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Abstract approved:

Anaxyrus woodhousii occupies an extensive range of habitats in the United States.

However, as an ectotherm, body temperature plays a critical role in digestive physiology

and behavior of A. woodhousii. Therefore, I was interested in investigating whether

different body temperatures can affect transit rate and hopping endurance in A.

woodhousii. I designed two experiments to investigate the effects of different

temperatures on transit rate and endurance of hopping behavior. First, I used 20 field-

collected individuals to test the digestive rate at four different temperatures: 16, 21, 26

and 31 ºC. I kept all the toads individually in clear shoe boxes with a water bowl and

plastic retreat, which allowed them to access water and hide themselves. In my

experiment, I put all the toads in a walk-in chamber or acclimation chambers, which were

set to a specific temperature and a 12-hour photoperiod starting at 0800 CDT. Before I

started the transit rate experiment, all the toads were maintained at room temperature and

fed with crickets every day for four weeks. During the experiment of transit rates, I

acclimated all four groups of toads at a constant temperature and fed them crickets which

had a different colored plastic bead glued to them for seven days. All the toads went

through four temperatures but in different orders of temperature. I checked for feces three



times per day and over 12 hours a day. Once I found the bead in the feces, the bead color

marked how long it stayed in the digestive tract of A. woodhousii. In this experiment, I

found there was no significant difference in transit rate of A. woodhousii over the four

temperatures I tested. In a separate experiment, I tested for effects of different

temperatures (10, 15 and 20 ºC) on endurance of hopping behavior of eight A.

woodhousii individuals. I acclimated all the toads for four days before starting each trial,

and I tested each toad 3 times at each temperature to determine the length of time it could

hop. In this experiment, all toads hopped on a small treadmill with a speed of 0.074 m/s.

Hopping endurance at 20 ºC was significantly longer compared to both 10 and 15 ºC.

Over the temperature range frequently encountered by toads, transit rate was unaffected,

but hopping endurance was diminished at low temperatures.
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INTRODUCTION

The relationship among environmental temperature, organismal development,

physiology and behavioral thermoregulation in ectotherms has been of interest to

biologists for a long period (Angilletta et al., 2002). For ectotherms, body temperature

(Tb) has a dominant role in many aspects of behavior and physiology (Huey and

Stevenson, 1979; Huey, 1982), including locomotion (McConnell and Richards, 1955;

Bennett, 1980; Hirano and Rome, 1984; Weinstein, 1998; Ojanguren and Brana, 2000),

immune function ( Mondal and Rai, 2001), sensory input (Stevenson et al., 1985; Werner,

1976), foraging ability (Greenwald, 1974; Ayers and Shine, 1997), and rates of feeding

and growth (Warren and Davis, 1967; Dutton et al., 1975; Kingsolver and Woods, 1997).

Previous evidence reveals that Tb is one of the most important environmentally related

factors governing the physiological performance and behavior of ectotherms (Angilletta

et al., 2002). The most obvious example is that the juveniles of ectotherms show a highly

correlated relationship between growth rate and temperature (Gotthard, 2001; Lee and

Roh, 2010).

Because the Tb of ectotherms are highly correlated with environmental

temperature, it may be expected to select micro-habitats in the environment to maintain

an optimal Tb (Carey, 1978). Acute exposure to a diverse range of environmental

temperatures often reveals that performance of ectotherms is maximized at an optimal

temperature and minimized at the ends of tolerable Tb (Angilletta et al., 2002). Limits

exist to the ability of ectotherms to function at extreme temperatures; the critical thermal

limits are the minimum (CTmin) and maximum (CTmax) Tbs where death occurs if the
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animal is not removed from that ambient temperature (Gvoždík, and Castilla, 2001;

Lutterschmidt and Hutchison, 1997). The optimal temperature is typically near the CTmax

(Huey and Bennett, 1987). At this Tb, ectotherms show best physiological performance,

but temperatures above this narrow range could cause damage to ectotherms or even lead

to death (Lutterschmidt and Hutchison, 1997).

The importance of Tb on physiological performance suggests that ectotherms

employ multiple strategies to respond to different thermal conditions. In most situations,

ectotherms might use behavior, physiology, or both to regulate their Tbs within a range

narrower than the range of environmental temperatures (Cowles and Bogert, 1944; Casey,

1981; Avery, 1982; and Hutchison and Dupre, 1992). Behavioral thermoregulation

allows rapid heat gain or loss to the surrounding environment or the maintenance of a

stable Tb. Ectotherms select appropriate microhabitats and can use physiological

mechanisms to some extent to maintain a Tb within a tolerable range (Dunham et al..

