

In an attempt to obtain complete data, in those cases where it was believed that additional information might be available, personal visits were made to the registration offices of the Kansas State Teachers College, Emporia; Kansas State Teachers College, Pittsburg; Fort Hays Kansas State College, Hays; Kitnsas State College, Manhattan; and the University of Kansas, Lawrence. Since these schools supplied almost one-half, 48.1 per cent, of the teachers, it was believed this information would improve the reliability of the data.

While it is possible that there are errors in some of the principal's reports, such errors, if they exist, are presumably minor ones and will not invalidate the data as a whole or general inferences drawn from the data. It is believed that the implied accuracy of the principals' reports and the high percentage of teachers for whom completed data, including transcripts, were available, provide an adequate basis for the following analyses.

GENERAL INFORMATION

In studying the number of teachers employed to teach mathematics in Kansas schools of a specified size and in relating this number to the total number of teachers of mathematics, it must be borne in mind that in smaller schools a teacher may teach in as many as three or more fields.

To obtain an accurate picture of teaching assignments of mathematics teachers in Kansas high schools, it appears helpful to consider these in statistical relation to school size.

Distribution of Teachers

A manuscript on file in the office of the Division of Teacher Education at Kansas State Teachers College of Emporia, written by Andy E. Clark, Jr., now Dean of Northwestern State College, Alva, Oklahoma, formerly of Kansas State Teachers College of Emporia, contains information concerning the distribution of all 6,311 teachers in the secondary schools of Kansas during the school year 1956-57 and of the 2,662 teachers who were graduated from Kansas high schools. This distribution is tabulated according to the size of the city and the enrollment of the school. Data for Tables I and II were taken from Clark's manuscript and are used with his permission.

The column headed "Teachers Supplied" in Tables I and II indicates those teachers who were graduated from Kansas high schools. No attempt was made to consider teachers from outside the state. The values in Table

TABLE I

NUMBER OF PUBLIC HIGH SCHOOL TEACHERS EMPLOYED AND NUMBER OF PUBLIC HIGH SCHOOL TEACHERS WHO WERE GRADUATED FROM KANSAS HIGH SCHOOLS PRESENTED ACCORDING TO THE SIZE OF TOWN OR CITY

Size of town or city	Teachers Employed Number (total 6311)	Teachers Sent of 6311		Number (total 2662)
$1-500$	1,850	29.3	626	Per cent of 2662
$501-1,000$	954	15.1	351	23.5
$1,001-1,500$	558	8.8	202	13.2
$1,501-2,000$	252	4.0	150	7.6
$2,001-2,500$	338	5.3	193	5.6
$2,501-5,000$	739	11.7	277	7.3
$5,001-10,000$	204	3.2	151	10.4
$10,001-25,000$	661	10.5	456	5.7
25,001 and over	755	12.0	256	17.1

*Teachers who were graduated from Kansas High Schools

I should be compared with the values given in Table XIII which tabulates only mathematics teachers.

Twenty-nine per cent of the teachers teach in communities of 500 or less, as indicated in Table I. Of the 2,662 teachers who were graduated trom Kansas high schools, 23.5 per cent were graduated from high schools in communities having populations of 500 or less. Examination of Table I

TABLE II
NUMBER OF PUBLIC HIGH SCHOOL TEACHERS EMPLOYED AND NUMBER OF PLBLIC HIGH SCHOOL TEACHERS WHO WERE GRADUATED FROM KANSAS HIGH SCHOOLS PRESENTED ACCORDING TO THE SCHOOL ENROLLMENT

School Enrollment	Number of Schools (total 591)	Teachers Employed Number (total 6311)	Teachers Per cent of 6311	Supplied* Number (total 2662)	Per cent of 2662
$1-24$	29	182	2.9	40	1.5
$25-49$	157	696	11.0	265	10.0
$50-74$	121	820	13.0	309	11.6
$75-99$	66	411	6.5	211	7.9
$100-199$	118	1,424	22.5	618	23.2
$200-299$	30	529	8.4	224	8.4
$300-499$	27	639	10.1	245	9.2
$500-999$	31	793	12.6	479	18.0
1,000 and over	12	817	12.9	271	10.2

[^1]indicates that almost 37 per cent of the teachers came from communities with populations of 1,000 or less. In contrast to this situation, 10.5 per cent of the 6,311 teachers are teaching in cities of populations between 10,001 and 25,000 , while 17.1 per cent of the 2,662 teachers who were graduated from Kansas high schools came from high schools in cities of this size.

Table II provides a comparison, according to school size, of the number of public high school teachers with the number of those teachers who were graduated from Kansas high schools. There were 591 public high schools in Kansas in 1957-58, 29 of which had enrollments of less than 25. These 29 schools employed 182 teachers or 2.9 per cent of the total. In comparison with this, we note that only 1.5 per cent of the 2,662 teachers who were graduated from Kansas high schools came from these small schools. Of the 591 high schools, 373 had enrollments of less than 100 . These schools employed about one-third of all the teachers and accounted for 31 per cent of the teachers who were graduated from Kansas high echools.

TABLE III

NUMBER OF HIGH SCHOOL TEACHERS AND NUMBER OF MATHEMATICS TEACHERS PRESENTED ACCORDING TO SIZE OF CITY WHERE EMPLOYED

Size of town or city	Teachers Per cent	Employed Cumulative Per cent	Mathematics Teachers (1037) Per cent	Cumulative Per cent
$1-500$	29.3	29.3	36.5	36.5
$501-1,000$	15.1	44.4	13.5	50.0
$1,001-1,500$	8.8	53.2	5.8	55.8
$1,501-2,000$	4.0	57.2	3.8	59.6
$2,001-2,500$	5.3	62.5	3.4	63.0
$2,501-5,000$	11.7	74.2	7.5	70.5
$5,001-10,000$	3.2	77.4	4.2	74.6
$10,001-25,000$	10.5	87.9	9.6	85.2
25,001 and over	12.0	100.0	15.9	100.0

The ratio of the number of high school mathematics teachers to the number of all high school teachers is fairly uniform, regardless of the size of the community. This is brought out in Table III. The differences are most pronounced in the very small towns, although there may be some significant differences in the ratios associated with larger communities. Twen-ty-nine per cent of all teachers in high schools teach in communities with populations of 500 or less, while 86.5 per cent of the teachers of mathematics are located in communities of this size. Forty-four per cent of all teachers and 50.0 per cent of the mathematics teachers are employed in. communities with populations of 1,000 or less.

TABLE IV
NUMBER OF HIGH SCHOOL TEACHERS AND NUMBER OF MATHEMATICS TEACHERS PRESENTED ACCORDING SCHOOL ENROLLMENT WHERE EMPLOYED

	Total Teachers Employed (6311) Cumulative Per cent		Mathematics Teachers （1037）	
School Enrollment	Per cent		Cumulative Per cent	
$1-24$	2.9	2.9	3.0	3.0
$25-49$	11.0	13.9	18.1	21.1
$50-74$	13.0	26.9	14.3	35.4
$75-99$	6.5	33.4	7.8	43.2
$100-199$	22.5	55.9	20.6	63.8
$200-299$	8.4	64.3	9.4	73.2
$300-499$	10.1	74.4	10.7	83.9
$500-999$	12.6	87.0	9.0	92.9
1000 and over	12.9	100.0	7.2	100.0

Table IV points out that there is a definite relation between school size and the ratio of the number of mathematics teachers to the total num－ ber of teachers．Thirteen and nine－tenths per cent of all teachers are em－ ployed in schools with enrollments up to 49 ，while 21.1 per cent of the mathematics teachers are so employed．Thirty－three and four－tenths per cent of all teachers and 43.2 per cent of the mathematics teachers are em－ ployed in schools of less than 100 enrollment．

TABLE V
CLASS OF SCHOOL IN WHICH THE MATHEMATICS TEACHERS WERE EMPLOYED

	(591)		（410）	 （391）	$\begin{gathered} \overrightarrow{\mathrm{⿹}} \\ \stackrel{\rightharpoonup}{0} \\ \mathrm{H} \\ (1037) \end{gathered}$	边荷	
A	303	99	226	367	692	66.8	66.8
B	128	51	87	17	155	15.0	81.8
C	136	73	84	7	164	15.8	97.6
M	23	13	12		25	2.3	99.9
Prov．	1		1		1	0.1	100.0

＊The teacher teaches two or more sections of mathematics，but devotes at least one period，usually more，to teaching some other field or to administra－ tion．

During the period, 1957-58, concerned by this report, Kansas high schools were classified A, B, C, M and Provisional, in accordance with standards set by the Kansas Department of Public Instruction and stated in the "Certificate Handbook," issued March 1, 1955. The standards take into account such criteria as size, excellence of administration, effectiveness of school programs, and excellence of relationship between faculty, students, board of education and the community. Table V indicates that 303 of the 591 schools met the standards for Class A.

Six hundred ninety-two, or 66.8 per cent, of the mathematics teachers were employed in the 303 Class A schools. One hundred fifty-five, or 15.0 per cent, were employed in Class B schools; 164, or 15.8 per cent, in Class C schools; and the remaining 26, or 2.4 per cent, in Class M or Provisional schools.

In Table V and in some of the tables which follow, teachers are listed as teachers of one mathematics class, teachers of two or more mathematics classes, and full-time mathematics teachers. A teacher of one mathematics class teaches only one section of mathematics, devoting the remainder of his schedule to other duties. A teacher of two or more mathematics classes devotes at least one period, usually more, to teaching classes in some other field, or to administration. Full-time mathematics teachers devote their full teaching time to mathematics. In a few school systems these individuals have a study hall, but in no case are they administrators or teachers in another field. It was thought, in the planning of the investigation, that

TABLE VI
DISTRIBUTION OF MATHEMATICS TEACHING LOADS ACCORDING TO SCHOOL SIZE

	(236)	(410)	(391)	(1037)		
1-24	18	11	2	31	3.0	3.0
25-49	87	96	5	188	18.1	21.1
50-74	38	99	11	148	14.3	35.4
75-99	15	51	15	81	7.8	43.2
100-199	44	76	93	213	20.6	63.8
200-299	12	20	65	97	9.4	73.2
300-499	15	30	66	111	10.7	83.9
500-999	6	22	65	93	9.0	92.8
1000 and over	1	5	69	75	7.2	100.0

*and devote at least one period to some other field or administration
there might be noticeable differences in preparations and other characteristics among these three groups.

