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Introduction

“The actual is no more necessary than the possible,

for the necessary is absolutely different from both.”

-Kierkegaard, Philosophical Fragments

With these words, Kierkegaard is appealing to a distinction common to ordinary ex-

perience: being able to differentiate between the actual, the necessary, and the possible

is usually considered “logical” or “reasonable” for everyday thought and practice. Al-

though they might appear at first glance to be unrelated, a current of careful reflections and

statements similar to Kierkegaard’s runs deeply through the history of Western thought,

suggesting that the notions of “necessity” and “possibility” are linked together in a special

way. Relating the two seems to be an inherently logical problem, because in order to reflect

on either of these two notions we begin to make statements about whose relative “truth”

we need some way of adjudicating. We begin to wonder about the connection of our state-

ments to “what really is:” statements about the necessary or the possible are made relative

to some actual state of affairs, even as they distinguish themselves from the actual. Just as

importantly, an inner connection between necessity and possibility can be detected in the

attempt to reflect on either notion individually, just at it has been time and again by authors

like Kierkegaard.

For example, if we say something is necessarily so, we might mean that even under

other circumstances it couldn’t be otherwise. However, then we would be speaking about

the possibility of these circumstances being otherwise. Upon reflection, some aspects of

the actual world appear more contingent than others, drawing us towards the discovery and

formulation of invariant facts or necessary truths despite experiences of contingency and

variance. Similarly, if we say something is a possibility, do we mean that it isn’t so, but it
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could be so? Are we saying that it isn’t necessarily not so, but that it just happens to not

be actual? By entertaining possibilities, we seem to be reflecting on the “actual world,”

yet deviating from what we could safely say is actual; like the necessary, the possible is

something we can speak of in relation to actuality, or the factual, but is somehow other than

what we know to be the case.

For this reason, both notions are sometimes characterized as being counterfactual and

make their appearance in counterfactual statements (this is the terminology of Lewis [1973]).

The apparent link between the notions of necessity and possibility has led to their inter-

twined reference as the modal notions. What exactly is this intertwined reference, and

how does it relate to the actual world? Is there any substance to the seeming connections

revealed by ordinary reflection? Above all, it seems that if there were some stable connec-

tions between the actual, the possible, and the necessary, we ought to be able to sort out

our reflections and learn how to speak consistently about all three. So how are we to make

statements about modalities which are at least consistent with each other and with state-

ments about the real world? The tradition of hard-fought efforts to find precise answers to

these questions encompasses the logic of modality, or modal logic.

In fact, modality is as old as the subject we call “logic” and was, until relatively re-

cently, a central part of the discipline. Aristotle, commonly referenced as the founder of

Western logic, included modality in a systematic exposition of the deduction or syllogism

(sullogismos), which he lays out in the Prior and Posterior Analytics. In the former work,

Aristotle creates a classification of different terms which appear in a deduction and attempts

to reason through, in a systematic fashion, which types of deduction are valid and which

are not. All of the deductions are “formal” because their validity is ascertainable on the

basis of their arrangement into forms called figures (schēma) and not on the specific con-

tents which may fill them. In brief, the figures are made up of sentences which are either

premises or conclusions of some deduction. Each sentence in turn is composed of a sub-

ject, a predicate, and a constant which charaterizes the subject-predicate relationship. This
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important pairing, where some subject can be described as in some sense “belonging to”

some predicate (e.g., in the sentence “Every man is an animal,” the predicate-term “animal”

is predicated of the subject-term “man”), is worth mentioning, because it circumscribes the

basic design of Aristotelian logic in a way eventually seen as no longer adequate for the

designs of modern logic. For their purposes, however, the figures provide an examination

of how logical deduction works, and with them Aristotle exhaustively examines when and

why a conclusion can be truly deduced from some premises but not from others.

Deductions made with sentences qualified modally with “it is necessary (anankaı̄on)

that-P” and “it is possible (dynatón) that-P” (and related sentences, including their nega-

tions) are included in the Prior Analytics and connected works and are carefully differen-

tiated from the assertoric or non-modal deductions (Kneale [1960], p.84). Aristotle intro-

duces the subject of modality in his typical style:

“Since to belong and to belong of necessity and to be possible to belong are

different (for many things belong, but nevertheless not of necessity, while oth-

ers neither belong of necessity nor belong at all, but it is possible for them

to belong), it is clear that there will also be different deductions of each and

that their terms will not be alike: rather, one deduction will be from necessary

terms, one from terms which belong, and one from possible terms” [1989, p.

13].

Subsequent generations built on Aristotle’s system of deduction, apart from which for cen-

turies no “logic” could be imagined, with critiques, corrections, and additions. For this

reason, modality continued to have a secure place in the considerations of ancient and me-

dieval logicians. It was not until these older forms of logic were made defunct, replaced by

a very different understanding of logic and gradually seen to be obsolete in comparison with

the new, that modality slipped quietly and without struggle into a place of insignificance.

In fact, the disappearance of modality is a helpful, if not key, motif when trying to

understand the historical emergence of “modern” forms of Western logic. Modern logic
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began with a self-conscious rupture, which sharply distinguished itself from the ancient and

medieval logics that had preceded it for centuries. Breaking with all tradition, modern logic

promised a radical revision of the subject from the ground up and seized upon new concepts

which could actually make advances into this unknown territory. It may be surprising

just how recent this break with tradition occurred: even in 1781 Immanuel Kant could

still claim that “the entire field of logic had not made a single advance since Aristotle’s

great treatise,” the Prior Analytics (Aristotle [1989], p. vii). Those who point to Gottlöb

Frege’s Begriffsschrift (1879) as the first indication of the arrival of modern logic, if not

its actual foundation, do so because Frege (who was a sharp critic of Kant, among others)

wanted to reinvision logic as a “concept-script,” a language of pure thought which excluded

all rhetorical inaccuracies and modeled itself on arithmetic instead, setting its sights on

“the analysis of mathematical reasoning” (Kneale [1960], p. 478). Built directly into the

new formal language of the “concept-script” is the rejection of the distinction between

subject and predicate, hitherto the virtual hinge of all logical statements, as “dogma” which

limits the advance of logical precision. In Frege’s ideal language, “the whole content of a

judgment is expressed by [the subject]... there will then be one and the same predicate

phrase for all statements, namely [the predicate] ’is a fact’; but it will not be like ordinary

predicate phrases, since its work will be simply to present the subject content in the form

of a judgment” (op. cit., p. 479). Frege first introduced the symbol “�” into formal logic,

as the representation of this predicate, “is a fact,” and his rearrangement of the nature of

the judgment, which shifted the formal perspective on the characterization of practically

every logical term: universals, particulars, and negations would now refer to the content of

a judgment, not the form of judgment as such; other distinctions familiar to the old logic,

such as disjunction, became part of the grammar of Frege’s “concept-script.”

Above all, modality could be disregarded as completely irrelevant to logic, because

“it refers to grounds rather than to contents of judgments” (op. cit., p. 480). This is to

say that Frege saw modality as a mistaken introduction of human concerns regarding the
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epistemic grounds for a judgment’s content; these concerns had no place in a conception

of logic in which every judgment, without exception, must be predicated as factual: “By

saying that a proposition is necessary I give a hint about the grounds for my judgment.

But, since this does not affect the conceptual content of the judgment, the form of the

apodictic [modal] judgment has no significance for us” (italics original). Likewise “If a

proposition is advanced as possible” in the sense of modal qualification, “the speaker is

suspending judgment by suggesting he knows no laws from which the negation of the

propostion would follow” (Frege [1879], p. 13). While Frege’s vision of logic was just

the beginning of a revolution for the discipline, it suggests that for the new logic, modality

was to be regarded as an antiquated, conceptually imprecise holdover from a time in which

“’logic’ once had to do with words and with reason,” studied for “philosophical insight

into the mysteries of the laws of thought.” The tasks laid out for logic have since required

not so much deductive systems of the kind envisioned by Aristotle, but the construction

of elaborate formal languages like Frege’s, each of which “is like a sentence machine, a

computing machine, an electronic typewriter whose output is a set of sentences” (Halmos

and Givant [1998], p. 1, 3).

It is perhaps too easy to draw a straight line from Frege’s global predication of “is a

fact” to the much-maligned philosophy of logical positivism, whose reign reconceptualized

thought and language as iterative, machinelike, and bounded, maintaining with particular

vehemency that, in the words of Ludwig Wittgenstein [1922], “the world is everything that

is the case” and no more (p. 25). However, the new confidence and excitement which

modern logic inspired in its proponents inside and outside the mathematical community,

and the radical recasting of logic’s foundations in which new generations of students were

being trained, should not be forgotten either. This confidence is on particular display in

the work of one of the earliest modern logicians to attempt to reintroduce modality to its

estranged discipline: Jan Łukasiewicz, who set out to reclaim none other than Aristotle as

the actual founder of modern logic, by recasting his system of deductions into the formal
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logic of the twentieth century. In Aristotle’s Syllogistic from the Standpoint of Modern

Formal Logic, Łukasiewicz [1957] lays out an interpretation of Aristotelian logic which

justifies the criteria for any system of statements claiming to be logical in the modern

world and derives a self-consistent version of Aristotle’s assertoric (non-modal) syllogistic

which meets these criteria, separating this system from an otherwise ubiquitous confusion

he finds in Aristotle’s thought, and also from the “philosophical prejudices” of centuries of

scholastic commentary which have become “useless from the standpoint of logic” (p. 35,

38). Among the countless interpreters of Aristotle from the past, Łukasiewicz “venture[s]

to say they must all have been bad mathematicians,” who are more often than not guilty of

“bad philsophical speculation” and a general “ignorance of logic” (op. cit., p. 8, 11). From

this staunchly modern standpoint, Łukasiewicz discovered Aristotle’s modal syllogistic to

be riddled with “faults and inconsistencies.” In the face of such glaring contradictions,

Łukasiewicz recognized that his desire to “explain as well as appreciate [Aristotle’s] modal

syllogistic” as thoroughly as he had treated the assertoric syllogistic would require him to

“establish a secure and consequent system of modal logic” beginning from the suppositions

of modern logic instead (op. cit., p. 157). Compared with the extensive rapproachment

with modality achieved by his contemporary C. I. Lewis, Łukasiewicz’ contributions to

modal logic, including the modal system he developed to grapple with Aristotle’s modal

syllogistic, have not subsequently been well-remembered.1 Even still, Łukasiewicz’ point

1For a succinct account of the modern approach to modal logic first made by C. I. Lewis, see Burgess

[2013], p. 144-145. Łukasiewicz’ contributions are hardly miniscule, and his modal systems still provoke

interest today (cf. Font and Hájek [2002]). He also originated a different formalism for propositional logic,

detailed in [1957] and known as “Polish notation,” which eliminates the need for parentheses (cf. Halmos

and Givant [1998], p. 17).

Furthermore, Łukasiewicz’ efforts to show Aristotle’s syllogistic to be rigorous, even by the then-latest

standards of modern logic, helped revive genuine interest in ancient logic beyond its historical significance,

and has led to many subsequent reconstructions of Aristotelian logic which try to refine the method of [1957].

Nowhere is it clearer than in Łukasiewicz’ work, however, that the hard-won presuppositions which make up

modern logic, as intractable as they appear in the contemporary mind, may for that very reason fundamentally

interfere when trying to piece together the Aristotelian modal syllogistic into the coherent whole which

Aristotle himself had in mind. Building on the advances in logic of the last half-century, Malink [2013] puts

forth a model which contravenes the consensus opinion that started with Łukasiewicz by demonstrating the

core set of claims in the modal syllogistic “is consistent and that, with respect to the proposed model, these

claims do not contain mistakes” (p. 2). Like other more recent approaches, Malink’s is much more self-
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of view is instructive for understanding the origin and motivation behind the basic tasks

for any attempt to fashion a system of modal logic “from the standpoint of modern formal

logic,” as the title of [1957] suggests.

In Chapter 1 below, we will undertake the same task of reintroducing modality into

modern propositional logic and examine the predicaments which ensue. Because modality

itself was relegated as contrary to logic’s advance into the modern period, seeking to bring

the modal notions back into formal logic at first seems like transplanting a vestigal organ

into a healthy body or installing instruments into a machine that runs just fine already.

From the beginning, such a task appeals to the authority of the methods of modern logic.

In particular, we shall be making a clear distinction between the logical syntax, or the se-

quential presentation of symbols on the page, and the semantic meaning of those symbols

provided by their formal interpretation. The tight clarity of the notion of validity which

modern logic has achieved for its propositions becomes the standard for which a modern

modal logic must reach, and this high standard will immediately bring us back to the prob-

lem of modality as it was posed in the first paragraphs of this introduction: when we say x

is “necessarily” or “possibly” so, what exactly do we mean to say about x, and what does

this mean for the validity of statements about x? Chapter 1 explores these issues from the

ground up, looking to modern propositional logic itself as the source for restrictions and

clarifications of the meaning of the modal notions that could bring them to the same level

of formal precision. By the end of Chapter 1, many of the unique prospects which arise

while working with systems of modal logic should thus be clear as well.

For a time, it seemed that the inherent ambiguity of modality when thrust onto mod-

ern logic’s brightly-lit stage would prevent any further elaboration of modal logic than the

kind pursued in the first chapter and opened up by logicians like Łukasiewicz, in which

the modal notions were introduced through the use of special operators, and systems of

modal logic were established axiomatically and then explored, to see if the statements that

conscious about developing an interpretive framework which pieces together Aristotle’s modal syllogistic on

its own terms, “albeit at the cost of some interpretive complexity” (ibid.).
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could be derived from them according to the rules of propositional logic made any sense.

As will be seen, this approach is partially illuminating but does nothing to overcome the

basic superfluity of meaning the modal operators introduce into propositional logic. Begin-

ning with Kripke [1963], however, an unexpected breakthrough occurred which provided

a new scheme of interpretation that could determine the validity of modal formulas while

clarifying the logical meaning of modality. Kripke’s idea was that modal operators can be

interpreted by relating the truth or falsity of a logical proposition in one world (presum-

ably our world, the logically assertable world of everything “that is the case”) to its truth

or falsity in other possible worlds, the status of which required no further commentary for

the purposes of constructing an entirely new formal interpretation of modal logic. Indeed,

Kripke [1959] writes:

“The basis of the informal analysis which motivated these definitions is that

a proposition is necessary if and only if it is true in all ’possible worlds.’ (It

is not necessary for our present purposes to analyze the concept of a ’possible

world’ any further)” (p. 2).

Possible-worlds interpretations of modal logic are quasi-mathematical constructs which, in

their developed form, consist of a set of “worlds,” each of which are really an enumeration

of propositional variables that can be judged as either true or false; a relation which speci-

fies the pairwise accessibility of those worlds to one another; and a function which specifies

every propositional variable as either true or false. However, in a possible-worlds interpre-

tation truth-values must be specified for propositional variables, not just in one world, but

in every world contained in the set of all worlds. Chapter 2 below is a detailed exposition

of possible-worlds interpretations of modal logic, with special attention paid to the answers

it can provide regarding the validity of modal formulas raised in the first chapter.