1989). Due to unstable environmental temperature, precise thermoregulation might be

difficult or even impossible in some conditions, or it might not be beneficial in some

environments because of the cost associated with behavior (Huey and Slatkin, 1976).

Behavioral thermoregulation does not help ectotherms maintain optimal Tb at extreme

ambient temperatures. Therefore, the physiological performances of ectotherms are still

sensitive to environmental temperature changes (Logan et al., 2014).

As an ectotherm, A. woodhousii occupies an extensive range of habitats in the

United States, occurring throughout the Great Plains, and from Canada to Mexico

(Sullivan 1989). With such a wide distribution, A. woodhousii uses a wide range of

habitats including open woodlands, grassland, and the riparian valleys of larger streams
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and rivers (Sievert and Sievert, 2011). Its extensive range suggests that A. woodhousii has

an ability to deal with temperature changes throughout the year and at different locations.

Like most amphibians, Tb is highly correlated to environmental temperature, and

physiological performance and function are highly influenced by Tb. As a toad,

environmental temperature affects its behavior, metabolism, immune system and

development (Raffel et al. 2006; Whitford, 1973). Therefore, toads must be able to

tolerate a range of Tbs. A. woodhousii deals with environmental fluctuations by short-

term behavioral adjustments or long-term changes in thermal sensitivity through

acclimation or adaptation (Huey and Bennett, 1987; Gvozdik and Castilla, 2001).

However, the question is whether A. woodhousii can deal with a big range of temperature

and maintain the same level of physiological performance. Previous studies threw doubt

on the ability of this toad to maintain a constant performance. For instance, A.

woodhousii exhibits greater mean velocity and mean jump length at warmer acclimation

temperatures compared with cold temperatures (Londos and Brooks, 1988). In addition, A.

woodhousii shows increasing oxygen consumption while being maintained at

temperatures from 5 to 25 ºC (Maher, 1967), and an increase in Tb (20 to 35 ºC) can alter

the pattern of postprandial metabolic rate in some toads (Secor and Faulkner, 2002). Wei

and Hou (2008) found that ingested energy in Anaxyrus bankorensis is significantly

affected by temperature and generally increased with increased temperature. These

studies indicate the physiological performance of A. woodhousii is highly sensitive to

temperature.

The energy ingested from food is essential for animals to survive, grow, develop,

and reproduce (Randall et al. 2001). Therefore, animals need to maximize their energy
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input from food. Because ectotherms do not have the ability to keep a constant Tb, they

must deal with daily fluctuations in Tb. Tb is a major factor that influences the rate at

which complex molecules found in food are digested (McNab, 2002). Most ectotherms

regulate their metabolic rate by increasing or decreasing Tb and thereby control the speed

of digestion and frequency of needing to consume food (Du et al., 2000; Wang et al.,

2003). Even though digestion in ectotherms is dependent on Tb, effects of Tb on nutrient

up take by the gut are conflicting (Beaupre et al., 1993). In the case of cornsnakes,

Sievert et al. (2005) showed Tb had no effect on transit rate. However, some studies

showed ectotherms have different thermal optima for digestive functions (Dorcas et al.,

1997). These studies suggest the effect of Tb on digestion and transit rate may vary

among species, which may be related to the diversity of habitats used by different species.

Field observations and experimental laboratory studies show that digestive tract anatomy

and function of many species including ectotherms are flexible and can change in

response to variation in environmental conditions (Piersma and Lindstrom, 1997; Starck,

1999; McWilliams and Karasov, 2001). Since A.woodhousii exhibits a wide range of

distribution, I was interested in investigating effects of Tb on transit rate in these toads.

Thermal and exercise physiology are not independent in anurans. For instance,

jumping or calling, is relatively easy to quantify is directly related to temperature and

important in fitness (Navas et al., 2008). Several studies reveal the influence of

temperature on jumping and the physiology of leg skeletal muscle (Rand, 1952; Hirano

and Rome, 1984; Lutz and Rome, 1994; Marsh, 1994; Navas et al., 1999; Wilson, 2001).

There are two different types of locomotion among anurans. Most frogs maximize jump

length as an escape behavior (Gans and Parsons, 1966), while toads have traded their
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jump length for endurance and a strategy of repeated hopping (Reilly et al., 2015).

