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1. Introduction

The Euclidian space, Rn, is oftentimes held up as the quintessential example of a vector

space. However, the consideration of vector spaces over finite fields is not only a serious

endeavor for both pure and applied mathematicians but also provides a veritable playground

for the recreational combinatorialist. In [11], Joseph Gallian states that “finite fields were

first introduced by Galois in 1830 in his proof of the unsolvability of quintics. When Cayley

invented matrices a few decades later, it was natural to investigate groups of matrices over

finite fields.” Today, finite matrices over finite fields are studied extensively. They play

a very important role in the theory of finite groups. They have applications in “computer

science, coding theory, information theory, and cryptography” [11]. It is also asserted in

[11] (albeit without proof) that yet another important reason for researching vector spaces

over finite fields is that “they are just plain fun!”.

In this writing we examine some known results concerning exact enumeration of char-

acteristics associated with vector spaces whose underlying fields are finite. We explore

some of the many interesting analogies between subsets of n-element sets and subspaces

of n-dimensional vector spaces. We derive some q-analogue identities, expressions and

theorems. We link these results to some previously existing, as well as some newly added,

sequences in the On Line Encyclopedia of Integer Sequences, OEIS. We give generating

functions, formulas, recurrences, and Mathematica code that count various statistics con-

cerning vector spaces over finite fields, linear operators, and subspace lattices. We examine

some group properties of a finite dimensional vector space over a finite field, exposing it as

an elementary abelian group.

In particular, we derive the probability generating function for the probability (in the

limit as n→ ∞ ) that a random linear operator T on an n-dimensional vector space over a

field with q elements is such that dim null T = j for j ∈ {0, 1, 2, ...} . We give an original
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proof of a well known recurrence defining the Galois numbers. We give a bijection between

the number of diagonalizable n × n matrices with entries in Fq and the number of weak

decompositions of Fq into exactly q subspaces. We determine the order of some interesting

subgroups of the general linear group as well as some subgroups of the group of invertible

matrices over the ring of integers modulo m.

An underlying theme of this thesis is to demonstrate the pleasantly “surprising effi-

ciency of generating functions in combinatorial enumeration problems” associated with

vector spaces. The quote is from Flajolet and Sedgwick’s, Analytic Combinatorics [9],

where a “symbolic method” for deriving counting generating functions is determined, along

with a “systematic translation mechanism between combinatorial constructions and opera-

tions on generating functions”. Throughout this thesis we employ the calculus of generating

functions developed in [9] to derive, with much economy of thought, generating functions

that enumerate many interesting questions we may ask about linear mappings on a vector

space whose underlying field has only finitely many elements.

2. The Number of Vectors in an n-Dimensional Vector Space over Fq

A field is a set along with two operations satisfying a handful of axioms. A finite field

containing q elements exists if and only if q is a prime power, meaning that q = pn for

some prime integer p and positive integer n; C.f. [3]. Moreover, if q is a prime power, then

up to isomorphism, there is exactly one field of size q. This field is denoted by Fq.

A vector space is an Abelian group acted upon by a field satisfying a handful of axioms.

A nonzero finite dimensional vector space over an infinite field contains infinitely many

vectors. A finite dimensional vector space over a finite field contains finitely many vectors

and we are compelled to count them. Since every n-dimensional vector space over Fq

shares the same isomorphism class, we can resign ourselves to count statistics related to
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the coordinate vector space F
n
q = {(a1, . . . , an) : ai ∈ Fq ∀i = 1, . . . , n} without any loss

of generality, and we shall do so throughout this paper. However, the reader should note

that since all of our results depend only on the isomorphism classes of our vector spaces,

any of our theorems formulated for Fn
q may be freely applied to any vector space over Fq

of dimension n. Thus the notation F
n
q merely serves as a compact way of denoting the

dimension of the vector space and the size of the field of scalars under consideration.

Theorem 2.1. The number of vectors in F
n
q is equal to qn for any n ≥ 1.

Proof. There are q elements in the field Fq . To form a coordinate vector, i.e., an n-tuple of

field elements, we make n independent choices for a field element. So by the product rule

there are qn vectors in F
n
q .

3. The Number of Linearly Independent Lists of Vectors in F
n
q .

In this section we describe a very well known and rudimentary method of counting the

number of bases of a k-dimensional subspace in an n-dimensional vector space. We de-

fine the q-number and the q-factorial. We follow [14] to show that the q-factorial is the

polynomial generating function counting the number of n-permutations having a specified

number of inversions.

A basis for a k-dimensional subspace of Fn
q is an ordered list (tuple) of k linearly in-

dependent vectors in F
n
q . Each linearly independent list of k vectors in F

n
q corresponds

to exactly one basis of a k-dimensional subspace of Fn
q . So the number of bases over all

the k-dimensional subspaces of Fn
q is precisely the number of k-tuples, (v1, v2, . . . , vk) of

linearly independent vectors in F
n
q .

Definition 3.1. The number of length k linearly independent lists of vectors in F
n
q is called

the q-falling factorial number and is denoted ((n)k)q
1.

1The reader is asked to forgive us here for this abuse of notation. We acknowledge that the quantity
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To form a list of k linearly independent vectors in F
n
q we may choose the first vector,

v1, from any of the qn vectors in F
n
q except for the zero vector. This means we have qn − 1

choices for v1. The second vector, v2, must be linearly independent from v1. In other words,

v2 must not be in the span of v1. Since there are q elements in Fq, then there are q scalar

multiples of v1. So there are q vectors in span v1. So there are qn − q choices for v2. Now

v3 must be chosen from the vectors that are not in span(v1, v2). In other words, v3 must not

be a linear combination of v1 and v2. That is, v3 must not be of the form a1v1 + a2v2 where

a1, a2 are in Fq. There are q possibilities for the scalar a1 and q possibilities for the scalar

a2. So there are q2 vectors in span(v1, v2). So there are qn − q2 choices for v3. Continuing

in this manner, noting that each of the subsequent vectors in our k-tuple must avoid the

span of all previously chosen vectors, we see that there are (qn− 1)(qn− q) · · · (qn− qk−1)

ways to form such a k-tuple of vectors.

Theorem 3.2 ([8]). The number ((n)k)q of length k linearly independent lists of vectors in

F
n
q is equal to

∏k−1
i=0 (q

n − qi).

Proof. To form such a list (v1, v2, . . . , vk) we make k independent choices of vectors in

F
n
q so that vj 	∈ span(v1, . . . , vj−1) for all j ∈ {1, . . . , k}. By theorem 2.1, there are qj−1

vectors in span(v1, . . . , vj−1). So there are (qn−1)(qn−q) · · · (qn−qk−1) =
∏k−1

i=0 (q
n−qi)

k-tuples of vectors that may serve as a basis of a k-dimensional subspace of Fn
q .

The number ((n)k)q of linearly independent k-tuples of vectors in F
n
q for the case q = 2

is shown in Table 1. This table is indexed for n ≥ 1, 0 ≤ k ≤ n. It is given in OEIS as

sequence A288853.

((n)k)q is neither a falling factorial of a falling factorial nor is it technically a q-analog of (n)k. [4]
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1

1 1

1 3 6

1 7 42 168

1 15 210 2520 20160

1 31 930 26040 624960 9999360

1 63 3906 234360 13124160 629959680 20158709760

Table 1: ((n)k)2, Number of k-Tuples of Linearly Independent Vectors in F
n
2 for n ≥ 0

and 0 ≤ k ≤ n. A288253

These numbers may be thought of as being analogous to the falling factorials (A008279).

The falling factorial (n)k =
n!

(n−k)!
counts the number of ways to order (list) k elements con-

tained in an n-set. In other words, (n)k = n!
(n−k)!

is the number of injective functions from

a k-set into an n-set. In section 4 we will show that ((n)k)q is also the number of injective

linear maps from F
k
q into F

n
q which further illustrates the analogy with the falling factorials.

We will also show in section 4 that this is the number of surjective linear maps from F
n
q

onto F
k
q .

From our derivation above we have that

((n)k)q = (qn − 1)(qn − q) · · · (qn − qk−1).

It is sometimes convenient to represent this quantity as

((n)k)q = q(
k
2)(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

where we have factored a q from the second factor, two q’s from the third factor, and . . ., and
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(k − 1) q’s from the last factor. Also we define for natural numbers n ≥ 1, the q-number,

[n]q = 1 + q + · · ·+ qn−1 =
1− qn

1− q

and the q-factorial

[n]q! = [n]q[n− 1]q · · · [1]q[0]q =
n∏

i=1

1− qi

1− q

where [0]q := 1. So that

((n)k)q =
(q − 1)kq(

k
2)[n]q!

[n− k]q!
,

where we may note the similarity to the expression for the falling factorial numbers.

Now we want to view the aforementioned q-factorial as a polynomial generating func-

tion. Let us denote the coefficient of qr in [n]q! by [[qr]][n]q!.

Definition 3.3. The symmetric group on n letters denoted by Sn is the group of bijective

functions on {1, 2, . . . , n}. An n-permutation is an ordered list of length n containing each

of the elements in {1, 2, . . . , n} exactly once and hence represents an element of Sn.

Definition 3.4. Let π = (a1, a2, . . . , an) be an n-permutation. An inversion in π is an

ordered pair (ai, aj) such that i < j but ai > aj .

We claim that the number of n-permutations having exactly r inversions is equal to

[[qr]][n]q!. The proof below is adapted from Theorem 1 in [14]. First we first give a specific

example of the natural correspondence between the contributions to the coefficient of qr in

∏n
i=1

1−qi

1−q
and the permutations of {1, 2, . . . , n} having r inversions.

Say n = 5 and r = 7. Consider the permutation (3,5,4,1,2) having 7 inversions and the
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monomial 1 · 1 · q2 · q2 · q3 contributing to the coefficient of q7 in the expansion of

(1)(1 + q)(1 + q + q2)(1 + q + q2 + q3)(1 + q + q2 + q3 + q4)

The exponent of the boldfaced term in each of the five polynomial factors corresponds

to the number of inversions in the permutation (3,5,4,1,2) resulting from the five integers

1,2,3,4,5 respectively. For example, q3 in the fifth polynomial factor signifies that there are

exactly 3 entries in our permutation to the right of 5 that are less than 5.

Theorem 3.5 ([14]). The generating function counting the number of n-permutations hav-

ing exactly r inversions is the q-factorial, [n]q!. More precisely, if inv(π) is the number of

inversions of the permutation π ∈ Sn then
∑

π∈Sn
qinv(π) =

∏n
i=1

1−qi

1−q
.

Proof. The proof is by induction on n.

Basis step: If n = 1, then both sides give the constant polynomial 1.

Induction step: Let n ≥ 1. Assume that
∑

π∈Sn−1
qinv(π) =

∏n−1
i=1

1−qi

1−q
. An n-permutation

can be formed from an (n − 1)-permutation by inserting the integer n into any of the n

insertion positions (between, before, or after the entries of the (n − 1)-permutation). For

each j ∈ {1, 2, . . . , n}, inserting the integer n into the jth such position increases the

number of inversions by n − j. The generating function for the number of additional

inversions is then 1 + q + q2 + · · · + qn−1. Then by the multiplication rule of ordinary

generating functions (C.f. [7]),

∑
π∈Sn

qinv(π) = (1 + q + q2 + · · ·+ qn−1)
n−1∏
i=1

1− qi

1− q

=
n∏

i=1

1− qi

1− q
.
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The triangular array of numbers enumerated by the q-factorials is given in A008302.

These number are known as the Mahonian numbers in honor of Percy McMahon.

1

1

1 1

1 2 2 1

1 3 5 6 5 3 1

1 4 9 15 20 22 20 15 9 4 1

1 5 14 29 49 71 90 101 101 90 71 49 29 14 5 1

Table 2: Number of n-permutations having k inversions for n ≥ 0, 0 ≤ k ≤ (
n
2

)
. A008302

If we differentiate [n]q! and then evaluate at q = 1, we get the total number of inversions

over all permutations in Sn. This is sequence A001809. The sequence is indexed for n ≥ 0.

0, 0, 1, 9, 72, 600, 5400, 52920, 564480, 6531840, 81648000, 1097712000, . . .

Table 3: Total number of inversions over all n-permutations for n ≥ 0. A001809

4. The Number of Subspaces of Fn
q .

In this section we will count the total number of subspaces of Fn
q . We will classify these

subspaces according to their dimension k, for 0 ≤ k ≤ n .

Since all finite-dimensional vector spaces with the same dimension are isomorphic, then

each k-dimensional subspace of Fn
q has the same number of bases as the vector space Fk

q . So

the number of k-tuples of vectors in F
n
q that are a basis for the same k-dimensional subspace

of Fn
q is exactly the number of k-tuples of linearly independent vectors in F

k
q (where we are

assuming k ≤ n). By Theorem 3.1 there are (qk − 1)(qk − q) · · · (qk − qk−1) linearly
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independent k-tuples of vectors that may serve as a basis for any given k-dimensional

vector space.

Following the notation in [16] we denote the quantity
∏n−1

i=0 (q
n − qi) by γn(q) or just

by γn if the value of q is clear from the context. Later we will show that γn(q) is the order

of the general linear group GLn(Fq) of n× n invertible matrices over Fq. We note that

γn(q) = (qn − 1)(qn − q) · · · (qn − qn−1)

= (q − 1)nq(
n
2)[n]q!

= ((n)n)q.

The first few terms of the sequence A002884, γn(q) for n ≥ 0 where q = 2 are given in

Table 4. Note that this is the main diagonal in Table 1.

1, 1, 6, 168, 20160, 9999360, 20158709760, 163849992929280, . . .

Table 4: γn(2) for n ≥ 0. (The order of GLn(F2)).A002884

The number of k-dimensional subspaces of Fn
q is the number of linearly independent

k-tuples of vectors in F
n
q divided by the number of such k-tuples that generate the same

subspace.

Definition 4.1. The number of k-dimensional subspaces of F
n
q is called the q-binomial

coefficient and is denoted
(
n
k

)
q
.

The q-binomial coefficient is also sometimes referred to as the Gaussian binomial co-

efficient. In a certain sense it is not a coefficient at all but a polynomial in q, and in fact

it is also sometimes called the Gaussian polynomial. The following theorem quantifies

the q-binomial as a number. The first equation gives an expression for (what turns out to

be) the Gaussian polynomial in q. The last equation shows the analogy with the binomial

coefficients.
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Theorem 4.2 ([8]).
(
n
k

)
q
= (qn−1)(qn−q)···(qn−qk−1)

(qk−1)(qk−q)···(qk−qk−1)
=

(q−1)kq
(k2)[n]q !

[n−k]q !

(q−1)kq(
k
2)[k]q !

= [n]q !

[n−k]q ![k]q !
.

Proof. The number
(
n
k

)
q

of k-dimensional subspaces of Fn
q is the number ((n)k)q of linearly

independent k-tuples of vectors in F
n
q divided by the number ((k)k)q of such k-tuples that

generate the same subspace. So

(
n

k

)
q

=
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)

The equality of the other two expressions follows from algebraic simplification and the

definition of the q-factorial number.

These coefficients are shown in Table 5 for the case q = 2 . We can say that this table is

a q-analog of Pascal’s triangle. The table is indexed from n ≥ 0, k ≥ 0. For example, the

number of 2-dimensional subspaces of a vector space of dimension 4 over F2 is 35. This

table is A022166.

1

1 1

1 3 1

1 7 7 1

1 15 35 15 1

1 31 155 155 31 1

1 63 651 1395 651 63 1

1 127 2667 11811 11811 2667 127 1

1 255 10795 97155 200787 97155 10795 255 1

Table 5: Number of k-dimensional subspaces of Fn
2 for n ≥ 0, 0 ≤ k ≤ n. A022166
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5. The Number of m× n Matrices of a Given Rank with Entries in Fq

To construct anm×nmatrix with entries in Fq we makem·n independent choices of a field

element. So there are qmn such matrices. In this section we elaborate on some results given

in [16] to classify these matrices according to their rank, k, for 0 ≤ k ≤ min{m,n}. To that

end, we first demonstrate that the number of bases over all k-dimensional subspaces of Fn
q

(i.e. the quantity, ((n)k)q = (qn−1)(qn−q) · · · (qn−qk−1) determined in section 3) is also

the number of surjective linear mappings from F
n
q onto a given k-dimensional subspace of

F
m
q where m,n ≥ k. In order to do so we will introduce the notion of a dual vector space

and a dual mapping, following the ideas and proofs given in [5]. This will allow us to

use the same simple counting argument that was used to count linearly independent tuples

to count surjective mappings. We also give two alternate characterizations of the data in

Tables 1, 5, and 6 (below) . Along the way, we state some basic theorems and definitions

from linear algebra and group theory along with their proofs which are essentially those in

[5] and [10]. We conclude the section with a look at the probability distribution of the rank

of a random matrix.