The real impetus guiding the development of this paper, however, is a desire to look

beyond possible-worlds semantics. Despite their breakaway success in carving out a place

for necessity and possibility within the framework of modern formal logic, possible worlds
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do not exhaustively or definitively characterize the notion of modality. The informal insight

which they cast upon the meaning of modality is not the only one that is possible, nor is it

the most intuitive or relevant way to understand the modal notions.2 Meanwhile, the formal

structure of possible-worlds interpretations, while it is extremely useful as an illustration

of how to provide a full semantics for modal logic, has the shortcoming of being unable to

account for the vague and increasingly overtaxed notion of “worlds.” Chapter 3 explores

an alternative interpretation of modal logic drawn from the subfield of mathematics known

as topology. In more recent years, there have been many mathematical interpretations given

for modality from areas ranging from Boolean algebra to probability theory. The mathe-

maticians J.C.C. McKinsey and Alfred Tarski began to interpret modality with the help of

topology as early as [1944], making these efforts at least as old as those relating to possible

worlds.

This paper also explores the turn to temporality as a more adequate, and less eccentric,

fixture for understanding and representing the logical meanings of modality. On this ac-

count of modality, when we say “it is necessary that x,” or “it is possible that x,” we are not

just making a subtle postulation about the existence of alternate states of affairs (or worlds

so-called); in a sense much more immediate to and inseparable from experience, on the

temporal account these kinds of “counterfactual” statements can and do arise because of

the situatedness of all our statements in time and so relative to times. This includes our

statements about the actual or factual world. Arthur N. Prior was the first modern logician

to dedicate himself to the logical and philosophical development of a temporal underpin-

ning for modality. Beginning with [1955], and throughout the decade preceding Kripke’s

development of possible-worlds semantics, Prior made temporality the central locus for

applying and understanding modal logic. In a talk given in 1954 and published later, Prior

said:

2Pruss [2011] develops a detailed argument concerning the philosophical limitations and metaphysical

problems that have become associated with possible-worlds semantics, while Kishida [2011] specifically de-

velops topological semantics for first-order modal logic to address inadequacies in the possible-world reading.
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“When the new interpretation is employed, it becomes possible to enrich the

calculus [of propositional logic] with a pair of non-truth-functional operators

which cannot be attached to the timelessly-true ’propositions’ of the current

interpretation. These are namely the tense operators ’It has been the case that,’

symbolized here by ’p’, and ’It will be the case that,’ symbolized here by ’F’.

The functions formed by these operators are themselves propositions whose

truth may vary with time” ([1958], p. 106).

In this passage, Prior indicates one strength of the temporal view of modality: its nativity.

In qualifying statements as relative to times, we already intuit that these qualifications are

themselves situated in time, and so can be assessed as true or false, past, present or fu-

ture, “possible” or “necessary,” differently at different times. “Truth, on the face of it, is a

property of propositions which is liable to alter with the time they are put forward” (Prior

[1958], p. 105). Thus like the notion of “possible worlds,” the temporal reading of modality

is outfitted with a loosely-delimited notion, time, which will guide the informal interpre-

tation of modality. Why this notion is linked to modality, how this link can inform our

thinking about temporal and modal notions, and why it is preferable to the similarly vague

notion of “possible worlds” are all matters of speculation and debate. Chapter 4 below

will simply examine an alternative to or variant of modal logic, geared towards this tem-

poral reading of modality, called tense logic. By altering the formal representation of the

modal operators so that statements of tense logic always invoke necessity and possibility as

relative to some past or future time, tense logic only alters the manner in which statements

of modal logic are read and understood. The syntax of tense logic can erstwhile be dealt

with autonomously of its prescribed meaning, just as before, making it formally equivalent

and interpretively analogous to regular modal logic. However, this changed reading has in-

teresting implications when we make renewed interpretations of the syntax of tense logic.

Thus Chapter 4 returns to the possible-worlds semantics and the topological semantics of
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previous chapters, showing how each of these may be used to provide a semantics for tense

logic as well.

The overall aim of this paper is thus not to break entirely new ground in the field of

modal logic but to present a detailed exposition of the topic. Throughout, I supplement

definitions and theorems with explications that are intended to clarify what is being done

and why. For some, the level of explanatory detail may seem redundant or unnecessary, but

my hope is that someone with very little background in any one of the particular subjects

discussed could pierce through the formalism and gain a working understanding of the

topic by reading this paper. The organization of the paper as a whole generally proceeds

in a direction of increasing detail, so that the understanding requisite for subsequent topics

can gradually accumulate. As this introduction has already made clear, it also moves from

the much more widely-accepted understanding of modality by way of “possible worlds,”

to the alternative topological and/or temporal understandings of modality. Broadening our

range of interpretations and understandings of modality simultaneously frees modal logic

for fresh interpretation and new insights. In this way, the exposition aims to illuminate

the advantages I see in forging new connections between the modal notions and areas of

mathematics like topology as well as the advantages of linking modality with time. Thus

the discussion is oriented in the direction where modal logic has the most potential for

future development.

I am particularly indebted to the various introductory books I have consulted and with

which I have become familiar; I relied upon these during my first explorations of modal

logic, especially Hughes and Cresswell [1968], Hughes and Cresswell [1996], and Priest

[2008]. Any one of these manuals would be the ideal place for someone who takes an

interest in the subject of modality after reading this paper to continue their study.
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Chapter 1

Modality and Validity

This chapter presents the basic buildling blocks of propositional logic, with which the no-

tions of modality can be formally represented and manipulated. Because it lacks the quan-

tification of statements and some of the more specialized symbolism of first-order mathe-

matical logic, propositional logic is ideal for introducing the idea of a formal language and

exploring the effect that the inclusion of modality has on systems of logical propositions (cf.

Enderton [1972] for an extensive mathematical treatment of propositional logic). The for-

mal definitions of the logical symbols which make up the sentences of propositional logic

enable, from the beginning, a notable contrast between the syntax of propositional logic-

the strings of symbols which are combinable according to definite rules- and its semantics,

the commonly-understood meanings which are associated with those symbols and underpin

the formal rules for building “grammatically correct” logical sentences (called well-formed

formulas or wff’s). When understood semantically, we think of and speak the symbols ∨
and ∧ as representions of disjunction (“or”) and conjunction (“and”) respectively, but while

related to the these interpretations, the formal rules which dictate how logical formulas may

be built using these symbols are technically distinct from the commonsense meaning. Sim-

ilarly, in section 1.1 the two modal notions, “necessity” and “possibility,” will be given a

place in the syntax of propositional logic by representing them formally with a square (�)

and a diamond (♦) respectively, but the formal interrelation of these two symbols, like the

syntactical rules on how they may be placed correctly into a logical formula, remains dis-

tinct from the reading we have in mind concerning their use. As we shall see, while coming

up with a working syntax which includes these two “modal operators” is relatively simple,

the problem with building a semantics for these operators which is on par with the other
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symbols of propositional logic quickly becomes apparent. It is this problem that guides the

material in subsequent chapters.

Statements of propositional logic help answer questions of entailment- this just means

that, broadly speaking, propositonal logic helps demonstrate “what follows from what,” as

Priest [2008] writes. We are interested in knowing whether if such and such statements

are taken for granted, then under what conditions we can accept other statements on a

sure logical footing. By formalizing the basic components of its statements and laying out

clearly the rules for connecting them, propositional logic makes it clear when and where

one statement or set of statements is entailed by (e.g., when it follows from or is deducible

from) another statement or set of statements. In a similar way, some statements of propo-

sitional logic can be said to be valid in the technical sense that they are entailed by (follow

from) just any statement, even one that contradicts itself. Valid logical formulas, which are

also known as tautologies, are always seen to be true, no matter the truth of the specific

contents that they connect together. Some valid statements are quite mundane, but others

can be illuminating or useful for coming up with ways of proving that a counterintuitive

conclusion we might not otherwise be able to demonstrate follows from set of premises in

a logically valid manner. Thus it might be thought of as a natural goal of modal logic to

come up with at least one valid modal formula; here again, however, it quickly becomes

apparent that defining validity and determining whether a particular statement of modal

logic is valid presents unique problems which are not present in a “classical” propositional

statement which omits the modal operators.

1.1 Syntax for Propositional Logic

Definition. A formula of propositional logic (also known as sentential or propositional

calculus) is a finite string or sequence composed of symbols taken to be primitive, that is,
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as signs distinct from a particular meaning. These primitive symbols of propositional logic

include the following:

(i) An unspecified number of propositional variables: p1, p2, p3,... .

(ii) The four symbols: “¬”, “∨”, “(”, and “)”.

The parenthesis symbols “(” and “)” serve as a kind of punctuation in logical proposi-

tions. The “¬” symbol and the “∨” symbol are known as negation and disjunction, respec-

tively, and the latter is called a logical connective, since (when well-used) it “connects” two

propositional variables. We take them all as syntactically primitive, however, to distinguish

the symbols themselves from the meaning generally intended by them (the use of inter-

pretation functions below will serve to reconnect each symbol and its meaning, generating

a semantics for the syntax of propositional logic). Based on these commonly-understood

meanings, however, we can also go ahead and derive definitions for some other commonly-

used logical connective symbols. Let p and q be propositional variables. Then

[∧] (p∧q) := (¬(¬p∨¬q))

[⊃] (p ⊃ q) := (¬p∨q)

[≡] (p ≡ q) := (¬(¬(¬p∨q)∨¬(¬q∨ p)))

where the “∧” symbol is known as conjunction, the “⊃” symbol as implication (or the

material conditional), and the “≡” symbol as (material) equivalence. Since the definition

of these last three symbols are derived from the four syntactically primitive ones, however,

the syntax of propositional logical formulas is in principle reducible to finite sequences of

these four original symbols, interspersed with propositional variables.

Definition. A well-formed formula (wff) of propositional logic is one formed according to

the following recursively-defined rules:

(i) A propositional variable by itself is a wff.

(ii) If A is a wff, so is (¬A).

(iii) If A and B are wffs, so is (A∨B).
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Based on the definitions of the other logical connectives, we find that if A and B are

wffs, so are (A∧ B), (A ⊃ B), and (A ≡ B). These rules are called recursive since, as

long as they are always used correctly, they can be applied successively to well-formed

subformulas where they have already been invoked in order to make well-formed formulas

of ever-increasing complexity. For convenience, we will assume hencefoward that all the

formulas of propositional logic we are dealing with are well-formed and so simply refer

to them as formulas. Following convention, we will refer to propositional variables using

lower-case Latin letters (p, q, etc.); to formulas or subformulas using upper-case Latin

letters (A, B, etc.); and to sets of formulas using capital Greek letters (Σ, Φ, etc.). And for

simplicity, we will henceforward remove the outermost pair of parentheses when writing a

lengthy formula as long as the contextual meaning remains clear.

Non-modal, or classical, propositional logic consists of only these symbols. In addi-

tion to these symbols, modal propositional logic introduces the modal operator as another

primitive symbol.

Definition. The modal operator is a primitive symbol of modal propositional logic, de-

noted “�”. From this symbol we can derive another operator, its dual, according to the

following definitions. Let A be a non-modal formula. Then

[♦] ♦A := ¬�¬A

[�] �A := ¬♦¬A

Here we mean by an operator a symbol which, in order to be written gramatically, is

written as modifying at least one other symbol or symbols, called its argument(s). Both

� and ♦ are thought of as monadic operators because they require only one argument, a

formula (represented by A in the above definition); in this way the modal operators are

simular to negation, which also requires one formula as its argument in order to be written

correctly. Although � was taken to be primitive, its definition follows immediately from

the definition of ♦; thus either symbol can be taken as primitive and the other derived.

Because of this mutual derivability, the two symbols are called the dual of one another: in
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the formal language of propositional logic, which includes the negation sign ¬ as primitive,

the presence of one modal operator always leads to the implied presence of the other.

Definition. A well-formed modal formula of modal propositional logic is one formed ac-

cording to rules (i) through (iii) for a well-formed formula, with the additional rule

(iv) If A is a well-formed formula, so is �A.

From this definition it immediately follows that if A is a wff, so is ♦A. To see that this

is so, let A be a formula. We can follow the chain of formation rules so far given: by (ii)

and (iv), ¬A and �¬A are both well-formed formulas; applying rule (ii) once more, the

formula ¬�¬A is also well-formed. But by definition of ♦, this is just the formula ♦A.

1.2 Semantics for Propositional Logic

With the syntax in place, it is now possible to begin to elaborate how exactly the symbols

of modal logic are supposed to be interpreted. As this section will show, semantics for a

logical syntax must not only provide a careful elaboration of the intended meanings of log-

ical formulas and their symbols, it must also address the problem of entailment: how one

formula can be seen to follow from another. Trying to deduce one formula from another

requires at least some sort of formal interpretive structure, and along the way to provid-

ing such an interpretation the question of validity, what makes some formulas make sense

under any worthwhile interpretation, is also raised. To begin to understand the task of pro-

viding formal interpretations for systems of modal logic, it is first advisable to understand

thoroughly how a semantics is provided for classical propositional logic, beginning with

the definition of an interpretation function.

Definition. Given some nonempty collection of logical formulas, let Var be the set of

propositional variables contained in those formulas. In its very simplest conception, an in-

terpretation is any function, V : Var→{0,1}, which assigns a truth-value to each proposi-

tional variable in a formula or collection of formulas. Namely, if V (p) is an interpretation
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of a propositional variable p, either V (p) = 1, and p is said to be true under the interpreta-

tion; or V (p) = 0, and p is said to be false under the interpretation.

A semantics for propositional logic is built by extending the interpretation function V

to entire formulas or sets of formulas by recursively-defined rules which specify how the

function is to evaluate subforumulas built using the various logical connectives. For any

non-modal formulas A and B, these rules can be specified with exactitude:

• If V (A) = 1, then V (¬A) = 0; otherwise, V (¬A) = 1.

• If V (A) = 1 and V (B) = 1, then V (A∧B) = 1; otherwise, V (A∧B) = 0.

• If V (A) = 1 or V (B) = 1, then V (A∨B) = 1; otherwise, V (A∨B) = 0.

• If V (A) = 0 or V (B) = 1, then V (A ⊃ B) = 1; otherwise, V (A ⊃ B) = 0.

• If V (A) =V (B), then V (A ≡ B) = 1; otherwise, V (A ≡ B) = 0.

The rules for interpreting negation, disjunction, conjunction, and implication relate the

well-understood symbols of propositional logic to their intended meanings. They thereby

provide a formal semantics for the syntax of propositional logic. The meaning of the notion

of negation, for example, is summarized by the first rule above, enabling us to assign the

truth-value of a negated proposition, given that proposition’s truth-value. Given V (p) ∈
{0,1} for some propositional variable p, we can specify V (¬p) ∈ {0,1} as well. The first

rule listed above definitively specifies how to interpret the negation of p.

However, with the introduction of modal operators into a formula, the assignment of a

truth-value to that formula on the basis of its propositional variables becomes problematic.

In other words, given V (p) for some propositional variable p, how are we to interpret

V (�p)? While the respective interpretations of “it is the case that p” and “it is necessarily

the case that p” are intuitively related to one another, the relationship is not unambiguous

enough to formulate a simple rule like those for the connectives of classical propositional

logic.
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Modern modal propositional logic begins with the attempt to formulate just such a rule

for interpreting a modal formula, despite the ambiguity inherent in the modal notions. To

begin to retrace this attempt ourselves, we must first of all notice that it requires a treatment

of the problem of entailment for formulas containing modal operators. Even in the simplest

cases, the relation between the modal operator and its argument (rendered above as the

question “given V (p) for some p, how are we to interpret V (�p)?”) can be thought of as

the relation between two logical formulas: the non-modal formula on the one hand (in this

case, the lone variable p), and the original formula modified by one or more of the modal

operators on the other hand (in this case, the formula �p). If our goal is to formulate a rule

which relates the truth-value of one of these formulas to the truth-value of the other, the

first question we might ask is, “can �p be said to follow from p, or vice versa, and under

what conditions?” To consider this problem carefully, it is worthwhile to introduce several

additional definitions from classical propositional logic (cf. Miller [2015] for background

and extended development of these definitions).