Locomotion is essential in food hunting, migrating to a new habitat, and escaping

predators. Even though toads have shorter legs and jump length than most frogs, toads

have greater endurance, muscle efficiency and aerobic scope (Jorgensen and Reilly, 2013;

Zug 1978; Bennett and Licht, 1973; Zug 1985; Gibbs and Chapman, 1974; Josephson,

1975; Walton and Abderson, 1988). Locomotion of toads is an aerobic exercise, which

allows them to hop for a long period (Walton and Anderson, 1988). Factors that can

influence locomotion have been measured, such as oxygen consumption (VO2),

temperature, metabolic rate, and muscle performance (Walton and Anderson, 1988;

Londos and Brooks, 1988; Anderson et al., 1991). Londos and Brooks (1988) showed A.

woodhousii had mean velocity, jump frequency, and jump length that varied with Tb, but

they did not demonstrate if Tb could affect endurance of hopping. Therefore, I was

interested whether temperature can alter the hopping endurance of A. woodhousii when

toads need to keep hopping to escape from a predator.

In this research, I measured the speed of food passage and maximal endurance of

hopping in A.woodhousii at different temperatures. The primary goals of this study were

to investigate two questions: (1) Does Tb affect transit rates of A.woodhousii (2) Does Tb

affect the endurance of hopping activity in A.woodhousii? My hypotheses were (1) there

is no significant difference in transit rate of A.woodhousii over the four test temperatures

and (2) there is a significant difference in hopping endurance in A.woodhousii over the

three test temperatures.
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MATERIALS AND METHODS

I collected 20 adult A. woodhousii (14 female and 6 male) in Lyon County,

Kingman County and Coffee County, Kansas, in May 2017. The toads were habituated to

captivity for several weeks to ensure they would reliably eat crickets. The toads were

initially 14.5 to 90.8 g body mass. Throughout the experiment, all the toads were housed

in a 33 x 20 x 13 cm ventilated plastic container with a water bowl and PVC retreat,

which allowed them to access water and hide. The containers and water bowls were

cleaned every week or more often if needed.

Experiment 1: TRANSIT TIMES

To test the transit times of food through the digestive tract, I assigned toads to one

of four groups (n = 5 per group) that only differed in the order of the four treatment

temperatures of 16, 21, 26 and 31 ºC (see Appendix A for more details). Each chamber

was maintained under the same 12 h light: 12 h dark photoperiod with the photophase

starting at 0800 hr CDT. All toads were tested between May and September 2018.

Prior to testing, each toad in its container acclimated seven days before the first of

four feeding experiments at each different temperature. During this time, toads were fed

at 1200 hr CDT each day. Small toads were given two adult crickets (Gryllodes

sigillatus), and large toads were given three adult crickets. To measure the transit rate of

A. woodhousii for seven consecutive days, I glued a colored plastic bead on the back of

each cricket and used those crickets to feed toads. The glue I used was Elmer’s Washable

No Run School Glue, which is nontoxic. Moreover, the plastic bead was only 0.1 cm

diameter and each toad was given one bead of a different color every day. In this
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experiment, I always followed a specific order of colored beads to make sure that I knew

how long a bead stayed in the digestive tract of a toad (Appendix B). All the toads were

given one cricket with a bead and one or two crickets without beads depending on the

toad’s size. I monitored all the toads until I found all the beads in their feces. I fed toads

at 1200 CDT for seven days and followed by checking for feces three times per day at

0800, 0100, and 2000 hr CDT. I recorded the transit rate in days in this experiment.

EXPERIMENT 2: HOPPING ENDURANCE

The hopping endurance was measured in eight adult A.woodhousii caught in Lyon

County, Kingman County and Coffee County, Kansas. The toads in this experiment had a

range of body mass from 20 to 45 g. All the toads were tested at 10, 15, and 20 ºC

between July and November 2019. I put the toads into a walk-in chamber at the first of

three testing temperatures and allowed them to acclimate at this temperature for seven

days prior to the hopping experiments. A treadmill was constructed from a converted belt

sander with an endless belt, a speed controller to control the speed of the belt and wood

baffle to prevent toads from jumping out. The treadmill was housed in the walk-in

chamber and the speed of treadmill was set to 0.074 m/s (0.266 km/h). Prior to the test, I

started the treadmill to make sure the speed remained constant. I put a toad on the middle

part of the moving treadmill and started the timer. During the whole process, the toads

hopped without any artificial prodding. When the toads stopped hopping, the timer was

stopped. I tested all the toads three times at each temperature and recorded the time each

one hopped on the treadmill in seconds. Toads were fed crickets and/or mealworm larvae

(Tenebrio molitor) every day. On the test day, toads were fed 30 to 60 minutes before

testing every day. This was done because toads performed better if fed before testing
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rather than after. Preliminary trials showed that toads often did not perform unless they

had eaten.