Table VI gives the distribution of mathematics teaching loads according to school size. This table shows the large number of part-time mathematics teachers in the small schools. Eighteen of 31 mathematics teachers in schools with enrollments of less than 25 teach only a single section of mathematics. Since there are twenty-nine of these schools, as indicated in Table II, it may be seen that only one mathematics course was offered during 1957-58 in at least 16 of these schools. It was found that there are only 7 of the single-section teachers in schools with enrollments of 500 or more, and 27 part-time and 134 full-time mathematics teachers in these same schools.

TABLE VII

POPULATION OF THE CITY IN WHICH THE MATHEMATICS TEACHERS WERE EMPLOYED

$\begin{aligned} & \text { H } \\ & \text { B } \\ & \text { B } \\ & \text { H } \\ & 3 \\ & 30 \\ & 0 \\ & 0 \end{aligned}$	(236)				䔍淢	$\begin{aligned} & 0 \\ & \stackrel{0}{3} \\ & \text { O } \\ & \text { B } \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
1-500	139	212	27	378	36.5	36.5
501-1,000	37	72	31	140	13.5	50.0
1,001-1,500	12	28	20	60	5.8	55.8
1,501-2,000	9	15	15	39	3.8	59.6
2,001-2,500	7	10	18	35	3.4	63.0
2,501-5,000	15	27	36	78	7.5	70.5
5,001-10,000	4	7	32	43	4.2	74.6
10,001-25,000	6	23	70	99	9.6	85.2
25,001 and over	7	16	142	165	15.9	100.0

*and devote at least one period to some other field or administration
Table VII gives the distribution of mathematics teaching loads according to the size of the town or city in which the school is located. Since the size of the school corresponds roughly to the size of the community, it is not surprising that Tables VI and VII show marked consistencies. Thus, more than one-half, 139 of 236 , of the single-section teachers are employed in communities with populations not exceeding 500 . It will be recalled, from Table VI, that 143 of 236 single-section teachers were in high schools with enrollments below 75 . Similarly, 212 of 410 part-time mathematics teachers are in these same small communities, while, from Table VI, 206 of these 410 teachers are in high schools with enrollments below 75. Also
there are only a few， 27 of 391，full－time mathematics teachers in com－ munities with populations not exceeding 500，and there are only 18 of these 391 full－time teachers in schools with enrollments below 75 ．

TABLE VIII

ADMINISTRATIVE ORGANIZATION OF THE SCHOOLS IN WHICH THE MATHEMATICS TEACHERS WERE EMPLOYED

	4产落空 （591）	(236)				
8－4	496	202	332	133	667	64.4
6－6	57	8	34	36	78	7.5
6－3－3	16	11	19	157	187	17.7
6－3－3－2	11	5	11	40	56	5.4
6－2－4	7	9	12	9	30	2.9
6－4－4	3	1	2	13	16	1.5
5－3－4	1			3	3	0.3

＊and devote at least one period to some other field or administration
Table VIII shows that most of the high schools in Kansas， 496 of 591， are organized on the 8－4 plan．These schools employ almost all， 202 of 236 ， of those teaching only one section of mathematics．These schools also em－ ploy most， 832 of 410 ，of the part－time mathematics teachers，and one－ third， 133 of 391 ，of the full－time mathematics teachers．The plan followed in the largest cities is the 6－3－3 plan．The schools using this plan employ few one－section and part－time teachers， 11 and 19 respectively，but many．， 157 of 391 ，of the full－time teachers of mathematics．

Duties of Part－time Mathematics Teachers

The teacher spending less than full time teaching mathematics has other assigned duties．Many of them， 415 of 646 ，have duties which take a larger portion of their time than their mathematics teaching or other ac－ tivities．See Table IX．These 415 teachers comprise 40 per cent of all teachers of mathematics．This suggests that possibly 60 per cent of the teachers of mathematics have mathematics as their principal field of inter－ est．

Table IX shows that school administration is the principal field of in－ terest for 113 ，or 27.3 per cent，of the 415 teachers who devote less than full time to mathematics．For 109 teachers，or 26.3 per cent，the principal field is science，so that over one－fourth of the 415 have their first interest

TABLE IX
NUMBER OF MATHEMATICS TEACHERS DEVOTING MORE TIME TO INDICATED NON-MATHEMATICS DUTY THAN TO MATHEMATICS

DutyTeachers by One Class (229)	Number of Classes of Math. Two Classes Three Classes (175) (11)	Total Teachers (415)	Per cent of 415
Administration 59	44 10	113	27.3
Science $\%$. 44	65	109	26.3
Business $\quad 22$	15	37	8.9
Physical Education 18	14 1	33	8.0
English and Speech 17	7	24	5.8
Social Science 17	6	23	5.5
Industrial Arts 16	7	23	5.5
Music 10	2	12	2.9
Vocational Agriculture 8	2	10	2.4
Home Economics 6	3	9	2.2
Driver Training 3	5	8	1.9
Coaching 2	1	3	0.7
Language 1	1	2	0.5
Others 6	3	9	2.2

in a field which usually requires preparation in mathematics equivalent to a minor in mathematics. Of the 236 single-section mathematics teachers, 7 have daily schedules covering as many fields as they have classes.

> Age and Experience

The teachers of mathematics are a young group. Of the 1,037 mathematics teachers in Kansas, 415 are less than 36 years of age. Five hundred thirty-six, or 51.7 per cent, have had less than 11 years experience. They move about considerably. Six hundred eighty-five, or 66.1 per cent, have been in their present position less than 6 years. Further details concerning these phases of information are given in Tables X, XI, and XII.

TABLE X
AGE OF MATHEMATICS TEACHERS

Age	Number (Total 1037)	Per cent of 1037	Cumulative Per cent
$20-25$	83	8.0	8.0
$26-30$	148	14.3	22.3
$31-35$	184	17.7	40.0
$36-40$	115	11.1	51.1
$41-45$	75	7.2	58.3
$46-50$	112	10.8	69.1
$51-55$	122	11.8	80.9
$56-60$	88	8.5	89.4
Above 60	105	10.1	99.5
Unknown	5	0.5	100.0

TABLE XI
TOTAL YEARS TEACHING EXPERIENCE OF MATHEMATICS TEACHERS

Number of Years	No. of Teachers (total 1037)	Per cent of 1037	Cumulative Per cent
$1-5$	291	28.1	28.1
$6-10$	245	23.6	51.7
$11-15$	94	9.1	60.8
$16-20$	95	9.2	69.9
$21-25$	95	9.2	79.1
$26-30$	81	7.8	86.9
$31-35$	75	7.2	94.1
$36-40$	35	3.4	97.5
Over 40	26	2.5	100.0

TABLE XII
YEARS OF TEACHING EXPERIENCE OF MATHEMATICS TEACHERS
IN CURRENT SCHOOL

Number of Years	Number of Teachers (total 1037)	Per cent of 1037	Cumulative Per cent
$1-5$	685	66.1	66.1
$6-10$	143	13.8	79.8
$11-15$	99	9.5	89.4
$16-20$	37	3.6	93.0
$21-25$	26	2.5	95.5
$26-30$	20	1.9	97.4
$31-35$	17	1.6	99.0
$36-40$	7	0.7	99.7
Over 40	3	0.3	100.0

Source of Teachers
The majority of the mathematics teachers in Kansas, 68.1 per cent of 1,037, were graduated from Kansas high schools. Table XIII gives a compilation of the number of teachers by the size of the city in which the high schools were located from which the teachers were graduated. Fifty-two per cent of the mathematics teachers who graduated from Kansas high schools came from cities of 2,000 or less population.

Salary

During the year 1957-58, the average annual salary for all high school teachers was $\$ 4,344$, according to a report by the Kansas State Teachers Association, Department of Professional Relations, December 1, 1958. This is very near the average annual salary of $\$ 4,386$ for all mathematics
teachers. As indicated by Table XIV, the salaries received by the teachers of mathematics ranged from below $\$ 2,500$ to over $\$ 6,000$. The average annual salaries are $\$ 4,375$ for teachers of only one mathematics class, $\$ 4,255$ for teachers of more than one class but less than full time, and $\$ 4,529$ for full-time teachers of mathematics.

TABLE XIII
SIZE OF CITY IN WHICH HIGH SCHOOL WAS LOCATED FROM WHICH THE KANSAS HIGH SCHOOL-EDUCATED MATHEMATICS TEACHER WAS GRADUATED.

Size of City or Town	Number of Teachers (total or	Per cent of 706	Cumulative per cent
$1-500$	206	29.2	29.2
$501-1,000$	85	12.0	41.2
$1,001-1,500$	51	7.3	48.4
$1,501-2,000$	27	3.8	52.3
$2,001-2,500$	43	6.1	58.4
$2,501-5,000$	68	9.6	68.0
$3,001-10,000$	43	6.1	74.1
$10,001-15,000$	61	8.6	82.7
$15,001-$ and over	122	17.3	100.0

TABLE XIV
ANNUAL SALARIES OF THE MATHEMATICS TEACHERS IN KANSAS PUBLIC HIGH SCHOOLS 1957-1958

Annual Salary (in dollars)				$\begin{gathered} \text { 'ت̈ } \\ \stackrel{0}{0} \\ \text { H } \\ (1037) \end{gathered}$		
Under 2,501	6	3	1	10	1.0	1.0
2,501-3,000	2	4		6	0.6	1.5
3,001-3,500	9	15	10	34	3.3	4.8
3,501-4,000	75	144	96	315	30.4	35.2
4,001-4,500	37	113	97	247	23.8	59.0
4,501,-5,000	53	79	91	223	21.5	80.5
5,001-5,500	30	31	59	120	11.6	92.1
5,501-6,000	11	15	19	45	4.3	96.4
Over 6,000	9	4	18	31	3.0	99.4
Unkown	4	2		6	0.6	100.0
Average	\$4,375	\$4,255	\$4,529	\$4,386		

[^2]Teaching Assignments in Mathematics
In 115 schools having less than a full day's schedule of mathematics sections, the mathematics courses are taught by more than one teacher. In 34 of these 115 schools each section was taught by a different instructor. Could this practice possibly account for the often repeated remarks concerning unqualified and uninterested teachers?