Definition. Let V be an interpretation function and let Σ be a set of formulas. Then V is

said to model Σ, and we write V � Σ, if and only if V (A) = 1 for every formula A ∈ Σ.

Furthermore, let Σ be a set of formulas and let B be a formula (not necessarily belonging

to the set). B is called a logical consequence (or a semantic consequence) of Σ, and we write

Σ � B, if and only if every interpretation V of Σ which interprets all its formulas as true also

interprets B as true (e.g., Σ � B if and only if V � Σ implies V (B) = 1 for every V ). Then

the formulas of Σ are called the premises, and B the conclusion, relative to one another.

If there exists some interpretation of Σ under which all of its formulas are true, but

under which A is false, then A is not a logical consequence of Σ, and we write Σ � A.

Definition. A tautology is a formula A such that Σ�A for every set of formulas Σ (including

the empty set of formulas). Then we can write � A.

It follows that if A is a tautology then, for any interpretation function V , V (A) = 1,
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regardless of the truth-values of its propositional variables. For clarity, the following is an

example of a tautology.

Example 1. Probably the simplest example of a tautology is the formula p∨¬p. Since (by

definition) either the propositional variable p or its negation is true, the formula is always

true regardless of the truth value of p.

Related to the definition of a tautology is the following definition.

Definition. A formula A is satisfiable if and only if there exists an interpretation function V

such that V (A) = 1. Likewise, a formula A is said to be unsatisfiable if and only if V (A) = 0

for every interpretation V .

Again, for clarity, the following is an example of an unsatisfiable formula.

Example 2. Probably the simplest example of an unsatisfiable formula is the formula p∧
¬p. Since (by definition) it cannot be the case that both p and ¬p are simultaneously true,

the formula is always false regardless of the truth value of p.

The meaning of unsatisfiable formulas often appears contradictory, while satisfiable

formulas might be interpreted as only making sense in certain situations (since they are

true for some, but not necessarily all, interpretations of the propositional variable(s) they

contain). On the other hand, tautologies usually appear self-evidently true when under-

stood semantically. It follows from the definitions that a tautology A is satisfiable, but only

trivially so, since Σ � A for every set of formulas Σ.

Constructing a truth-table is one way of determining whether formulas of classical

propositional logic are the logical consequence of one another, or whether a particular for-

mula is a tautology. The first columns of a truth-table contain all the possible permutations

of truth-values for all the propositional variables in question, while successive columns

build up the truth-values of subformulas according to the rules of the interpretation func-

tion, until arriving at the relevant formula(s) in their entirety.
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Example 3. The following truth-table demonstrates that the formula (p ⊃ q)⊃ (¬q ⊃¬p)

is a tautology, or equivalently that (¬q ⊃ ¬p) is a logical consequence of (p ⊃ q).

p q ¬p ¬q p ⊃ q ¬q ⊃ ¬p (p ⊃ q)⊃ (¬q ⊃ ¬p)

T T F F T T T

T F F T F F T

F T T F T T T

F F T T T T T

Since a truth-table contains every possible interpretation for all propositional variables

in all (sub)formulas, once the table is constructed we can quickly evaluate for ourselves

whether there are any interpretations of the variables under which the premises are true but

the conclusion is false. The ease of this evaluation means a clear definition of validity for

classical propositional logic is well within reach.

Definition. A non-modal formula A of classical propositional logic is said to be valid if

and only if A is a tautology.

Although generating a truth-table for very long formulas or a large set of premises

by hand could become a practical impossibility, armed with the previous definition we

can imagine a truth-table large enough to determine the validity of any formula of classical

propositional logic in principle. Thus for classical propositional logic the matter of validity,

and its relationship to the definition of logical consequence given above, would appear to

be settled.

However, the quest for a similar method of determining validity for modal formulas

requires close attention to the process which occurs when we “evaluate for ourselves”

whether or not a truth-table reveals a formula to be a tautology or not. Constructing such

a truth-table for even a simple modal formula presents a problem, since there is no simple

rule to assign a truth-value to the modal portion of the formula based on an interpretation

of the propositional variables.
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Example 4. The following truth-table attempts to demonstrate that the modal formula

�(p ⊃ q)⊃ (�p ⊃�q) is a tautology (and so classically valid).

p q �p �q p ⊃ q �(p ⊃ q) �p ⊃�q �(p ⊃ q)⊃ (�p ⊃�q)

T T ? ? T ? ? ?

T F ? ? F ? ? ?

F T ? ? T ? ? ?

F F ? ? T ? ? ?

This example illustrates the problem with the truth-tabular approach to modal formu-

las. Since no unambiguous logical relationship obtains between necessity, possibility, and

actuality, no explicit rule of interpretation is immediately available to introduce a modal

meaning to correspond with the introduction of modal operators into the syntax of proposi-

tional logic. Therefore, whatever it will mean for a modal proposition to be valid, it cannot

be valid in the sense of a non-modal logical tautology.

This conclusion has led to the distinction which considers the operators of classical

logic (such as ¬ and ∨) to be truth-functional, since an explicit truth-tabular rule can

be provided for their interpretation, but considers the modal operators to be non-truth-

functional, since no such rule for their interpretation exists. If we return to the definition

given above, a logical consequence is established when every interpretation which finds

a set of premises true also finds their conclusion true. Whenever our interpretations are

simple truth-functional rules, such as those given for the symbols of classical propositional

logic, the semantics which reconnect these symbols with their meaning also mechanically

tell us whether formulas made up of them are true or false. However, because of the relative

ambiguity of the notions of modality, it is precisely such a truth-functional interpretation

which is seemingly impossible for modal formulas.

Despite this impossibility, the quest to determine the validity of modal logical formulas

still strives after the same clarity and rigor as the truth-functional interpretation of classical
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propositional logic. The goal of determining the validity of a modal formula is thus to find

ways of meaningfully interpreting the modal operators such that, although the interpreta-

tions might not be expressible as simple truth-functional rules, they should nevertheless be

demonstrably connected to a manipulation of the logical syntax which is considered rule-

based or mechanical, analogous to the high standard of neutrality set by the recursively-

defined rules for interpreting non-modal formulas.

Therefore, because the search for a way to determine the validity of modal formulas

requires we make some kind of allowance for ambiguity in the modal notions themselves,

a natural distinction opens up upon closer examination of the process of evaluating the

validity of any logical formula. On the one hand, a semantic interpretation of the syntax,

both the logical formulas and the propositional variables they contain, must be constructed.

To arrive at a convincing entailment of conclusion from premises, the definition of logical

consequence requires that every such interpretation which holds the premises to be true

also holds the conclusion to be true. Since it derives from an attribution of meaning to the

logical syntax, we might think of this as the semantic notion of validity. On the other hand,

a set of recursively-defined rules must also be provided, such that the rules can be applied

mechanically to the formula(s) in question as a collection of symbols, without regard to the

semantics which motivates any particular interpretation. Since the mechanism of the rules

themselves provide our criterion for entailment in this latter case, we might think of it as

the proof-theoretic notion of validity.

Following Priest [2008], the following definition helps separate out these two simulta-

neous, and closely related, notions of validity, both of which will be key to determining the

validity of a modal formula.

Definition. Let Σ be a set of formulas and let A be a formula. A is called a proof-theoretic

consequence of Σ if Σ entails A according to a formal procedure which refers only to the

symbols of the inference, not their meaning, and which can be applied mechanically ac-

cording to a rule or set of rules. Then we write Σ � A.
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In the case of a truth-table containing formulas of classical propositional logic, these

two notions of validity exactly coincide with one another, because the semantics provided

for the formulas, given above with the help of an interpretation function, happen to be a

set of recursively-defined rules. The truth table for some tautology A thus says both � A

and � A. Modern modal logic aims to show how a modal formula can either be the logical

consequence or the proof-theoretic consequence of other modal formulas. The enterprise of

modal logic has thus required the construction of schemes of interpretation, or semantics,

for modal formulas, as well as the construction of mechanical procedures for determining

the validity of the same formulas. Finally, in order to provide an account of validity as

compelling as that of classical propositional logic, the modal logician must show that these

two notions of consquence actually follow from one another.

1.3 Systems of Modal Propositional Logic

To show how modal formulas can be the logical consequence of one another, we will begin

to treat certain modal formulas as self-evident axioms which then imply an entire system

of theoreoms, as they are derived from those axioms according to logical rules.1

Definition. Let Σ be a set of formulas “closed under logical consequence,” meaning that,

for every formula A, if Σ � A, then A ∈ Σ. A set of formulas Φ ⊆ Σ such that Φ � Σ is then

called a set of axioms for Σ. We call Σ the system axiomatized by Φ, and any A ∈ Σ which

is not an axiom is called a theorem of the system.

Making particular modal formulas into sets of axioms, and seeing what systems of

theorems follow from these axioms clarifies the idea of a modal logical consequence. Ad-

ditionally, the self-evidence of the axioms necessarily restricts the meaning of the modal

operator, thereby reducing the formal ambiguity of the modal notions. A distinct system

1nb. The only required logical rules are modus ponens and the rule of uniform substitution, though others

can be elaborated on this basis.
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of modal logic can be generated out of the assumption of particular axioms, and taken as a

whole these theorems apply a particular “kind” of modality. Until full semantic interpreta-

tions of the modal operators are achieved in later chapters, however, it will be impossible to

fully envision the logical consequence of one modal formula from another here. In a simi-

lar way, the notion of proof-theoretic consequence and its relation to the demonstration of a

theorem’s entailment from its axioms will also require further elaboration. In this overview

of several prominent modal systems, it is just possible to consider the rudimentary qualities

of some common modal systems.

Names of systems, axioms, and rules here follow the catalogue laid out in Hughes and

Cresswell [1996]. Alternative nomenclature for systems of modal logic abounds, however,

as well as many other systems of modal logic being not considered here which have been

and continue to be explored for their particular significance. Only some of the most fun-

damental systems of modal logic are now presented, which have clear expository value

or urgent relevance for subsequent chapters. We restrict ourselves to the following seven

axioms, letting A and B be arbitrary formulas.

[PC] If A is a valid formula of non-modal propositional logic, then A is an axiom

[K] �(A ⊃ B)⊃ (�A ⊃�B)

[T] �A ⊃ A

[4] �A ⊃��A

[B] A ⊃�♦A

[D] �A ⊃ ♦A

[E] ♦A ⊃�♦A

The first axiom listed, [PC], is not a formula of modal logic at all, but a more general

statement conveniently referred to by Hughes and Cresswell [1996, p. 25] as an axiom
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schema. Since modern modal logic is built upon the foundation of non-modal proposi-

tional logic, the axiom schema [PC] holds that any tautologically-valid non-modal formula

is automatically considered to be a valid statement in modal logic. Valid non-modal formu-

las and their logical consquences are axiomatic from the point of view of systems whose

statements contain modal operators. This greatly simplifies the relationship of modal and

non-modal propositional logic, at the expense of introducing at the beginning an infinite

number of axioms into modal logic, since tautological combinations of the symbols of clas-

sical propositional logic alone are in principle endless. The syntactic openness of classical

logic thus becomes the foundation for a similar syntactic openness in modal logic.

Altogether, we will now consider twelve systems of modal logic which are formed

out of the seven axioms above. The first and most fundamental of these is known as the

system K, which is formed from the axioms [PC] and [K]. K is usually considered the

“minimal” system which still produces an intelligible interpretation of modality. Its only

substantive axiom, [K], has had an interesting role in the history of modal logic, as it

only rose to prominent place gradually and was ultimately named for Saul Kripke, the

philosopher whose contributions to modern modal logic (discussed in the introduction and

described in the next chapter) have been instrumental to its development.

If we keep the axioms [PC] and [K] and combine them with the axiom [T], we have the

system T. This system is still extremely versatile, because its only additional axiom gives

shape to the idea of necessity by asserting, for some formula A, that if it is necessarily the

case that A, then it is the case that A. This assumption, which probably agrees with offhand

reasoning about the nature of necessity, generates an entire system of modal logic whose

theorems can be derived from the basic axioms of T. As a brief example we consider the

derivation of one such theorem of T (cf. Hughes and Cresswell [1968, p. 33]).

Example 5. In this example, we show how the theorem A ⊃ ♦A follows from the axioms

of T. Given [T] and substituting (¬A) for A, it follows that �(¬A)⊃ (¬A). By the formula

(p ⊃ q) ⊃ (¬q ⊃ ¬p), which was shown to be valid in the truth-table of Example 3, if an
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implication is true, then so is its contrapositive. Thus by [PC] we may extend this fact to

modal formulas and write ¬¬A ⊃¬�¬A. Since ¬¬A ≡ A, and by definition ♦A :=¬�¬A,

we conclude that A ⊃ ♦A.

An immediately interesting feature of a system of modal logic like T is the nuance to the

notion of modality which is revealed when some modal formulas are held as self-evident

axioms. With regards to the previous example, although possibility isn’t implied by actu-

ality in an unqualified sense, if we start by assuming that necessity implies actuality (the

axiom [T]), this assumption entails that actuality implies possibility. This example is not a

rigorous proof of the theorem but a kind of loose sketch which doesn’t disclose or adhere to

a methodical procedure for arriving at the conclusion from the premises. Such methodical

procedures, which will be developed in subsequent chapters, would actually demonstrate

that the theorem is a proof-theoretic consequence of the axioms of T. At the same time,

while it might offer a vague restriction of the meaning of modality, the example doesn’t

actually provide a definitive interpretation of what necessity and possibility mean in the

context of a formal modal logic. Subsequent chapters explore multiple types of interpreta-

tions, each type rendering its own, more precise, semantic meanings to the general sketch

of entailment of modal formulas which this example provides. Such semantic precision

will more clearly illustrate just how and why the theorems of a modal system like T are

logical consequences of its axioms.

Although we cannot go into great detail concerning them now, we must mention two

other “weak” systems in connection with T, which are also formed by adding a single

axiom to the axioms of K. These are the systems K4, which is formed by axiomatizing

[PC]+[K]+[4], and the system KB, which comes from [PC]+[K]+[B]. The systems K4

and KB will be explored alongside the system T as alternate formulations of comparable

versatility.

As more axioms are added to a system of modal logic, every addition restricts the am-

biguity inherent in the meaning of the modal notions, and so limits the kind of semantic
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interpretations we can give of modality, even while it expands the range of logical deduc-

tions we can make on the basis of the axioms (cf. the diagrams in Priest [2008], p. 37-38).

The system S4 is axiomatized by [PC]+[K]+[T]+[4], and so its deductive power reaches

into places the system T cannot. Making the formula [4] an axiom both raises the question

of what redoubling the modal operators means and asserts an answer to the question: it

claims that if a formula is necessarily true, then it is necessarily the case that it is necessar-

ily true. The system B, which is axiomatized by [PC]+[K]+[T]+[B] and named for L.E.J.

Bertus Brouwer, founder of intuitionism, is similar to S4. The axiom [B] proposes a similar

and equally plausible foray into doubling the modal operators: if it is the case that A, for

some formula A, then it is necessarily possible that it is the case that A. Yet this system is

not reducible to S4 (for proof of this claim, see Hughes and Cresswell [1996], p. 62).

Three more systems, also explored in Chapter 2, are formed around the formula [D].