STATISTICAL ANALYSES:

All statistical analyses were completed using SPSS version 24.0 (IBM) Statistical

Package for the Social Sciences and ProStat. One-Sample Kolmogorov-Smirnov tests and

QQ plots tested data for normality and Levene’s test tested homogeneity of variance. The

results from the One-Sample Kolmogorov-Smirnov test indicated transit rate data and

hopping endurance data of A. woodhousii were not normally distributed. I log

transformed data and excluded data from toad #7 because it was a significant outlier

(Appendix. E). After transformation, all groups of data were normally distributed

(P16=0.200; P21= 0.200; P26=0.200; P31=0.200). QQ plots also indicated that transformed

data were normally distributed. In the hopping endurance experiment, I excluded toad

#12 because it did not hop at 10 and 15 ºC. The Kolmogorov-Smirnov test showed

hopping endurance of A. woodhousii was normally distributed with Lilliefors

Significance Correction after excluding toad #12 (P10=0.073; P15= 0.199; P20= 0.200).

In the transit rate experiment, I averaged the time that it took the seven beads to

be expelled in the feces of each toad at each temperature. I used One-way ANOVA with

repeated measures (ProStat Program) to check for differences in transit rate among test

temperatures. This was followed by Student-Newman-Keuls (SNK) test to determine

where the difference occurred.

In the hopping endurance experiment, each toad was tested three times at each

temperature. I used the maximum time of hopping endurance from three trials as the time
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of hopping endurance for each toad at each temperature. I used One-way ANOVA with

repeated measures (ProStat Program) to check for differences in endurance of hopping

activity among test temperatures. This was followed by Student-Newman-Keuls (SNK)

test to determine where the difference occurred.
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RESULTS

The transit rate of beads did not differ among A.woodhousii across the four

acclimation and test temperatures (df= 3, P= 0.8471; Figure 1). Despite being acclimated

and tested at a constant temperature the range from 16 to 31 ºC did not alter transit rate.

In this experiment, I found 159 feces from 17 toads and 28% of feces contained one bead,

24% of feces contained two different colored beads and 25% of feces contained three

beads (Table 1).

Hopping endurance of A.woodhousii was significantly different over the three test

temperatures (df= 2, P= 0.0005; Figure 2). Moreover, Student-Newman-Keuls (SNK)

indicated hopping endurance of A.woodhousii at 20 ºC was significantly higher compared

with that at 10 ºC (P= 0.007) and 15 ºC (P=0.018). Hopping endurance did not differ

between 10 and 15 ºC (P= 0.39).
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Figure 1. Transit rate (x� ± SE) of Anaxyrus woodhousii at 16, 21, 26, and 31 ºC (n= 17).
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Table 1. The proportion of fecal samples from 17 Anaxyrus woodhousii (n= 159)

according to numbers of beads found within them.

Number of beads in feces Total number of feces Proportion of total

1 44 27.67%

2 38 23.89%

3 40 25.16%

4 12 7.50%

5 11 6.90%

6 5 3.10%

7 9 5.66%
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DISCUSSION

The goals of this research were to determine effects of Tb on transit rate and

hopping endurance of A. woodhousii. I accepted my first hypothesis that the range of Tb s

I tested did not significantly affect the transit rate of A. woodhousii. This outcome is not

surprising because the testing temperatures in this experiment were close to the range that

allows successful physiological performance of A. woodhousii (22 to 35 ºC; Brattstrom,

1963). Moreover, the test temperatures I chose were based on the temperature range

encountered by A. woodhousii in Kansas. For instance, the seasonal climate of Kansas

includes summer (July to September) average monthly temperatures of 21.7 to 27.2 ºC,

warm spring and fall average monthly temperatures of 13.9 to 24 ºC (KDWPT). A.

woodhousii needs to be able to deal with a relatively wide range of temperatures in such a

variable environment. My results indicated the food passage time of A. woodhousii was

relatively stable (Figure 3) within Tb ranging from 16 to 31 ºC. My methods allowed

toads to acclimate to each temperature before measuring transit rate, therefore mimicking

the acclimation that would occur in the field. The temperature I used remained constant

whereas the temperature experienced by free-living toads is variable over the course of

hours or days. Given that my test animals did not show differences in transit rate at

constant high or low temperature suggests that transit rate in free-living toads is

independent of ambient temperature within the range of 16 to 31 ºC.