The lemma below shows that every linear map from a vector space V to a vector space

W is uniquely determined by the choice of vectors in W to which we assign the vectors

of a basis of V . We are free to map the basis vectors of V to any tuple of vectors in

W , but once this choice is made the mapping is established. Note how this implies that

|L(Fn
q ,F

m
q )| = |L(Fm

q ,F
n
q )| = qmn.

Lemma 5.1 ([5]). Suppose V and W are finite-dimensional vector spaces over a field F

and that v1, . . . , vn is a basis of V , and that w1, . . . , wn are any vectors in W . Then there

is a unique linear map T from V to W such that Tvj = wj for all j = 1, . . . , n.

Proof. Fix a basis v1, . . . , vn of V . Let w1, . . . , wn be any list of vectors in W . Define
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T : V → W by

T (a1v1 + · · · anvn) = a1w1 + · · ·+ anwn for a1, . . . , an ∈ F. (5.1)

Since v1, . . . , vn is a basis of V , the mapping is well-defined. For each j ∈ {1, . . . , n}
taking aj = 1 and each of the other scalars equal to 0, gives Tvj = wj . It is routine to show

that the mapping is linear. This establishes existence.

Suppose S is also a linear map from V to W such that Svi = Tvi for all i ∈ {1, ..., n}. Let

v be arbitrary in V . Then v = a1v1 + . . .+ anvn for some scalars a1, . . . , an ∈ F. Then

Sv = S(a1v1 + . . .+ anvn)

= a1Sv1 + . . .+ anSvn

= a1Tv1 + . . .+ anTvn

= T (a1v1 + . . .+ anvn)

= Tv.

The next two lemmas characterize injectivity and surjectivity of linear maps. The two

lemmas taken together imply that a linear operator on a finite dimensional vector space is

injective if and only it is surjective.

Lemma 5.2 ([5]). Let V,W be vector spaces over field F. Let v1, . . . , vn be a basis of V .

Let T be a linear map from V to W . Then T is injective if and only if Tv1, . . . , T vn is

linearly independent.

Proof. ⇒: Assume T is injective and that a1Tv1 + . . . + anTvn = 0 for some scalars

a1, . . . , an ∈ F. The equation implies that T (a1v1 + . . . + anvn) = 0. Since T is injective
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then null T = 0. So a1v1 + . . . + anvn = 0. Since v1, . . . , vn is linearly independent

0 = a1 = · · · = an.

⇐: Assume Tv1, . . . , T vn is linearly independent. Let v ∈ V such that Tv = 0. Now

v = a1v1 + . . .+ anvn for some scalars a1, . . . , an ∈ F. So

0 = Tv = T (a1v1 + . . .+ anvn) = a1Tv1 + . . .+ anTvn.

Since Tv1, . . . , T vn is linearly independent a1 = · · · = an = 0. So v = 0. So null(T ) =

{0}. So T is injective.

Lemma 5.3 ([5]). Let V,W be vector spaces over field F. Let v1, . . . , vn be a basis of V . Let

T be a linear map from V to W . Then T is surjective if and only if span(Tv1, . . . , T vn) =

W .

Proof. ⇒: Assume T is surjective. Then

W = rangeT

= {Tv : v ∈ V }

= {T (a1v1,+ · · ·+ anvn) : a1, . . . , an ∈ F}

= {a1Tv1 + · · ·+ anTvn : a1, . . . , an ∈ F}

= span(Tv1, . . . , T vn).

⇐: AssumeW = span(Tv1, . . . , T vn). Then from the above equations,W = rangeT .

So T is surjective.

Definition 5.4. For positive integers m and n, let Fm,n
q denote the set of all m×n matrices

with entries in Fq. The general linear group, denoted by GLn(Fq), is the set of all invertible

matrices in F
n,n
q along with the operation of matrix multiplication.
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A linear map is invertible if and only if it is both injective and surjective. An isomor-

phism between two vector spaces is an invertible linear map. An invertible linear map from

an n-dimensional vector space V onto itself is called a vector space automorphism. It is a

bijective homomorphism that preserves both the vector addition and the scalar multiplica-

tion of V . The set of all such automorphisms with the operation of function composition

forms a group which we will denote Aut(V ). This group is isomorphic to GLn(Fq). A

canonical isomorphism between these two groups is given in the definition below.

Definition 5.5. Suppose T ∈ L(V ) and v1, . . . , vn is a basis of V . The matrix of T with

respect to this basis is the n× n matrix M(T ) whose entries aj,k are defined by

Tvk = a1,kv1 + · · ·+ an,kvn

The mapping given in the following theorem shows that |Aut(V )| = | is precisely the

number of ways to choose a basis of V , that is, the number of linearly independent n-tuples

of vectors in V .

Theorem 5.6 ([5]). Two finite dimensional vector spaces are isomorphic if and only if they

have the same dimension.

Proof. ⇒: Suppose T : V → W is an invertible map (i.e. an isomorphism between V and

W ). Then T is injective and surjective. So null T = 0 and range T = W . Since dimV =

dim null T + dim range T , we have dim V = dim W .

⇐: Suppose V and W both have dimension n. Let v1, . . . , vn be a basis of V and

w1, . . . , wn be a basis of W . Define T : V → W by T (a1v1 + · · · + anvn) = a1w1 +

· · · + anwn. Then T is well defined since v1, . . . , vn is a basis of V . Note that Tv1 =

w1, . . . , T vn = wn . So T is injective since w1, . . . , wn is linearly independent. Also T is

surjective since span(w1, . . . , wn) = W . Therefore, T is an isomorphism.



15

Definition 5.7. A linear functional on V is a linear map from V to F. The dual space of V ,

denoted V ∗, is the vector space of all linear functionals on V . In other words, V ∗ = L(V,F)
where F is the underlying field of V .

Definition 5.8. Let v1, . . . , vn be a basis of V. The dual basis of v1, . . . , vn is the list

φ1, . . . , φn of linear functionals in V ∗ such that

φj(vk) =

⎧⎪⎪⎨
⎪⎪⎩
1, k = j,

0, k 	= j.

.

From the definitions above we should note that V is isomorphic to its dual, V ∗ because

it has the same dimension as V . Also the dual basis φ1, . . . , φn is indeed a basis of V ∗. To

see this note that for scalars a1, . . . , an ∈ F we have a1φ1 + · · ·+ anφn = 0, then for each

j ∈ {1, . . . , n}, (a1φ1 + · · ·+ anφn)vj = aj , so that a1 = · · · = an = 0.

Definition 5.9. Let T be a linear map from V → W . The dual map of T is the linear map

T ∗ : W ∗ → V ∗ defined by T ∗(φ) = φ ◦ T for all φ ∈ W ∗.

Definition 5.10. Let U be a subspace of V. The annihilator of U , denoted by U◦, is the

subspace of V ∗ defined by U◦ = {φ ∈ V ∗ : φ(u) = 0 ∀u ∈ U}.

Lemma 5.11 ([5]). Let U be a subspace of V . Then dim U + dim U◦ = dim V .

Proof. Let u1, . . . , um be a basis of U . Extend it to a basis u1, . . . , um, um+1, . . . , un of

V . Let φ1, . . . , φm, φm+1, . . . , φn be the corresponding dual basis of V ∗. We will show

φm+1, . . . , φn is a basis of U◦. Since φm+1, . . . , φn is linearly independent, we just need to

show that span(φm+1, . . . , φn) = U◦.

Let φ ∈ span(φm+1, . . . , φn). Then φ = am+1φm+1 + · · · + anφn for some scalars

am+1, . . . , an ∈ F. Let u ∈ U . Then u = b1u1+· · ·+bmum for some scalars b1, . . . , bm ∈ F.
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Note that for all j ∈ {m + 1, . . . , n}, φj(u) = b1φj(u1) + · · · + bmφj(um) = 0 so that

φ(u) = 0. So φ ∈ U◦. So span(φm+1, . . . , φn) ⊆ U◦.

Now let φ ∈ U◦. Since φ ∈ V ∗,

φ = c1φ1 + . . .+ cmφm + cm+1φm+1 + . . .+ cnφn

for some scalars c1, . . . cn ∈ F. Now φ(u) = 0 for allu ∈ U . In particular

0 = φ(u1) = c1φ1(u1) + . . .+ cmφm(u1) + cm+1φm+1(u1) + . . .+ cnφn(u1) = c1.

So c1 = 0. Likewise cj = 0 for all j ∈ {1, . . . ,m}. So φ ∈ span(φm+1, . . . , φn). So

U◦ ⊆ span(φm+1, . . . , φn).

We note that the above lemma implies that V ∗ = U◦ if and only if U = {0}. Likewise,

U◦ = {0} if and only if U = V .

Lemma 5.12 ([5]). Two linear maps S : V → W and T : V → W are equal if and only if

their dual maps S∗ : W ∗ → V ∗ and T ∗ : W ∗ → V ∗ are equal.

Proof. ⇒: Assume S and T are equal. Let φ be arbitrary in W ∗. Then S∗(φ) = φ ◦ S =

φ ◦ T = T ∗(φ).

⇐: Assume S∗ and T ∗ are equal. Let v ∈ V . Then for all φ ∈ W ∗, S∗(φ) = T ∗(φ)

. So that φ ◦ S = φ ◦ T . So that φ(Sv) = φ(Tv) ⇒ φ(Sv) − φ(Tv) = 0. So that

φ(Sv − Tv) = 0. Since this equation holds for every φ ∈ W ∗ then (span(Sv − Tv))◦ =

W ∗ hence span(Sv − Tv) = {0}. So that Sv = Tv.

Lemma 5.13 ([5]). Let T be a linear map from V to W . Then null T ∗ = (rangeT )◦.
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Proof.

φ ∈ null(T ∗) ⇔ T ∗(φ) = 0

⇔ (φ ◦ T )(v) = 0 for all v ∈ V ,

⇔ φ(Tv) = 0 for all v ∈ V ,

⇔ φ ∈ (rangeT )◦.

Lemma 5.14 ([5]). Let T be a linear map from V to W . Then T is surjective if and only if

T ∗ is injective.

Proof.

The map T is surjective ⇔ rangeT = W,

⇔ (rangeT )◦ = {0},

⇔ nullT ∗ = {0},

⇔ T ∗ is injective.

Lemma 5.15. There is a 1-1 correspondence between the linear maps T ∈ L(V,W ) and

the dual maps T ∗ ∈ L(W ∗, V ∗). More precisely, Φ : L(V,W ) → L(V ∗,W ∗) by Φ(T ) =

T ∗ for all T ∈ L(V,W ) is a linear isomorphism (and hence is a bijective function).

Proof. It is straightforward to show that Φ is a linear map. Now observe that the dim(L(V,W )) =

dim(L(V ∗,W ∗). So it suffices to show that Φ is an injection. For each T ∈ L(V,W )
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T ∈ null(Φ) ⇔ Φ(T ) = 0

⇔ T ∗ = 0

⇔ φ ◦ T = 0 ∀φ ∈ W ∗

⇔ (span(T ))◦ = W ∗

⇔ span(T ) = 0

⇔ T = 0

⇔ null(Φ) = {0}

⇔ Φ is injective

Theorem 5.16. Let V,W be vector spaces over Fq. Let dimV = n and let dimW = m.

Then

(a) the number of injective linear maps from V toW is (qm−1)(qm−q) · · · (qm−qn−1) =

((m)n)q;

(b) the number of surjective linear maps from V toW is (qn−1)(qn−q) · · · (qn−qm−1) =

((n)m)q.

Proof. Fix a basis v1, . . . , vn of V . Let T be a linear map from V to W . Then T is

completely determined by the values Tv1, . . . , T vn. Also, T is injective if and only if

Tv1, . . . , T vn is linearly independent. Then (a) follows from Theorem 3.2, i.e., (qm −
1)(qm − q) · · · (qm − qn−1) is the number of linearly independent length n lists of vectors

in W .
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By lemma 5.12 the linear maps T ∈ L(V,W ) and the dual maps T ∗ ∈ L(W ∗, V ∗) are

in 1-1 correspondence. Also by Lemma 5.14 T is surjective if and only if T ∗ is injective.

Then (b) follows by applying statement (a) to T ∗ ∈ L(W ∗, V ∗).

Theorem 5.17 ([16]). The number of m× n matrices of rank k (for 0 ≤ k ≤ min{m,n})

is equal to
(
m
k

)
q
· ((n)k)q.

Each surjection from F
n
q onto a given k-dimensional subspace of Fm

q corresponds in

a 1-1 fashion to a linearly independent k-tuple of vectors in F
n
q . The number of m × n

matrices having rank k is equal to the number of linear maps from F
n
q onto a given k-

dimensional subspace of F
m
q . There are

(
m
k

)
q

subspaces of F
m
q that have dimension k

. These subspaces will serve as the range of our mapping. By Theorem 5.16, there are

(qn − 1)(qn − q) . . . (qn − qk−1) surjections onto each k-dimensional subspace. So there

are
(
m
k

)
q
(qn − 1)(qn − q) . . . (qn − qk−1) =

(
m
k

)
q
· ((n)k)q surjective linear maps from F

n
q

onto a given k-dimensional subspace of Fm
q .

Considering the case when m = n, we have that the number of linear operators T on

F
n
q such that dim(rangeT ) = k is

(
n

k

)
q

(qn − 1)(qn − q) . . . (qn − qk−1) =
((qn − 1)(qn − q) · · · (qn − qk−1))2

(qk − 1)(qk − q) · · · (qk − qk−1)
.

Table 6 (A286331) gives these numbers for q = 2 and n ≥ 0, 0 ≤ k ≤ n.
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1

1 1

1 9 6

1 49 294 168

1 225 7350 37800 20160

1 961 144150 4036200 19373760 9999360

1 3969 2542806 326932200 8543828160 39687459840 20158709760

Table 6: Number of n× n matrices with rank k for n ≥ 0, 0 ≤ k ≤ n. A286331

Some equivalent characterizations of the data in Tables 1, 5, and 6.

We can characterize the enumeration results given in Tables 1, 5, and 6 in terms of an

equivalence relation. Let L(Fn
2 ) denote the set of all linear operators on F

n
2 . Define an

equivalence relation ∼R on L(Fn
2 ) by S ∼R T if and only if range S = range T for all

S, T ∈ L(Fn
2 ). By associating each operator to the subspace of its range we make the

following observations.

(i) The entries in Table 5 are the number,
(
n
k

)
2

of equivalence classes containing elements

(operators) that have a range of a particular dimension k.

(ii) The entries in Table 1 give the number, ((n)k)2 of equivalent operators that are in

each of the classes. That is, the number of operators in L(Fn
2 ) that have exactly the

same range with dimension k.

(iii) The row sums of Table 5 give the number of equivalence classes.

(iv) Table 6 is the product ((n)k)2 ·
(
n
k

)
2

of corresponding entries in Table 1 and Table 5.
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(v) Each operator is accounted for exactly once in Table 6 so that the row sums are 2n
2

.

Now let Fn,n
q be the set of all n × n matrices over Fq. Each operator in L(Fn

q ) corre-

sponds to exactly one matrix in F
n,n
q . Also if two matrices are row equivalent then their

row space is the same and that for any M ∈ F
n,n
q the row space of MT is the column space

of M . Then we can make the following equivalent characterizations of Tables 1, 5, and 6.

(i) The row sums of Table 5,
∑n

k=0

(
n
k

)
are the number of classes of row equivalent

matrices in F
n,n
2 .

(ii) The entries in Table 1 are the number, ((n)k)2 of matrices in F
n,n
2 that row reduce to a

given matrixM in reduced row echelon form with rank k (or equivalently dimRow(M) =

k).

(iii) Table 6 is the number,((n)k)2 ·
(
n
k

)
2

of matricesM in F
n,n
2 with rank k (or equivalently

dimRow(M) = k).

The probability distribution for the rank of an n× n matrix over Fq

If we construct a random n × n matrix with entries in Fq or equivalently select a ran-

dom operator T on F
n
q , what is the likelihood that the matrix has rank k (or equivalently

dim(range T ) = k. Let us denote this likelihood as P(dim(rangeT ) = k). Since there are
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qn
2

operators on F
n
q we have

P(dim(rangeT ) = k)

=
((qn − 1)(qn − q) · · · (qn − qk−1))2

qn2(qk − 1)(qk − q) · · · (qk − qk−1)

=
(1− 1

qn
)(1− 1

qn−1 ) · · · (1− 1
qn−k+1 ) · (qn − 1)(qn − q) · · · (qn − qk−1)

qn(n−k)(qk − 1)(qk − q) · · · (qk − qk−1)

=
(1− 1

qn
)(1− 1

qn−1 ) · · · (1− 1
qn−k+1 ) · (qn − 1)(qn − q) · · · (qn − qk−1)

q(n−k)2(qn − qn−k)(qn − qn−k+1) · · · (qn − qn−1)

=
1

q(n−k)2

n∏
i=n−k+1

(
1− 1

qi

)
·
k−1∏
i=0

qn − qi

qn − qn−k+i
.