The system D is axiomatized by [PC]+[K]+[D], the system KD4 by [PC]+[K]+[D]+[4],

and the system KDB by [PC]+[K]+[D]+[B]. In the system D, [T] is not a valid theorem,

even though we might have begun to think of it as self-evident in all cases. In practice the

system D is often used to give modality a moral or “deontological” interpretation, where

the necessary becomes the morally obligatory and the possibile becomes the morally per-

missible. With this context in mind, the axiom [D] serves as an intelligible starting place

which has met with some success (cf. Hughes and Cresswell [1996], page 43).

The final three systems to be considered involve the last axiom in the list above, [E].

One more “weak” system explored in Chapter 2, KE, is axiomatized by [PC]+[K]+[E],

and another consistent system of intermediate strength is formed by [PC]+[K]+[B]+[E].

However, the last system under consideration is also another especially interesting one: the

system known as S5, whose axiomatization is here given as [PC]+[K]+[T]+[E], although it

has numerous others. The system S5 more restrictive than S4 in terms of the interpretation

of modality it affords, but again, with this extra layer of restriction, the theorems which

follow from the exploration of S5’s assumptions become more illuminating.
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This cursory glance at twelve systems of modal logic has looked at them solely as a set

of axioms, from which we can deduce various theorems with familiar logical principles.

In the following chapter, we will continue to explore these systems; however, we will

broaden the view achieved so far by resuming, once again, the search for a satisfactory way

of demonstrating both logical consequence and proof-theoretic consequence in different

modal systems.
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Chapter 2

Possible-Worlds Interpretations

This chapter details the most prevalent and influential formal semantics for modal logic

so far developed. Possible-worlds semantics for statements of modal logic are based on

familiar, everyday talk about possibilities, necessities, and actualities. The informal insight

asks us to consider a typical counterfactual statement as a statement about other possible

worlds besides the one we happen to inhabit and about which we routinely speak. For in-

stance, a possible-worlds interpreter would view the statement “if only humans had never

discovered the atom bomb,” concerning something quite conceivable to ordinary reflection

but something which nevertheless is not true of the reality we inhabit, as a statement about

other worlds where these conceivable possibilities actually obtain in reality. For example,

“in another world besides this one, humans never discovered the atom bomb (I wish I was

there instead)...” and so on. This informal insight regarding possible worlds is appealing to

the logic of modality because it intuitively presents an interpretation for statements about

what is necessarily the case as well. For instance, when someone says something is neces-

sarily the case, like “it was an absolute historical inevitability that humans would discover

the atom bomb, one way or the other” on a possible-worlds interpretation they are making

the assertion that “in every possible world, it is the case that humans discovered the atom

bomb.”

The logical semantics of possible-worlds itself is a formal structure which is capable

of verifiably interpreting statements of modal logic on the basis of the informal insight

just described. Section 2.1 builds up this formal structure and provides the rules which

a given interpretation uses to interpret a particular modal formula. The remainder of the

chapter aims to show that these possible-worlds interpretations provide an exhaustive ac-
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count of validity for statements of modal logic. Taking the truth-functional interpretation

of propositional logic seen in Chapter 1 as a guide, the goal is to demonstrate how, and

under what conditions, one or more modal formula(s) may be said to “follow from” oth-

ers. This means developing a semantic understanding of when one statement is a logical

consequence of another as a matter of the relations between possible worlds in a given inter-

pretive model. Additionally, in Section 2.2 a rules-based method of tableaux construction

is given, so that statements may be seen to entail one another in the proof-theoretic sense as

well. Section 2.3 discusses soundness and completeness in possible-worlds interpretations,

demonstrating that any possible-worlds interpretation and the formal rules for applying it

always follow from one another.

2.1 Worlds, Relations, and Modality

Definition. A state of affairs (or, more commonly, a world) w is a collection of proposi-

tional variables p,q,r, ... . Let w1,w2,w3, ... be distinct states of affairs (or worlds). Then a

set of worlds W is some set {wi : i ∈ α} where α is an index set.

The validity of any well-formed (therefore finite) modal proposition can be determined

with a finite set of worlds W , but we use an index set to describe the worlds in W because

it could also be the case that W contains an infinite number of worlds. Notice that the

different worlds in the set W may be reduplicating the very same collection of propositional

variables, so that although the worlds in the set are different from one another, no such

requirement exists for the propositional variables they contain. This flexibility suggests

a multitude of possibilities in specifying the set of worlds W in a given possible-worlds

interpretation, which is further augmented by the following definitions.

Definition. Given a set W and some n ∈ N, an n-ary relation on W is a subset of the

Cartesian product W n =W ×W × ...×W , thought of as a collection of ordered n-tuples of

elements of W . More specifically, a binary relation on W is an n-ary relation on W where
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n = 2. The binary relation on W is thus a subset of the Cartesian product W 2 =W ×W , or a

collection of ordered pairs of elements of W . The generic binary relation is conventionally

referred to as R and is written between each member of each ordered pair.

A set of worlds W and a binary relation R are the most basic building blocks for

possible-worlds interpretations. The following example further illustrates how these two

constructs are represented.

Example 6. Let W = {w1,w2,w3}. Let the binary relation R = {(w1,w2),(w2,w3)} ⊂
W ×W . By convention, we write w1Rw2 and w2Rw3.

Taking the notion of a set of worlds composed of propositional variables, and the gen-

eral definition of a binary relation, we proceed to the following definition.

Definition. A frame is an ordered pair 〈W ,R〉, where W is a set of worlds and R is some

binary relation, called an accessibility relation, which may be specified between particular

pairs of worlds in W . That is, where wi,w j ∈ W with i, j not necessarily distinct, we say

“w j is accessible to wi if and only if wiRw j is a member of the relation R. Otherwise, we

say “w j is not accessible to wi.”

A particular class of frames Z can be distinguished by characterizing the relation R.

Classifying frames according to particular types of accesibility relations will turn out to be

key to providing a definition of validity in possible-worlds semantics.

Combining the components of a frame with an expanded interpretation function, sim-

ilar to the one described in Chapter 1, completes the formal structure of possible-worlds

interpretations, as the following definition states.

Definition. A possible-worlds interpretation (or model) is an ordered triple 〈W ,R,V 〉, where

〈W ,R〉 is a frame and V : Var→ {0,1} is an interpretation function which assigns a truth-

value to every propositional variable in every world wi ∈W . That is, for every propositional

variable p in every world wi ∈W , either V (p,wi) = 1 and p is said to be “true at world wi”
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under the interpretation 〈W ,R,V 〉; or V (p,wi) = 0 and p is said to be “false at world wi”

under the interpretation 〈W ,R,V 〉.

Since the truth-values of all propositional variables in a given “world” are provided by

V , it follows that, for any world w, the truth values of all well-formed non-modal formulas

can be found by slightly modifying the recursively-defined interpretation function rules of

classical propositional logic, so that the truth-values are given at the particular world w.

Let 〈W ,R,V 〉 be a model. For any world w ∈W and any non-modal formulas A and B:

• If V (A,w) = 1, then V (¬A,w) = 0; otherwise, V (¬A,w) = 1.

• If V (A,w) = 1 and V (B,w) = 1, then V (A∧B,w) = 1; otherwise, V (A∧B,w) = 0.

• If V (A,w) = 1 or V (B,w) = 1, then V (A∨B,w) = 1; otherwise, V (A∨B,w) = 0.

• If V (A,w) = 0 or V (B,w) = 1, then V (A ⊃ B,w) = 1; otherwise, V (A ⊃ B,w) = 0.

• If V (A,w) =V (B,w), then V (A ≡ B,w) = 1; otherwise, V (A ≡ B,w) = 0.

These definitions for the interpretation of a non-modal formula are essentially the same

in possible-world semantics as they are in classical propositional logic. They all involve

only a single world, and on a possible-worlds account we can think of all the statements of

classical propositional logic as speaking with reference to only a single world (the “actual”

world, as some accounts would have it, or the world of “everything that is the case”).

However, since there can be multiple worlds in the set W , with the accesibility relation R

potentially obtaining between any number of pairs of worlds, the additional possibility now

opens up for offering a recursively-defined interpretation function rule for the truth value of

a modal formula as well, whenever that modal formula is interpreted by a particular model

〈W ,R,V 〉. Reflecting the key informal insight discussed in the opening paragraphs of this

chapter, these two final rules make use of the potential accessibility relation R between

different states of affairs in the set W to semantically characterize necessity and possibility,
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and extend the interpretation function once more so that it applies to the two modal oper-

ators. They deserve close attention. Again, let 〈W ,R,V 〉 be a model; then for any world

wi ∈W and any formula A:

• If, for every w j ∈W such that wiRw j, V (A,w j) = 1, then V (�A,wi) = 1; otherwise,

V (�A,wi) = 0.

• If, for some w j ∈W such that wiRw j, V (A,w j) = 1, then V (♦A,wi) = 1; otherwise,

V (♦A,wi) = 0.

By providing an interpretation of the modal operators, these two rules summarize the fun-

damental advance of possible-world semantics. They maintain that, in order for the formula

�A, “it is necessarily the case that A,” to be true at world w, it must be true at all worlds

accessible to w (not omitting w itself) by the relation R. Similarly, in order for the modal

formula ♦A, “it is possibly the case that A,” to be true at world w, it must be true at at least

one world accessible to w (potentially including w itself).

2.2 Semantic Tableaux

In section 1.2, it was shown that constructing a truth-table for modal formulas in the same

manner as one for the formulas of classical propositional logic was a hopeless endeavor.

However, a possible-worlds interpretation (a set of worlds, the accessibility relations which

obtain between those worlds, and the interpretation function defined at every world in the

set) opens a new path for determining the validity of modal formulas. To begin down this

path, we make use of an alternative approach to truth-tables from classical propositional

logic, known as the reductio method.

Instead of demonstrating that every assignment of truth-values to every propositional

variable and subformula of the formula in question results in a valid outcome (as with a

truth-table), the reductio method begins by assuming that there is an assignment of truth-

values which shows the formula to be false, as is done in a proof by contradiction. The
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method then proceeds by pursuing every possible logical consequence of the initial falsi-

fying assumption. The end result of the reductio method is an assignment of truth-values

to every propositional variable in the formula being tested. If there is even a single assign-

ment of truth-values which is consistent with itself, the method has demonstrated that the

original formula is not valid, since the negated formula has been demonstrated to be satisfi-

able. On the other hand, if the exhaustive search for a consistent assignment of truth-values

is without success, the negated formula is unsatisfiable, and so we can be assured that the

original formula is valid. The following example uses the reductio method to prove the

non-modal formula from the truth-table in Example 3.

Example 7. To demonstrate that the formula (p ⊃ q) ⊃ (¬q ⊃ ¬p) is valid using the re-

ductio method, suppose not. That is, assume that p ⊃ q, but suppose it is not the case that

¬q ⊃ ¬p. By definition of implication, the premise p ⊃ q is true whenever it is the case

that ¬p is true or q is true. Since we assumed the premise to be true, at least one of these

must be the case, allowing us to arrive at our first attribution of truth values: we know that

either p is false or that q is true (or possibly both). Setting aside these possibilities, we now

consider the conclusion, ¬q ⊃ ¬p. Since to negate the original formula we assumed that

its conclusion was false, we must in turn negate the implication the conclusion contains,

which (again, by definition of implication) tells us that ¬q is true and so is ¬(¬p). We can

then assign truth-values on this new basis: q is false and p is true. Since it is a conjunc-

tion, this new fact forces us to contradict ourselves: in order for the reductio assumption to

work, either p is both false and true or q is both false and true (or both); no matter what,

the negated formula is unsatisfiable. Therefore the original formula is valid.

The previous example walks us through the reductio method, but it does so in a didactic

way that relies on the vagaries of ordinary language. Just as a truth-table represents the rules

for interpreting non-modal formulas in an exhaustive and tabular form, thereby providing

a finite and mechanical process of determining the validity of those formulas, a similar

representation of the reductio method is sought which, through the successive application
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of rules, could clearly determine the validity of a modal formula under a possible-worlds

interpretation. A particularly clear representation is to be found in semantic tableaux (cf.

Priest [2008]; Hughes and Cresswell [1996] develop an analagous, though independent,

test for validity using what they call semantic diagrams). A semantic tableau applies the

reductio method to a formula of modal logic, developing a tree diagram according to a

list of carefully-specified rules. The tableaux get their tree-like shape because they consist

of one or more branches, where each branch is formed from a series of connected nodes.

The nodes of the tableau are always marked with some information which is taken to be

the case in the model which the test is building up. Usually this is some subformula or

propositional variable. For instance, if a node is marked with “p” we would then assume

(in the context of the model the tableau is building towards) that it is the case that the

propositional variable p is true. If a node is marked “w1Rw2” we would similarly assume

that w2 is accessible to w1 in the context of the model, and so on. By convention, semantic

tableaux are always contructed (and read) from top to bottom. The segments connecting

the nodes in the tableaux given in Figures 1 through 6 are always marked with downwards-

pointing arrows to reflect this intended direction of development.

If the formula to be tested is an implication, an initial listing of the premise and negated

conclusion forms the original top node of the tableau. Because everything written on a

node is taken to be true, by writing the premise(s) and negated conclusion(s) we are start-

ing out with the assumption that the formula we wish to test for validity is false. This is

in accordance with the reductio method. Similarly, the top node of a tableau which tests

other types of formulas besides implications would be marked with their negation. The

method of semantic tableau is supposed to provide an automatic and exhaustive means of

determining the validity of any given formula; therefore, it is important that specified rules

provide all subsequent moves for creating branches based on the initial listing of the top

node. Assuming the initial node to be true, the tableaux rules provide a way of carefully

diagramming all the possible consequences which follow from that assumption, also in ac-
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cordance with the reasoning of the reductio method. When multiple branches are generated

by these rules, they are always built in the downward direction and develop independently

of one another. Contrastingly, when a tableaux rule does dictate the creation of a branch, it

is instructing that whenever the statement written on the topmost node appears on a given

branch, the statement(s) on subsequent (lower) nodes must also appear on that same branch.

Tableaux rules are activated based on the content of higher nodes, in descending order, until

truth-values can be assigned exhaustively for all propositional variables mentioned on all

branches.

The ten basic tableaux rules diagrammed in Figure 1 (page 54 below) are another

representation of the ordinary recursively-defined interpretation function rules of classical

propositional logic, where the rules are specified for an initial branch with some formula

composed of subformulas A and B and are assumed to be true at a particular world wi.

All the tableaux rules which involve the symbols of classical propositional logic are

given in Figure 1. It is worth noting that (just like the interpretation function rules for

these symbols given above) each tableaux rule involves only a single world, wi ∈ W , of a

given model 〈W,R,V 〉. The successive application of the rules above is enough to complete

tableaux for non-modal formulas, and any non-modal formula can be tested for validity

using the tableaux rules without generating any infinite branches (branches which never

terminate in an assignment of truth-values). Once again, like the truth-functional rules

governing the construction of a truth table, the tableaux rules can be applied mechanically,

and must be applied exhaustively, until they cannot be applied any more, for a given tableau

to be considered finished. By repeatedly applying these rules, a tableau develops until

each branch on the tableau can be characterized as either open or closed, according to the

following definition.

Definition. A closed tableaux branch is one on which, for any formula A, the formulas A

and ¬A each occupy a node. A branch is open if it is not closed.

According to the reasoning of the reductio method, a formula is deemed to be valid
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when every branch of its tableau is closed; contrastingly, even a single open branch on a

tableau verifies the formula’s negation, and so demonstrates that the original formula is not

valid.