I observed some feces contained several beads from days that were not contiguous.

This observation can be explained by the beads sitting somewhere in the digestive tract

and thereby changing the order in which beads exited the digestive tract. I observed that
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undigested insect parts, such as crickets’ heads, showed up in toads’ feces. This was

especially noticeable in freshly collected toads. These insect parts often exceeded the size

of the beads used in my experiment. I also observed toads did not produce feces every

day when I fed them with two or three crickets every day. In addition, I also found toads

have the ability to retain feces for a long period. In this experiment, Toad #7 produced a

relatively huge feces that contained all seven beads 25 days after the day it was given the

first bead. These data were significant outliers so I excluded them from final analysis.

However, I did not observe any significant pattern for retaining feces in toads. I observed

toads retain feces at Tb s of 21, 26, and 31 ºC, but none of the toads retain feces at a Tb of

16 ºC. Most interesting, I only observed one toad retain feces twice in this experiment,

which was toad #6. This toad retained feces at 26 ºC and 31 ºC, but this toad was not

moved directly from 26 to 31 ºC. Toad #6 was in group 2, before moving to 31 ºC, it was

tested at 16 ºC (Appendix A). Finally, my results and observation suggest the technique

used in my research to determine the transit rate was a crude measure of time passage. I

could not monitor where food was within the digestive tract as has been done in snakes,

because the digestive tract of toads is not straight (Stevens and Hume, 1995; Sievert et al.,

2005; Bontrager et al., 2006). I tested acclimation effects of temperature on transit rate. It

is possible that if I had measured the effect of acute temperature on transit rate I might

have found some combinations of acclimation temperature and test temperature that

altered my results.

In contrast with transit rate, a Tb of 20 ºC did significantly affect hopping

endurance of A. woodhousii compared with that at 10 ºC and 15 ºC. Therefore, I accepted

my second hypothesis in this experiment. My results are consistent with previous results
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on A. woodhousii (Londos and Brooks, 1988). In addition, I observed better hopping

performance at 20 ºC than at both 10 and 20 ºC. Toads struggled on the treadmill when

temperatures were at 10 and 15 ºC, but not at 20 ºC. Most toads could not make several

hops continuously, and they tried to walk on the treadmill instead of hopping at the lower

temperature. My results suggested that cold acclimation had significant effects on toad’s

muscle performance. This outcome agrees with studies showing that cold acclimation in

ectotherms affects maximum velocity and maximum power output of muscle, contractile

properties, and nervous system function (Rome, 1990; Rome, 2007).
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CONCLUSION

In summary, test temperatures of 16, 21, 26, and 31 ºC did not significantly affect

the transit rates of A. woodhousii. In contrast, test temperatures of 10, 15, and 20 ºC did

significantly affect the hopping endurance of A. woodhousii. The first result from this

research indicated the Tbs within the test temperature range had no significant effect on

food going through the toad’s digestive tract, which showed A. woodhousii can digest at

different Tbs and showed the digestive system had thermal flexibility. The transit rate

remains stable over a relatively wide range of Tbs. Moreover, I observed toads retained

their feces at three test temperatures in this research but did not observe any temperature

related pattern of retaining feces. I also found the technique of this research provided a

crude but non-invasive way to measure transit time. The second result from this research

indicated that Tb had a significant effect on hopping endurance of A. woodhousii. The

maximum hopping endurance at 20 ºC was significantly higher than that at 10 ºC and 15

ºC. I also observed toads had better performance at 20 ºC compared to 10 ºC and 15 ºC,

and most toads struggled at the lower Tbs. I found the same result of hopping activity

compared with Londos and Brooks (1988). Finally, I found maintaining toads at 31 ºC

continually can be harmful to toad’s normal physiological performance. I observed 2

toads died at this temperature in this experiment.