TABLE XV

MATHEMATICS SUBJECTS TAUGHT BY THE MATHEMATICS TEACHERS

$\left.\begin{array}{lcll}\hline \hline & \begin{array}{l}\text { Only Mathematics } \\ \text { Subject Taught } \\ \text { No. of Teachers }\end{array} & \begin{array}{l}\text { Subject Taught in } \\ \text { Combination with } \\ \text { other Mathematics } \\ \text { Subjects } \\ \text { No. of Teachers }\end{array} & \text { of Subject }\end{array}\right]$

In Table XV, the courses in mathematics are ranked by the number of teachers involved in teaching the course. First year algebra is taught by 692 teachers, plane geometry by 461 teachers, and general mathematics by 408 teachers. The number of teachers of second year algebra was less than half the number of teachers of first year algebra, and the number of teachers of trigonometry or solid geometry was little more than one-tenth of the number of first-year algebra teachers.

In addition to the courses listed in Table XV, some schools offer courses in business arithmetic, shop mathematics, consumer mathematics, and junior high mathematics. These, if taught by a teacher teaching some other mathematics courses, were classed as "lower" in compiling this report. Some schools offer courses designated senior mathematics, college algebra, or higher mathematics. When these were indicated as of the twelfth year level on the principal's report, they were classed as "higher" in compiling this report.

Table XVI lists the mathematics course combinations taught by mathematics teachers in Kansas public high schools during the academic year 1057-58.

TABLE XVI

MATHEMATICS COURSE COMBINATIONS TAUGHT BY TEACHERS IN KANSAS PUBLIC HIGH SCHOOLS 1957-1958

ACADEMIC PREPARATION

Source of Degrees
As shown by Table XVII, 785 of the 1,037 Kansas mathematics teachers received their baccalaureate degrees from Kansas colleges. Of these, 499 , or 48.1 per cent, received the degree from the five state colleges; 226 , or 21.8 per cent, from independent Kansas colleges; and 60 , or 5.8 per cent, from the two Kansas municipal universities. The 191, or 18.4 per cent, from surrounding states contribute most of the remainder, only 60 , or 5.8 per cent, being from other states.

TABLE XVII
SOURCE OF BACCALAUREATE DEGREE

College or University	No. of Teachers	Total for Each Group
KANSAS STATE COLLEGES AND UNIVERSITY		499
Kansas State Teachers College of Pittsburg	128	
Kansas State Teachers College of Emporia	112	
Fort Hays Kansas State College	95	
Kansas State College	93	
The University of Kansas	71	
KANSAS INDEPENDENT COLLEGES		
AND UNIVERSITIES		226
Southwestern College	38	
Bethel College	35	
Ottawa University	26	
McPherson College	25	
Kansas Weslyan College	21	
Baker University	17	
Bethany College	16	
Friends University	16	
Sterling College	12	
College of Emporia	7	
Marymount College	6	
Mount St. Scholastica College 2.	5	
St. Benedict's College	2	
KANSAS MUNICIPAL UNIVERSITIES		60
Washburn University	36	
Wichita University	24	
OKLAHOMA COLLEGES AND UNIVERSITIES		108
State Teachers Colleges	77	
Other State Colleges and Universities	24	
Independent Colleges	7	
MISSOURI COLLEGES AND UNIVERSITIES		56
State Teachers Colleges	39	
Other State Colleges and Universities	6	
Independent Colleges	11	
OTHER COLLEGES		87
Nebraska Colleges	14	
Colorado Colleges	13	
Arkansas Colleges	11	
All Others	49	
No Record of Degree		1

TABLE XVIII
LENGTH OF TIME (IN YEARS) SINCE MATHEMATICS TEACHERS RECEIVED BACCAULAUREATE DEGREE (as of 1958)

	Total Number of Teachers	Years Since Receiving Degree								
		1-5	6-10	11-15	16-20	21-25	26-30	31-35	36-40	41-45
All Mathematics	1037	214	216	75	93	83	121	118	52	19
as Per cent		20.7	25.2	7.2	9.0	8.0	11.7	11.4	5.0	1.8
K.S.T.C. Pittsburg	128	22	38	13	15	9	9	17	5	0
as Per cent		17.2	29.7	10.2	11.7	7.0	7.0	13.3	3.9	0.0
K.S.T.C. Emporia	112	38	21	4	7	13	6	11	11	1
as Per cent		33.9	18.7	3.6	6.2	11.6	5.4	9.8	9.8	0.9
Ft. Hays K.S.C.	95	32	24	8	7	4	10	7	2	1
as Per cent		33.7	25.3	8.4	7.4	4.2	10.5	7.4	2.1	1.1
Kansas State College	93	11	33	7	10	8	12	8	3	1
as Per cent		11.8	35.5	7.5	10.8	8.6	12.9	8.6	3.2	1.1
University of Kansas	71	14	17	3	5	4	13	8	5	2
as Per cent		19.7	23.9	4.2	7.0	5.6	18.3	11.3	7.0	2.8
Kansas Independent	226	36	47	15	23	19	36	29	16	5
as Per cent		15.9	20.8	6.6	10.2	8.4	15.9	12.8	7.1	2.2
Kansas Municipal	60	13	20	1	3	3	8	6	4	2
as Per cent		21.7	33.3	1.7	5.0	5.0	13.3	10.0	6.7	3.3
Oklahoma Colleges	108	28	31	8	12	10	11	6	2	0
as Per cent		25.9	28.7	7.4	11.1	9.3	10.2	5.6	1.8	0.0
All Others	143	20	30	16	11	13	16	26	4	7
as Per cent		14.0	21.0	11.2	7.7	9.1	11.2	18.2	2.8	4.9
No record of degree	1									

A comparison of the 785 teachers who were graduated from Kansas colleges with the 706 teachers who were graduated from Kansas high schools, as indicated in Table XIII, indicates a possible movement of students into Kansas for college work. Fifty-three per cent of the teachers of mathematics in Kansas have received their bachelor's degree within the past fifteen years, as is shown by Table XVIII.

An increasing number of Kansas high school teachers have master's degrees. The sources of these degrees are given in Table XIX. Of the 1,037 Kansas mathematics teachers, 410 , or 39.5 per cent, have received master's degrees. Of these degrees, 272 , or 66.3 per cent, were issued by Kansas

TABLE XIX

SOURCE OF MASTER'S DEGREE

Name of College or University	Number of Teachers (410)	Per cent of 410
Kansas State Teachers College of Pittsburg	66	16.1
Kansas State Teachers College of Emporia	62	15.1
University of Kansas	53	12.9
Kansas State College	41	10.0
Fort Hays Kansas State College	37	9.0
Colorado State College of Education	25	6.1
Columbia University	16	3.9
University of Colorado	14	3.4
Wichita Municipal University	13	3.2
All Oklahoma Colleges and Universities	29	7.1
All Missouri Colleges and Universities	22	5.4
All Other Colleges and Universities	32	7.6

TABLE XX

LENGTH OF TIME (IN YEARS) SINCE TEACHERS RECEIVED MASTER'S DEGREE (as of 1958)

No. of Teachers			
(410)	Per cent of 410	Cumulative Per cent	
$1-5$	133	32.4	32.4
$6-10$	96	23.4	55.9
$11-15$	42	10.2	66.1
$16-20$	67	16.3	82.4
$21-25$	43	10.5	92.9
$26-30$	20	4.9	97.8
$31-35$	7	1.7	99.5
$36-40$	1	0.2	99.8
$41-45$	1	0.2	100.0

colleges. As is seen in Table XX, 229 of the teachers who hold master's degrees, or 55.9 per cent, have received these degrees within the past ten years.

Academic Majors

About one-third of the mathematics teachers had a major in mathematics, and a majority had a major in either mathematics or science. The other mathematics teachers had majors, listed in Table XXI in their order of frequency, in the following areas: social science, physical education, business, industrial arts, home economics and agriculture, education, English and speech. The academic majors were determined, wherever possible, from the transcript data. Some of these people had a second major. If either major was mathematics, the person was classified as a mathematics major.

No attempt was made, in this table to measure the quality or quantity of the major. Twenty-four hours in a field was accepted as a major if the degree did not specify the major. This corresponds to a "teaching field" requirement. As would be expected, those teachers teaching a single mathematics section are less likely to have a major in mathematics, as they usually teach in at least three fields. This is shown by Table XXI. Of the 339 teachers with mathematics majors, 9.7 per cent are teachers of a single mathematics class, 33.9 per cent are part-time mathematics teachers, and 56.4 per cent are full-time teachers.

Information was obtained on the majors and ages of 1,012 mathematics teachers. This information is presented in Table XXII. Analysis of the data indicates fluctuations above and below the overall average of 33.4 per cent mathematics majors. The number of physical education majors between ages of 21 and 40 seems to indicate an increase in the number of teachers with a combination of mathematics and physical education training, while the number of social science majors between ages of 21 and 40 seems to indicate a decrease in the number of teachers with a combination of mathematics and social science.