Example 8. Now that the basic rules for constructing a tableau are in place, we can use

them to diagram the reductio method we used to demonstrate the validity of the formula

from Example 3, (p ⊃ q)⊃ (¬q ⊃ ¬p). See Figure 2a (page 55 below) for the tableau.

Because the formula is non-modal and involves only a single world, we can omit the

“i’s” on the tableau for simplicity. The topmost node includes the premise p ⊃ q from the

formula as well as a negation of the conclusion, ¬(¬q ⊃ ¬p). A quick application of the

tableau rules for implication (Figure 1g) and negation of implication (Figure 1h) can test

the validity of this formula. The first rule dictates the creation of a branch: one side of the

branch has a node marked with ¬p and the other side has a node marked with q. The next

rule dictates that every branch that stems from the negation of the implication ¬q ⊃ ¬p

must have two additional nodes, one of which would be marked with p, and the other with

¬q. We clearly only need one of those nodes on each existing branch of the tableau to

provoke a contradiction and close both branches, which are marked by an X to indicate that

they are closed.

An open branch in an exhaustively completed tableau indicates a countermodel which

falsifies the original formula, demonstrating that it is not valid. The following example

shows how a tableau can also determine that a formula is not valid in the discovery of an

open branch.

Example 9. In this example we construct a tableau which provides a falsifying counter-

model for the formula of propositional logic (p ⊃ q)⊃ (¬p ⊃¬q). See Figure 2b (page 55

below) for the tableau. Both branches of the tableau are created by the rule for implication

generated by the premise p ⊃ q. The remaining nodes arise owing to the rules for negation

of implication and double negation. Both branches of the tableau remain open, and both
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point to the possible truth-values for p and q which falsify the original formula. If p is

false and q is true, then the entire formula (p ⊃ q)⊃ (¬p ⊃¬q) is false; since this original

formula has a falsifying interpretation, it is not valid.

In order to construct a tableau capable of testing the validity of modal formulas, four

additional rules are required. These are given in Figure 3 (page 55 below) and are grounded

in the framework of possible-worlds interpretations. Figures 3a and 3b are rules which ap-

ply whenever nodes appear in a tableau containing either a necessity operator or its nega-

tion. Just like the tableaux rules for the operators of classical logic, these four rules are a

methodical representation of the possible-worlds semantics for the modal operators which

have already been considered. If some formula A preceded by the necessity operator is true

at world wi ∈ W , and if there is some world w j ∈ W such that w j is accessible to wi (that

is, wiRw j), then the possible-worlds interpretation of modal logic indicates that A must be

true at world w j, since otherwise �A could not be true at wi. The first rule represents this

formally, specifying that if �A,wi is on a node which is part of a branch containing wiRwj

for some wj which appears written in the tableau, then a new node saying A,wj opens be-

low on that branch. The entries into the tableau are here displayed in bold to distinguish

them from the semantic content which they represent. The purpose of tableaux rules for

the modal operators, like rules for the other operators already considered, is to provide a

methodical and exhaustive procedure which could test the validity of modal formulas in the

absence of recognition of the semantic interpretation of the symbols in those formulas.

Meanwhile, the second rule accounts for the relationship between the two modal oper-

ators. To offer a paraphrased semantic reading of the rule, it says that any branch which

passes through a node containing the negation of a necessary formula A (“it is not neces-

sarily the case that A”) at world wi is extended by a node which contains the possibility

operator applied to the negation of the original formula (“it is possibly the case that not A”)

at the same wi. Similarly, Figures 3c and 3d are rules which apply whenever nodes appear

in a tableau containing either a possibility operator or its negation.
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The third rule specifies (again, in a paraphrased way) that if a node in a tableaux appears

containing some formula A which is qualified with the possibility operator at world wi, then

every branch which passes through that node is extended by another node. The new node

states that the formula A is true at some new world w j, where j is a number that has not

yet appeared on the tree, and furthermore that this world w j is accessible to wi. Notice the

difference from Figure 3a: that rule is only activated when the necessity operator is present

and a relation to another world is present in the model up to that point. Contrastingly,

Figure 3c only requires the presence of the possibility operator, and its activation creates a

new world in the model which is accessible to the world written on the top node.

The final rule (in Figure 3d) again accounts for the interconvertability of the two modal

operators. It should be evident that all four rules are an exhaustive formal representation of

the semantic meaning of necessity and possibility enabled with possible-worlds interpreta-

tions.

Example 10. With these four additional rules in place, it is now possible to construct

tableaux capable of testing the validity of simple modal formulas. We return to the modal

formula encountered (unsuccessfully) in Example 4. This formula should now be recog-

nizable as the axiom [K] required to build the systems of modal logic outlined in Chapter

1: �(p ⊃ q)⊃ (�p ⊃�q). See Figure 4 for the tableau (page 56 below).

As with the formula from Example 8, the premise of the formula and the negated

conclusion form the beginning of the tableau in Figure 4. We can set aside the premise

�(p ⊃ q),w1 for the time being, since its tableau rule (Figure 3a) doesn’t become relevant

until there is another world in the model which is accessible to w1. That leaves the tableau

rule for the negation of an implication (Figure 1h), since ¬(�p ⊃�q),w1 is also marked

at the top of the tableau. The rule leads to the following two nodes on the tableau; we can

once again set aside the first one, marked �p,w1, leaving the second, marked ¬�q,w1, to

contend with. Negation of a necessity operator (Figure 3b) dictates the next node in the

diagram, which as a possibility operator dictates the following node marked w1Rw2 and
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¬q,w2. However, the creation of a world accessible to w1 in the model triggers the rule

for the necessity operator which we had hitherto been ignoring, generating the next two

nodes marked p,w2 and p ⊃ q,w2. This last node gives contradictions to the current eval-

uations of p and q at w2. Thus a closed tableau for [K] is achieved through the successive

application of the rules given in Figures 1 and 3.

2.3 Worlds, Relations, and Validity

Definition. A formula A of modal logic is said to be valid on a frame 〈W,R〉 if and only if,

for every possible-worlds interpretation 〈W ,R,V 〉 made from 〈W,R〉, and for every w ∈W ,

it is the case that V (A,w) = 1. We say the formula A is K-valid if the choice of frame is

arbitrary. K-valid formulas are thus valid on every frame.

Although this definition asserts that K-valid formulas are valid for every interpretation

〈W ,R,V 〉, the connection between this validity-definition and the system of modal logic

known as K must still be proven. The connection must be proven in both directions: when

proven one way, the system is said to be sound; when the connection is proven in the other

direction, the system is said to be complete. We begin by defining soundness, in order to

prove that the modal systems introduced in Chapter 1 are all sound with respect to their

validity-definitions in possible-worlds semantics.

Definition. A system of modal logic is sound with respect to a validity-definition if every

theorem A of the system is valid according to that definition.

Since a modal system’s theorems can in principle be derived from its axioms according

to the exhaustive supply of tableaux rules given in Figures 1 and 3, the theorems can in

this sense be collectively thought of as proof-theoretic consequences of the axioms which

entail them. The method of semantic tableaux has been purposefully laid out so that it can

be completed in an automated fashion, with reference only to the tableaux rules and so

without explicit reference to a possible-worlds interpretation. Recall that, in the context of
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possible-worlds semantics, an interpretation refers to an ordered triple 〈W ,R,V 〉. In contrast

to the rules-based notion of proof-theoretic consequence, a theorem is seen to be a logical

(or semantic) consequence of its axioms only when it is interpreted as valid on a frame

or class of frames. The two notions (proof-theoretic and logical consequence) have been

separated out on purpose, and by showing soundness we begin to demonstrate clearly the

connection between.

To prove that a modal system is sound with respect to its validity definition is to show

that, for every interpretation relevant to the definition and any formula A, if A is a proof-

theoretic consequence of a set of axiom-formulas Σ, then it is a logical consequence of

the same Σ (succinctly put, soundness means Σ � A implies Σ � A). We begin with the

soundness of K with respect to K-validity.

Theorem. If a formula is a theorem of the system K, then it is K-valid.

Proof. To prove that every theorem of K is K-valid is to show that they are all valid on

any arbitrary frame 〈W,R〉. It suffices to show that the axioms of K are valid on any frame

〈W,R〉, because the theorems of K then follow from its axioms. Since a valid formula of

classical propositional logic is valid in every world in every possible-worlds interpretation,

it is clear that these formulas will be valid on every frame, verifying [PC]. To show that

[K] is valid on every frame, suppose not; that is, suppose there exists a possible-worlds

interpretation 〈W ,R,V 〉 for which V ([K],wi) = 0 at some world wi ∈W . Then the formula

�(A ⊃ B)⊃ (�A ⊃�B) is false at wi. For this interpretation, by definition of implication,

V (�(A ⊃ B),wi) = 1, V (�A,wi) = 1, and V (�B,wi) = 0. Recall that, in a possible-worlds

interpretation, for a formula to be “necessarily true” at wi it must be true at all worlds

accessible to wi. So, since V (�B,wi) = 0, there exists some w j ∈ W such that wiRw j and

V (B,w j) = 0. But then, since V (�A,wi) = 1, by the same token V (A,w j) = 1. Thus by

definition of implication V (A ⊃ B,w j) = 0. This is a contradiction, since we had already

asserted that V (�(A ⊃ B),wi) = 1 and we know wiRw j. Thus [K] is valid on every frame.
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As the system K is axiomatized by [PC]+[K], we conclude that every theorem of K is

K-valid.

This proof is intuitively related to the semantic tableau which is given in Figure 4 (page

56 below).

Shifting our attention to the modal system T, the following example highlights why a

separate validity-definition will be needed when working with separate systems of modal

logic. Fortunately, these various definitions of validity are intrinsically connected to the

framework of possible-worlds interpretations.

Example 11. The axiom [T] is not K-valid in the following simple possible-worlds inter-

pretation 〈W,R,V 〉 (which is thus known as a specific countermodel for [T]). Suppose A is

some formula. Let W = {w}, let R= /0, and let V (A,w) = 0. Since world w is not accessible

to itself, and there are no other worlds in the set W , it is vacuously true that V (A,wi) = 1

for all worlds wi where wRwi; thus �A is interpreted to be true at w, even though A is false

at w. Thus [T], the statement �A ⊃ A, is false under this interpretation, and is therefore not

K-valid.

Although some statements in the modal system T are not K-valid, we still want to

understand under what conditions they might be said to be demonstrably valid. Possible-

worlds interpretations are flexible enough to discover just what these conditions might be,

beginning with the following definition.

Definition. Let Z be a class of frames. A formula A of modal logic is said to be Z -valid if

and only if, for every frame 〈W,R〉∈ Z and every possible-worlds interpretation 〈W ,R,V 〉
made from 〈W,R〉, V (A,w) = 1 for every w ∈W .

With a general definition in place, we now consider the class of frames relevant to the

system T. The countermodel in Example 10 is already oriented to the solution: in order for

[T] to be interpreted as true in the countermodel, all that would have been necessary would

have been to make the lone world w accessible to itself. We characterize the binary relation
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which provides for such self-accessibility reflexive, and the following definition establishes

reflexivity as a special criterion for testing the validity of modal formulas.

Definition. Let T be the class of reflexive frames 〈W,R〉. In other words, for every frame

in the class T , if w ∈W , then wRw. It follows that a formula A of modal logic is said to be

T -valid if and only if, for every frame 〈W,R〉∈T and every possible-worlds interpretation

〈W ,R,V 〉 made from 〈W,R〉, V (A,w) = 1 for every w ∈W .

This definition for T -validity gives rise to a new tableaux-rule to be used when testing

for validity on reflexive frames, given in Figure 5a (page 56 below). Notice that the rule

merely specifies the condition of reflexivity: when testing for T -validity, for every world

wi which appears at some node in a tableau it becomes safe to assume that wiRwi.

Now we may reapproach the question of the soundness of T with respect to possible

worlds semantics, by restricting ourselves to possible-worlds interpretations made with

reflexive frames.

Theorem. If a formula is a theorem of the system T, then it is T -valid.

Proof. It was shown in the previous proof that [PC] and [K] are K-valid, and so valid on ev-

ery frame, including reflexive frames. Since the system T is axiomatized by [PC]+[K]+[T],

it remains to show that [T] is valid on every reflexive frame. We proceed again by contra-

diction; that is, suppose there is a reflexive model 〈W ,R,V 〉 for which V ([T ],w) = 0 at some

w ∈W . Then the formula �A ⊃ A is false at w, which means (again, by definition of impli-

cation) that V (�A,w) = 1 and V (A,w) = 0. By assumption, wRw, so there exists a world

accessible to w for which A is false, implying V (�A,w) = 0: a contradiction. Therefore

[T], and so the system T, is T -valid.

We have just shown that every theorem of the system T is interpreted as true in possible-

worlds interpretations based on reflexive frames. This is a significant advance, as it relates

the validity-testing procuedure for theorems of T based on semantic tableaux to the log-
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ical consequence already seen between the axioms of T and its theorems. The following

example highlights this relationship.

Example 12. We return to a theorem of T, A⊃♦A which was examined in Example 5 (page

25 above). Although Example 5 gave an informal “proof” of the theorem, the tableau in

Figure 6 (page 57 below) for this same statement formally demonstrates that it is a proof-

theoretic consequence of the axioms of T. Because the reductio method aims to discover a

particular counterexample which falsifies the original formula, the tableau tests the state-

ment for a particular propositional variable p in hopes of building a countermodel which

provides a non-contradictory interpretation of p. The tableau begins with representations

of the premise, taken for a particular propositional variable p at world w1, in the model, and

the negation of the conclusion, ¬♦p, also at world w1. This latter invokes the tableaux-rule

for the negation of a possibility operator (Figure 3d), leading to the following node marked

�¬p,w1. Because the tableau is testing for T -validity, we may use the rule from Figure

5a and assume that world w1 is accessible to itself, e.g., w1Rw1 in the model. Thus by the

tableaux-rule for necessity (Figure 3a), the final node is marked ¬p,w1, closing the branch

and verifying the T -validity of the original statement.

The theorem just proven (If a formula is a theorem of the system T, then it is T -valid)

shows that this proof-theoretic relationship implies that the formula is also T -valid. Thus

from the tableau in Figure 6 it is permissible to draw the conclusion that A ⊃ ♦A is valid

on the class of reflexive frames T . The previous proof generalizes this relationship and

demonstrates soundness of T with respect to T -validity.

The following definitions, theorems, and proofs establish the soundness of the other sys-

tems of modal logic introduced in Section 1.3, utilizing other classifications of the binary

relation enabled by possible-worlds interpretations. Just like the exploration of T -validity,

these definitions, theorems, and proofs are interesting because they illuminate why, in the

possible-worlds interpretation of modal logic, a particular type of binary relation is intrin-

sically connected to a particular axiom-system. We consider, in turn, all the systems which
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extend the system K with a single axiom: K4, KB, D, and E. Recall, however, that further

systems like KBE and S5 may be constructed using multiple axioms from the original list,

and so the soundness of these more complex systems are also effectively being established

by way of the following definitions, theorems, and proofs.

Definition. Let F be the class of transitive frames 〈W,R〉. In other words, for every frame

in the class F , if wi,w j,wk ∈ W with wiRw j and w jRwk, then wiRwk. It follows that a

formula A of modal logic is said to be F -valid if and only if, for every frame 〈W,R〉∈ F

and every possible-worlds interpretation 〈W ,R,V 〉 made from 〈W,R〉, V (A,w) = 1 for every

w ∈W .