Now we would like to know the probability in the limit as n approaches infinity that

the range of a random operator on F
n
q has dimension n − j, for 0 ≤ j ≤ n. We substitute

j = n− k into the above expression. We claim that
∏k−1

i=0
qn−qi

qn−qn−k+i =
∏j=n−k

i=1
qn−qi−1

qn−qn−i . To

see this, observe that the numerator in the expression on the left multiplied by the denomi-

nator in the expression on the right is equal to the numerator in the expression on the right

multiplied by the denominator of the expression on the left. So we have

P(dim(rangeT ) = (n− j)) =
1

qj2

n∏
i=j+1

(
1− 1

qi

)
·

j∏
i=1

qn − qi−1

qn − qn−i

=
n∏

i=j+1

(
1− 1

qi

)
·

j∏
i=1

qn − qi−1

qn+j − qn+j−i

=
n∏

i=j+1

(
1− 1

qi

)
·

j∏
i=1

1− qi−1
qn

qj − qj−i
.

Taking the limit as n→ ∞, the expression becomes

∞∏
i=j+1

(
1− 1

qi

)
·

j∏
i=1

1

qj − qj−i
=

1

γj(q)
·

∞∏
i=j+1

(
1− 1

qi

)
.
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6. A Closer Look at the q-Binomial Coefficients.

In this section we prove a two term recurrence relation for the Galois numbers. We also

give a well known derivation of the q-analog of Pascal’s Identity.

Let Gn(q) be the collection of all subspaces of Fn
q . We can think of this collection as a

q-analog of the power set of an n-set. Let Gn(q) denote the total number of subspaces of

F
n
q . In other words, Gn(q) = |Gn(q)|. The numbers Gn(q) are called the Galois numbers.

The numbers Gn(2) are the row sums of Table 5. The first few terms of this sequence

(A006116), for n ≥ 0, are given in Table 7.

1, 2, 5, 16, 67, 374, 2825, 29212, 417199, 8283458, 229755605 . . .

Table 7: Galois numbers, Gn(2), for n ≥ 0. A006116

Let v be a nonzero vector in F
n
q . We claim that the number of appearances of the vector

v over the collection Gn(q) is Gn−1(q). In other words, the multiplicity of the vector v in

the multiset �U∈Gn(q)U is equal toGn−1(q), where �U∈Gn(q)U is the disjoint union of Gn(q).

For example, if q = 2 and n = 2 and

v =

⎛
⎜⎝ 0

1

⎞
⎟⎠ ,

then Gn−1(q) = 2 and Gn(q) is the collection

⎧⎪⎨
⎪⎩

⎧⎪⎨
⎪⎩

⎛
⎜⎝ 0

0

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

⎧⎪⎨
⎪⎩

⎛
⎜⎝ 0

0

⎞
⎟⎠ ,

⎛
⎜⎝ 0

1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

⎧⎪⎨
⎪⎩

⎛
⎜⎝ 0

0

⎞
⎟⎠ ,

⎛
⎜⎝ 1

0

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

⎧⎪⎨
⎪⎩

⎛
⎜⎝ 0

0

⎞
⎟⎠ ,

⎛
⎜⎝ 1

1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

⎧⎪⎨
⎪⎩

⎛
⎜⎝ 0

0

⎞
⎟⎠ ,

⎛
⎜⎝ 0

1

⎞
⎟⎠ ,

⎛
⎜⎝ 1

0

⎞
⎟⎠ ,

⎛
⎜⎝ 1

1

⎞
⎟⎠
⎫⎪⎬
⎪⎭

⎫⎪⎬
⎪⎭

We see that the vector v appears exactly two times in this collection. Note that the
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claim is analogous with the number of times a given element occurs in the power set of

{1, 2, ..., n} which is indeed the total number of subsets in the collection of all subsets of

{1, 2, . . . , n − 1}. The claim follows from the proof of Theorem 6.3, below, but first we

give another result that also has an analogy in enumeration of subsets.

We want to count the number of k-dimensional subspaces of F
n
q that contain any j

linearly independent vectors for j = 1, . . . , k. Equivalently, we will count the number of

k-dimensional subspaces that contain the subspace W = span(v1, . . . , vj), where v1, . . . , vj

is a linearly independent list of vectors in F
n
q .

Definition 6.1. Suppose U is a subspace of V . Then the quotient space V/U is the set

{v + U : v ∈ V } where v + U = {v + u : u ∈ U}.

It is straightforward to show that V/U is a vector space where addition and scalar mul-

tiplication are defined by

(v + U) + (w + U) = ((v + w) + U),

λ(v + U) = (λv + U).

for all v, w ∈ V and λ ∈ F. Also note that dimV/U = dimV − dimU .

Let W be a subspace of Fn
q . Consider the quotient space F

n
q /W . We can view this

space as a condensed version of the vector space F
n
q where each subspace has decreased in

dimension by j= dim W . In F
n
q /W , the subspace W is playing the role of the zero vector.

So in a certain sense, W is in every subspace of F
n
q /W . So our desired number is the

number of (k − j)-dimensional subspaces of Fn
q /W which (since dimF

n
q /W = (n− j)) is(

n−j
k−j

)
q
.



25

We make these notions mathematically precise in the following theorem which is the

Correspondence Theorem applied to vector spaces C.f. [10] and [17]. This proof is essen-

tially that given in [17] and [1].

Theorem 6.2 ([1]). Let V be a finite dimensional vector space over a field F. Let W be a

subspace of V . Then there is a 1-1 correspondence between the subspaces of V containing

W and the subspaces of V/W .

Proof. Let U be a subspace of V that contains W . Let π : V → V/W by π(v) = v + U

. be the quotient map. Since 0 ∈ U, 0 +W ∈ π(U). Assume x +W, y +W ∈ π(U).

Then x, y ∈ U . So x + y ∈ U . So (x + y) +W ∈ π(U). Let λ ∈ F. Then λx ∈ U . Now

λx+W := λ(x+W ). So λ(x+W ) ∈ π(U). Hence, π(U) is a subspace of V/W .

So we may define the function f : {subspaces of V that contain W} → { subspaces of

V/W} by f(U) = π(U) for all U ∈ {subspaces of V that contain W} .

Now consider g : {subspaces of V/W} → {subspaces of V that containW} by g(U) =

π−1(U), where U ∈ V/W and π−1(U) is the preimage of U under the quotient map π. In

other words, π−1(U) = {v ∈ V : π(v) ∈ U}. We will show that f and g are inverses, but

first we need to show that g is a well defined function.

Let a+W = b+W ∈ U . Then

π−1(a+W ) = {v ∈ V : v − a ∈ W}

= {v ∈ V : v +W = a+W}

= {v ∈ V : v +W = b+W}

= {v ∈ V : v − b ∈ W}

= π−1(b+W ).

Now, it is straightforward to show that π−1(U) is a subspace of V. To see that π−1(U)
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contains W we realize that 0+W ∈ U . Then π−1(0 +W ) = {v ∈ V : v− 0 ∈ W} = W .

Now we will show that f and g are inverses. First we show f ◦ g(U) = U . Let a +W

be arbitrary in U . Now g(a + W ) = {v ∈ V : v − a ∈ W}. Let v ∈ V be such that

v− a ∈ W . Then π(v) = v+W = a+W . So f maps the subspace {v ∈ V : v− a ∈ W}
to a+W . So f ◦ g(U) = U .

Also, g ◦ f(U) = g(π(U)) = π−1(π(U)) ⊆ U . Now let v ∈ π−1(π(U)) := {v ∈ V :

π(v) ∈ π(U)}. So π(v) = v +W ∈ π(U) implies that v ∈ U . So g ◦ f(U) = U .

Theorem 6.3 ([6]). The q-binomial coefficients obey the following recurrence:
(
n
k

)
q
=

qk
(
n−1
k

)
q
+
(
n−1
k−1

)
q
.

Proof. Let v be some fixed nonzero vector in F
n
q . We will show that the first term on

the right-hand side is the number of k-dimensional subspaces of Fn
q that do not contain v

then we will show that the second term on right-hand side is the number of subspaces that

do contain v. Following a counting argument very similar to that made in section 3, the

number of k-tuples of vectors in F
n
q that avoid the span of v is (qn−q)(qn−q2) . . . (qn−qk).

So the number of k-dimensional subspaces of Fn
q that do not contain v is

(qn − q)(qn − q2) . . . (qn − qk)

(qk − 1)(qk − q) . . . (qk − qk−1)
=
qk(qn−1 − 1)(qn−1 − q) . . . (qn−1 − qk−1)

(qk − 1)(qk − q) . . . (qk − qk−1)

= qk
(
n− 1

k

)
q

.

Also since dimF
n
q / span(v) = n − 1 = dimF

n−1
q (so that Fn

q / span(v) is isomorphic

to F
n−1
q ) we have by Theorem 6.2 that the number of k−dimensional subspaces of F

n
q

that contain v is equal to the number of (k − 1)-dimensional subspaces of Fn−1
q , which is(

n−1
k−1

)
q
.

Theorem 6.4. The q binomial coefficient is a polynomial of degree k(n− k).
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Proof. The proof is by induction on n.

Basis step: If n = 0 then
(
0
0

)
q

is the constant polynomial 1 of degree 0 = 0(0-0). If

n = 1 then
(
1
0

)
q

is the constant polynomial 1 of degree 0 = 0(1-0). Also,
(
1
1

)
q

is the con-

stant polynomial 1 of degree 0 = 1(1-1). Also, for any n ≥ 0, if k = 0 then
(
n
0

)
q

is the

constant polynomial 1 of degree 0 = 0(n − 0). Also, for any n ≥ 0, if k = n then
(
n
k

)
q

is

the constant polynomial 1 of degree 0 = n(n− n).

Induction step: Let n ≥ 1 and let 1 ≤ k ≤ nAssume that
(
n
k

)
q

is a polynomial of degree

k(n − k) and that
(

n
k−1

)
q

is a polynomial of degree (k − 1)(n − (k − 1)). Then by our

recurrence in Theorem 6.3 ,
(
n+1
k

)
q

is the sum of the two polynomials
(

n
k−1

)
q

and qk
(
n
k

)
q
.

By our induction hypothesis the former has degree (k−1)(n−(k−1)) = (k−1)(n+1−k)
while the latter has degree k+k(n−k) = k(n+1−k). So the degree of

(
n+1
k

)
q

is k(n+1−k)
as was to be shown.

The above theorem gives a recurrence to generate the q-binomial coefficients. There is

also a recurrence for the Galois numbers, i.e., a recurrence for the total number of subspaces

of Fn
q .

Theorem 6.5. Let Gn(q) be the number of subspaces of Fn
q . Then

Gn+1(q) = 2Gn(q) + (qn − 1)Gn−1(q).

Proof. Let v be a fixed but arbitrary nonzero vector in F
n+1
q . We will show that the number

of subspaces of Fn+1
q that contain v is Gn(q) while the number of subspaces that do not

contain v is Gn(q) + (qn − 1)Gn−1(q).
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By Theorem 6.3 we have that the number of k-dimensional subspaces of F
n+1
q that

contain v is
(

n
k−1

)
q
. So the total number of subspaces of Fn+1

q that contain v is

n+1∑
k=0

(
n

k − 1

)
q

=
n+1∑
k=1

(
n

k − 1

)
q

=
n∑

j=0

(
n

j

)
q

= Gn(q).

Also from Theorem 6.3, we have that the number of k-dimensional subspaces of Fn+1
q

that do not contain v is qk
(
n
k

)
q
. So the total number of subspaces of F

n+1
q that do not

contain v is
∑n

k=0 q
k
(
n
k

)
q
. Since each k-dimensional subspace of Fn

q contains qk vectors

then
∑n

k=0 q
k
(
n
k

)
q

is also the total number of vectors counted with multiplicity over each

subspace in the collection Gn(q). In other words,
∑n

k=0 q
k
(
n
k

)
q
= | �U∈Gn(q) U | where

�U∈Gn(q)U is the disjoint union of the collection Gn(q).

Claim: | �U∈Gn(q) U | = Gn(q) + (qn − 1)Gn−1(q).

The number of subspaces of Fn
q that contain a given nonzero vector is Gn−1(q). There

are qn−1 nonzero vectors in Fq . So the number of nonzero vectors, counted with multiplic-

ity over each subspace in Gn(q), is (qn−1)Gn−1(q) . Now each subspace of Fn
q contains the

zero vector exactly once. So the zero vector appears Gn(q) times in the collection Gn(q).

Then we have that the total number of vectors over Gn(q), counted with multiplicity over

each subspace is, Gn(q) + (qn − 1)Gn−1(q).

By our claim we have

n∑
k=0

qk
(
n

k

)
q

= Gn(q) + (qn − 1)Gn−1(q).

So
∑n

k=0 q
k
(
n
k

)
q

is the number of subspaces of Fn+1
q that do not contain v and Gn(q) is the

number of subspaces of Fn+1
q that contain v. Therefore,

Gn+1(q) = 2Gn(q) + (qn − 1)Gn−1(q).
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7. A Group Theoretical Derivation of the q-Binomial Coefficients

Now we want to count the number of k-dimensional subspaces of Fn
q in an entirely different

manner. In this section we will show how some general results from group theory may be

applied to this particular counting problem. The group theoretical theorems and proofs in

this section are modeled from those given in [10],[17],[11].

Let Aut(V ) denote the subset of L(V ) containing all of the invertible linear operators

on vector space V . In other words, Aut(V ) is the set of linear maps from V to V that

have an inverse. We can think of Aut(V ) as being the group of units in the ring of L(V )

equipped with the operations of vector addition and function composition.

Let G = Aut(V ) act on the set X of k-dimensional subspaces of V . Let x be some

fixed but arbitrary subspace in X . Let G.x be the image of x under this action. In other

words,G.x = {g.x : g ∈ G}. The setG.x is called the orbit of x under the action ofG. The

stabilizer of x, denoted by Gx, is the subgroup of G defined by Gx = {g ∈ G : g.x = x}.

Let G/Gx denote the collection of all left cosets of the subgroup Gx of G. In the following

theorem (which is essentially the orbit stabilizer theorem) we show that the number of left

cosets in G/Gx is equal to the image size of G.x.

Theorem 7.1 ([10]). Let φ : G/Gx → G.x by gGx �→ g.x . Then φ is a bijection.

Proof. Certainly φ is surjective since φ maps gGx to g.x for all g ∈ G.

Let gGx, hGx ∈ G/Gx. Assume g.x = h.x. Then left multiplying by h−1 we have

(h−1g).x = x. So h−1g ∈ Gx. Left multiplying by h we have g ∈ hGx. Since h ∈ hGx we

have gGx = hGx.

So we have |G/Gx| = |G.x|. In the next theorem (which is the crucial argument in
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LaGrange’s Theorem) we show that all the left cosets of Gx have the same cardinality so

that |G/Gx| = |G|
|Gx| .

Theorem 7.2 ([10]). Let H be a subgroup of group G. Every left coset of H in G has the

same cardinality.

Proof. Let aH, bH be left cosets of H in group G. Define f : aH → bH by x �→ ba−1x.

Then f is injective: Let x, y ∈ aH . Assume ba−1x = ba−1y. Then successively left

multiplying by b−1 and then a we have x = y. Also f is surjective: Let z ∈ bH . Then there

is an h in H such that bh = z. So f(ah) = ba−1ah = bh = z.

The following theorem will show that |G.x| is the number of k-dimensional subspaces

of V by showing that that the action of G = Aut(V ) on X , the set of k-dimensional

subspaces of V , is transitive. In other words, for all x1, x2 ∈ X , there is an invertible linear

operator g ∈ G such that g(x1) = x2. So that every subspace in X is in G.x = {g.x : g ∈
G}.

Theorem 7.3. Let V be an n-dimensional vector space over Fq. LetU,W be k-dimensional

subspaces of V . Then there exists an invertible operator T in Aut(V ) such that T (U) = W .

Proof. Fix a basis u1, . . . , uk of U . Extend it to a basis u1, . . . uk, . . . un of V . Fix a basis

w1, . . . , wk of W . Extend it to a basis w1, . . . wk, . . . wn of V . Define T : V → V by

Tuj = wj for all j = 1, . . . , n. By Lemma 5.2, T is injective. Also, T is surjective since

w1, . . . wn spans V . So T is an invertible linear operator in Aut(V ).

Now consider T |U . By the same argument given above T (U) = W .

So we have
|G|
|Gx| = |G.x| = (

n
k

)
q

where x is any given k-dimensional subspace of Fn
q .
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We will show

|G|
|Gx| =

γn
γkγn−kqk(n−k)

.

The numerator, |G| = γn.