For 337 of the 410 recipients of the master's degrees sufficient information was available to classify the degrees by fields. Table XXIII shows that 42 , or 12.5 per cent, have a graduate major in mathematics. The 73 records which were incomplete belonged to persons reported by their principal as having a master's degree, but without master's degree transcripts in their file.

College Grades of Mathematics Teachers

It would be expected that full-time mathematics teachers generally have higher grades in college than those who are part-time teachers of mathematics. This expectation is borne out by the data of Table XXIV, which presents the distribution of the average grades of teachers. The teachers of mathematics include 64 , or 6.2 per cent, whose college grades
TABLE XXI

Majors	Teachers of One Mathematics Class		Teachers of Two or More Mathematics Classes*		Full Time Mathematics Teachers		Total Number (1037)	$\begin{aligned} & \text { Per cent } \\ & \text { of } 1037 \end{aligned}$
	Number (236)	Per cent	Number (410)	Per cent	Number (391)	$\begin{aligned} & \text { Per } \\ & \text { cent } \end{aligned}$		
Mathematics	33	14.0	115	28.0	191	48.8	339	32.7
Science	41	17.4	99	24.1	53	13.6	193	18.6
Social Science	35	14.9	34	8.3	29	7.4	98	9.5
Physical Education	27	11.5	40	9.8	30	7.7	97	9.4
Business	23	9.8	19	4.6	13	3.3	55	5.3
Industrial Arts	22	9.3	23	5.6	8	2.0	53	5.1
Home Econ. and Agric.	12	5.1	20	4.9	12	3.1	44	4.2
Education	12	5.5	10	2.4	14	3.6	37	3.6
English and Speech	7	3.0	15	3.7	13	3.3	35	3.4
Other	19	8.1	25	6.1	19	4.9	63	6.1
None or Unknown	4	1.7	10	2.4	9	2.3	23	2.2

*and devote at least one period to some other field or administration
TABLE XXII
ACADEMIC MAJORS OF MATHEMATICS TEACHERS BY AGE

$\begin{gathered} 0 \\ 8 \\ 8 \end{gathered}$			$\begin{aligned} & \text { 巳 } \\ & \text { U } \\ & \text { U0 } \\ & \text { N } \end{aligned}$				$\begin{aligned} & \text { 茫 } \\ & \text { 灾 } \\ & \text { 宝 } \end{aligned}$				
21－25	As per cent of 82	$\begin{aligned} & 32 \\ & 39.0 \end{aligned}$	$\begin{aligned} & 18 \\ & 22.0 \end{aligned}$	$\begin{aligned} & 2 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 7 \\ & 8.5 \end{aligned}$	$\begin{gathered} 9 \\ 11.0 \end{gathered}$	$\begin{aligned} & 5 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 4 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.0 . \end{aligned}$	$\begin{aligned} & 3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 2.4 \end{aligned}$
26－30	As per cent of 148	$\begin{aligned} & 44 \\ & 27.7 \end{aligned}$	$\begin{aligned} & 31 \\ & 20.9 \end{aligned}$	$\begin{gathered} 13 \\ 8.8 \end{gathered}$	$\begin{aligned} & 34 \\ & 23.0 \end{aligned}$	$\begin{aligned} & 7 \\ & 4.7 \end{aligned}$	$\begin{gathered} 12 \\ 8.1 \end{gathered}$	$\begin{aligned} & 2 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & 2.0 \end{aligned}$
31－35	As per cent of 182	$\begin{aligned} & 63 \\ & 34.2 \end{aligned}$	$\begin{aligned} & 32 \\ & 17.4 \end{aligned}$	$\begin{gathered} 12 \\ 6.5 \end{gathered}$	$\begin{aligned} & 35 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 7 \\ & 3.8 \end{aligned}$	$\begin{gathered} 10 \\ 5.4 \end{gathered}$	$\begin{aligned} & 5 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 4 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & 0.5 \end{aligned}$	$\begin{aligned} & 13 \\ & 7.1 \end{aligned}$
36－40	As per cent of 114	$\begin{gathered} 38 \\ 33.3 \end{gathered}$	$\begin{gathered} 24 \\ 21.1 \end{gathered}$	$\begin{gathered} 10 \\ 8.8 \end{gathered}$	$\begin{aligned} & 12 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 12 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4 \\ & 3.5 \end{aligned}$
41－45	As per cent of 73	$\begin{aligned} & 19 \\ & 26.0 \end{aligned}$	$\begin{aligned} & 11 \\ & 15.1 \end{aligned}$	$\begin{aligned} & 11 \\ & 15.1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2.7 \end{aligned}$	$\begin{gathered} 8 \\ 11.0 \end{gathered}$	$\begin{aligned} & 4 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 8.2 \end{aligned}$	$\begin{aligned} & 4 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 5 \\ & 6.8 \end{aligned}$
46－50	As per cent of 108	$\begin{aligned} & 36 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 26 \\ & 24.1 \end{aligned}$	$\begin{aligned} & 11 \\ & 10.2 \end{aligned}$	$\begin{aligned} & 3 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \mathbf{9} \\ & 8.3 \end{aligned}$	$\begin{aligned} & \mathbf{2} \\ & 1.9 \end{aligned}$	$\begin{aligned} & 3 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 5 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 7 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 5.6 \end{aligned}$
51－55	As per cent of 120	$\begin{aligned} & 42 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 26 \\ & 21.7 \end{aligned}$	$\begin{aligned} & 16 \\ & 13.3 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 5 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 8 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 4 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 10.0 \end{aligned}$
56－60	As per cent of 79	$\begin{gathered} 40 \\ 50.6 \end{gathered}$	$\begin{gathered} 9 \\ 11.4 \end{gathered}$	$\begin{aligned} & 10 \\ & 12.7 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 4 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3.8 \end{aligned}$
Over 60	As per cent of 101	$\begin{aligned} & 24 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 16 \\ & 15.9 \end{aligned}$	$\begin{aligned} & 12 \\ & 11.9 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8 \\ & 7.9 \end{aligned}$	$\begin{aligned} & 11 \\ & 10.9 \end{aligned}$	$\begin{aligned} & 12 \\ & 11.9 \end{aligned}$	$\begin{gathered} 15 \\ 14.9 \end{gathered}$
All Ages	As per cent of 1012	$\begin{gathered} 338 \\ 33.4 \end{gathered}$	$\begin{gathered} 193 \\ 19.1 \end{gathered}$	$\begin{gathered} 97 \\ 9.6 \end{gathered}$	$\begin{gathered} 97 \\ 9.6 \end{gathered}$	$\begin{gathered} 55 \\ 5.4 \end{gathered}$	$\begin{gathered} 53 \\ 5.2 \end{gathered}$	$\begin{gathered} 44 \\ 4.3 \end{gathered}$	$\begin{gathered} 37 \\ 3.7 \end{gathered}$	35 3.5	$\begin{gathered} 63 \\ 6.2 \end{gathered}$

TABLE XXIII
ACADEMIC MAJOR FOR MASTER＇S DEGREE

				$\begin{aligned} & \mathbb{U} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & U_{1} \end{aligned}$				$\begin{aligned} & \text { 酋 } \\ & \text { 苟品 } \\ & \text { 品 } \end{aligned}$			
K．s．T．c．											
Pittsburg	Number	39	12	2	7	2	0	0	0	0	1
	Per cent of 63	61.9	19.0	3.2	11.1	3.2	0.0	0.0	0.0	0.0	1.6
K．S．T．c．											
Emporia	Number	37	10	3	0	2	2	1	2	0	4
	Per cent of 61	60.7	16.4	4.9	0.0	3.3	3.3	1.6	3.3	0.0	6.5
University of Kansas											
	Number	37	6	1	0	1	2	0	1	0	0
	Per cent of 48	77.1	12.5	2.1	0.0	2.1	4.2	0.0	2.1	0.0	0.0
Kansas State											
College	Number	28	4	5	0	0	1	2	0	1	0
	Per cent of 41	68.3	9.8	12.2	0.0	0.0	2.4	4.9	0.0	2.4	0.0
Fort Hays Kansas											
State College	Number	22	6	3	1	1	0	0	0	2	0
	Per cent of 35	62.9	17.1	8.6	2.9	2.9	0.0	0.0	0.0	5.7	0.0
Other State											
Colleges	Number	26	0			3	2	2	0	0	1
	Per cent of 37	70.3	0.0	5.4	2.7	8.1	5.4	5.4	0.0	0.0	2.7
Independent											
Colleges	Number	29	2	0	0	0	0	0	1	0	0
	Per cent of 33	87.9	6.1	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0
Other State Teachers											
Colleges	Number	16	2	0	1	0	0	0	0	0	
	Per cent of 19	84.2	10.5	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0
All Colleges											
	Number	234	42	16	10	9	7	5	4	3	
	Per cent of 337	69.4	12.5	4.7	3.0	2.7	2.1	1.5	1.2	0.9	2.1

were so low that they succeeded in graduating only by completing more hours than usually required or by repeating courses already taken. One individual completed 187 hours of college work while receiving 134 grade points (1 point for C) and graduated. However, most of the teachers, 559 , or 53.9 per cent, have averaged grades of B or better.

College Credit in Mathematics

College credit in mathematics is an important criterion for adequacy of preparation for teaching mathematics. Table XXV gives the distribution of college credit hours in mathematics for all teachers for whom this data was obtainable. This table shows that 62.3 per cent of the one-class teachers had only 16 hours, or less, of mathematics. Of the part-time teachers, 41.0 per cent had at most 16 hours, and 34.7 per cent had at least 25 hours. Of the full-time mathematics teachers, 22.3 per cent had at most 16 hours, while 56.0 per cent had at least 25 hours of mathematics.