This definition for F -validity gives rise to a new tableaux-rule to be used when testing

for validity on transitive frames, given in Figure 5b (page 56 below).

Theorem. If a formula is a theorem of the system K4, then it is F -valid.

Proof. Since the system K4 is axiomatized by [PC]+[K]+[4], it remains to show that [4] is

valid on every transitive frame. Again, suppose (for a contradiction) that there is a transitive

model 〈W,R,V 〉 for which V ([4],wi) = 0 at some wi ∈ W . Then the formula �A ⊃ ��A

is false at wi, which means (again, by definition of implication) that V (�A,wi) = 1 and

V (��A,wi) = 0. If the latter formula, ��A, is false at wi, then its negation ¬��A is true

at wi. By definition of the modal operators, ¬��A is equivalent to ♦♦¬A, so there exists a

world w j ∈W such that wiRw j V (♦¬A,wi) = 1. By turns, this implies there exists a world

wk ∈ W such that w jRwk and V (¬A,wk) = 1. Thus A is false at wk. Since the model is

transitive, wiRwk; this contradicts the assumption that �A is true at wi. Therefore [4], and

the system K4, are F -valid.

Definition. Let B be the class of symmetric frames 〈W,R〉. In other words, for every

frame in the class B, if wi,w j ∈ W with wiRw j, then w jRwi. It follows that a formula A

of modal logic is said to be B-valid if and only if, for every frame 〈W,R〉∈ B and every

possible-worlds interpretation 〈W ,R,V 〉 made from 〈W,R〉, V (A,w) = 1 for every w ∈W .
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This definition for B-validity gives rise to a new tableaux-rule to be used when testing

for validity on symmetric frames, given in Figure 5c (page 56 below).

Theorem. If a formula is a theorem of the system KB, then it is B-valid.

Proof. Since the system KB is axiomatized by [PC]+[K]+[B], it remains to show that [B]

is valid on every symmetric frame. Again, suppose (for a contradiction) that there is a

symmetric model 〈W ,R,V 〉 for which V ([B],w) = 0 at some w ∈ W . Then the formula

A ⊃�♦A is false at w, which means (again, by definition of implication) that V (A,w) = 1

and V (�♦A,w) = 0. Thus the formula ¬�♦A and so, equivalently, the formula ♦�¬A,

is true at w. But then there exists a world w j ∈ W such that wiRw j and V (�¬A,w j) = 1.

However, since the frame is symmetric, w jRwi, implying V (A,wi) = 0, a contradiction.

Therefore [B], and the system B, are B-valid.

Definition. Let D be the class of serial frames 〈W,R〉. In other words, for every frame in

the class D and for every wi ∈W , there exists a w j ∈W (not necessarily distinct from wi)

such that wiRw j. It follows that a formula A of modal logic is said to be D-valid if and

only if, for every frame 〈W,R〉∈D and every possible-worlds interpretation 〈W ,R,V 〉 made

from 〈W,R〉, V (A,w) = 1 for every w ∈W .

This definition for D-validity gives rise to a new tableaux-rule to be used when testing

for validity on serial frames, given in Figure 5d (page 56 below).

Theorem. If a formula is a theorem of the system D, then it is D-valid.

Proof. Since the system D is axiomatized by [PC]+[K]+[D], it remains to show that [D]

is valid on every serial frame. Again, suppose (for a contradiction) that there is a serial

model 〈W ,R,V 〉 for which V ([D],w) = 0 at some w ∈ W . Then the formula �A ⊃ ♦A

is false at w, which means (again, by definition of implication) that V (�A,w) = 1 and

V (♦A,w) = 0. Thus ¬♦A is true at w, and so equivalently V (�¬A,w) = 1. Since the frame

is serial, however, there exists a w j ∈ W such that wiRw j. We are forced to conclude that

46



V (A,w j) = 1 and V (¬A,w j) = 1, a contradiction. Therefore [D], and the system D, are

D-valid.

Definition. Let E be the class of right Euclidean frames 〈W,R〉. In other words, for every

frame in the class E , if wi,w j,wk ∈W with wiRw j and wiRwk, then w jRwk. It follows that

a formula A of modal logic is said to be E -valid if and only if, for every frame 〈W,R〉∈ E

and every possible-worlds interpretation 〈W ,R,V 〉 made from 〈W,R〉, V (A,w) = 1 for every

w ∈W .

This definition for E -validity gives rise to a new tableaux-rule to be used when testing

for validity on right Euclidean frames, given in Figure 5e (page 56 below).

Theorem. If a formula is a theorem of the system KE, then it is E -valid.

Proof. Since the system KE is axiomatized by [PC]+[K]+[E], it remains to show that [E]

is valid on every right Euclidean frame. Again, suppose (for a contradiction) that there

is a right Euclidean model 〈W ,R,V 〉 for which V ([E],wi) = 0 at some wi ∈ W . Then the

formula ♦A ⊃ �♦A is false at wi, which means (again, by definition of implication) that

V (♦A,wi) = 1 and V (�♦A,wi) = 0. Since ♦A is true at wi, there exists a w j ∈ W such

that wiRw j and V (A,w j) = 1. By definition of the modal operators, ¬�♦A is equivalent to

♦�¬A. So ♦�¬A is true at wi, and there exists a wk such that wiRwk and V (�¬A,wk) = 1.

Since the frame is right Euclidean, however, wkRw j, and so V (¬A,w j) = 1, a contradiction.

Therefore [E], and the system KE, is E -valid.

With the question of soundness settled for the various modal systems under considera-

tion, we now turn to the question of completeness.

Definition. A system of modal logic is complete with respect to a validity-definition if

every formula valid by that definition is a theorem of the system.

A validity-definition presupposes a whole class of frames, and so requires an inter-

pretation in order to see that it successfully applies to formulas which are logical conse-

quences of the axioms associated with that definition. Meanwhile, the theoremhood or
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non-theoremhood of a formula from a set of axioms can be determined mechanically using

the method of semantic tableaux (beginning with the axiom and the negation of the for-

mula we wish to test for theoremhood at the top node will generate a tableau which tests

this entailment; once the relation of completeness is established for the various validity-

definitions, it is enough to check the formula in question by itself at the top node of a

tableau which assumes the relevant class of frames). Thus to prove that a modal system is

complete with respect to its validity-definition is to show that, for every interpretation rele-

vant to the definition and any formula A, if A is a logical consequence of the set of axioms

Σ, then it is a proof-theoretic consequence of the same Σ (meaning Σ � A implies Σ � A).

Theorem. If a formula is K-valid, then it is a theorem of the system K.

Proof. (by contraposition) Assume that formula A is not a theorem of the system K. Then

the semantic tableau for A has an open branch; call this open branch b. The goal is to find

an interpretation 〈W,R,V 〉 for which V (A,w) = 0 for some w ∈W ; then A can no longer be

considered K-valid, since it will not be valid for every interpretation based on every frame.

The required interpretation is defined as follows. Suppose 〈W ,R,V 〉 is an interpretation

based on branch b of the tableau, and specified for A according to the following construc-

tion: W={wi : wi occurs on b} and R={wiRw j: wiRw j occurs on b}. Finally, where p is any

propositional variable contained in A, if p,wi is at a node on b, then V (p,wi) = 1; if ¬p,wi

is at a node on b, then V (p,wi) = 0.

In order to prove that A is not valid according to the interpretation 〈W,R,V 〉 so con-

structed, it is necessary to first of all demonstrate that no matter what complex form A takes,

if A,wi is on the branch b, then the interpretation V (A,wi) = 1 really does follow, and if

¬A,wi is on b, then V (A,wi) = 0 follows. The proof proceeds by cases which consider the

possible complexity of the formula A. In cases 1 through 14, B and C are subformulas of

A, and so could either be propositional variables or formulas with their own complexity.

In the latter instance we can refer recursively to cases 1-14 until all subformulas of A refer

back to the base case.
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Case 0. Let A be a propositional variable. Suppose A,wi is present on branch b. Then

by construction wi ∈W and V (A,wi) = 1, and so by definition V (¬A,wi) = 0.

Case 1. Let A be of the form ¬B. Suppose ¬B,wi is present on branch b. Then by

construction wi ∈W and V (B,wi) = 0. Therefore V (¬B,wi) = 1.

Case 2. Let A be of the form ¬¬B. Suppose ¬¬B,wi is on branch b. Then by appli-

cation of the tableaux rule for double negation (Figure 1b) so is B,wi; thus by construction

wi ∈W and V (B,wi) = 1.

Case 3. Let A be of the form B ∨C. Suppose B∨C,wi is on branch b. Then by

application of the tableaux rule for disjunction (Figure 1c), either B,wi or C,wi is on b.

By construction wi ∈ W . Also by construction, V (B,wi) = 1 or V (C,wi) = 1 and so by

definition of disjunction, V (B∨C,wi) = 1.

Case 4. Let A be of the form ¬(B∨C). Suppose ¬(B∨C),wi is on branch b. Then

by application of the tableaux rule for disjunction-negation (Figure 1d), both ¬B,wi and

¬C,wi are on b. By construction wi ∈W . Also by construction, V (B,wi)= 0 and V (C,wi)=

0, so by definition of disjunction V (B∨C,wi) = 0.

Case 5. Let A be of the form B ∧C. Suppose B∧C,wi is on branch b. Then by

application of the tableaux rule for conjunction (Figure 1e), both B,wi and C,wi are on

branch b. By construction V (B,wi) = 1 and V (C,wi) = 1, so by definition of conjunction

V (B∧C,wi) = 1.

Case 6. Let A be of the form ¬(B∧C). Suppose ¬(B∧C),wi is on branch b. Then

by application of the tableaux rule for conjunction-negation (Figure 1f), either ¬B,wi or

¬C,wi is on b. By construction wi ∈W . Also by construction, V (B,wi)= 0 or V (C,wi)= 0,

so by definition of conjunction V (B∧C,wi) = 0.

Case 7. Let A be of the form B ⊃ C. Suppose B ⊃ C,wi is on branch b. Then by

application of the tableaux rule for implication (Figure 1g), either ¬B,wi or C,wi is on

b. By construction wi ∈ W . Also by construction, V (B,wi) = 0 or V (C,wi) = 1, so by

definition of implication V (B ⊃C,wi) = 1.
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Case 8. Let A be of the form ¬(B ⊃C). Suppose ¬(B ⊃ C),wi is on branch b. Then by

application of the tableaux rule for implication-negation (Figure 1h), both A,wi and ¬B,wi

are on b. By construction wi ∈W . Also by construction, V (A,wi) = 1 and V (B,wi) = 0, so

by definition of implication V (¬(B ⊃C),wi) = 0.

Case 9. Let A be of the form B ≡ C. Suppose B ≡ C,wi is on branch b. By con-

struction wi ∈ W . By application of the tableaux rule for equivalence (Figure 1i), either

A,wi and B,wi are both on the branch b, or ¬A,wi and ¬B,wi are both on b. In the first

instance, by construction V (A,wi) = 1 and V (B,wi) = 1; in the latter instance, by con-

struction V (A,wi) = 0 and V (B,wi) = 0. In either instance, by definition of equivalence

V (B ≡C,wi) = 1.

Case 10. Let A be of the form ¬(B ≡ C). Suppose ¬(B ≡ C),wi is on branch b. By

construction wi ∈W . By application of the tableaux rule for equivalence-negation (Figure

1j), either A,wi and ¬B,wi are both on the branch b, or ¬A,wi and B,wi are both on b. In

the first instance, by construction V (A,wi) = 1 and V (B,wi) = 0; in the latter instance, by

construction V (A,wi) = 0 and V (B,wi) = 1. In either instance, by definition of equivalence

V (B ≡C,wi) = 0.

Case 11. Let A be of the form �B. Suppose �B,wi is on branch b. Then for every w j

such that wiRwj is on b, by application of the tableaux rule for necessity (Figure 3a) B,wj

is on b. So by construction, wi ∈W and for every w j ∈W such that wiRw j, V (B,w j) = 1.

Therefore V (�B,wi) = 1.

Case 12. Let A be of the form ¬�B. Suppose ¬�B,wi is on branch b. Then by

application of the tableaux rule for necessity-negation (Figure 3b), ♦¬B,wi is on b. Again,

by application of the tableaux rule for possibility (Figure 3c), for some w j it follows that

wiRwj and ¬B,wj are also on the branch. Hence by construction wi,w j ∈ W , wiRw j, and

V (B,w j) = 0. Therefore V (�B) = 0.

Case 13. Let A be of the form ♦B. Suppose ♦B,wi is on branch b. Again, by application

of the tableaux rule for possibility, for some w j it follows that wiRwj and B,wj are also
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on the branch. Hence by construction wi,w j ∈ W , wiRw j, and V (B,w j) = 1. Therefore

V (♦B) = 1.

Case 14. Let A be of the form ¬♦B. Suppose ¬♦B,wi is on branch b. Then by

application of the tableaux rule for possibility-negation (Figure 3d), �¬B,wi is on b. So

for every w j such that wiRwj is on b, by application of the tableaux rule for necessity

(again) ¬B,wj is on b. So by construction, wi ∈W and for every w j ∈W such that wiRw j,

V (B,w j) = 0. Therefore V (♦A) = 0.

Because [K] axiomatizes the system K, it holds in the constructed interpretation 〈W,R,V 〉
and so true at all w ∈W which are on the open branch b. Since the branch b is open, A,wi

and ¬A,wi are not both present on the branch. By assumption, A is not a theorem of K, so

in the exhaustive application of the tableaux rules, for some wi ∈W written on b, ¬A,wi is

on b, and the above cases exhaustively show that by construction V (A,wi) = 0. Thus there

is an interpretation of K which interprets all its premises true at wi but interprets A as false

at wi. Therefore A is not K-valid.

By contraposition, if a formula is K-valid, then it is a theorem of the system K.

Theorem. If a formula is T -valid, then it is a theorem of the system T.

Proof. (by contraposition). Assume that formula A is not a theorem of the system T. Then

the semantic tableau for A has an open branch; call this open branch b. Since T -validity

is restricted to reflexive frames, the proof is almost the same as for K. The only additional

requirement is that the interpretation 〈W,R,V 〉 (as constructed in the completeness proof

for K) has a reflexive frame when it is constructed from a tableau which tests for T -

validity. By application of the tableaux-rule for T -validity (Figure 5a), for any i ∈ N, if

wi is written on the branch b then wiRwi is too, so by construction wi ∈ W and wiRwi,

implying the frame 〈W,R〉 is reflexive. Thus there is an interpretation of T which interprets

all its premises true at wi but interprets A as false at wi. Therefore A is not T -valid. By

contraposition, if a formula is T -valid, then it is a theorem of the system T.

Theorem. If a formula is F -valid, then it is a theorem of the system K4.
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Proof. (by contraposition). Assume that formula A is not a theorem of the system K4. Then

the semantic tableau for A has an open branch; call this open branch b. Since F -validity

is restricted to transitive frames, the only additional requirement is that the interpretation

〈W,R,V 〉 (as constructed in the completeness proof for K) has a transitive frame when it is

constructed from a tableau which tests for F -validity. By application of the tableaux-rule

for F -validity (Figure 5b), for any i, j,k ∈ N, if wiRwj and wjRwk are written on b, then

so is wiRwk, so by construction wi,w j,wk ∈ W , wiRw j, w jRwk, and wiRwk implying the

frame 〈W,R〉 is indeed transitive. Thus there is an interpretation of K4 which interprets all

its premises true at some wi but interprets A as false at wi. Therefore A is not F -valid. By

contraposition, if a formula is F -valid, then it is a theorem of the system K4. Thus there is

an interpretation of K4 which interprets all its premises true at wi but interprets A as false

at wi. Therefore A is not F -valid. By contraposition, if a formula is F -valid, then it is a

theorem of the system K4.