To find |Gx| we will count the number of of invertible operators T on F
n
q such that

T (U) = U where U is a k-dimensional subspace of Fn
q . Fix a basis u1, . . . , uk of U and

extend it to u1, . . . , uk, vk+1, . . . , vn a basis of Fn
q . Now T (U) = U if and only if T |U is an

automorphism of U . There are γk ways to map U bijectively to itself. The basis vectors,

vk+1, . . . , vn must be mapped to a linearly independent list of vectors in V − U . There are

(qn − qk)(qn − qk+1) · · · (qn − qn−1)

= qk(n−k)(qn−k − 1)(qn−k − q) · · · (qn−k − qn−k−1)

= γn−kq
k(n−k)

such lists of vectors. So |Gx| = γkγn−kq
k(n−k). So we have

(
n

k

)
q

=
γn

γkγn−kqk(n−k)
.

8. A Derivaton of the q-Binomial Coefficients via Generating

Functions

In this section we use some ideas given in [9] ,[22],[23],[13] in deriving the q-binomial

coefficients by considering them as ordinary generating functions. We show that the co-

efficient of qr in the expansion of
(
n
k

)
q
, denoted [[qr]]

(
n
k

)
q
, upon multiplication by qr, is

the number of classes of row equivalent n × n matrices over Fq of rank k that have ex-

actly r entries not constrained to be 0 or 1. Our argument proceeds as follows: To each
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k-dimensional subspace of Fn
q we associate exactly one matrix A in F

n,n in rref of rank k.

Taking A to be a representative of its equivalence class in the row equivalence relation on

F
n,n we associate A to exactly one integer partition into at most k parts with each part at

most n− k. We then show that the o.g.f. counting such partitions is precisely
(
n
k

)
q
.

Theorem 8.1. Let Gn(q) be the set of all subspaces of Fn
q . Let ∼R∗ be the equivalence

relation on F
n,n defined by A ∼R∗ B if and only if rref(A) = rref(B) for all A,B ∈ F

n,n.

Let C be the collection of all equivalence classes of ∼R∗ on F
n
q . That is, let C = {[A] : A ∈

F
n,n} where [A] = {B ∈ F

n,n : A ∼R∗ B}. Then there is a 1-1 correspondence between

Gn(q) and C .

Proof. Define φ : Gn(q) → C in the following manner. Let U ∈ Gn(q) be a k-dimensional

subspace of Fn
q for some k = 0, 1, . . . , n. Fix a basis u1, . . . , uk of U . Form a matrix A

in F
n,n in which the first k rows of A are the n-tuples u1, . . . , uk. Complete the matrix by

letting the remaining n − k rows be all zeros. Let φ(U) = [A]. Then φ is a well defined

bijection from Gn(q) → C.

To show that φ is well-defined, suppose φ(U) = [A] and φ(U) = [B] for some subspace

U ∈ Gn(q) and [A], [B] ∈ C. Since every matrix is row equivalent to one and only one

reduced echelon matrix then [A] = [B].

To show that φ is injective, let U, V ∈ Gn(q). Assume φ(U) = φ(V ). Since row

reduction does not change the row space of a matrix then the equation φ(U) = φ(V )

implies that the span of a basis of U is equal to the span of a basis of V . So U = V .

To show that φ is surjective, let [A] ∈ C. Let U ∈ G(q) be such that U is equal to the

row span of A. Then φ(U) = [A].

The theorem above establishes that there is exactly one matrix of rank k in rref for each

k-dimensional subspace of Fn
q . Now we proceed to show that each class of row equivalent
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matrices in the collection C corresponds to an integer partition of n into at most k parts

with each part at most n− k.

Theorem 8.2. The number of integer partitions of r into at most k parts with each part at

most (n − k) is equal to the number of binary words of length n with exactly k 1’s having

exactly r inversions.

Proof. Let λ1 + λ2 + · · ·+ λj be a partition of r into at most k parts with each part at most

(n− k). In other words, choose j ∈ {0, . . . , k} and λ1, . . . , λj ∈ {1, . . . , n− k} to satisfy

∑j
i=1 λi = r. Form a binary word w on alphabet {0, 1} by starting with a string of 0’s

having length (n− k). For each i = 1, 2, . . . , j counting from the rightmost 0, insert a 1 to

the left of the λith 0. Then, in the case that k > j append (k − j) 1’s to the word. Then

w is a binary word with exactly k 1’s having exactly r inversions. More precisely, for each

i ∈ {1, 2, . . . , j} there are exactly λi 0’s appearing to the right of the i’th 1 in w.

The process is reversible. Form an integer partition π from a binary word with exactly

k 1’s and r inversions so that the ith part is equal to the (positive) number of 0’s to the right

of the ith 1 for each of the k 1’s in the word. If a 1 has no 0’s to the right of it then it is

ignored. In this way π will have at most k parts and each part will be at most n− k.

In the procedure given in the proof above, we may replace each 0 with a column vector

of n 0’s. We may replace each 1 (proceeding in order from left to right) with e1, e2, . . . , ek,

the vectors in the standard basis of Fn
q . We may then replace each 0 appearing to the right

of a 1 in any row but not in a column containing a 1 (pivot column) with an X. The resulting

array corresponds to an n× n matrix over F in rref where the X’s are the field elements in

the matrix not constrained to be 0 or 1.

So we have that each partition of an integer n into at most k parts with each part at

most n−k corresponds to exactly one class of row equivalent matrices in C. The following
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theorem establishes the generating function counting such partitions, hence such matrices,

hence the number of k-dimensional subspaces of Fn
q .

Theorem 8.3. The number of integer partitions into at most k parts with each part at most

l is counted by the generating function

∏k+l
i=1(1− qi)∏k

i=1(1− qi) ·∏l
i=1(1− qi)

.

Proof. The proof is by induction on k + l.

Basis step: When k=0 or l = 0 then the generating function is the constant 1. We will

also give here as a basis case the slightly less trivial case when k = 1 or l = 1. Then the

generating function that counts integer partitions into at most 1 part with each part at most

l is

1 + q + q2 + · · ·+ ql =
1− ql+1

1− q
=

∏1+l
i=1(1− qi)∏1

i=1(1− qi) ·∏l
i=1(1− qi)

.

The same generating function also counts the number of partitions into at most k parts with

each part at most 1.

Induction step: Let k, l ≥ 1. Assume that the statement holds with (k′, l′) in place of

(k, l) for all k′, l′ with k′+ l′ ≤ k+ l. We want to establish the o.g.f. that counts the number

of partitions into at most k + 1 parts with each part at most l + 1. We may classify such

partitions into two types, those that have strictly less that k + 1 parts and those that have

exactly k + 1 parts. By our induction hypothesis, the former case is counted by

∏k+l+1
i=1 (1− qi)∏k

i=1(1− qi) ·∏l+1
i=1(1− qi)

,

the o.g.f. for partitions into at most k parts with each part at most l + 1.

The partitions into exactly k + 1 parts with parts at most l + 1 are formed from a

partition into at most k + 1 parts with parts at most l by adding 1 to each existing part and
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then appending parts of size 1 as needed so that there are exactly k + 1 parts. So by the

multiplication rule for ordinary generating functions [7], the o.g.f. for these partitions is

qk+1

∏k+1+l
i=1 (1− qi)∏k+1

i=1 (1− qi) ·∏l
i=1(1− qi)

.

So we have that the o.g.f. for the number of partitions into at most k + 1 parts with each

part at most l + 1 is

∏k+l+1
i=1 (1− qi)∏k

i=1(1− qi) ·∏l+1
i=1(1− qi)

+ qk+1

∏k+1+l
i=1 (1− qi)∏k+1

i=1 (1− qi) ·∏l
i=1(1− qi)

,

which simplifies to ∏k+l+2
i=1 (1− qi)∏k+1

i=1 (1− qi) ·∏l+1
i=1(1− qi)

.

Making the substitution l = n− k into the expression we have

∏k+l
i=1(1− qi)∏k

i=1(1− qi) ·∏l
i=1(1− qi)

,

∏n
i=1(1− qi)∏k

i=1(1− qi) ·∏n−k
i=1 (1− qi)

=
(qn − 1)(qn−1 − 1) · · · (q − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1) · (qn−k − 1)(qn−k−1 − 1) · · · (q − 1)

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

=
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)

=

(
n

k

)
q

.
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So we have that
(
n
k

)
q

is the o.g.f. for the number of partitions into at most k parts with

each part at most n − k. We will use this fact to prove the next two theorems sometimes

called the q-Binomial Theorem and the q-Binomial Series. These proofs are based off ideas

expressed in [15] and [6]

Theorem 8.4 ([6][15]). For all n ≥ 0,

n∏
j=1

(1 + tqj) =
n∑

k=0

tkq
k(k+1)

2

(
n

k

)
q

.

Proof. The left-hand side is the bivariate generating function counting the number of inte-

ger partitions into distinct parts with each part at most n. From each such partition having

k parts we may subtract 1 from the smallest part, subtract 2 from the second smallest part,

and in general subtract i from the i-th smallest part. In this way we obtain a partition into

at most k parts with each part at most n− k. These are precisely the partitions counted on

the left-hand side.

Theorem 8.5 ([6][15]). For all n ≥ 1,

n∏
j=1

1

1− tqj
=

∞∑
k=0

tkqk
(
n+ k − 1

k

)
q

.

Proof. The left-hand side is the bivariate generating function counting the integer partitions

into parts at most n. From each such partition having k parts we may subtract 1 from each

part to obtain a partition into at most k parts with each part at most n − 1. These are

precisely the partitions counted on the right-hand side.

We have shown that [[qr]]
(
n
k

)
q

is the number of binary words on alphabet {0, 1} with

exactly k 1’s and exactly r inversions. We use this interpretation to prove yet another

q-binomial identity.
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Theorem 8.6 ([6][15]). For all n ≥ 0,

(
2n

n

)
q

=
n∑

j=0

qj
2

(
n

j

)2

q

.

Proof. The coefficients of qr in the expansion of the left-hand side give the number of

binary words on {0, 1} with exactly n 1’s and exactly r inversions. We will show that the

right-hand side counts the same words. Suppose there are j 1’s appearing amongst the

first n letters of the word. Then
(
n
j

)
q

counts the number of inversions amongst the first n

letters. Since there are j 1’s amongst the first n letters then there are (n − j) 1’s in the

second n letters of the word. So
(

n
n−j

)
q

counts the inversions amongst the second half of

the word. But we have ignored the inversion pairs with an element in both the first and

second half of the word. Since there are j 1’s in the first half there must be j 0’s in the

second half of the word. So there are j2 such inversions. Summing over all possible j we

have
∑n

j=0 q
j2
(
n
j

)
q

(
n

n−j

)
q
=

∑n
j=0 q

j2
(
n
j

)2
q
.

If we sum the Gaussian polynomials
(
n
k

)
q

over all possible values 0 ≤ k ≤ n, then the

coefficient of qr is the total number of binary words having exactly k inversions. These

coefficients are given below. A083906.
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1

2

3 1

4 2 2

5 3 4 3 1

6 4 6 6 6 2 2

7 5 8 9 11 9 7 4 3 1

8 6 10 12 16 16 18 12 12 8 6 2 2

9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1

Table 8: Coefficients of
∑n

k=0

(
n
k

)
q
, Number of Binary Words Having k Inversions, n ≥

0, 0 ≤ k ≤ max{k(n− k) : 0 ≤ k ≤ n}. A083906

If we take the derivative of
∑n

k=0

(
n
k

)
q

and evaluate at q = 1, then we have the total

number of inversions over all binary words of length n. A001788

0, 0, 1, 6, 24, 80, 240, 672, 1792, 4608, 11520, 28160, 67584, . . .

Table 9: The total number of inversions over all binary words of length n. A001788

9. The Rogers-Szego polynomials

In this section we exposit some of the ideas given in [21] regarding the Rogers-Szego poly-

nomials.

For n ≥ 0, let Hn(z) =
∑n

k=0

(
n
k

)
q
zk. The functions in this sequence are called

Rogers-Szego polynomials. We can think of the polynomials Hn(z) as being q-analogs of

the polynomial generating functions Bn(z) = (1 + z)n that count the number of subsets of

an n-set. Just as the polynomials Bn(z) obey the recurrence Bn(z) = (1 + z)Bn−1(z), we
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will see that the Rogers-Szego polynomials are such that

Hn+1(z) = (1 + z)Hn(z) + z(qn − 1)Hn−1(z).

The equality follows directly from Theorem 9.2 (yet another recurrence relation on the

q-binomial coefficients). We first give a lemma which is essentially that given in [21].

Lemma 9.1 ([21]). Let V be an (n + 1)-dimensional vector space over Fq with basis

v1, . . . , vn+1. Let 1 ≤ k ≤ n + 1. Every k-dimensional subspace W of V is such that

W = W ′ ⊕ span(v), for some (k− 1)-dimensional subspace W’ of V ′ = span(v1, . . . , vn)

and some v ∈ V .

Proof. Let W be an arbitrary k-dimensional subspace of V . Suppose first that W is a sub-

space of V ′. Let w1, . . . , wk be a basis of W . Let v = w1 and let W ′ = span(w2, . . . , wk).

Then W = W ′ ⊕ span(v).

Now suppose that W is not a subspace of V ′. Then there is some v ∈ W such that

v 	∈ V ′. Also dim(W + V ′) ≥ dimV ′ + 1 = n+ 1, and since dim(W + V ′) is not greater

than n+1, dim(W +V ′) = n+1. Now dim(W +V ′) = dimW +dimV ′−dim(W ∩V ′).

So dim(W ∩ V ′) = k − 1. Extend v to a basis v, w1, . . . , wk−1 of span(v) ⊕ (W ∩ V ′).

Then v, w1, . . . , wk−1 is a length k list of linearly independent vectors in W . So W =

span(v)⊕ (W ∩ V ′).

Theorem 9.2. The q-binomial coefficients obey the recurrence

(
n+ 1

k

)
q

=

(
n

k

)
q

+

(
n

k − 1

)
q

+ (qn − 1)

(
n− 1

k − 1

)
q

.
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Proof. By Theorem 6.3, we have

(
n+ 1

k

)
q

−
(

n

k − 1

)
q

−
(
n

k

)
q

= qk
(
n

k

)
q

−
(
n

k

)
q

= (qk − 1)

(
n

k

)
q

= (qk − 1)
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)

= (qn − 1)
(qn − q) · · · (qn − qk−1)

(qk − q) · · · (qk − qk−1)

= (qn − 1)

(
n− 1

k − 1

)
q

.

Let V and V ′ be as above in our lemma. By Theorem 6.3, the first term
(
n
k

)
q

on the

right-hand side of the recurrence
(
n+1
k

)
q
=

(
n
k

)
q
+

(
n

k−1

)
q
+ (qn − 1)

(
n−1
k−1

)
q

is the number

of k-dimensional subspaces W of V such that W is a subspace of V ′. Likewise, the second

term
(

n
k−1

)
q

is the number of k-dimensional subspaces W of V such that W is not a sub-

space of V ′ and vn+1 ∈ W . The third term is then the number of k-dimensional subspaces

W of V such that W is not a subspace of V ′ and vn+1 	∈ W .

By the recurrence in Theorem 9.2 we have

Hn+1(z)
n+1∑
k=0

zk =
n+1∑
k=0

(
n

k

)
zk +

n+1∑
k=0

(
n

k − 1

)
zk + (qn − 1)

n+1∑
k=0

(
n− 1

k − 1

)
zk

= Hn(z) + zHn(z) + (qn − 1)zHn−1(z)

= (1 + z)Hn(z) + z(qn − 1)Hn−1(z)

Upon substituting z = 1 into these polynomials we have Hn(1) =
∑n

k=0

(
n
k

)
q
, which

gives the Galois numbers. Since the number of vectors in a k-dimensional subspace of Fn
q
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is qk, then substituting z = q we have Hn(q) =
∑n

k=0

(
n
k

)
q
qk, which gives the total number

of vectors counted with multiplicity over all subspaces of Fn
q . The first few terms of the

sequence (A182176) for the case q = 2 and n ≥ 0 are given in Table 10

1, 3, 11, 51, 307, 2451, 26387, 387987, 7866259, 221472147, 8703733139 . . ..

Table 10: The size of the disjoint union, �U∈Gn(2)U . A182176

Substituting z = −1 into the functional recurrence,

Hn+1(z) = (1 + z)Hn(z) + z(qn − 1)Hn−1(z),

gives Hn(−1) = (1 − qn)Hn−1(−1). Since H0(−1) = 1 and H1(−1) = 0, we have

Hn(−1) = (1 − qn−1)(1 − qn−3) · · · (1 − q) for even n and Hn(−1) = 0 for odd n. In

particular for the case q = 2 we have the alternating sums of the Gaussian coefficients, that

is, we have sequence A290974 defined by an =
∑n

k=0(−1)k
(
n
k

)
2
. Note that the analogous

alternating sums in Pascal’s triangle are always 0.