TABLE XXIV
GRADES OF TEACHERS OF MATHEMATICS

There are twenty-one teachers whose transcripts show no mathematics credit. The principal's report states that these people are qualified to teach mathematics. This discrepancy points to the major source of error in a report of academic training of teachers: the academic record is not current in Topeka. This situation will be improved with time, as more teachers obtain renewable certificates. Many people holding life certificates do not transmit to the certification office information to keep records current. Seventeen of the teachers did not have records at any of the locations where records were studied.
TABLE XXV
MATHEMATICS PREPARATION OF MATHEMATICS TEACHERS

Teaching Load in Mathematics		0	1-4	5-8	Hours of College Mathematics				25-28	$\begin{gathered} \text { Over } \\ 28 \end{gathered}$	$\begin{gathered} \text { No } \\ \text { Transcript } \end{gathered}$	
		9-12			13-16	17-20	21-24					
One Math. Class	Number		12	13	45	38	39	32	8	18	27	4
	Per cent	5.1	5.5	19.1	16.1	16.6	13.5	3.4	7.6	11.4	1.7	
Cumulative Per cent		5.1	10.6	29.7	45.8	62.3	75.8	79.2	86.9	98.3	100.0	
Two or more classes Number but not full time Per cent Cumulative Per cent		7	10	49	45	57	54	37	45	97	9	
		1.7	2.4	11.9	11.0	13.9	13.1	9.0	11.0	23.7	2.2	
		1.7	4.1	16.0	27.1	41.0	54.1	63.2	74.1	97.8	100.0	
Full Time	Number	2	3	16	25	41	37	44	58	161	4	
	Per cent	0.5	0.8	4.1	6.4	10.5	9.5	11.3	14.8	41.2	1.0	
Cumulative	Per cent	0.5	1.3	5.4	11.8	22.3	31.7	43.0	57.8	99.0	100.0	
All Mathematics	Number	21	25	109	108	139	123	89	121	285	17	
	Per cent	2.0	2.4	10.5	10.4	13.4	11.9	8.6	11.7	27.5	1.6	
Cumulative Per cent		2.0	4.4	14.9	25.3	38.7	50.6	59.2	70.9	98.4	100.0	

QUALIFICATIONS FOR TEACHING

Most teachers meet requirements for the class of school in which they are located. As shown in Table XXVI, of the teachers in Class A schools, 88.0 per cent meet the Class A requirements, 15 hours of college mathematics or its equivalent as listed in the 1955 Certificate Handbook.

To find whether qualifications are closely related to age, the records of 1,018 teachers were studied, the data being tabulated in Table XXVII. The teachers in the age groups up to 35 years are slightly better qualified

TABLE XXVI

TEACHERS MEETING CURRENT REQUIREMENTS FOR TEACHING IN CLASS OF SCHOOL WHERE EMPLOYED

Class	Meet Qualifications	Do not meet Qualifications	$\begin{gathered} \text { No } \\ \text { Transcript } \end{gathered}$
CLASS A			
Teachers of 1 Math. Class	79	18	2
Teachers of 2 or more Math. Classes and teach in some other field or administration	187	34	5
Full time Math. Teachers	343	20	4
Total	609	72	11
Per cent of 692	88.0	10.4	1.6
CLASS B			
Teachers of 1 Math. Class	41	10	
Teachers of 2 or more Math. Classes and teach in some other field or administration	74	11	2
Full time Math. Teachers	16	1	
Total	131	22	2
Per cent of 155	84.5	14.2	1.3
CLASS C			
Teachers of 1 Math. Class	65	19	2
Teachers of 2 or more Math. Classes and teach in some other field or administration	86	9	2
Full time Math. Teachers	7		
Total	158	28	4
Per cent of 190	83.2	14.7	2.1

than the overall average. They constitute 414 , or 40.7 per cent, of the 1,018 teachers considered in this analysis.

TABLE XXVII
RELATIONSHIP BETWEEN AGE AND QUALIFICATION BY CURRENT REQUIREMENTS TO TEACH IN SCHOOL WHERE EMPLOYED

Age	Qualified		Not Qualified		$\begin{aligned} & \text { Total } \\ & (1018) \end{aligned}$
	$\begin{gathered} \text { Number } \\ (897) \end{gathered}$	Per cent (88.1)	Number (121)	Per cent (11.9)	
21-25	77	92.8	6	7.2	83
26-30	131	88.5	17	11.5	148
31-35	165	90.2	18	9.8	183
36-40	96	85.0	17	15.0	113
41-45	64	87.7	9	12.3	73
46-50	98	88.3	13	11.7	111
51-55	107	88.4	14	11.6	121
56-60	74	88.1	10	11.9	84
61 and over	85	83.3	17	16.7	102

Table XXVIII presents the college mathematics preparation of all teachers of mathematics in terms of qualifications to teach in the schools of various classes. Thus 68.5 per cent of the teachers meet Class A requirements, 15 hours, without using high school credits, while an additional 15.0 per cent could meet Class A requirements if they counted up to 3 years of high school mathematics. For Class A schools, the minimum number of college hours is 9 , which must be supplemented by 3 units of high school mathematics. The Class B requirements, 12 college hours, are met by 76.6 per cent of the teachers without counting high school credits, while an additional 15.1 per cent could meet the requirements with up to 3 units of high school mathematics. For a Class B school, the minimum number of college hours is 6 , which must be supplemented by 3 years of high school mathematics. Class C requirements, 8 college hours, are met, without counting high school credits, by 88.3 per cent of all teachers, and an additional 3.5 per cent could meet the requirements by counting one unit of high school mathematics. The minimum number of college hours of mathematics is 6 .

Of the 236 single-class teachers, 112 , or 47.5 per cent, have 15 or more hours of mathematics; of the 410 part-time teachers, 271 , or 66.1 per cent, have 15 or more hours; and of the 391 full-time teachers, 327 , or 83.7 per cent, have 15 or more hours of mathematics. Therefore, 710 , or 68.5 per cent of 1,037 teachers of mathematics now meet the fifteen hour requirement.

TABLE XXVIII

PREPARATION IN MATHEMATICS OF TEACHERS OF MATHEMATICS

It has been possible, in the past, for a person to teach mathematics with a minimum of 6 hours of college mathematics. A number of teachers have entered teaching under such regulations and continue to teach. If the six hour minimum is used, as a test, Table XXVIII shows that 33 teachers of one mathematics class each, 28 teachers who teach two or more mathematics classes each, and 7 full-time mathematics teachers do not meet the basic minimum which has been in effect for a number of years. Some of these teachers may be old enough to have become certified under another regulation, but it is believed others are so listed because of the absence of current transcript data.

Subject Area Preparation

The State Department of Public Instruction lists no specific subject preparation in mathematics, and any separation of a teacher's preparation into subjects taken in college is arbitrary. This report has been based upon preparation in groups of courses. The groups of courses were chosen in order to limit the analysis to a workable number of items. Each group consists of courses which make somewhat comparable contributions to the teaching of mathematics. A portion of the original data sheet is reproduced here.

TABLE XXIX A
SEMESTER HOURS OF COLLEGE CREDIT IN GROUPS OF MATHEMATICS COURSES TAKEN BY HIGH SCHOOL
TEACHERS OF MATHEMATICS

Group		1-2	3-4	$\underset{5-6}{\text { Number }}$	$\begin{gathered} \text { f Cre } \\ 7-8 \end{gathered}$	$\begin{aligned} & \text { it Hours } \\ & 9-10 \end{aligned}$	11-12	13-14	Adequate Preparation	No Credit
Elementary (Alg., Trig.)	I*	1	16	21	2	4	0	0	171	20
	II	3	18	24	5	2	0		332	24
	III	3	17	11	8	1	2	a	335	14
Intermediate (Anal. Geom., Calculus)	1	3	22	29	9	9	0	0	51	112
	11	3	24	38	17	37	1	0	168	122
	III	5	15	35	30	37	1	2	214	52
*I, Teachers of one Mathematics Class II, Teachers of two or more Mathematics Classes and some other field or administration III, Full time Mathematics Teachers										
Adequate Preparation for Elementary: college algebra and trigonometry or its equivalent, and any prerequisites not taken in high school. Adequate Preparation for Intermediate: completed the usual three semester sequence, Anal. Geom., Calculus I Calculus with Anal. Geom. I, II and III.										

TABLE XXIX B
SEMESTER HOURS OF COLLEGE CREDIT IN GROUPS OF MATHEMATICS COURSES TAKEN BY HIGH SCHOOL
TEACHERS OF MATHEMATICS

Group		1		Number of Credit Hours				7	8	9 an up	No Credit
			2	3	4	5	6				
Teaching of Mathematics	I*	0	26	12	4	2	1	0	1	2	187
	II	4	46	36	15	12	11	4	4	5	273
	III	2	77	25	19	14	16	4	3	12	219
Advanced Analysis (Adv. Calc., Diff. Eq.)	I	0	2	17	2	0	7	0	0	0	207
	II	0	2	38	1	3	16	2	2	8	338
	III	1	3	54	3	2	30	3	7	31	257
Geometry (College or Modern)	I	0	0	25	5	3	2	0	0	0	200
	II	0	5	54	1	1	10	0	0	0	339
	III	0	11	92	4	2	16	1	0	3	262
Applied Algebra (Theory of Equations)	I	0	0	16	0	0	1	1	0	0	217
	II	0	7	58	1	2	0	0	0	0	342
	III	0	9	86	2	7	4	2	1	0	280
Probability and Statistics	I	0	7	12	0	2	1	0	0	0	213
	II	0	8	40	2	2	8	0	1	0	349
	III	0	24	39	5	6	6	0	6	4	301
Abstract Algebra	I	- 0	1	10	1	0	0	0	0	0	223
	II	0	8	26	0	4	2	0	0	0	370
	III	0	16	35	2	3	2	1	1	0	280

TABLE XXIX B (Continued)

Group		1	2	Number of Credit Hours				7	8	9 and up	$\begin{gathered} \text { No } \\ \text { Credit } \end{gathered}$
Projective Geom.	I	0.	1	9	0	0	0	0	0	0	225
	II	0	1	21	1	0	1	0	0	2	384
	III	0	1	34	1	2	11	1	0	1	340
Independent Study	I	0	0	0	1	0	0	1	0	0	233
	II	0	0	0	1	1	0	2	0	0	406
	III	0	5	5	9	9	1	1	1	2	358
Descriptive Statistics	I	0	0	2	1	0	0	1	0	0	231
	II	0	2	6	0	1	0	0	0	0	401
	III	0	1	5	1	0	0	0	0	0	384
Applications	I	1	25	32	8	11	4	0	3	1	150
	II	6	43	59	17	15	8	5	1	6	250
	III	12	50	51	20	26	8	11	5	13	195
General Education Mathematics	I	0	6	7	2	4	1	1	1	1	212
	II	1	13	29	5	2	2	0	1	1	356
	III	0	10	18	4	2	7	0	4	6	340

[^3]A teacher of mathematics in high school should have preparation beyond the courses offered in high school mathematics. These courses at the present time include courses in general mathematics, algebra, geometry, and trigonometry and, in a few schools, analytic geometry. It has been suggested, by some persons, using an accelerated program in high school mathematics, that calculus be made a high school course, taught in the twelfth grade. Table XXIX indicates that such a change must be far in the future, even if it should prove desirable. Relatively few teachers, at the present time, have preparation in mathematics adequate for the successful teaching of calculus according to Table XXIX, only 433 of the 1,037 mathematics teachers have completed calculus.