Theorem. If a formula is B-valid, then it is a theorem of the system KB.

Proof. (by contraposition). Assume that formula A is not a theorem of the system KB. Then

the semantic tableau for A has an open branch; call this open branch b. Since B-validity

is restricted to symmetric frames, the only additional requirement is that the interpretation

〈W,R,V 〉 (as constructed in the completeness proof for K) has a symmetric frame when it

is constructed from a tableau which tests for B-validity. By application of the tableaux-rule

for B-validity (Figure 5c), for any i, j ∈ N, if wiRwj is written on b, then wjRwi is also,

so by construction wi,w j ∈ W , wiRw j, and w jRwi implying the frame is symmetric. Thus

there is an interpretation of KB which interprets all its premises true at wi but interprets A

as false at wi. Therefore A is not B-valid. By contraposition, if a formula is B-valid, then

it is a theorem of the system KB.

Theorem. If a formula is D-valid, then it is a theorem of the system D.

Proof. (by contraposition). Assume that formula A is not a theorem of the system D.
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Then the semantic tableau for A has an open branch; call this open branch b. Since D-

validity is restricted to serial frames, the only additional requirement is that the interpreta-

tion 〈W,R,V 〉 (as constructed in the completeness proof for K) has a serial frame when it is

constructed from a tableau which tests for D-validity. By finite application of the tableaux-

rule for D-validity (Figure 5d), for every i ∈N if wi is written on the branch, then possibly

so is wiRwj for some j ∈ N. So by construction if wi ∈W then wiRw j for some w j imply-

ing the frame is serial. Thus there is an interpretation of D which interprets all its premises

true at wi but interprets A as false at wi. Therefore A is not D-valid. By contraposition, if a

formula is D-valid, then it is a theorem of the system D.

Theorem. If a formula is E -valid, then it is a theorem of the system KE.

Proof. (by contraposition). Assume that formula A is not a theorem of the system KE. Then

the semantic tableau for A has an open branch; call this open branch b. Since E -validity is

restricted to right Euclidean frames, the only additional requirement is that the interpreta-

tion 〈W,R,V 〉 (as constructed in the completeness proof for K) has a right Euclidean frame

when it is constructed from a tableau which tests for E -validity. By application of the

tableaux-rule for E -validity (Figure 5e) for any i, j,k ∈ N, if wiRwjand wiRwk are written

on b, then so is wjRwk, so by construction wi,w j,wk ∈W , wiRw j, wiRwk, and w jRwk im-

plying the frame is right Euclidean. Thus there is an interpretation of KE which interprets

all its premises true at wi but interprets A as false at wi. Therefore A is not E -valid. By

contraposition, if a formula is E -valid, then it is a theorem of the system KE.
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Figure 1. Tableaux Rules for Non-modal Formulas

(1a) (1b) (1c)

(1d)

(1e)

(1f) (1g)

(1h)

(1i) (1j)

A∧B,i

A,i

B,i

¬(A∧B),i

¬A,i ¬B,i

A⊃B,i

¬A,i B,i

¬(A⊃B),i

A,i

¬B,i

A≡B,i

A,i

B,i

¬A,i

¬B,i

¬(A≡B),i

A,i ¬A,i

¬B,i B,i

¬A,i

¬A,i

¬¬A,i

A,i

A∨B,i

A,i B,i

¬(A∨B),i

¬A,i

¬B,i
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Figure 2. Tableaux for Examples 8 and 9

X X

(2a)

(2b)

¬(¬q⊃¬p)
(p⊃q)

¬p

p

q

¬q

(p⊃q)

¬(¬p⊃¬q)

¬p

¬¬q

q

q

¬p

¬¬q

q

Figure 3. Tableaux Rules for Modal Formulas

(3a) (3b) (3c) (3d)

�A,i

iRj

A,j

¬�A,i

♦¬A,i

♦A,i

iRj
A,j

¬♦A,i

�¬A,i
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Figure 4. Tableau for Example 10

X X

�(p⊃q), w1
¬(�p⊃�q), w1

�p, w1

¬�q, w1

♦¬q, w1

w1Rw2
¬q, w2

p, w2

p⊃q, w2

¬p, w2 q, w2

Figure 5. Tableaux Rules for Frame Classes

(5a) (5b) (5c) (5d) (5e)

iRi

iRj

iRk

jRk

iRj

jRi iRj

iRj

iRk

jRk
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Figure 6. Tableau for Example 12

X

p, w1

¬♦p, w1

�¬p, w1

w1Rw1

¬p, w1
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Chapter 3

Topological Interpretations

This chapter turns from the construction of possible-worlds interpretations to a branch of

modern mathematics called topology, developing out of some of the basic topological con-

cepts a different interpretation scheme for formulas modal logic. While topologies are ab-

stractly defined as sets which obey certain properties, in practice these sets are visualizable

as “spaces” containing sometimes-overlapping subspaces whose borders exhibit different

properties. Facts about the sets in a topology reveal information which can usually be given

some kind of spatial interpretation. This is for good reason, since the real number line, as

well as any Euclidean space, can all be defined as topological spaces and treated as such.

Just like the idea of “possible worlds,” topological interpretations rely on an informal

insight to connect topology to the statements of logic; understanding this insight makes

it much easier to grasp the subsequent formal elaboration. The insight of topological se-

mantics is to identify any logical formula with a subset in the topology, which on a spatial

interpretation means that the formula defines a region of the topological space. Inside this

region, the formula is interpreted as “true;” outside this region, it is interpreted as “false.”

This conveniently suggests that a formula is topologically valid when the entire topolog-

ical space interprets it as true. Section 3.1 presents the required concepts from topology

required to formulate, in section 3.2, the formal structure for topological interpretations of

statements of modal logic. Finally, section 3.3 explores some of some of the new perspec-

tives which a topological interpretation brings to modality.
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3.1 Interior and Closure in Topological Spaces

Definition. Let X be a set. A topology T on X is a collection of subsets of X which satisfy

the following conditions:

(i). /0 and X are elements of T ;

(ii). The intersection of finitely many open sets is an element of T ;

(iii). The union of any collection of open sets is an element of T .

The elements of T are called the open subsets of X . We refer to the ordered pair 〈X ,T 〉
as a topological space, and also call the set X a topological space wherever it is understood

that a topology T exists on X .

This definition may appear strange to people who are unfamiliar with topology. Al-

though it provides the concept of a topology, the definition does not concretely elaborate

on what it means for the sets in the collection to be “open,” except to specify that empty set

/0 and the entire topological space X must be considered open, and any finite intersection

or any union of open sets also must count as an open set. The definition of a closed set in a

given topological space likewise depends entirely on which sets are open, as the following

definition makes clear.

Definition. A subset A of a topological space 〈X ,T 〉 is closed if the complement of A,

denoted X\A or AC, is open in X .

Because the definition of a closed set is relative to which sets are open in a topological

space, some properties about closed sets in a topological space are analagous to the criteria

regarding open sets in the definition of a topology (see Adams & Franzosa [2008], p. 41). In

particular, where X is a topological space, the following statements about the the collection

of closed sets in X hold:

(i). /0 and X are closed;

(ii). The intersection of any collection of closed sets is a closed set;
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(iii). The union of finitely many closed sets is a closed set.

Notably, however it is possible for a subset of a topological space to be neither open or

closed, or both open and closed at the same time. A basic understanding of open and closed

sets in topological spaces provides the two related concepts, interior and closure, needed to

provide a topological semantics for modal logic.

Definition. Let A be a subset of a topological space X . The interior of A, written Int(A),

is the union of all open sets contained in A. Similarly, the closure of A, written Cl(A), is

the intersection of all closed sets containing A. The definitions of interior and closure can

be written formally as follows: where T is a topology defined on some topological space

X , with subset A ∈ T , we may write Int(A) :=
⋃{U ∈ T : U ⊆ A} and Cl(A) :=

⋂{C :

X\C ∈ T and A ⊆C}.

Related to the definition of interior and closure is the characterization of points which

are found in each of these special subsets. Given a particular point in a topological space,

it is useful to be able to specify whether or not that point is to be found in the interior or the

closure of a subset of the topology. The theorems (found in Adams and Franzosa [2008], p.

57) which describe whether a particular point belongs to the interior or closure of a given

subset amount to strategic summaries of the definitions of interior and closure; we state

them here without proof: let A be an open subset in some topological space 〈X ,T 〉. For

any x ∈ X , x ∈ Int(A) if and only if there exists an open subset U ∈ T such that x ∈U and

U ⊆ A. Similarly, for any x ∈ X , x ∈Cl(A) if and only if, for every open subset U ∈ T , if

x ∈U , then there exists some y ∈U such that y ∈ A (so that U intersects A).

3.2 Topological Semantics for Modal Logic

Let Var be the set of all propositional variables from some collection of logical formulas.

For some topological space X , let P(X) be the power set of X (the set of all possible sub-

sets of X that can be formed from the elements of X). We wish to relate the propositional
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variables to the topology by constructing a valuation function υ : Var → P(X) which

functions similarly to the interpretation function seen classical propositional logic in Chap-

ter 1. For any propositional variable p ∈ Var notice that, by definition of the valuation

function, υ(p) is some subset of the topological space X . Topological semantics begins

with the assertion that, for any point x ∈ X in the topological space,

• x � p if and only if x ∈ υ(p).

In Chapter 1 logical or semantic concequence (represented by the symbol �) was used to

relate one set of logical formulas (the premise) to another (the conclusion). In topological

semantics, the notion now reaches between the topological space and the statement itself,

so that a point in topological space can entail a propositional variable. The logical variable

p follows from the point when it is contained in a subset of the topological space (called

υ(p)), and it does not follow from x when x is not contained in the associated subset. In

either case, however, the valuation function υ thus indicates “where” in the topological

space the propositional variable p is true, so that for any x ∈ X , x � p just in case x ∈ υ(p).

Since for any given propositional variable, p is either true or false, we naturally also assert

that the negation of a propositional variable is true just “where” the variable itself is false

(e.g., that x � ¬p if and only if x � p, and so x /∈ υ(p)).

Moving from propositional variables to formulas with their own complexity, let R and

S be arbitrary well-formed formulas without specifying whether they are variables or sub-

formulas. The expected relationship between the topological space and the truth value of

formulas built from R and S continues to hold: for any x ∈ X ,

• x � ¬R if and only if x � R.

• x � (R∨S) if and only if x � R or x � S.

• x � (R∧S) if and only if x � R and x � S.

Taken together, these statements suggest that the valuation function also indicates “where”

a point in the topological space must be if it is to model a conjunction or a disjunction of
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propositional variables or subformulas. In the case of a disjunction, it must be in the valu-

ation subsets of at least one of the members of the disjunction; in the case of conjunction,

it must belong to all of the valuation subsets.

Notice that the four bulleted rules above refer only to the semantic interpretation of

the logical operators in a topological space. Following the observation in Lucero-Bryan

([2012], p. 25), we note that with these rules in place, any given well-formed formula R

defines a particular subset of a topological space X . All the points found in this particular

subset model the statement R and do not model ¬R; for this reason we think of topological

semantics for R as defining “where” the statement R is true in a topological space X , and

this “where” is a subset of X . As was done for the interpretation function in Chapters 1

and 2, we wish to extend the definition of the valuation function υ , which was defined over

the domain of propositional variables Var above, to include well-formed formulas as well.

Doing so will also provide a name for the particular subsets defined by logical formulas

in topological semantics. Given a valuation function of the propositional variables υ , the

subset of a topological space defined by some formula R is υ(R) := {x ∈ X : x � R}. With

this extention of the valuation function, we can naturally relate the semantics for logical

formulas directly to various subsets in the topological space as follows.

The first relationship follows directly from the definition: for any x∈X and any formula

R, x � R if and only if x ∈ υ(R). A similar relationship holds for negations of formulas.

Disjunction and conjunction follow suit. For any x ∈ X and any formula R, since x � R or

x � S implies x ∈ υ(R) or x ∈ υ(S), we conclude x � (R∨S) if and only if x ∈ υ(R)∪υ(S).

By a similar reasoning, x � (R∧S) if and only if x ∈ υ(R)∩υ(S).

Implication and equivalence (as well as conjunction) were seen to be derivable from

disjunction and negation in Chapter 1, and so these rules for the valuation function are suf-

ficient to provide a topological semantics for all the statements of classical propositional

logic. However, the following theorem explores the subsets defined by statements contain-
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ing implication and equivalence with greater detail, aiming for a clearer understanding of

how they are to be interpreted topologically.

Theorem. Let R and S be arbitrary formulas and let X be a topological space. Then the

following statements hold:

(i). For all x ∈ X, x � (R ⊃ S) if and only if υ(R)⊆ υ(S).

(ii). For all x ∈ X, x � (R ≡ S) if and only if υ(R) = υ(S).

Proof. (i). (=⇒). Let x ∈ X and assume x � (R ⊃ S). Suppose x ∈ υ(R). By definition

of implication, x � (¬R∨ S). So x � ¬R or x � S. But x � ¬R would imply x � R, and

also x /∈ υ(R), contradicting the assumption that x ∈ υ(R). Thus x � S, and so x ∈ υ(S).

Therefore υ(R)⊆ υ(S). (⇐=). Assume υ(R)⊆ υ(S) and fix x ∈ X so that x ∈ υ(R). Then

x ∈ υ(S) by assumption, so x � S. Therefore x � (¬R∨ S) as well, and so by definition of

implication x � (R ⊃ S).

(ii). (=⇒). Let x ∈ X and assume x � (R ≡ S). First suppose x ∈ υ(R); by definition

of equivalence, x � (R ⊃ S) and so by the first half of part (i), x ∈ υ(R). If we suppose

instead that x ∈ υ(S), then by the same reasoning x ∈ υ(R). Thus υ(R) = υ(S). (⇐=).

Assume υ(R) = υ(S). First, fix arbitrary x ∈ X so that x ∈ υ(R); by the second half of part

(i), x � (R ⊃ S). Since υ(R) = υ(S), it is also the case that that x ∈ υ(R); so by the same

reasoning x � (S ⊃ R). Since the choice of x was arbitrary, it follows that x � (R ≡ S) for

any x ∈ X .

Two additional rules provide a topological interpretation of the modal operators. Like

the interpretation-function rules which formalized the insight of possible-worlds semantics

seen in the previous chapter, these two rules make a powerful leap of interpretation, this

time by associating the modal operators with the topological concepts of interior and clo-

sure. Although it may not be immediately apparent, these valuation function rules establish

the needed conditions to link modal necessity with topological interiority and to link modal

possibility with topological closure.
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• x � �R if and only if there exists an open subset U ∈ T such that x ∈ U and, for

every y ∈U , y � R.

• x � ♦R if and only if, for every open subset U ∈ T , if x ∈U then there exists some

y ∈U such that y � R.

Given the subset defined by some non-modal operand R, if we wish to more explicitly

identify the subsets of a topological space which are defined by a modal formula, we can

extend the valuation function υ once again so that υ(�R) and υ(♦R) are explicitly asso-

ciated with interior and closure. Because the demonstration is worth considering carefully,

however, we now state the extension as a theorem and prove it (as we did with implication

and equivalence above).

Theorem. Let R be an arbitrary (well-formed) formula and let 〈X ,T 〉 be a topological

space. Then the following statements hold:

(i). For all x ∈ X, υ(�R) = Int(υ(R)).