1, 0,−1, 0, 7, 0,−217, 0, 27559, 0,−14082649, 0, 28827182503, 0,−236123451882073, . . .

Table 11: Hn(−1) =
∑n

k=0

(
n
k

)
2
(−1)k for n ≥ 0. A290974

10. Flags in Finite Vector Spaces

In this section we count the number of complete flags by two different methods. We loosely

follow similar arguments given in [16] and [21].

Definition 10.1. A flag of length m is a sequence of subspaces

V = V0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ Vm−1 ⊃ Vm = {0}
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of a vector space V , where each subspace in the sequence properly contains the subse-

quent subspace.

Let dimV = n. Let nk = dimVk − dimVk+1 for k = 0, 1, . . .m − 1. Then n =

n0 + n1 + · · · + nm−1. We will call (n0, n1, . . . , nm − 1) the signature of our flag. The

dimension of V1 is n−n0 so there are
(

n
n−n0

)
q

choices for V1. Likewise there are
(

n−n0

n−n0−n1

)
q

choices for V2. Continuing in this fashion we have that the number of flags of length m

with signature (n0, n1, . . . , nm − 1) is

(
n

n− n0

)
q

(
n− n0

n− n0 − n1

)
q

· · ·
(

n− n0 − · · ·nm−3

n− n0 − n1 − · · ·nm−2

)
q

(
n− n0 − · · ·nm−2

n− n0 − n1 − nm−1

)
q

.

We note that the last factor is equal to 1 and represents the number of ways to choose

a 0 dimensional subspace of Vm−1. Since the q-binomial coefficients are such that
(
n
j

)
q
=(

n
n−j

)
q

for j ∈ {1, . . . , n}, the above expression can be simplified to

(
n

n0

)
q

(
n− n0

n1

)
q

· · ·
(
n− n0 − · · ·nm−3

nm−2

)
q

(
n− n0 − · · ·nm−2

nm−1

)
q

.

Then since
(
n
k

)
q
= [n]q !

[n−k]q ![k]q !
we have that the number of flags of an n-dimensional vec-

tor space over Fq with signature (n0, n1, . . . , nm − 1) is
[n]q !

[n0]q !,[n1]q !,...,[nm−1]q !
. This quantity

is called the q-multinomial coefficient.

A complete flag of an n dimensional vector space is a flag of length n. From the above,

we see that the number of complete flags is [n]q!. For n ≥ 0, q = 2 we have A005329, as

given in Table 12.

1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075, . . .

Table 12: Number of complete flags in F
n
2 , for n ≥ 0. A005329

Alternatively, we can arrive at the same result by considering the group action on a set

where the group is the group Aut(Fq) of vector space automorphisms and the set is the set
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F of all complete flags of Fn
q . Each operator T in Aut(Fq) will act on a flag in F in the

expected way, that is, by mapping its subspaces to T (U) for each U in the flag. The next

two theorems will allow us to determine the order of the stabilizer subgroup of an arbitrary

flag in X . The second proof is essentially that given in [5].

Theorem 10.2. The group Aut(Fq) acts transitively on the set F of all complete flags of

F
n
q .

Proof. Let A be an arbitrary complete flag {0} = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un = F
n
q in F .

Let B be an arbitrary complete flag {0} = W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wn = F
n
q in F . Fix

basis u1, . . . un and w1, . . . wn of Fn
q such that for each j ∈ {1, . . . , n}, u1, . . . uj is a basis

of Uj and w1, . . . wj is a basis of Wj . Let T ∈ Aut(Fq) be such that Tuj = wj . for each

j ∈ {1, . . . , n} Then T (Uj) = Wj for each j ∈ {1, . . . , n}. So T.A = B. So that Aut(Fq)

acts transitively on the set F .

Theorem 10.3 ([5]). Let T ∈ L(Fn
q ) and let v1, . . . , vn be a basis of Fn

q . Then the following

are equivalent.

(a) The matrix of T with respect to v1, . . . , vn is upper triangular.

(b) Tvj ∈ span(v1, . . . , vj) for each j = 1, . . . , n.

(c) span(v1, . . . , vn) is invariant under T for each j = 1, . . . , n.

Proof. The equivalence of (a) and (b) are obvious from the definition of an upper triangular

matrix and its associated linear operator. Also (c) clearly implies (b). We will show that

(b) implies (c).
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Assume Tvj ∈ span(v1, . . . , vj) for each j ∈ {1, . . . , n}. Let j be fixed but arbitrary.

Let v ∈ span (v1, . . . , vj). Then v = a1v1 + · · · + ajvj for some scalars a1, . . . , aj ∈ F.

Then Tv = a1Tv1 + · · · + ajTvj . Since Tvj ∈ span(v1, . . . , vj) for each j then each term

is in span(v1, . . . , vj). So Tv ∈ span(v1, . . . , vj). So span(v1, . . . , vj) is invariant under T .

From the above proof we see that the matrices in GLn(Fq) that act trivially on a com-

plete flag are precisely the upper triangular matrices. So the order of the stabilizer subgroup

of a particular flag is the number of n× n invertible upper triangular matrices with respect

to an appropriate choice of basis. For each of the n entries along the main diagonal we may

choose any of the (q − 1) nonzero field elements. For each of the
(
n
2

)
entries above the

diagonal we have q choices. So there are (q − 1)nq(
n
2) upper triangular matrices over Fn

q .

So the number of complete flags is

γn

(q − 1)nq(
n
2)

.

11. The q-analog of the Exponential Function

In this section we define the q-exponential function eq(z) . We view eq(z) as a generat-

ing function suceptible to the various operations ( e.g. multiplication, taking derivatives,

functional compositions ) that we would apply to other functions to obtain counting results

via exponential generating functions. We give some examples where operations applied to

eq(z) give enumeration results concerning subspaces analogous to the results concerning

subsets obtained by applying the same operations on the exponential function exp(z).
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Definition 11.1. The q-exponential function is defined eq(z) =
∑∞

n=0
zn

[n]q !
where [n]q is

called the q-number and is defined [n]q = 1 + q + q2 + · · · + qn−1 = 1−qn

1−q
for n ≥ 1 and

[0]q = 1.

Definition 11.2. Let (an)
∞
n=0 be a sequence. The q-exponential generating function (q-

e.g.f.) of the sequence (an)
∞
n=0 is the formal power series A(z) =

∑∞
n=0

an
[n]q !

zn.

Definition 11.3. Let (fn,k) be an array of numbers. The bivariate q-exponential generating

function of the array (fn,k) is the formal power series F (z, u) =
∑

n,k fn,ku
k zn

[n]q !
.

Since we have
(
n
k

)
q
= [n]q !

[n−k]q ![k]q !

eq(z) · eq(z)

=
∞∑
n=0

n∑
k=0

zn

[k]q![n− k]q!

=
∞∑
n=0

n∑
k=0

(
n
k

)
q
zn

[n]q!

=
∞∑
n=0

1

[n]q!
Gn(q)z

n

So the coefficient of zn in the expansion of eq(z)
2 upon multiplication by [n]q! isGn(q),

the total number of subspaces of Fn
q . So eq(z)

2 is the q-exponential generating function for

the sequence of Galois numbers. We note that in particular zk

[k]q !
eq(z) is the q-e.g.f. for

the number of k-dimensional subspaces of Fn
q . Also, the bivariate q-exponential generating

function for the number of k-dimensional subspaces of Fn
q is eq(uz) ·eq(z). So that eq(uz) ·

eq(z) generates Table 5 in section 3.

Let coshq(z) =
∑∞

n=0
z2n

[2n]q !
. Then the q-e.g.f. for the sequence counting the number of

subspaces of even dimension over Fn
q is coshq(z) · eq(z). For q = 2 and n ≥ 0 the sequence
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is A289540

1, 1, 2, 8, 37, 187, 1304, 14606, 222379, 4141729, 107836478 . . .

Table 13: Number of subspaces in F
n
2 that have even dimension, for n ≥ 0. A289540

We may similarly define sinhq(z) =
∑∞

n=0
z2n+1

[2n+1]q !
. Then the q-e.g.f. counting the

subspaces of odd dimension is sinhq(z) · eq(z) . So we have the identity eq(z) = sinhq(z) +

coshq(z).

The q-e.g.f. for the sequence of alternating sums of the Gaussian coefficients is eq(−z) ·
eq(z). So that eq(−z)·eq(z) generates Table 11 in section 9. We note that eq(−z)·eq(z) 	= 1.

Choose a subspace U of Fn
q then choose a subspaceW of U . The q-e.g.f. for the number

of ways to perform this task is eq(z)
3. The number of choices in which W has dimension

m = 0, 1, . . . , n is
∑n

k=0

(
n
k

)
q

(
k
m

)
q

and is given by eq(uz)eq(z)
2. These numbers for the

case q=2 are given in the table below.

1

2 1

5 6 1

16 35 14 1

67 240 175 30 1

374 2077 2480 775 62 1

Table 14: Number of ways to choose a k-dimensional subspace of a subspace of Fn
2 , for

0 ≤ k ≤ n, n ≥ 0

We note that the column corresponding to m = 0 is Gn(2) and the column m = 1 is the

number of nonzero vectors over Gn(2) and is equal to (2n−1)Gn−1(2) per our results from
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Theorem 4.2 . It is also important to realize that the number of nonzero vectors corresponds

to the number of 1-dimensional subspaces only for the case when q = 2. For example the

table below gives the number of ways to choose a subspace U of Fn
3 and then choose a

subspace W of U having dimension m for 0 ≤ m ≤ n. The column corresponding to

m = 1 is NOT the number of nonzero vectors over Gn(3).

1

2 1

6 8 1

28 78 26 1

212 1120 780 80 1

2664 25652 33880 7260 242 1

Table 15: Number of ways to choose a k-dimensional subspace of a subspace of Fn
3 , for

0 ≤ k ≤ n, n ≥ 0

The q-multinomial coefficient was shown in Section 8 to be the number of flags of an n-

dimensional vector space over Fq. So the q-e.g.f. for the number of complete flags is 1
1−z

.

The q-exponential generating function counting the number of flags in F
n
q of all lengths

is then 1
1−(eq(z)−1))

. The analogy with ordered set partitions is clear. This is sequence

A289545.

1, 1, 4, 36, 696, 27808, 2257888, 369572160, 121459776768, 79991977040128, . . .

Table 16: Number of flags in F
n
q for n ≥ 0. A289545

We classify these flags by their length in the following table given by 1
1−u(eq(z)−1))

. This

is sequence A289946.
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1

0 1

0 1 3

0 1 14 21

0 1 65 315 315

0 1 372 4650 13020 9765

0 1 2823 87234 527310 1025325 615195

0 1 29210 2291715 27448764 105413175 156259530 78129765

Table 17: Number of flags of length m in F
n
q for 0 ≤ m ≤ n, n ≥ 0. A289946

We note that the main diagonal is the q-factorial numbers counting complete flags and

that the column for flags of length two is Gn(q)− 2.

We may neglect the restrictions in our definition of a flag that the initial subspace of

the sequence be the zero subspace and that the final subspace of the sequence be the entire

space. We will call such sequences, chains of subspaces. A chain is then a path in the graph

of the partial order (by subspace inclusion) of the subspaces of a finite dimensional vector

space. The path may have length from 0ton, the dimension of the vector space. Note that

there are Gn(q) chains of length zero in F
n
q . The total number of chains of subspaces is

counted by
eq(z)2

1−(eq(z)−1))
. This is sequence A293844.

1, 3, 15, 143, 2783, 111231, 9031551, 1478288639, 485839107071

Table 18: Number of chains in F
n
q for n ≥ 0. A293844

The number of chains in F
n
q of length k, 0 ≤ k ≤ n is counted by the bivariate function

eq(z)2

1−u(eq(z)−1))
. This is sequence A293845.
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1

2 1

5 7 3

16 50 56 21

67 446 1010 945 315

374 5395 22692 40455 32550 9765

Table 19: Number of chains of length k in F
n
q for 0 ≤ k ≤ n, n ≥ 0. A293845

12. Direct Sum Decompositions

In this section we follow [16] and [8] to develop the q-analog of the Bell and Stirling set

partition numbers. We will count the number of direct sum decompositions (DSD’s) of Fn
q

and classify them in various manners.

Definition 12.1. A direct sum decomposition (splitting) of Fn
q into m subspaces is a set of

nonzero subspaces {Ui}i=1,...,m such that each vector v in F
n
q has a unique representation

v = u1 + . . .+ um where ui ∈ Ui, ∀i ∈ {1, . . . ,m}.

We let
{
n
k

}
q

denote the number of DSD’s of an n dimensional vector space over Fq into

exactly k subspaces. We will call two subspaces of Fn
q disjoint if their intersection is the

zero subspace.

Let n1 + n2 + · · · + nm = n (where ni is a positive integer ∀i ∈ {1, . . . ,m}) be a

composition of n into exactly m parts. We want to first count the number of direct sum

decompositions U1 ⊕ · · · ⊕ Um of Fn
q such that dimUi = ni for all i ∈ {1, . . . ,m}.

There are
(
n
n1

)
q
= (qn−1)(qn−q)···(qn−qn1−1)

(qn1−1)(qn1−q)...(qn1−qn1−1)
= (qn−1)(qn−q)···(qn−qn1−1)

γn1
subspaces of Fn

q
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with dimension n1. The number of dimension n2 subspaces that are disjoint from such a

subspace (equivalently the number of dimension n2 subspaces that avoid the span of such

a subspace) is
(qn−qn1 )(qn−qn1+1)···(qn−qn1+n2−1)

(qn2−1)(qn2−q)···(qn2−qn2−1)
= (qn−qn1 )(qn−qn1+1)···(qn−qn1+n2−1)

γn2
. Contin-

uing in this fashion we have:

(qn−1)···(qn−qn1−1)
γn1

· (qn−qn1 )···(qn−qn1+n2−1)
γn2

· · · (qn−qn1+n2+···+nm−1 )···(qn−qn−1)
γnm

=

γn
γn1γn2 ···γnm

.

What we have counted here could be called ordered decompositions having a particular

signature, i.e., n1, n2, . . . nm. To count the number of decompositions of Fn
q into exactly

m subspaces we need to sum over all possible compositions of n into exactly m parts and

then divide by m!. So we have that there are 1
m!

∑
n1+···+nm=n,ni≥1

γn
γn1 ···γnm

direct sum de-

compositions of Fn
q into exactly m subspaces.

Define γ(z) =
∑∞

r=0
zr

γr
. Then exp(γ(z) − 1) does the work of summing over every

possible integer composition into an arbitrary number (say m) of parts and then dividing

by m!. In other words, γn[[z
n]] exp(γ(z)− 1) is the total number of DSD’s of Fn

q into any

number of subspaces. For the case q = 2, n ≥ 0 this is sequence A270881. We can think

of this sequence as a q-analog of the Bell numbers. The terms for n = 1, . . . 9 are:

1, 1, 4, 57, 2921, 540145, 364558049, 906918346689, 8394259686375297 . . .

Table 20: Number of direct sum decompositions of Fn
2 , for n ≥ 0. A270881

The number of DSD’s of Fn
q into exactly k subspaces is given by the bivariate generating

function, exp(u(γ(z) − 1)). For the case q = 2, n ≥ 1, 1 ≤ k ≤ n, this is sequence

A270880.
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1

1 3

1 28 28

1 400 1680 840

1 10416 168640 277760 83328

1 525792 36053248 159989760 139991040 27998208

Table 21: Number of direct sum decompositions of Fn
2 into exactly k subspaces, for 0 ≤

k ≤ n, n ≥ 0. A270880

The number of DSD’s of Fn
q containing exactly k, 0 ≤ k ≤ n subspaces of dimension 1

is given by exp(γ(z)−1−z+uz). For q = 2, n ≥ 1, 1 ≤ k ≤ n, this is sequence A289544.

1

0 1

1 0 3

1 28 0 28

281 120 1680 0 840

9921 139376 29760 277760 0 83328

16078337 20000736 140491008 19998720 139991040 0 27998208

Table 22: Number of direct sum decompositions of F
n
2 , having exactly k subspaces of

dimension 1 for 0 ≤ k ≤ n, n ≥ 0. A289544

The number of DSD’s of Fn
q into subspaces of dimension at most k, 1 ≤ k ≤ n is

sequence A298561. The generating function for column k is exp(
∑∞

r=0
zr

γr
).
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1

3 4

28 56 57

840 2800 2920 2921

83328 499968 539648 540144 540145

27998208 323534848 363889408 364556032 364558048 364558049

Table 23: number of direct sum decompositions of Fn
q into subspaces of dimension at most

k, 1 ≤ k ≤ n. A298561

We note that the first column (A053601) is the number of unordered basis of Fn
2 , that is

γn
n!