Overall, one result of my research suggests that A. woodhousii can subdue prey,

digest food and produce feces at 16, 21, 26, and 31 ºC, which is in keeping with the

temperature of wild toads in the natural habitat (Brown et al., 2007). For instance, the

average monthly temperature of Kansas is ranging from 13.9 to 27.2 ºC during the time
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this toad is active each year (KDWPT). However, another result of my research suggests

that muscle performance of A. woodhousii was temperature dependent. Therefore,

temperature in this species has a larger impact on muscle performance than digestion.
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Appendix A: The random order of different temperatures used in testing.

Group 1 Group 2 Group 3 Group 4

Temperature 1 16 ºC 21 ºC 26 ºC 31 ºC

Temperature 2 21 ºC 31 ºC 21 ºC 26 ºC

Temperature 3 26 ºC 16 ºC 31 ºC 16 ºC

Temperature 4 31 ºC 26 ºC 16 ºC 21 ºC
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Appendix B: The order of different colored beads given to the toads.

Days 1 2 3 4 5 6 7

Color White Black Blue Yellow Orange Dark blue Green
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Appendix C: The print-out from the one-Sample Kolmogorov-Smirnov test for digestive

rates of Anaxyrus woodhousii over different temperatures: 16, 21, 26, and 31 ºC.

One-Sample Kolmogorov-Smirnov Test

Log16 Log21 Log26 Log31

N 17 17 17 17

Normal Parametersa,b Mean .7224 .7259 .7765 .7459

Std. Deviation .17519 .14037 .24594 .23338

Most Extreme Differences Absolute .168 .116 .158 .113

Positive .140 .070 .158 .113

Negative -.168 -.116 -.150 -.094

Test Statistic .168 .116 .158 .113

Asymp. Sig. (2-tailed) .200c,d .200c,d .200c,d .200c,d

a. Test distribution is Normal.

b. Calculated from data.

c. Lilliefors Significance Correction.

d. This is a lower bound of the true significance.
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Appendix D: The print-out from the one-Sample Kolmogorov-Smirnov test for endurance

of hopping activity of Anaxyrus woodhousii over different temperatures: 10, 15, and 20

ºC.

One-Sample Kolmogorov-Smirnov Test

VAR00014 VAR00015 VAR00016

N 7 7 7

Normal Parametersa,b Mean 24.6667 40.3333 86.2857

Std. Deviation 20.47039 11.27271 38.20434

Most Extreme Differences Absolute .292 .252 .212

Positive .292 .186 .212

Negative -.203 -.252 -.154

Test Statistic .292 .252 .212

Asymp. Sig. (2-tailed) .073c .199c .200c,d

a. Test distribution is Normal.

b. Calculated from data.

c. Lilliefors Significance Correction.

d. This is a lower bound of the true significance.
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Appendix E: The average time beads stayed in the digestive tract of Anaxyrus woodhousii

at 16, 21, 26, and 31 ºC (Days).

*. The toads died during the experiment.

**. Showed this toad was excluded in this research.

Red color indicates this data was excluded. Blue color indicates retaining feces.

Toad number Temperature (ºC)

16 21 26 31

1 7 7 13.4 4.5

2 8.6 4.4 6.4 2.71

3 4.42 4 3.3 1.83

4 2.5 4 6.2 13

5 4.2 4.5 18 7

6 3.5 8.5 13 11

7** 2.5 25 9 5

8 6.5 6 5 6.6

9* 5.4 2.833 5 N/S

10 6.5 7 4.7 5

11 5.4 2.83 4.6 3.5

12 4 5 4.16 6.67

13 3.6 5 5.5 7.42

14 4 8.57 14.25 4

15 3.6 7.2 7 14

16 6.6 3.1 2.8 4.25

17 6.5 5.4 3.25 5

18 8 6.3 3.83 4.2

19 12 6 4.5 7.5

20* 6.25 N/S N/S N/S
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Appendix F: The average time of endurance of hopping activity of Anaxyrus woodhousii

over 10, 15, and 20 ºC (Given in seconds).

*. Indicated toad did not hop at this situation.

**. Showed this toad was excluded in this research.

Toad number Temperature (ºC)

10 15 20

1 11.7 20 108.00

3 7.7 45.33 129.00

6 61.7 44.7 131.3

11 11.3 37.3 39.3

12** 0* 0* 18.7

13 20.7 40.00 56.3

15 15.00 37.7 50.00

18 44.7 57.3 90.00
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Appendix G. The result of QQ plots of transformed transit rate of Anaxyrus woodhousii

at 16, 21, 26, and 31ºC.
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Appendix H. The result of QQ plots of hopping endurance of Anaxyrus woodhousii at 10,

15, and 20ºC.
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