Table XXIX shows that 171 of the 236 teachers of single sections of mathematics have completed mathematics courses up to analytic geometry; 332 of the 410 teachers of at least two sections of mathematics have completed courses to analytic geometry, and 168 of them have completed courses through calculus. Of the 391 full-time teachers of mathematics 335 have completed courses to analytic geometry, and 214 of them have completed courses through calculus. The high percentage of teachers with no general education mathematics might seem discouraging until one considers that, in general, these courses are not taken by an individual planning to continue with mathematics as a field for teaching. If courses in the applications of mathematics are not considered, the courses most commonly taken, other than the sequential courses of algebra, trigonometry, analytic geometry, and calculus, fall in the groups which may be designated

TABLE XXX
COLLEGE SEMESTER HOUR REQUIREMENTS FOR SECONDARY
SCHOOL TEACHERS OF MATHEMATICS*

	Basic Require- ment	Minimum Require- ment	Deductions for H.S.	Blanket Certificate	Remarks
Alabama	24	18	No	No	
Alaska	Major (16)	Minor (12)	No	Yes	
Arizona	15	15	No	No	
Arkansas	15	15	Up to 6 hrs	No	
California	36	20	No	Yes	
Colorado	12	-	Up to 3	No	
Connecticut	18	18	No	No	Calculus req.
Delaware	24	-	No	Yes	See below
Dist. of Columbia	30	-	No	No	
Florida	15	-	No	No	
Georgia	20	20	No	No	See below
Hawaii	14	14	No	No	See below
Idaho	15	15	No	No	
Illinois	16	16	No	No	See below
Indiana	40	24	No	No	
Iowa	15	12	Up to 3	Yes	See below
Kansas	15	6	Up to 6	Yes	See below
Kentucky	24	18	No	No	

TABLE XXX (Continued)

STATE	Basic Requirement	Minimum Requirement	Deductions for H.S.	Blanket Certificate	Remarks
Louisiana	18	18	No	No	
Maine	18	18	No	Yes	See below
Maryland	18	18	Up to 6	No	
Massachusetts	18	9	No	No	
Michigan	15	-	No	No	
Minnesota	24	15	Up to 6	No	
Mississippi	18	18	No	Yes	
Missouri	15	15	No	No	
Montana	30	20	No	No	
Nebraska	15	12	No	Yes	
Nevada	Major	-	No	Yes	I:
New Hampshire	- 18	6	No	No	
New Jersey	18	18	No	No	
New Mexico	15	10	No	Yes	
New York	15	15	Up to 6	No	Changing '58
North Carolina	21	-	No	No	
North Dakota	30	15	No	No	See below
Ohio	-	18	No	No	
Oklahoma	24	16	Up to 5	No	See below
Oregon	12	12	No	Yes	
Pennsylvania	18	18	No	No	
Puerto Rico	15	15	No	Yes	
Rhode Island	15	15	No	No	
South Carolina	18-24	18-24	Up to 6 of 24	4 No	See below
South Dakota	15	15	No	No	
Tennessee	18	18	No	No	
Texas	36	18	No	No	
Utah	20	12	No	Yes	
Vermont	24	12	No	Yes	
Virginia	12	12	No	No	
Washington	Major	Minor	No	Yes	
West Virginia	18	15	No	No	
Wisconsin	15	15	No	No	
Wyoming	24	6	Up to 6	No	See bėlow

Delaware-May teach 1 class on 8 hrs . and 2 classes on 12 hours.
Georgia-Must include 12 hours of pure mathematics.
Hawaii-Must include Solid Geometry, Trigonometry, and Teaching of Mathematics.

Illinois-Special certificate, 36 hours, minimum 8 hours if major is science.

Iowa-Deductions allowed for Advanced Algebra, Trigonometry, and Solid Geometry, 1 hour per unit.

Kansas-Changing to 18 and 15 hours in 1960, with no High School deductions.

Maine-Can teach on 8 hours under certain conditions.
North Dakota-North Central Association minor required.
Oklahoma-Allowance of 3 hours for Intermediate Algebra and 2 hours for Solid Geometry.

South Carolina-Deductions from 24 hour requirement allowed, 3 hours for Trigonometry and 3 hours for Solid Geometry.

Wyoming-Must have 1 year of mathematics in college.

[^4]teaching of mathematics, advanced analysis, geometry, and applied algebra. Further details concerning preparation may be obtained from the tables of the appendix.

National Requirements for Mathematics Teaching

Requirements for teaching mathematics in high school vary from state to state and are given in the 1957 edition of a "Manual on Certification Requirements for School Personnel in the United States," prepared by W. Earl Armstrong and T. M. Stinnet, published by the N. E. A. A portion of one of the tables is reproduced in Table XXX. It is reprinted here with the permission of Mr. Armstrong.

Kansas is increasing the teaching requirement for mathematics to a minimum of 15 semester hours and a standard of 18 semester hours, (Certificate Handbook, State of Kansas, January 1, 1959). This modification is effective beginning with the school year 1960-61. However, the following qualification of the requirement is to apply: "Any person qualified and teaching any subject during the 1958-59 school year shall remain eligible to teach that subject even though advanced requirements are not met, provided the teacher remains in the same position and school." At the present time it is assumed that a school administrator will not allow a mathematics course to be taught by a teacher who does not meet the requirements for teaching mathematics.

Relation of College Preparation in Mathematics to the Number of Students Served

The 236 teachers who teach only a single class of mathematics have a total of 4,294 mathematics students, or an average of 19 students per section. There are 410 teachers who are not full-time mathematics teachers but who have each two or more classes in mathematics, the average being three classes. These 410 teachers have a total of 17,035 students, or an average of 14 students per section. There are 391 full-time mathematics teachers, and their average teaching load is five sections. These 391 fulltime teachers have a total of 45,376 students, for an average of 23 students per section.

Of considerable significance is the number of students in classes taught by teachers with varying degrees of college preparation in mathematics. This information is condensed in Table XXXI. It should be noted that according to this table 21 teachers whose records show no college mathematics credit teach 723 mathematics students.

Seventy-four teachers with less than 6 hours of college mathematics teach a total of 2,827 mathematics students. This number, 2,827 , is 4.2 per cent of the total number, 66,705 , of students taking mathematics.

The number of teachers having at least 6 hours of college mathematics and less than 15 hours is 249 , or 24.0 per cent of the total number of teachers of mathematics. These 249 teachers have 11,115 mathematics students,

TABLE XXXI

NUMBER OF STUDENTS TAUGHT IN MATHEMATICS BY HIGH SCHOOL TEACHERS OF MATHEMATICS BY COLLEGE CREDI'T IN MATHEMATICS

Number of Teachers	Hours Credit in College Mathematics	Number	cs Students Cumulative
21	0	723	723
1	2	77	800
16	3	755	1555
8	4	382	1937
28	5	890	2827
74			
23	6	964	3791
13	7	626	4417
48	8	1767	6184
20	9	781	6965
22	10	860	7825
23	11	820	8645
45	12	2649	11294
28	13	1286	12580
27	14	1362	13942
323			
47	15	3472	17414
45	16	2226	19640
30	17	2271	21911
445			

or 16.6 per cent of all mathematics students. Thus 13,942 mathematics students have teachers with less than 15 hours of college mathematics.

One hundred twenty-two teachers with 15 hours of mathematics and less than 18 hours teach a total of 7,969 students. Four hundred forty-five teachers, or 42.9 per cent of the mathematics teachers, teach 21,911 students, or 32.8 per cent of the mathematics students. These teachers will not qualify for the 18 hours standard to be required in 1960-61.

The average full-time teacher of mathematics teaches approximately 116 students in 5 sections. If this is accepted as a reasonable student load, then many well qualified teachers are not being used effectively. According to Table XXXII, if 24 semester hours are considered a minimum for a teaching field, 206 teachers who have this training are teaching an average of 60 or fewer mathematics students.

TABLE XXXII
NUMBER OF MATHEMATICS STUDENTS TAUGHT BY TEACHERS WITH TWENTY-FOUR OR MORE COLLEGE HOURS OF MATHEMATICS

Number of Teachers	Cumulative	Average No, of Students Taught	Total Students Taught	Cumulative

If the 206 teachers who have 24 hours of mathematics or more could be used full time, each teaching 116 students, they could serve 23,896 students. This would be enough more than the 6,214 they are now teaching to take care of the 13,942 students now being taught by teachers with less than fifteen hours' of college mathematics. This readjustment of teaching assignments, if put into effect, would seem to provide assurance that qualified teachers would be available. It can be seen that this cannot be accomplished while so many schools exist with enrollments below 200 students.