. The main diagonal is Table 20.

The number of DSD’s of Fn
2 with maximal subspace of dimension k, 1 ≤ k ≤ n is the

differences in adjacent columns of the table above. This is sequence A298399.

1

3 1

28 28 1

840 1960 120 1

83328 416640 39680 496 1

27998208 295536640 40354560 666624 2016 1

Table 24: number of direct sum decompositions of Fn
2 with maximal subspace of dimen-

sion k, 1 ≤ k ≤ n. A298399
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The number of ordered DSD’s of Fn
q is given by 1

1−(γ(z)−1)
. For q = 2, n ≥ 0 this is

sequence A000000.

1, 1, 7, 225, 31041, 17698273, 41014759873, 383214694567809, 14378402336340492033 . . ..

Table 25: Number of ordered direct sum decompositions of Fn
2 for n ≥ 0

The number of ordered DSD’s of Fn
q containing exactly k subspaces is given by 1

1−u(γ(z)−1)
.

For q = 2, this is sequence A000000 for n ≥ 1, 1 ≤ k ≤ n. Note that the main diagonal

is γn(2)

1

1 6

1 56 168

1 800 10080 20160

1 20832 1011840 6666240 9999360

1 1051584 216319488 3839754240 16798924800 20158709760

Table 26: Number of ordered direct sum decompositions of Fn
2 containing exactly k sub-

spaces for 1 ≤ k ≤ n, n ≥ 0.

Suppose U is an (n − k)-dimensional subspace of Fn
q . How many subspaces W are

there such that U ⊕W = F
n
q ? Now W must be of dimension k and must be disjoint from

U , so we will choose an ordered basis that avoids the span of U . There are (qn−qn−k)(qn−
qn−k+1) · · · (qn − qn−1) ways to do this. We divide this product by γk and do some creative

simplification.
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(qn−qn−k)(qn−qn−k+1)···(qn−qn−1)
(qk−1)(qk−q)···(qk−qk−1)

=

(qk−1)(qk−1−1)···(q−1)q(n−k)+(n−k+1)+···(n−1)

(qk−1)(qk−1−1)···(q−1)q1+2+···+(k−1) =

(qk−1)(qk−1−1)···(q−1)qk(n−k)q1+2+···(k−1)

(qk−1)(qk−1−1)···(q−1)q1+2+···+(k−1) =

qk(n−k).

Unlike a set partition, not every vector in F
n
q appears in a DSD of Fn

q . More precisely,

given any nonzero vector v ∈ F
n
q , it is not the case that v ∈ ⋃m

i=1 Ui for every DSD

{U1, . . . Um}. For example, in the extreme case of a DSD that is composed entirely of 1-

dimensional subspaces, only n of the qn−1 nonzero vectors appear in the splitting. We are

led to ask what is the number of DSD’s in which a given nonzero vector appears. Adopting

the notation and following the arguments given in [8] we let Dq(n,m) notate the number

of DSD’s of Fn
q into exactly m subspaces in which a given nonzero vector appears. We will

follow closely the argument in [8] to derive a recurrence formula that provides the answer.

Let v be a given nonzero vector in F
n
q . Let U be an (n − k)-dimensional subspace of

F
n
q that contains v where k ranges from 0 to (n − 1). Then U contains span(v) so there

are
(

n−1
n−k−1

)
q

choices for such a subspace U . From above, there are qk(n−k) choices for a

subspace W that is disjoint from U such that U ⊕W = V . Then there are Dq(k,m − 1)

ways to form a DSD of W into m − 1 subspaces. Summing over all possible values of k

we have: Dq(n,m) =
∑n−1

k=0

(
n−1

n−k−1

)
q
qk(n−k)Dq(k,m− 1). The number of DSD’s of Fn

2 in

which a given nonzero vector appears for n ≥ 1 is sequence A270883.
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1, 3, 29, 961, 110657, 45148929, 66294748161, 355213310611457 . . .

Table 27: Number of direct sum decompositions of Fn
2 containing a given nonzero vector

for n ≥ 1. A270883

The number of such DSD’s of Fn
2 into exactly k subspaces n ≥ 1, 1 ≤ k ≤ n is se-

quence A270882

1

1 2

1 16 12

1 176 560 224

1 3456 40000 53760 13440

1 128000 5848832 20951040 15554560 2666496

1 9115648 1934195712 17826414592 30398054400 14335082496 1791885312

Table 28: Number of direct sum decompositions of Fn
2 that contain a given nonzero vector

and that contain exactly k subspaces for 1 ≤ k ≤ n, n ≥ 1. A270882

13. The Number of n× n Diagonalizable Matrices

In this section we follow the arguments in [16] to determine the number of diagonalizable

n × n matrices with entries in Fq. We will see that each such matrix corresponds to a se-

quence of eigenspaces. As in the previous section we will follow [16] by employing the

function, γ(z) =
∑

r≥0
zr

γr
to obtain various statistics concerning diagonalizable matrices.

We exposit the ideas in [16] to derive generating function formulas for sequences of inte-

gers related to projections.
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Definition 13.1 ([5]). LetA be an n×nmatrix over a field F and let λ ∈ F. The eigenspace

of A corresponding to λ is denoted E(λ,A) and is equal to null (A− λI). In other words,

E(λ,A) is the vector space consisting of all eigenvectors corresponding to λ along with the

zero vector. Note that if λ is not an eigenvalue of A then E(λ,A) = {0}.

An n× n matrix A with entries in Fq is diagonalizable if and only if there is a basis of

F
n
q consisting precisely of eigenvectors of A if and only if the sum of its eigenspaces is a

direct sum equaling F
n
q .

We define a weak decomposition of a vector space V as a sequence of subspaces of V

in which the nonzero subspaces form a direct sum decomposition of V . In other words, a

weak decomposition of V is a sequence U1, U2, . . . , Uk of subspaces of V in which some

of the subspaces are allowed to be the zero subspace and U1 ⊕ U2 ⊕ · · · ⊕ Uk = V .

Theorem 13.2. There is a 1-1 correspondence between the number of diagonalizable n×n
matrices A with entries in Fq and the number of weak decompositions of Fn

q into exactly q

subspaces, U0, U1, . . . , Uq−1.

Proof. Let A be a diagonalizable n×n matrix with entries in Fq. Let 0, 1, . . . , q− 1 be the

field elements of Fq. Form the sequence of subspaces E(0, A), E(1, A), . . . , E(q − 1, A).

Since A is diagonalizable then F
n
q is the direct sum of the eigenspaces corresponding to the

distinct eigenvalues of A. The eigenspace of a field element that is not an eigenvalue is

{0}. So E(0, A), E(1, A), . . . , E(q − 1, A) is a weak decomposition of Fn
q .

Let S = U0, U1, . . . , Uq−1 be a weak decomposition of F
n
q . Let Sn = Ui1 , . . . , Uim

be the subsequence of S containing all of the nonzero subspaces of S. Then Sn forms a

direct sum decomposition of F
n
q and determines a basis of eigenvectors of F

n
q . So A is

diagonalizable.
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Let dn be the number of n× n diagonalizable matrices. By the above theorem and our

work in the previous section, dn =
∑

n1+···+nq=n,ni≥0
γn

γn1 ···γnq
. Then with γ(z) =

∑
r≥0

zr

γr
,

the generating function for the sequence dn is γ(z)q. For q = 2 and n ≥ 0 the sequence is

A132186.

1, 2, 8, 58, 802, 20834, 1051586, 102233986, 19614424834 . . .

Table 29: Number of n× n diagonalizable matrices over Fq for n ≥ 0. A132186

For q = 3 and n ≥ 0 we have A290516.

1, 3, 39, 2109, 417153, 346720179, 1233891662727, 17484682043488557 . . .

Table 30: Number of n× n diagonalizable matrices over F3 for n ≥ 0. A290516

We can classify the number of diagonalizable operators T on F
n
q according to the dimen-

sion of the range. Since T is diagonalizable then F
n
q = E(λ1, T )⊕· · ·⊕E(λm, T ). The di-

mension of the range of T is the sum of the dimensions of the nonzero eigenspaces. The tri-

angular array T (n, k) below is then given by the bivariate generating function γ(z)γ(uz)q−1.

For q = 2, n ≥ 0, 0 ≤ k ≤ n we have A296548:
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1

1 1

1 6 1

1 28 28 1

1 120 560 120 1

1 496 9920 9920 496 1

Table 31: Number of n× n diagonalizable operators T over F2 such that range(T ) = k for

0 ≤ k ≤ n, n ≥ 0. A296548

We note the main diagonal is all 1’s as the only diagonalizable operator on F
n
2 that is

also invertible is the identity operator.

For q = 3, n ≥ 0, 0 ≤ k ≤ n we have A297892:

1

1 2

1 24 14

1 234 1638 236

1 2160 147420 254880 12692

1 19602 12349260 208173240 124394292 1783784

Table 32: Number of n× n diagonalizable operators T over F3 such that range(T ) = k for

0 ≤ k ≤ n, n ≥ 0. A297892

A projection is a linear operator P such that P 2 = P [16]. The following theorem
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shows that projections are also characterized as diagonalizable matrices having only eigen-

values of 0 or 1.

Theorem 13.3 ([16]). Let P be a linear map on vector space V over a field F. Then P is

a projection if and only if P is diagonalizable and has only 0 or 1 as eigenvalues.

Proof. ⇒ Let P be a linear map on vector space V over a field F. Assume P 2 = P . Let

λ be an eigenvalue of P with corresponding eigenvector v. Then λv = Pv = P 2v =

P (Pv) = P (λv) = λPv = λ2v. Since v is an eigenvector, v 	= 0. So λ = λ2. So λ = 0 or

1.

⇐ Assume that P is diagonalizable and that 0 or 1 are the only eigenvalues of P . Let

v ∈ V . Since P is diagonalizable then V has a basis v1, . . . vn consisting of eigenvectors

of P . By reordering the basis vectors we may assume that there is an m ∈ {0, . . . , n} such

that v1, . . . vm are eigenvectors corresponding to eigenvalue 0 and that vm+1, . . . , vn are

eigenvectors corresponding to eigenvalue 1. Now v = a1v1 + . . . + anvn for some scalars

a1, . . . an in F. So Pv = a1Pv1 + . . . amPvm + am+1Pvm+1 + . . . anPvn = am+1vm+1 +

. . . anvn. So P 2v = P (Pv) = P (am+1vm+1 + . . . anvn) = am+1Pvm+1 + . . . anPvn =

am+1vm+1 + . . . anvn = Pv.

So the number of n × n projections over Fq is the same as the number of n × n diag-

onalizable matrices over Fq that have only 0 or 1 as eigenvalues. These numbers are thus

given by the generating function γ(z)2. So for q =2 the number of projections is the same

as the number of diagonalizable matrices (Table 29). For q = 3 we have A053846.
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1, 2, 14, 236, 12692, 1783784, 811523288, 995733306992, 3988947598331024 . . .

Table 33: Number of n× n projections over F3 for n ≥ 0. A053846

Theorem 13.4 ([16]). There is a 1-1 correspondence between the set of projections on F
n
q

and the set of weak direct sum decompositions of Fn
q into exactly 2 subspaces.

Proof. Let P be a projection on Fq. Then Range(P ) ⊕ Null(P ) = F
n
q .

We have the number of weak decompositions dn =
∑

n1+···+nq=n,ni≥0
γn

γn1 ···γnq
. Since

each n × n projection matrix corresponds with a weak decomposition of Fn
q into exactly

two subspaces then the number of projections of rank k, 0 ≤ k ≤ n, is γn
γkγn−k

. So we have

the following equality which agrees with our result in Section 5:

(
n
k

)
q
· qk(n−k) = γn

γkγn−k

A square matrix is invertible if and only if it does not have 0 as an eigenvalue. So the

number of n × n matrices that are invertible and diagonalizable is given by γ(z)q−1. For

q = 2 there is only one such matrix, the identity matrix. For q = 3 and n ≥ 0 we have

sequence A053846.

1, 2, 14, 236, 12692, 1783784, 811523288, 995733306992, . . .

Table 34: Number of n × n matrices over F3 that are invertible and diagonalizable for

n ≥ 0. A053846
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We note that this is the same sequence given above counting the number of n × n

projections and is the main diagonal of the triangular array given above classifying the di-

agonalizable matrices by rank.

We can classify the diagonalizable matrices according to their number of distinct eigen-

values. We count the occurrences of the subspace {0} in the corresponding sequence of

subspaces (weak decomposition) with the bivariate generating function: (γ(z) − 1 + u)q.

For n ≥ 1, there are q diagonalizable matrices that have exactly one eigenvalue. For q = 2,

every diagonalizable matrix except the identity and the zero matrix has exactly two distinct

eigenvalues. For q = 3, n ≥ 0, 0 ≤ k ≤ 3, the number of n × n diagonalizable matrices

with exactly k distinct eigenvalues is given in the table below. This is sequence A296605.

The row sums are A290516 given above :

1 0 0 0

0 3 0 0

0 3 36 0

0 3 702 1404

0 3 38070 379080

0 3 5351346 341368830

0 3 2434569858 1231457092866

0 3 2987199920970 17481694843567584

0 3 11966842794993066 1077553466091961763220

Table 35: Number of n× n diagonalizable matrices over F3 having k distinct eigenvalues

0 ≤ k ≤ 3, n ≥ 0. A296605
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Theorem 13.5. Let V be a finite dimensional vector space over a field with characteristic

other than 2. Let T ∈ L(V ). Then T 2 = I if and only if T is diagonalizable and the only

eigenvalues of T are 1 or -1.

Proof. ⇒ Assume T ∈ L(V ) is diagonalizable and has only 1 or -1 as eigenvalues. Let

v ∈ V . By our assumptions V = E(1, T )⊕ E(−1, T ). So v = u + w where u ∈ E(1, T )

and w ∈ E(−1, T ). So T 2v = T (Tv) = T (T (u + w) = T (Tu + Tw) = T (u + −w) =
Tu− Tw = u−−w = u+ w = v.

⇐ Assume that T 2 = I . Suppose λ is an eigenvalue of T and v is a corresponding

eigenvector. Then v = T 2v = T (Tv) = T (λv) = λ2v. Since v 	= 0 then λ2 = 1. So λ = 1

or −1.

Since the only eigenvalues of T are 1 or -1, and both of these eigenvalues are contained

in the underlying field of our vector space V , then there is a basis β of V such that the

matrix M(T, β) has the Jordan normal form. That is, M(T, β) is a block diagonal matrix

where each block B has an eigenvalue of T along its main diagonal and 1’s on its super-

diagonal and 0’s everywhere else. Since M(T, β)2 = I then B2 must be a diagonal matrix

with all 1’s along its diagonal. Notice that the entry in the first row, second column of B2

is 2λ. For example if the Jordan block is of size 4 then:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 0

0 λ 1 0

0 0 λ 1

0 0 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ2 2λ 1 0

0 λ2 2λ 1

0 0 λ2 2λ

0 0 0 λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Since the underlying field is of characteristic other than 2 then 2λ = 2 or −2 which is

not the zero element of the field. So each Jordan block must be of size 1. Since each Jordan

block is of size 1 then M(T, β) is a diagonal matrix, hence T is diagonalizable.

We note that if T is an operator on a vector space over a field of characteristic 2 then

T 2 = I does not imply that T is diagonalizable. For example, If T ∈ L(F2) such that

M(T ) =

⎛
⎜⎝ 1 1

0 1

⎞
⎟⎠ then T 2 = I but T is not diagonalizable since its only eigenvalue is 1

and E(1, T ) has dimension 1.

Let T be an operator on F
n
q where q is a power of an odd prime and T 2 = I . By the

above theorem in order to count the number of such operators T it suffices to count the

number of diagonalizable matrices with at most 2 eigenvalues. The generating function is

then (γ(z))2. We see that the number of such matrices is the same as the number of projec-

tions.
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14. Subgroups of GLn(Fq)

In this section we view the vector space GLn(Fq) as a group. We expound on the ideas in

[2] to show that when p is a prime GLn(Fp) is precisely the automorphism group of the

finite abelian group:

(Fn
p = {(a1, . . . , an) : ai ∈ Fp ∀i = 1, . . . , n},+)

where the group operation + is componentwise addition of the n-tuples. We use the

arguments given in [2] to characterize the elementary abelian p-group, which is the group

underlying every vector space over a finite field. We determine the orders (as given in [12])

of some important subgroups ofGLn(Fq) and point out some well known facts about them.

Definition 14.1 ([10]). Let p be a prime and let n be a positive integer. The elementary

abelian group of order pn, denoted Epn is an abelian group of order pn with the property

that for all x ∈ Epn , px = 0.

We note that in the definition above, the equation px = 0 is written additively. That is,

the group operation is addition and px := x+ x+ · · ·+ x (p summands of x).