SUMMARY

The records of 1,037 teachers of mathematics in grades 9 to 12 , inclusive, during the academic year 1957-58 were studied. Of these records, 962 were complete. Fifty per cent of the teachers of mathematics teach in schools associated with communities 1,000 or less in population; 43.2 per cent teach in high schools with less than 100 students; 66.8 per cent teach in Class A high schools; and 64.4 per cent teach in a school system organized on the 8-4 plan.

There are 236 teachers of mathematics who teach only one class in mathematics, 410 who teach two or more classes but who also teach in some other field or are administrators, and 391 teachers who teach only mathematics.

Four hundred fifteen, or 40.0 per cent, of the teachers are 35 years old or less; 536 , or 51.7 per cent, have 10 or less years of experience; and 685 , or 66.1 per cent, have been in their present school systems 5 years or less.

Most of the teachers, 706, graduated from Kansas high schools, and 52.3 per cent graduated from high schools in towns of populations 2,000 or less. The annual salaries ranged from below $\$ 2,500$ to over $\$ 6,000$. The average salary was $\$ 4,386$. Seventy-five per cent of the mathematics teachers received salaries between $\$ 3,501$ and $\$ 5,000$.

The most commonly taught subject was first year algebra, taught by 692 teachers. Plane geometry was taught by 461 teachers.

Three hundred twenty-six teachers of mathematics, or 31.4 per cent, teach only a single subject in mathematics. Most of these, 236 of the 326, teach only one section of this subject; the remainder of their teaching schedule being in other fields. Three hundred ninety-six teachers, or 38.2 per cent, teach two mathematics subjects; 214 , or 20.6 per cent, teach 3 mathematics subjects: and the remainder, 101, or 9.7 per cent, teach 4 or more mathematics subjects.

First year algebra and plane geometry are taught as the only mathematics courses by 129 teachers, the largest number of teachers involved in any two-course combination.

Four hundred ninety-nine, or 48.1 ner cent, of the teachers of mathematics in public high schools received their baccalaureate degrees from Kansas state colleges. An additional 286, or 27.2 per cent, received their degrees from other colleges in the state. Four hundred seventy-five, or 45.9 per cent, of the teachers have received their degrees within the past ten vears. Four hundred ten teachers, or 39.5 per cent, have received master's degrees. Two hundred seventy-two of these degrees have been from Kansas institutions. Two hundred twenty-nine, or 55.1 per cent, of the degrees have been granted within the nast 10 years.

The academic maior for the bachelor's degree shows that 339 , or 32.7 per cent, of the mathematics teachers maiored in mathematics, while an additional 18.6 per cent have maiored in science. For the master's degree, 234 . or 69.4 ner cent. had a major in education, and 12.5 ner cent a major in mathematics. Four and seven-tenths ner cent had a maior in science.

The average collece grade for mathematics teachers was B. The fulltime mathematics teachers have somewhat better grades than those who teach nart-time.

There are 21 teachers whose transcrints show no mathematics credit. Hewever 406 have nver 24 colleore hours of mathematics, including one individual who has 76 college hours of mathematics.

The transcripts show that most teachers meet the current requirements for teaching in the class of school in which they are employed, 88.0 per cent of those in Class A, 84.5 per cent of those in Class B, and 83.2 per cent of those in Class C. There is no great difference in qualifications by age group, the average for the classes being 88.1 per cent qualified, by current requirements. The variations by age group run from 83.3 per cent for the 61 years and over group to 92.8 per cent for the 21 to 25 years group.

Although the transcripts were read and the original data sheets were compiled in terms of specific courses, the preparation analysis was made in terms of groups of courses. Eight hundred thirty-eight teachers had completed college algebra and trigonometry, and 433 had completed calculus. Beyond these courses most teachers had no credit in other groups of subject matter.

Six hundred seventy-nine had no credit in courses which are designed for academic background for teachers, excluding practice teaching in mathematics, 801 had no geometry in college, 839 had no advanced algebra course, while 863 had no courses in probability and statistics.

As appears from a study of Table XXX, Kansas has had the lowest requirements for teaching mathematics of any state, but, with the new regulations, the situation should be improved.

According to the available transcripts there are 21 teachers with no college credit in mathematics. They teach 723 mathematics students. In addition, there are 302 more teachers with 1 to 14 hours of college mathematics, teaching 13,219 mathematics students, for a total of 13,942 students taught by teachers with less than 15 hours of college mathematics.

There are 206 teachers of mathematics with 24 or more hours of college mathematics, these teachers having from 2 to 60 students each, for a total of 6,214 . On a basis of 116 students per teacher, they could serve, in addition to their present mathematics students, all the students taught by teachers with less than 15 hours of college mathematics.

More accuracy in a survey of this type requires a complete current file of academic records for all teachers. As a means of maintaining these records up to date, the renewable certificate will be somewhat effective.

Academic preparation of teachers in itself is only one of the qualifications of an individual to do good teaching, of course, because other items must be included. Certainly attitude toward the teaching profession, attitude toward students, teaching load, and demands of extra curricular duties are all factors in determining the effectiveness of the teacher in his classroom. Nevertheless, academic preparation is important, and the data contained in this study is an attempt to show some aspects of this subject as it currently exists in the public high schools of Kansas.

APPENDIX

Tables Relating the Number of Mathematics Teachers and Credit Hours in Specific Areas of Mathematics Preparation According to College From Which Graduated
TABLE A
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER HOURS IN ELEMENTARY COLLEGE MATHEMATICS*

College N	Number of Teachers	Number of Hours Without Adequate** Preparation								Adequate Preparation	No Credit Number Per		Cent
		1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16				
All Colleges	1037	7	51	56	15	7	4	0	0	838	58		5.6
KSTC Pittsburg	g 128	0	5	7	4		0		0	109	3		2.3
KSTC Emporia	112	0	5	5	2	1	2	0	c	87	10		8.9
Ft. Hays Kansas	as 95	0	5	7	0	0	1	0	G	78	4		4.2
State College													
K. State College	- 93	1	5	2	0	0	0	0	0	82	3		3.2
University of	71	3	5	7	2	0	1	0	0	53	0		0.0
Kansas													
Kansas Independent Colleges	- 226	2	13	14	3	2	0	0	0	177	15		6.6
Kansas Municipal Colleges	- 60	0	3	5	0	1	0	0	0	46	5		8.3
Oklahoma	108	0	4	4	1	1	0	0	0	92	6		5.5
Colleges	143	1	6	5	3	2	0	0	0	114	12		8.4
No record of degree	1												

[^5]TABLE B
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER
HOURS IN INTERMEDIATE COLLEGE MATHEMATICS*

[^6]NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER

[^7]TABLE D
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER HOURS

*Geometry includes College Geometry, Modern Geometry, Solid Analytic Geometry, Higher Geometry, and similar courses.
TABLE E
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER

College	Number of Teachers	Number of Hours									No Credit	
		1	2	3	4	5	6	7	8	Over 8	Number	Per Cent
All Colleges	1037	0	25	71	3	7	4	1	1	0	924	89.2
KSTC Pittsburg	128	0	7	3	0	0	0	0	0	0	118	92.2
KSTC Emporia	112	0	1	10	0	2	0	0	0	0	99	88.4
Ft. Hays Kansas	S 95	0	1	6	1	0	1	0	0	0	86	90.5
State College												
K. State College	- 93	0	1	2	0	0	0	0	0	0	90	96.8
University of	71	0	10	2	0	2	0	1	0	0	56	78.9
Kansas												
Kansas Independent Colleges	- 226	0	2	18	0	3	2	0	0	0	201	88.9
Kansas Municipal Colleges	-60	0	0	9	0	0	0	0	0	0	51	85.0
Oklahoma	108	0	1	13	0	0	0	0	0	0	94	87.0
Colleges												
Other Colleges	143	0	2	8	2	0	1	0	1	0	129	90.2
No record of degree	1											

TABLE \mathbf{F}
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER HOURS

"Probability and Statistics includes Probability, Elementary Statistics, or Mathematical Statistics, but not Educational or Business Statistics.
TABLE G
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER HOURS IN ADVANCED ANALYSIS*

"Advanced Analysis includes Advanced Calculus, Theory of Functions, Differential Equations, and similar courses.
TABLE H
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER
HOURS IN PROJECTIVE GEOMETRY*

College	Number of Teachers	Number of Hours									No Credit	
		1	2	3	4	5	6	7	8	Over 8	Number	Per Cent
All Colleges	1037	0	3	64	2	2	12	1	0	3	949	91.6
KSTC Pittsburg	128	0	0	7	0	0	0	0	0	0	121	94.5
KSTCC Emporia	112	0	0	6	0	0	0	0	0	1	105	93.8
Ft. Hays Kansas	95	0	1	2	0	0	0	0	0	0	92	96.8
State College												
K. State College	93	0	0	3	0	0	0	0	0	0	90	96.8
University of	71	0	1	18	0	0	9	0	0	1	42	59.2
Kansas												
Kansas Independent Colleges	226	0	0	20	1	2	3	0	0	1	199	88.1
Kansas Municipal Colleges	60	0	0	2	0	0	0	0	0	0	58	96.7
Oklahoma	108	0	0	0	0	0	0	0	0	0	108	100.0
Colleges												
Other Colleges	143	0	1	6	1	0	0	1	0	0	134	93.7
No record of degree	1											

*Projective Geometry includes Projective Geometry, Non-Fuclidean Geometry, and similar courses.
TABLE I
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER

[^8]TABLE J
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER HOURS

*Independent Study includes research, thesis and independent study in mathematics for advanced undergraduates.
TABLE K
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER HOURS IN DESCRIPTIVE STATISTICS*

College \quad N	Number of Teachers	Number of Hours									No Credit	
		1	2	3	4	5	6	7	8	Over 3	Number	Per Cent
All Colleges	1037	0	3	13	2	1	0	1	0	0	1016	98.1
KSTC Pittsburg	128	0	2	6	0	1	0	0	0	0	119	93.0
KSTC Emporia	112	0	0	0	0	0	0	0	0	0	112	100.0
Ft. Fays Kansas	as 95	0	0	1	0	0	0	0	0	0	94	98.9
State College												
K. State College	e 93	0	0	0	0	0	0	0	0	0	93	100.0
University of	71	0	0	2	0	0	0	0	0	0	69	97.2
Kansas												
Kanses Independent Colleges	- 226	0	0	3	0	0	0	1	0	0	222	98.2
Kansas Municipal Colleges	-60	0	0	0	0	0	0	0	0	0	60	100.0
Oklahoma	108	0	0	0	1	0	0	0	0	0	107	99.1
Colleges Other Colleges	143	0	1	1	1	0	0	0	0	0	140	97.9
No record of degree	143 1	0	1	1	1	0	0	0	0	0	140	97.9

* Descriptive Statistics includes Educational Statistics, Business Statistics and similar courses.