Let q = pα where p is a prime number. An n-dimensional vector space V over a field

containing q elements is, in particular, an abelian group of order qn. The vectors in such

a vector space along with the operation of vector addition form an additive group. The

identity element is the zero vector. We can consider the vectors in V as n-tuples of field

elements, so it is clear that every nonidentity vector has the same order (namely the least
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common multiple of the orders of each component, which is p). So for all v ∈ V, pv = 0

and V is the elementary abelian group, (Zp)
αn.

Definition 14.2. The general linear group of a vector space V is denoted by GL(V ) and is

the group comprised of the set (along with function composition) of all bijective mappings

from V into V that preserve both the underlying abelian group structure of V as well as the

scalar multiplication of V .

The following theorem shows that the group of automorphisms on any finite dimen-

sional vector space acts transitively on the set of nonzero vectors.

Theorem 14.3. If V is a finite dimensional vector space, then the group Aut(V ) acts tran-

sitively on the set V − {0}.

Proof. Let V be a finite dimensional vector space. Say dimV = n. Let the automorphisms

of V act on the set V − {0}. Let u, v ∈ V − {0}. Since u 	= 0 then we may fix a basis

u = u1, u2, . . . , un of V . Likewise, fix a basis v = v1, v2, . . . , vn of V . Define T : V → V

by Tui = vi for all i = 1, . . . , n. Then Tu = v and T maps a basis of V into a list of

linearly independent vectors in V so T is a bijective linear map.

Elementary abelian groups are characterized in the following Theorem. We first give as

a lemma a well known result from group theory.

Lemma 14.4 ([10]). If G is a group of order pα for some α ≥ 0, then Z(G), the center of

G is nontrivial.

Proof. Let G act on itself by conjugation. Let g1, g2, . . . , gr be a set of representatives of

all the distinct noncentral conjugacy classes of G. Then
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|G| = |Z(G)|+∑r
i=1[G : Ggi ].

Now Ggi 	= G (because otherwise gi would be in the center of G). So p|[G : Ggi ] for

all i = 1, . . . , r. Since p divides the LHS of our equation and p divides every term in the

summation on the RHS, p divides |Z(G)|. So Z(G) is nontrivial.

Theorem 14.5 ([2]). Let G be a nontrivial finite group with identity 0. Then Aut G acts

transitively on G/{0} if and only if G is elementary abelian.

Proof. ⇐ If G is elementary abelian, then it is a vector space over a field with a prime

number of elements. So by Theorem 14.5, Aut G acts transitively on G.

⇒ Assume that Aut G acts transitively on G/{0}. Suppose φ ∈AutG and x ∈ G/{0}
and that |x| = j for some integer j. Then (φ(x))j = φ(xj) = φ(0) = 0. Also if (φ(x))k = 0

for some k < j then φ(xk) = 0 so xk = (φ(0))−1 = 0 which is a contradiction. So

|φ(x)| = j. So every element in the orbit of x has the same order. Since the action is

transitive then every element in G has the same order. Since G is nontrivial, there is some

prime p that divides |G|. By Cauchy’s Theorem, G contains at least one element of order p.

So every nonzero element of G has order p. So |G| is a power of p, that is, G is a p-group.

So G has a nontrivial center, that is, Z(G) 	= 0.

Claim: If x ∈ Z(G) then φ(x) ∈ Z(G). Let x ∈ Z(G) and let g ∈ G. Then xg = gx so

we have: φ(xg) = φ(x)φ(g) = φ(gx) = φ(g)φ(x). So φ(x) commutes with our arbitrary

element φ(g). So φ(x) ∈ Z(G).

By our claim every element in the orbit of x is in Z(G). So Z(G) = G. So G is abelian.

Therefore, G is an elementary abelian group.

Let V be an n-dimensional vector space over any finite field F
n
q . By the definition of

a linear map T on V, T (v1 + v2) = T (v1) + T (v2) ∀v1, v2 ∈ V , then each T ∈ L(V )
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is a group homomorphism from V into V . If T is such that the kernel of T is the zero

vector, then by the first isomorphism theorem V ∼= V/ kerT ∼= T (V ) = V . So that T is an

automorphism on V . So the group GLn(Fq) is a subgroup of Aut(V ). Only in the special

case when q = p for a prime p, is the group of automorphisms on V precisely the group of

invertible linear transformations. Viz., Aut(V ) ∼= GLn(Fq) if and only if q is a prime.

Before we give a proof we look at two examples that illustrate the idea. Let V be the 2-

dimensional vector space over the field F5. (Note the articles “the” in the previous sentence

are somewhat justified in the sense that any two vector spaces of the same dimension are

isomorphic and likewise all fields of the same order are isomorphic). Notice that each

vector v in F
2
5 can be added to itself some number of times to arrive at any scalar multiple

of v. For example:

⎛
⎜⎝ 3

2

⎞
⎟⎠+

⎛
⎜⎝ 3

2

⎞
⎟⎠+

⎛
⎜⎝ 3

2

⎞
⎟⎠ =

⎛
⎜⎝ 4

1

⎞
⎟⎠ = 3

⎛
⎜⎝ 3

2

⎞
⎟⎠

But this is not the case if the characteristic of the field is not equal to the order of the

field. That is, if the order of the field is not prime. For example, the field elements in

F4
∼= F2[x]/〈x2 + x+ 1〉 can be represented as 0, 1, x, x+ 1. Now

x+ 1

⎛
⎜⎝ x

x+ 1

⎞
⎟⎠ =

⎛
⎜⎝ 1

x

⎞
⎟⎠

But

⎛
⎜⎝ x

x+ 1

⎞
⎟⎠+

⎛
⎜⎝ x

x+ 1

⎞
⎟⎠ =

⎛
⎜⎝ 0

0

⎞
⎟⎠
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So adding the vector

⎛
⎜⎝ x

x+ 1

⎞
⎟⎠ to itself any number of times will never yield its multiple

with the scalar x+ 1.

Theorem 14.6. Let V be an n-dimensional vector space over Fp. In particular, V is an

abelian group. If p is a prime then Aut(V ) ∼= GLn(Fp).

Proof. Assume p is a prime. We have already shown in the first paragraph of this section

that GLn(Fq) ≤Aut(V ) where q is a prime power.

Let φ ∈Aut(V ). Let u, v ∈ V . Let a ∈ Fp. Now φ(u + v) = φ(u) + φ(v). So φ

respects additivity. Also, since p is prime, av = v + v + · · · + v (a summands of v). So

φ(av) = φ(v+ v+ · · ·+ v) = φ(v)+ · · ·+φ(v) = aφ(v). So φ respects homogeneity. So,

φ ∈ GLn(Fp). So Aut(V ) ≤ GLn(Fp).

In the next section we will derive an explicit formula for the number of automorphisms

on V . The formula shows that when q is not a prime, there are many automorphisms

on V which are not linear maps. For now we give an example again using the field

F = F2[x]/〈x2 + x + 1〉. Consider the 1-dimensional vector space V over F. Then V

is isomorphic to C2 × C2. It is well known that the group of automorphisms on V is iso-

morphic to S3. Let φ be the automorphism that swaps x with x+ 1. But φ is not a linear

map because (in particular)

x+ 1 φ(x) = x+ 1 x+ 1 = x but

φ(x+ 1 x) = φ(1) = 1
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The Special Linear Group

The special linear group, denoted SLn(Fq), is the subgroup of GLn(Fq) consisting of the

n × n matrices with determinant 1. Equivalently, SLn(Fq) is the kernel of the group ho-

momorphism φ : GLn(Fq) → F
×
q by φ(A) = detA for all A ∈ GLn(Fq). Now φ is a

homomorphism because for any A,B ∈ GLn(F)q, detA detB =detAB. Also φ is sur-

jective since for any x ∈ Fq, we can construct the n × n diagonal matrix A = [ai,j] with

a1,1 = x and all other diagonal entries equal to 1. Then φ(A) = x. Since φ is surjective, by

First Isomorphism Theorem, the quotient group GLn(Fq)/SLn(Fq) is isomorphic to F
×
q .

Since |F×
q | = q − 1 then we have:

|GLn(Fq)/SLn(Fq)| = |F×
q |

∏n−1
i=0 qn−qi

|SLn(Fq)| = q − 1

|SLn(Fq)| =
∏n−1

i=0 pn−pi

q−1

The order of SLn(Fq) turns out to be the same as the order of another subgroup of

GLn(Fq) called the projective linear group.

The Projective General Linear Group
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The projective general linear group over Fq is the quotient groupGLn(Fq)/Z(GLn(Fq).

That is, the projective general linear group is the quotient group of the general linear group

with its center. It is the group of inner automorphisms of the general linear group. It is

also called simply the projective linear group and is denoted PGLn(Fq). Let GLn(Fq)

act on itself by conjugation. To this group action we can associate a homomorphism

φ : GLn(Fq) → SGLn(Fq) called the permutation representation of the action. Then

PGLn(F�) is isomorphic to the image of φ in SGLn(Fq). We can view the projective general

linear group as equivalence classes of n× n matrices where two matrices A,B are related

if there is a scalar matrix C such that A = BC. The following theorem shows that the

center of GLn(Fq) consists of all the scalar matrices in GLn(Fq), i.e., the nonzero scalar

multiples of In .

Theorem 14.7. Suppose that V is a finite dimensional vector space over a field F and

T ∈ L(V ). Then T is a scalar multiple of the identity if and only if ST = TS for all

S ∈ L(V ).

Proof. ⇒ Assume T is a scalar multiple of the identity. Let S ∈ L(V ). Let v ∈ V . Since

T is a scalar multiple of the identity then there is some a ∈ F such that Tv = av. Then

STv = S(av) = aSv = TSv.

⇐ Assume ST = TS for all S ∈ L(V ). If n = 1, then we are done so assume n ≥ 2.

Fix a basis v1, . . . , vn of V . For each i ∈ {1, . . . , n} define Si ∈ L(V ) by

Si(vk) =

⎧⎪⎪⎨
⎪⎪⎩
vi if k = i

0, otherwise
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For each i, j ∈ {1, 2, . . . , n} with i < j define Si,j ∈ L(V ) by

Si,j(vk) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vi if k = j

vj if k = i

0, otherwise

For any fixed i ∈ {1, . . . , n} we have: T (vi) = c1v1 + · · · cnvn for some unique scalars

c1, . . . , cn ∈ F. So that

SiT (vi) = Si(
∑n

k=1 ckvk) =
∑n

k=1 ckSi(vk) = civi.

and

TSi(vi) = T (vi) = c1v1 + · · ·+ cnvn

So c1v1 + · · · + cnvn = civi. Since v1, . . . , vn is linearly independent then ck = 0 for all

k 	= i. Since i is arbitrary in {1, . . . , n} then for each i there is a scalar ai ∈ F such that

T (vi) = aivi. This shows that M(T, v1, . . . , vn) is a diagonal matrix. Now we will show

that M(T, v1, . . . , vn) is a scalar multiple of In by showing that a1 = · · · = an.

Let i, j be fixed in {1, . . . , n} with i 	= j. Then

Si,jT (vi) = Si,j(aivi) = aiSi,j(vi) = aivj

and

TSi,j(vi) = T (vj) = ajvj

So ai = aj . Since our i and j are arbitrary in {1, . . . , n} then a1 = · · · = an.
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So there is a unique scalar a ∈ F such that T (vi) = avi for each i ∈ {1, . . . , n}. Let

v ∈ V . Then v =
∑n

k=1 bkvk for some scalars b1, . . . , bn ∈ F. So T (v) = T (
∑n

k=1 bkvk) =∑n
k=1 bkT (vk) =

∑n
k=1 bkavk = a

∑n
k=1 bkvk = av. So T = aI .

From the above theorem we see that |Z(GLnF�)| = q − 1. So we have:

|PGLn(Fq)| = |GLn(Fq)/Z(GLn(Fq)| = |GLn(Fq)|
|Z(GLn(Fq)

=
∏n−1

i=0 qn−qi

q−1

The orders of PGLn(F3) for n ≥ 1 are given in sequence A003787

1, 24, 5616, 12130560, 237783237120, 42064805779476480 . . .

Table 36: Order of PGLn(F3) for n ≥ 1. A003787

The orders of PGLn(F4) for n ≥ 1 are given in sequence A003788.

1, 60, 60480, 987033600, 258492255436800, 1083930404878024704000 . . .

Table 37: Order of PGLn(F4) for n ≥ 1. A003788
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The Projective Special Linear Group

The projective special linear group over Fq is denoted PSLn(Fq). It is the subgroup

of PGLn(Fq) that contains all the matrices in PGLn(Fq) whose determinant is equal to 1.

The order of PSLn(Fq) is equal to the order of SLn(Fq) divided by the number of n × n

scalar matrices with determinant of 1. The number of such scalar matrices is the number

of nth roots of unity in Fq. In other words, the number elements a ∈ Fq such that an = 1.

In order to count the number of such elements we first show that the group F
×
q is cyclic.

The following lemma is proved in [20] and is stated here without proof. Theorem 14.9 is

essentially that given in [20].

Lemma 14.8 ([20]). Suppose G is an abelian group. If x, y ∈ G and |x| = r < ∞, |y| =
s <∞ then there is an element of G with order lcm(r, s).

Theorem 14.9 ([20]). Suppose F is a finite field. Then F
× is a cyclic group.

Proof. Let |F×| = m. Suppose α ∈ F
× has maximal order of all elements in F

×. Say

|α| = k. We will show that k = m so that 〈α〉 = F
×.

By LaGrange’s theorem k|m so k ≤ m.

Let β be an arbitrary element in F
×. Say |β| = r. Then by the above lemma, F× has an

element of order lcm(r, k). Now k is maximal of all the orders in the group and lcm(r, k) ≥
k so it must be that r|k. Since |β| = r and r|k then βk = 1. Since β is arbitrary in F

× then

every element in F
× satisfies the polynomial equation xk − 1 = 0. So xk − 1 has m roots

in F
× . By the Fundamental Theorem of Algebra there are at most k distinct roots of the

polynomial. So m ≤ k.
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Lemma 14.10 ([10]). If G is any group and x ∈ G, |x| = n, a ∈ Z, a 	= 0 then

|xa| = n
gcd(n,a)

.

Proof. Let d = gcd(n, a). Then n = db, a = dc for some d, c ∈ Z, b ≥ 1 where

gcd(b, c) = 1 (otherwise d is not a greatest common divisor). Let y = xa. We will show

that |y| ≤ b and |y| ≥ b, hence |y| = b = n
gcd(n,a)

.

Now yb = (xa)b = (xdc)b = (xbd)c = (xn)c = 1c = 1. So |y| divides b. So |y| ≤ b.

Let k = |y|. Then yk = 1 = (xa)k. So |x| |ak. So n|ak So db|dck. So b|ck. Since

gcd(b, c) = 1 then b|k. So b| |y|. So b ≤ |y|.

Theorem 14.11 ([10]). In any cyclic group, the number of elements that have order d is

φ(d).

Proof. Let G be a cyclic group of order n. Then there is a generator a ∈ G such that

G = 〈a〉 = {a, a2, . . . , an = 1}. By LaGrange’s theorem for each k ∈ {1, 2, . . . , n} the

order of ak is a divisor of n. Now |a| = n, so by the previous lemma, |ak| = n
gcd(n,k)

. So

for any i, j ∈ {1, 2, . . . , n}, |ai| = |aj| if and only if gcd(i, n) = gcd(j, n).

Let d be a divisor of n. Then dh = n for some h ∈ Z
+. Now φ(d) is the number of pos-

itive integers less than or equal to d that have no common factors with d. In other words,

φ(d) = |A| = |{m ∈ Z
+ : m ≤ d, gcd(m, d) = 1}|. Let B = {hm : m ∈ A}. Consider

the map ψ : A → B by ψ(m) = mh for all m ∈ A. It is clear that ψ is a bijection. Also,

since for all m ∈ A, gcd(d,m) = 1 and dh = n then gcd(ψ(m), n) = h. So each element
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b ∈ B is such that gcd(b, n) = h. So φ(d) = |B|. That is, φ(d) is the number of positive

integers less than or equal to n whose greatest common divisor with n is equal to h. So

φ(d) is the number of elements in G that have order d.

Theorem 14.12 ([10]). For any positive integer n,
∑

d|n φ(d) = n.

Proof. Let G be a cyclic group of order n. Let R be the relation on the elements of G

defined by xRy if and only if |x| = |y| for all x, y ∈ G. By the above theorem, R is an

equivalence relation on G. The number of equivalence classes is equal to the number of

divisors d of n. If x ∈ G and |x| = d then the cardinality of the class containing x is φ(d).

So n =
∑

d|n |{y ∈ G : xRy}| = ∑
d|n φ(d)

Theorem 14.13. For any n ≥ 1, the number of elements a in F
×
q such that an = 1 is

gcd(n, q − 1).