TABLE L

NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER HOURS IN APPLICATIONS*

College	Number of Teachers	Number of Hours									No Credit	
		1	2	3		5	6	7	8	Over 8	Number	Per Cent
All Colleges	1037	19	118	142	45	52	20	16	9	20	595	57.4
KSTC Pittsburg	128	3	17	29	5	17	5	5	2	9	36	28.1
KSTC Emporia	112	2	27	15	5	11	1	5	0	3	43	38.4
Ft. Hays Kansas	S 95	0	5	12	3	3	2	0	0	0	70	73.7
State College												
K. State College	e 93	0	17	5	6	1	1	1	1	0	61	65.6
University of	71	0	6	8	1	1	0	1	1	0	53	74.6
Kansas												
Kansas Independent Colleges	- 226	6	17	23	7	6	7	2	2	2	154	68.1
Kansas Municipal Colleges	60	2	12	8	6	3	0	0	1	2	26	43.3
Oklahoma	108	3	9	15	2	1	1	0	0	1	76	70.4
Colleges												
Other Colleges	143	3	8	27	10	9	3	2	2	3	76	53.1
No record of degree	1											

* Applications includes courses tanght as applications of mathematics, such as: Mathematics of Finance, Mathematics of
TABLE M
NUMBER OF TEACHERS OF MATHEMATICS WITH SEMESTER NUMBER OF IN GENERAL EDUCATION MATHEMATICS*

[^9]TAble N
AVERAGE GRADES OF 1018 TEACHERS OF MATHEMATICS
FOR WHOM GRADES WERE AVAILABLE

BIBLIOGRAPHY

Armstrong, W. Earl and T. M. Stinnet, "Manual on Certification Requirements for School Personnel in the United States," 1957 Edition, National Education Association.

Baker, Weldon N. and Merle E. Brooks, "Background and Academic Preparation of the Teachers of Science in the High Schools of Kansas, 1956-1957," The Emporia State Research Studies, Vol. 6, No. 2 (December 1957).

High School Principal's Organization Reports, 1957-58 academic year, on file in the office of the State Superintendent of Public Instruction, Topeka, Kansas.

Kansas State Tenchers Association. "Teachers' Salaries in Kansas," Kansas State Teachers Association, Department of Professional Relations, Topeka, Kansas.

National Education Association Research Bulletin, "Mathematics and Science," the Research Division, National Education Association, October 1958.

National Education Association, Research Monograph 1959-MI "Mathematics and Science Teaching and Facilities," March, 1959.
Official College Transcripts of Kansas Mathematics Teachers (Public high schools) on file in the office of the State Superintendent of Public Instruction, Topeka, Kansas.

Official College Transcripts of Kansas Mathematics Teachers (Public high schools) on file in the offices of the Registrar at Kansas State Teachers College of Emporia, Kansas; State Teachers College of Pittsburg, Kansas; Fort Hays Kansas State College, Hays, Kansas; Kansas State College, Manhattan; and the University of Kansas, Lawrence, Kansas.
Sare, Harold V. and Wallace Browning, "Background and Academic Preparation of the Social Science Teachers in the High Schools of Kansas, 1.956-57," The Emporia State Research Studies, Vol. 7, No. 2 (December 1958).

Throckmorton, Adel and State Board of Education, Certificate Handbook, State of Kansas, Topeka, Kansas, March 1, 1955.

Throckmorton, Adel and State Bnard of Education, Certificate Handbook, State of Kansas, Topeka, Kansas, January 1, 1959.

United States Department of Health Education and Welfare, Office of Education, "Mathematics and Science Education in U. S. Public Schools," Circular No. 533, United States Government Printing Office, Washington, 1.958.

The Emporia State Research Studies

Vol. 1, No. 1, 1952: Willis Ratzlaff, The Limnology of Some Roadside Ditches in Chase and Lyon Counties, Kansas. No. 2, 1952: C. Stewart Boertman, Apportionment in the Kansas House of Representatives, No. 3, 1953: John Breukelman and Ted F. Andrews, Offerings and Enrollments in Secondary School Sciences in Kansas in 1951-52. No. 4, 1953: George S. Blair, The Office of County Coroner in Kansas.

Vol. II, No. 1, 1953: Green D. Wyrick, The World of Ernest Hemingway. No. 2, 1953: Ira Everett Welch, The Comparison of Column Method Versus the Context Method in the Teaching of Snelling. No. 3, 1954: Jerry P. Leibman, Press Frcedom and Libel as Defined by Kansas Case Law. No. 4, 1945: Farold Crimmins, A History of The Kansas Central Railway, 1871-1935.

Vol. IlI, No. 1, 1954: Fred W. Grabhorn, Status of Teachers of Business Subjects in the Secondary Schools of Kansas, 1953-1954; Billy Lee Fowler, Turnover of Business Teachers in the Secondary Schools in Kansas, 1952-1953; Eleanor Patrick Evans, List of Free Teaching Aids for Typewriting, Bookkeeping, and Shorthand. No. 2, 1954: Garrett R. Carpenter, Silkville: A Kansas Attempt in the History of Fourierist Utopias, 1869-1892. No. 3, 1955: John C. Scafe, Foreign Language Teaching in Kansas High Schools, 19531954. No. 4, 1955: Richard A. Valyer, A Proposed Course of Study for Driver Education.

Vol. IV, No. 1, 1955 : Jessie Lonise Losey, A Selected, Annotated List of One-Act Plays for Festival Use. No. 2, 1955: George E. Thornton, The Social and Moral Philosophy of Thomas Dekker. No. 3, 1956: John Breukelman and Ted F. Andrews, Offerings and Enrollments in Secondury School Sciences in Kansas in 1954-1955. No. 4, 1956: S. Hull Sisson and Harry Walthall, An Annotated Bibliography of Theses Accepted for the Master of Science Degree, Kansas State Teachers College, Emporia, 1945 Through 1954.

Vol. V, No. 1, 1956: Walt Butcher, Presidential Election Returns for Kansas, 1864-1952. No. 2, 1956: Alex A. Daughtry, A Report on the Post-Graduation Activities of the 1955 Kansus High School Graduates. No. 3, 1957: Carl W. Prophet, Seasonal Variations aud Abundance of Cladocera and Copepoda and Some Physical-Chemical Conditions of the Fall and Verdigris Rivers in Wilson and Montgomery Countics, Kansas: Claire L. Schelske, An Ecological Study of the Fishes of the Fall and Verdigris Rivers in Wilson and Montgomery Countics, Kansas. No. 4, 1957: William C. Tremmel, The Social Concepts of George Herbert Mead.

Vol. VI, No. 1, 1957: John M. Mathews, Sang De Bocuf: Its Chinese Historical References and Local Reduction Experiments in Electric Firing Kilns. No. 2, 1957: Weldon N. Baker and Merle E. Brooks, Background and Academic Preparation of the Teachers of Science in the High Schools of Kansas 1955-1956. No. 3, 1958: Harold V. Sare, Nehru and the Rise of the Modern State of India. No. 4, 1958: Robert M. Taylor, Acoustics for the Singer.

Vol. VII, No. 1, 1958: Robert F. Clarke, An Ecological Study of Reptiles and Amphibians in Osage Connty, Kansas. No. 2, 1958: Farold V. Sare and Wallace Browning, Background and Academic Preparation of the Social Science Teachers in the High Schools of Kansas 1956-1957. No. 3, 1959: John M. Burger, Background and Academic Preparation of the Mathematics Teachers in the Public High Schools of Kansas 1957-1958.

[^0]: *John M. Burger is Associate Professor of Mathematics and Head of the Department at Kansas State Teachers College, Emporia.

[^1]: *Teachers who were graduated from Kansas High Schools

[^2]: "and devote at least one period to some other field or administration

[^3]: I,* Teachers of one Mathematics Class
 II, Teachers of 2 or more Mathematics Classes and some other field or administration

[^4]: *This table is an extract from the 1957 edition of A Manual on Certification Requirements for School Personnel in the United States, W. E. Armstrong and T. M. Stinnet, published by the N. E. A.

[^5]: *lementary College Mathematics includes college algebra, and where not taken in high school, trigonometry, intermediate algebra, and solid geometry or their equivalents.
 ** Adequate refers to satisfying prerequisites for analytic geometry.

[^6]: * Intermediate College Mathematics includes analytic geometry, calcuilus, and calculus with analytic geometry.
 ** Adequate means the equivalent of analytic geometry and two semesters of calculus, i.e. approximately 12 semester hours.

[^7]: * Teaching of Mathematics includes History of Mathematics, Arithmetic for Teachers, H. S. Mathematics for Teachers, Workshop in H. S. Mathematics, Fundamental Concepts of Mathematics, or similar courses.

[^8]: * Applied Algebra includes Theory of Equations and similar courses.

[^9]: "Usually not considered as a course for mathematics teacher preparation, but a literal arts course taken by non-
 mathematics majors or minors.