Proof. Since F×
q is a cyclic group of order q− 1 it suffices to count the number of elements

in F
×
q whose order divides n. Since the order of every element divides q − 1, the set of

elements a in F
×
q such that an = 1 is precisely the set of elements whose order is a common

divisor of n and q − 1. So by Theorem 12.9, the desired number is
∑

{d:d|n,d|q−1} φ(d).

Notice that the set {d : d|n, d|q − 1} is the set of common divisors of n and q − 1 which is

precisely the set of divisors of gcd(n, q − 1). So by Theorem 12.10
∑

{d:d|n,d|q−1} φ(d) =

gcd(n, q − 1).
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So we have:

|PSLn(Fq)| = |SLn(Fq)|
gcd(n,q−1)

=
∏n−1

i=0 qn−qi

(q−1) gcd(n,q−1)

The orders of PSLn(F3) for n ≥ 1 are given in sequence A003793.

1, 12, 5616, 6065280, 237783237120, 21032402889738240 . . .

Table 38: Order of PSLn(F3) for n ≥ 1. A003793

|PSL2(F3)| = 12 because we have the following 12 classes of 2 × 2 matrices over

F3. The two matrices listed in each row (cosets of the center) are scalar multiples of each

other and have determinant equal to 1. The identity element is in the 4th row. This group

is isomorphic to the alternating groupA4.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝ 0 1

2 0

⎞
⎟⎠

⎛
⎜⎝ 0 2

1 0

⎞
⎟⎠

⎛
⎜⎝ 0 1

2 1

⎞
⎟⎠

⎛
⎜⎝ 0 2

1 2

⎞
⎟⎠

⎛
⎜⎝ 0 1

2 2

⎞
⎟⎠

⎛
⎜⎝ 0 2

1 1

⎞
⎟⎠

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠

⎛
⎜⎝ 2 0

0 2

⎞
⎟⎠

⎛
⎜⎝ 1 0

1 1

⎞
⎟⎠

⎛
⎜⎝ 2 0

2 2

⎞
⎟⎠

⎛
⎜⎝ 1 0

2 1

⎞
⎟⎠

⎛
⎜⎝ 2 0

1 2

⎞
⎟⎠

⎛
⎜⎝ 1 1

0 1

⎞
⎟⎠

⎛
⎜⎝ 2 2

0 2

⎞
⎟⎠

⎛
⎜⎝ 1 1

1 2

⎞
⎟⎠

⎛
⎜⎝ 2 2

2 1

⎞
⎟⎠

⎛
⎜⎝ 1 1

2 0

⎞
⎟⎠

⎛
⎜⎝ 2 2

1 0

⎞
⎟⎠

⎛
⎜⎝ 1 2

0 1

⎞
⎟⎠

⎛
⎜⎝ 2 1

0 2

⎞
⎟⎠

⎛
⎜⎝ 1 2

1 0

⎞
⎟⎠

⎛
⎜⎝ 2 1

2 0

⎞
⎟⎠

⎛
⎜⎝ 1 2

2 2

⎞
⎟⎠

⎛
⎜⎝ 2 1

1 1

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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15. Subgroups of GLn(Zm)

The set of n× n matrices with entries in the ring of integers modulo m, (here denoted Zm)

is an R-module. It is itself a matrix ring and is denoted Mn(Zm) . We call Mn(Zm) the

full ring of n× n matrices. There are of course mn2
elements in Mn(Zm). In this section

we will determine the number of these matrices which are invertible. In other words, we

determine the order of the group of units in this matrix ring which we denote as GLn(Zm).

We follow very closely the arguments presented in [19]. We use these arguments to derive

formulas given in [12] for the order of some important subgroups of this group.

Theorem 15.1 ([19]). If A ∈ Mn(R), then A is invertible if and only if det(A) is a unit in

R.

Proof. ⇒ Assume A is invertible. Then 1 = det(I) = det(AA−1) = det(A) det(A−1).

⇐ Assume det(A) is a unit in R. Now A adj(A) = In det(A). So A adj(A) det(A)−1 =

In.

Let GLn(R) be the group of units in Mn(R). In other words, GLn(R) is the group of

invertible n × n matrices whose entries are in the ring R. We want to determine the order

of these groups when R = Zm is the ring of integers modulo m. We will first consider the

case when m is a prime number, then we consider the case when m is a prime power and

finally we consider the general case for any integer m.
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When m = p where p is a prime then Zm is a field so Mn(Zm) is the general linear

group. So |GLn(Zm)| =
∏n−1

i=0 p
n − pi = γn,p.

Lemma 15.2 ([19]). If A and B are square matrices such that A ≡ B mod m then det

A ≡ detB mod m.

Proof. Let A = ai,j and B = bi,j be n × n matrices with A ≡ B mod m. Now detA :=

∑
σ∈Sn

sign(σ)a1,σ(1) · · · an,σ(n) so that:

det A mod m := (
∑

σ∈Sn
sign(σ)a1,σ(1) · · · an,σ(n)) mod m ≡

(
∑

σ∈Sn
(sign(σ)a1,σ(1) · · · an,σ(n)) mod m) mod m ≡

(
∑

σ∈Sn
(sign(σ)a1,σ(1) mod m · · · an,σ(n) mod m) mod m) mod m ≡

(
∑

σ∈Sn
(sign(σ)b1,σ(1) mod m · · · bn,σ(n) mod m) mod m) mod m ≡
(
∑

σ∈Sn
(sign(σ)b1,σ(1) · · · bn,σ(n)) mod m) mod m ≡

(
∑

σ∈Sn
(sign(σ)b1,σ(1) · · · bn,σ(n))) mod m ≡

det B mod m.

Now we give the arguments leading to Theorem 2.2.2 in [19]. Suppose m = pα where

p is prime and α is a positive integer. Let A ∈ Mn(Zm). Then A = pB + C where B is

the matrix of quotients of A by p and C is the matrix of the remainders. For example:

If p = 5, α = 3, so that m = 53 = 125 and A =

⎛
⎜⎜⎜⎜⎝

111 61 8

4 10 12

22 13 14

⎞
⎟⎟⎟⎟⎠
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then B =

⎛
⎜⎜⎜⎜⎝

22 12 1

0 2 2

4 2 2

⎞
⎟⎟⎟⎟⎠ and C =

⎛
⎜⎜⎜⎜⎝

1 1 3

4 0 2

2 3 4

⎞
⎟⎟⎟⎟⎠ because A = 5B + C.

Notice that the entries in B, the matrix of quotients, must be in {0, 1, . . . , pα−1 − 1}
and the entries in C, the matrix of remainders, must be in {0, 1, . . . , p−1}. In other words,

B ∈ Mn(Zpα−1) and C ∈ Mn(Zp). Also by our construction A ≡ C (mod p). So by our

lemma we have that det A ≡ det C (mod p). So gcd(detA,p) = gcd(detC,p). So we have:

A is invertible modulo pn ⇔
gcd(det A, pn) = 1 ⇔
gcd(det A, p) = 1 ⇔
gcd(det C, p) = 1 ⇔

C is invertible modulo p.

By our decomposition of A, in order to count the number of invertible matrices in

Mn(Zm), we may choose any matrix in Mn(Zpα−1) and then choose an invertible matrix

in Mn(Zp). The number of matrices in Mn(Zpα−1) is (pα−1)(n
2). The number of invertible

matrices in Mn(Zp) is γn. So we have:

|Mn(Zpα)| = p(α−1)n2
γn = p(α−1)n2 ∏n−1

i=0 p
n − pi

Now we will consider the case where m is any integer greater than 1. Our argu-

ments here are essentially Theorem 2.3.2 in [19]. Express m in its unique prime fac-

torization, i.e., write m = pα1
1 p

α2
2 · · · pαk

k . Define φ : Mn(Zm) → ⊕k
j=1Mn(Zp

αj
j
) by
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φ(A) = (A(modpα1
1 ), A(modpα2

2 ), . . . , A(modpαk
k )). In other words, φ maps the matrix

ring Mn(Zp) into a k-tuple of matrix rings which is itself a ring. We will show that φ is a

ring isomorphism.

Clearly φ is well defined. By the Chinese Remainder Theorem, φ is a bijection. To show

that φ preserves matrix multiplication first note that by properties of modular arithmetic

matrix multiplication preserves modular equivalence. That is, A(modm) · B(modm) =

AB(modm).

Let A,B ∈ Mn(Zm). For conciseness, let C(i) denote C(modpαi
i ) for any matrix C

where m = pα1
1 p

α2
2 · · · pαk

k . Then

φ(AB) =

(AB(1), . . . , AB(k))=

(A(1)B(1), . . . , A(k)B(k) =

(A(1), . . . , A(k))(B(1), . . . , B(k)) =

φ(A)φ(B).

Replacing matrix multiplication with addition in the argument above shows that φ also

preserves the addition operation in the ring Mn(Zm). So we have shown that φ is a ring

isomorphism.

Now ifA ∈ Mn(Zm) is invertible then φ(A)φ(A−1) = φ(AA−1) = φ(I) = (Imodpα1
1 , . . . , Imodpαk

k ),

which is the identity element in the codomain, ⊕k
i=1Mn(Zp

αi
i
). So φ(A) has an inverse. In

other words, φ(A) is invertible. Conversely, if φ(A) has an inverse, (φ(A))−1, then by ho-
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momorphism properties, (φ(A))−1 = φ(A−1). Hence, A is invertible.

Then in order to count the number of invertible matrices in Mn(Zm) it suffices to count

the number of invertible matrices in ⊕k
j=1Mn(Zp

αj
j
). A tuple in ⊕k

i=1Mn(Zp
αi
i
) is invert-

ible if and only if each of its components is invertible. From our work above we know the

number of invertible matrices in each Mn(Zp
αj
j
) is p

(α−1)n2

j

∏n−1
i=0 p

n
j −pij . Each component

of the tuple is independently chosen so we have for m = pα1
1 p

α2
2 · · · pαk

k :

|GLn(Zm)| =
∏k

j=1(p
(αj−1)n2

j

∏n−1
i=0 p

n
j − pij) =

∏k
j=1(p

(αj−1)n2

j γn,pj)

We note that in the case n = 1 our formula reduces to
∏k

j=1 p
αj

j − pj . This is the

number of positive integers less than or equal to n that are relatively prime to n (Euler’s

Phi function).

Also, when m is square free then the formula reduces to
∏k

j=1 γn,pj where γn,pj is the order

of GLn(Fpj).

Finally, |GLn(Zm)| = |GLn(Fq)| if and only if m = q = p for some prime p.

For m = 4 and n ≥ 0 we have sequence A065128.

1, 2, 96, 86016, 1321205760, 335522845163520, 1385295986380096143360, . . .

Table 39: Order of GLn(Z4) for n ≥ 0. A065128
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For m = 6 and n ≥ 0 we have sequence A065498.

1, 2, 288, 1886976, 489104179200, 4755360379856486400, . . .

Table 40: Order of GLn(Z6) for n ≥ 0. A065498

The number of 2× 2 invertible matrices over Zm for m ≥ 1 is A000252.

1, 6, 48, 96, 480, 288, 2016, 1536, 3888, 2880 . . .

Table 41: Order of GL2(Zm) for m ≥ 1. A000252

The number of 3× 3 invertible matrices over Zm for m ≥ 1 is A064767.

1, 168, 11232, 86016, 1488000, 1886976, 33784128, . . .

Table 42: Order of GL3(Zm) for m ≥ 1. A064767

It is important to understand that what is being counted in the last two sequences

given above is the number of automorphisms on the finite abelian groups Cm × Cm and

Cm × Cm × Cm respectively where Cm is the cyclic group of order m. We want to realize

that GLn(Zm) is the group of automorphisms on Cn
m. It is insightful to observe that by the

following well known theorem, the special case when n = 1 again gives the expected result.
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Theorem 15.3 ([10]). The automorphism group of the cyclic group Cm is isomorphic to

the abelian group Z
×
m of order φ(n).

Proof. Let x be a generator of Cm. If σ is an automorphism of Cm then σ(x) = xa for

some a ∈ Z. Since x is a generator, the integer a uniquely determines the map σ. Denote

this mapping as σa. Since |x| = n then a is only defined modulo n. Since σa is an auto-

morphism then |x| = |xa|. So n
gcd(n,a)

= n. So gcd(n, a) = 1. So for every a relatively

prime to n we have exactly one map x �→ a that is an automorphism on Cm. Then we have

the bijective map:

ψ :Aut(Cm) → Z
×
m

by ψ(σa) = a(modn)

Now ψ is a homomorphism because for all σa, σb ∈Aut(Cm) we have:

σa ◦ σb(x) = σa(σb(x)) = σa(x
b) = (xb)a = xab = σab(x) so that

ψ(σa ◦ σb) = ψ(σab) = ab(modn) = ψ(σa) ◦ ψ(σb)

The special linear group of matrices over Zm

The set of n×nmatrices with entries in the ring Zm that have determinant equal to 1 is

denoted SLn(Zm). It is a subgroup of GLn(Zm). The matrices in SLn(Zm) are the kernel
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of the group homomorphism ψ : GLn(Zm) → Z
×
m where ψ is the determinant mapping

and Z
×
m is the group of units in the ring Zm. Now ψ is a surjective homomorphism, so by

First Isomorphism Theorem, the quotient group GLn(Zm)/SLn(Zm) is isomorphic to Z
×
m.

By Theorem 13.3, |Z×
m| = φ(m). So we have:

|GLn(Zm)/SLn(Zm)| = |Z×
q |

∏k
j=1(p

(αj−1)n2

j γn,pj )

|SLn(Zm)| = φ(m)

|SLn(Zm)| =
∏k

j=1(p
(αj−1)n2

j γn,pj )

φ(m)

The number of 2 × 2 invertible matrices over Zm with determinant 1 for m ≥ 1 is

A00056.

1, 6, 24, 48, 120, 144, 336, 384, 648, 720, 1320, 1152, 2184, 2016, 2880 . . .

Table 43: Order of SL2(Zm) for m ≥ 1. A000056

The number of 3 × 3 invertible matrices over Zm with determinant 1 for m ≥ 1 is

A011785.

1, 168, 5616, 43008, 372000, 943488, 5630688, 11010048, 36846576, . . .

Table 44: Order of SL3(Zm) for m ≥ 1. A011785
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The projective special linear group of matrices over Zm

The projective special linear group of matrices over Zm is the quotient group of SLn(Zm)

with its center. It is denoted PSLn(Zm). The center of SLn(Zm) is the group of n × n

scalar matrices whose diagonal contains the element x ∈ Zm such that xn = 1. In other

words, the center of SLn(Zm) is the set {xIn : x ∈ Z
×
m, x

n = 1}. The elements in

|PSLn(Zm)| are equivalence classes, where two matrices are equivalent if all the entries of

one is a scalar multiple of the other. In other words, for all A,B ∈ SLn(Zm), A ∼R B if

and only if there is a scalar matrix C such that A = BC.

To determine the order of PSLn(Zm) we need to first determine the number of elements

x ∈ Zm such that xn = 1. Then each such x will correspond to exactly one scalar matrix

xIn in the center of SLn(Zm). The multiplicative group of integers modulo m, Z×
m is a

finite abelian group. By the Fundamental Theorem of Finitely Generated Abelian Groups,

Z
×
m isomorphic to a direct product of cyclic groups, Cn1 × Cn2 × · · · × Cns where nj ≥ 2

and nj+1|nj for all j = 1, . . . , s− 1 and
∏s

j=1 nj = φ(m). We will call the integers nj the

characteristic factors of Z×
m. There is a simple algorithm for obtaining the characteristic

factors of Z×
m from the prime factorization of m. The proof of which is rather long. The

reader is referred to Shanks [18] pages 92-108.

Theorem 15.4. Let G = Cn1 ×Cn2 × · · · ×Cns . Then the number of elements x ∈ G such

that xn = 1G is equal to
∏s

i=1 gcd(n, ni) where 1G is the identity in G.

Proof. By Theorems 12.9,12.10, and 12.11 we have that the number of solutions to xn =

1G in Cni
is gcd(n, ni). So for each component gi in the tuple (g1, g2, . . . , gs) we have

gcd(n, ni) choices. Each choice is made independently. So there are
∏s

i=1 gcd(n, ni) ele-

ments x ∈ G that satisfy xn = 1G
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So we have: If m is such that Cn1 × Cn2 × · · · × Cns are the characteristic factors of

Z
×
m then

|PSLn(Zm)| =
∏k

j=1(p
(αj−1)n2

j γn,pj )

φ(m)
∏s

i=1 gcd(n,ni)

The order of the projective special linear group over Zm for n = 2 and m ≥ 1 is

sequence A300915.

1, 6, 12, 24, 60, 72, 168, 96, 324, 360, 660, 288, 1092, 1008, 720 . . .

Table 45: Order of PSL2(Zm) for m ≥ 1. A300915
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