(ii). For all x ∈ X, υ(♦R) =Cl(υ(R)).

Proof. (i). Suppose that for some x ∈ X , x ∈ υ(�R). By definition x � �R. So there

exists an open subset U ∈ T such that x ∈ U and, for every y ∈ U , y � R. It follows

that x � R, hence x ∈ υ(R) and U ⊆ υ(R). By definition of interior, x ∈ Int(υ(R)). Thus

υ(�R)⊆ Int(υ(R)). Now suppose that for some x ∈ X , x ∈ Int(υ(R)). Let U = Int(υ(R)).

Note that x ∈U and that by definition of topology, as a union of open sets U is open. Also,

since U ⊆ υ(R) it follows that for all y ∈ U , y � R. We conclude that x � �R, and so by

definition x ∈ υ(�R). Thus Int(υ(R))⊆ υ(�R). Therefore υ(�R) = Int(υ(R)).

(ii). Assume that for some x ∈ X , x ∈ υ(♦R). Then by the valuation function rule for

closure, for every open subset U ∈ T , if x ∈ U then there exists some y ∈ U such that

y � R. But suppose (for a contradiction) that x /∈ Cl(υ(R)). Based on this supposition,

there must be some open set V ∈ T such that x ∈ V , but for every y ∈ V , y /∈ υ(R). But

then y � R for all y ∈V , which contradicts the assumption. Thus x ∈Cl(υ(R)). The reverse
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argument is very similar. Now assume that for some x ∈ X , x ∈Cl(υ(R)) but suppose (for a

contradiction) that x /∈ υ(♦R). Since x is in the closure of υ(R), by the definition of closure,

for every open subset U ∈ T , if x ∈U then there exists some y ∈U such that y ∈ υ(R). It

follows that there exists y ∈ U such that y � R. But by supposition x /∈ υ(♦R), which by

the valuation function rule for closure would imply that there does not exist y ∈U such that

y � R, a contradiction. Thus x ∈ υ(♦(R)). Therefore υ(♦R) =Cl(υ(R)).

This association between interior, closure, and the modal operators shows that there is

ample room in topological semantics to accomodate modality. Now that modal formulas

can be interpreted topologically, we can now use these semantics to help answer the same

kinds of questions we asked of possible-worlds interpretations in the previous chapter. Can

topological interpretations also be used demonstrate that certain modal formulas follow

from others? What kinds of modal statements are valid in a topological interpretation, and

what kinds are not?

3.3 Topologies and Validity

Some years before modal logic was given possible-worlds interpretations, the mathemati-

cians J.C.C. McKinsey and Alfred Tarski had already advanced a topological interpretation

of the systems of modal logic of their day (see McKinsey and Tarski [1944] and [1948];

see also Kishida [2010]). One of their most famous results is summarized in the following

theorem.

Theorem. (McKinsey-Tarski). The system S4 is the modal logic of all topological spaces.

Although a proof of this theorem is not reproduced here, this section intends to discuss

its significance and informally illustrate its veracity through a comparison of the axioms

of the modal system S4 with their topological interpretations. As before, the question of

establishing a firm grasp of the relationship between deductive systems of modal logic
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and the topological semantics which interpret them hinges on the notion of validity. The

following definition lays out the meaning of validity under topological interpretations of

modal logic.

Definition. A formula of modal logic R is valid in a topological space 〈X ,T 〉 if and only

if for every valuation function υ : Var→ P(X) and every point x ∈ X , it is the case that

x � R. We may write X � R, since if R is valid then υ(R) = X for every υ .

This definition asserts that a formula of modal logic is valid in a topological space if

the formula is semantically modeled by every point in the topological space, regardless of

how the various subsets of the topology are definitely associated with the formula. Infor-

mally we might say that a valid statement is interpreted as true no matter “where” in the

topological space we look. Because there are thus no identifiable subsets of the topological

space which would interpret the formula as false, it is said the entire topological space must

model a specific formula in order for it to be considered valid.

Because of the wide range of topologies which exist, we can imagine that a given

formula may be valid in some topological spaces but not valid in others. The situation

is analogous to the different validity definitions which were made possible by possible-

worlds interpretations, depending on the class of frame (reflexive, transitive, etc.) which

was under consideration. The eventual association of these different frames with different

systems of modal logic is one of the most delightfully surprising outcomes of a possible-

worlds interpretation of modal logic. Because there are so many conceivable topological

spaces, many of which are well-studied for their intricate and unusual properties, we should

expect to find similarly interesting connections between statements (and systems) of modal

logic and the various topologies which happen to find them valid.

Ultimately, though, the McKinsey-Tarski theorem accomplishes something uniquely

possible in topological semantics: it identifies the modal system S4 as the definitive modal

logic of all topological spaces. What this means is that for any set X , any collection of sub-

sets of X which meets the definition of a topology outlined at the beginning of this chapter
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will interpret all the theorems of S4 as valid under topological semantics. This result is

especially significant when we consider that many familiar mathematical spaces, perhaps

most notably the real number line R, qualify as topological spaces. Thus the theorems of

S4 correspond to general topological properties which hold in R and related spaces, includ-

ing general Euclidean space Rn, and of all other spaces which can be defined topologically,

including the rational numbers Q. This result is the kind of strong association between a

modal system and the structures of modern mathematics which originally inspired the de-

velopment of modern modal logic, because it realizes the possibility of finding new bridges

between modality and mathematics, and also the possibility of mutual utility between the

two. Thanks to the McKinsey-Tarski theorem, topologies can be said to illuminate the

contours of S4 from a completely different angle, and it is even possible that features of

the modal system S4 which might appear relatively mundane or easily accessible from the

standpoint of modal logic could provide an unexpected toolkit with which to think through

problems regarding topological spaces.

The remainder of this chapter focuses on demonstrating the soundness of S4 with re-

spect to validity in topological semantics. Because S4 is built up from the axioms which

compose the more primitive systems K and T , it is convenient to show the soundness of

these systems as well.

Theorem. If a formula is a theorem of the system K, then it is valid for all topological

spaces.

Proof. (informal). Recall that the system K is axiomatized by [PC]+[K]. Since the theo-

rems of K are deducible from its axioms, we will have shown the entire system is valid for

all topological spaces when we show that the axioms are similarly valid.

First, consider the axiom schema [PC]: “if A is a valid formula of non-modal proposi-

tional logic, then A is an axiom.” [PC] states that any formula of logic which is classically

valid is taken to be axiomatic for the construction of modal systems. Now, however, it is

necessary to demonstrate that all of these classically valid “axioms” of K and the other
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modal systems are also topologically valid for all topological spaces. Let X be a topolog-

ical space and let υ be a valuation function. Let x ∈ X . Now, for that x define a function

Wx : Var→{0,1} as follows: for any propositional variable p,

Wx(p) =

⎧⎪⎨
⎪⎩

1 : x ∈ υ(p)

0 : x /∈ υ(p)

We also recursively define Wx for negation and disjunction: for any formulas A and B,

Wx(¬A) =

⎧⎪⎨
⎪⎩

1 : x /∈ υ(A)

0 : x ∈ υ(A)

Wx(A∨B) =

⎧⎪⎨
⎪⎩

1 : x ∈ υ(A) or x ∈ υ(B)

0 : otherwise

Notice that Wx satisfies the rules for an interpretation funtion given in Chapter 1: it inter-

prets A as true just in case ¬A is false, and it interprets A∨B as true just in case A or B

is true. Since the other logical operators are derived from negation and disjunction, Wx is

adequately defined to interpret any formula of classical logic. Furthermore, notice that for

x ∈ X , the interpretation function Wx interprets arbitrary formula A as true only in the event

that x ∈ υ(A) for the valuation function υ (e.g., just in case x � A in the topological inter-

pretation). We proceed by contraposition; that is, let R be a non-modal logical formula.

such that x � R (then R is not topologically valid in X). But consider the interpretation

Wx(R) of the topologically non-valid formula R. Since x � R, it follows that x /∈ υ(R). By

definition of Wx, then, Wx(R) = 0 for this x. Then an interpretation of R exists for which R is

false, implying R is not classically valid. By contraposition, if a formula is classically valid,

then it is topologically valid as well. Because every classically valid formula of non-modal

propositional logic is topologically valid on X , and because the choice of X was arbitrary,

the axiom schema [PC] is valid for any topological space.
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Next, recall the axiom [K]: �(A⊃B)⊃ (�A⊃�B) for arbitrary formulas A and B. The

strategy is to show that the topological interpretation of [K] is actually a general property

which holds for every topology. Let X be an arbitrary topological space, and let p and q be

propositional variables for which an arbitrary valuation function υ is defined. To simplify

the axiom [K], the inner implications can be rewritten according to their definition, so that

(for p and q) [K] becomes �(¬p∨q)⊃ (¬�p∨�q). Since it was shown that for all x ∈ X ,

x� (R⊃ S) if and only if υ(R)⊆υ(S) for any formulas R and S, it follows that the statement

is interpreted as υ(�(¬p∨ q)) ⊆ υ(¬�p∨�q) in the topology. Since it was shown that

for all x ∈ X , υ(�R) = Int(υ(R)) for any formula R, it follows that the statement may

also be written Int(υ(¬p∨ q)) ⊆ υ(¬�p∨�q). Continuing in this way, we arrive at the

statement Int(υ(¬p)∪υ(q))⊆ (υ(¬�p)∪Int(υ(q))). It was stated previously that for any

x ∈ X , x � ¬p if and only if x � p, and so x /∈ υ(p). But in general, if x ∈ X and x /∈ υ(R),

for arbitrary formula R, it follows that x belongs to the complement of υ(R), denoted

υ(R)C. On this basis we can rewrite the statement once again as Int(υ(p)C ∪ υ(q)) ⊆
((Int(υ(p)))C ∪ Int(υ(q))). To simplify this notation, suppose υ(p) = A and υ(q) = B

where A,B ⊆ X . Thus we ultimately arrive at the statement

Int(AC ∪B)⊆ (Int(A)C ∪ Int(B)) (3.3.1)

Statement (3.3.1) constitutes the topological interpretation of the original axiom [K], rewrit-

ten for maximum clarity.

We now show that statement (3.3.1) is a property of arbitrary topological space X . For

some x ∈ X , assume that x ∈ Int(AC ∪B). Hence we can define an open subset V in the

topology on X such that x ∈V and V ⊆ AC ∪B. If x ∈ Int(A)C then the proof is complete;

so suppose that x /∈ Int(A)C. Then x ∈ Int(A). So we may define another open subset U

such that x ∈U and U ⊆ A.

It follows from V ⊆ AC ∪B and U ⊆ A that the intersection of the subsets, U ∩V , is
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itself a subset of the intersection of the original sets (since if x ∈ U then X ∈ A and if

x ∈ V then x ∈ AC ∪B, it follows that if x ∈ U and x ∈ V then x ∈ A and x ∈ AC ∪B, so

by definition x ∈ A∩ (AC ∪B)). Thus U ∩V ⊆ A∩ (AC ∪B). This latter set can also be

rewritten using distributive laws as (A∩AC)∪ (A∩B) or, since AC ∩A = /0, as A∩B. Thus

U ∩V ⊆ A∩B ⊆ B. Recall that x ∈U and x ∈V , so x ∈U ∩V , and observe that as a finite

intersection of open sets, the set U ∩V is open in the topology on X . Since x belongs to an

open subset of B, by definition x ∈ Int(B). Thus x ∈ (Int(A)C ∪ Int(B)). Therefore (3.3.1),

the statement Int(AC ∪B)⊆ (Int(A)C ∪ Int(B)), holds. Since the choice of X was arbitrary,

statement (3.3.1) holds for any topological space, and so [K] is valid for all topological

spaces.

As the system K is axiomatized by [PC]+[K], we conclude that every theorem of K is

valid for all topological spaces.

Theorem. If a formula is a theorem of the system T, then it is valid for all topological

spaces.

Proof. (informal). Let X be an arbitrary topological space, and let p be some propositional

variable for which an arbitrary valuation function υ is defined. Recall that the system T

is axiomatized by [PC]+[K]+[T]. Since the theorems of T are deducible from its axioms,

we will have shown the entire system is valid for all topological spaces when we show that

the axiom [T] is similarly valid. Recall the axiom [T]: �A ⊃ A for arbitrary formula A.

By reference to the valuation rules and proofs from the previous section this statement is

interpreted as Int(υ(A)) ⊆ υ(A). Since this is an elemental property of the interior, [T] is

valid for all topological spaces.

Theorem. If a formula is a theorem of the system S4, then it is valid for all topological

spaces.

Proof. (informal). Let X be an arbitrary topological space, and let p be some propositional

variable for which an arbitrary valuation function υ is defined. Recall that the system
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S4 is axiomatized by [PC]+[K]+[T]+[4]. Since the theorems of S4 are deducible from its

axioms, we will have shown the entire system is valid for all topological spaces when we

show that the axiom [4] is similarly valid. Recall the axiom [4]: �A ⊃ ��A for arbitrary

formula A. Again, by reference to the valuation rules and proofs from the previous section

this statement is interpreted as Int(υ(A)) ⊆ Int(Int(υ(A)). This is a general property of

the interior, since Int(Int(U)) = Int(U) for any U ⊆ X . Thus [4] is valid for all topological

spaces. We conclude that every theorem of S4 is valid for all topological spaces.

The next logical step after showing the soundness of S4 with respect to its topological

interpretation would be to show completeness, by proving that if a formula of modal logic is

valid for all topological spaces, then it is a theorem of S4. Due to the elaborate nature of the

proof the reader is referred to proofs of the McKinsey-Tarski theorem instead. The sound-

ness proofs should already suggest the unique status of S4 for topological interpretations:

there are topologically valid statements which are not theorems of K and T , but which are

theorems of S4. So a completeness proof for K or T on a topological interpretation is not

possible in the same way that it was on a possible-worlds interpretation.

Similarly, systems “stronger” than S4, like the system S5 axiomatized by [PC]+[K]+[T]+[E],

are not sound with respect to the topological meaning of validity. The statement [E], ♦A ⊃
�♦A for arbitrary formula A, would be interpreted topologically as Cl(A) ⊆ Int(Cl(A)).

While there may be particular cases where this statement holds, it is not a general property

of interior and closure, and so the theorems of S5 are not in general valid for all topological

spaces.
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Chapter 4

Tense Logic

4.1 Syntax for Tense Logic

Tense logic is a variant of modal logic. It uses the same modal operators introduced in the

syntax for modal logic but redoubles each operator so that there are two distinct pairs of

operators with similar definitions. This means that there are two tense operators which are

taken as primitive: [F ] and [P]. The presence of the negation symbol in the logical syntax

implies that each of these two operators have a dual defined just the same as for modal

logic. Thus the four basic modal operators of tense logic, with their definitions, are given

as follows for any formula A:

[〈F〉] 〈F〉A := ¬[F ]¬A

[[F ]] [F ]A := ¬〈F〉¬A

[〈P〉] 〈P〉A := ¬[P]¬A

[[P]] [P]A := ¬〈P〉¬A

This formalism, following the one introduced by Priest [2008], is already oriented to

the particular temporal interpretation of modality which tense logic opens up, since in

interpretations of tense logic to be considered shortly, “P” will stand for “past” and “F”

will stand for “future” when interpreting these letters in the four operators just defined.

One additional concept is required when considering the syntax of tense logic, which

relates the two pairs of operators to one another as they appear in logical formulas.

Definition. Let A be any formula of tense logic. Then the mirror image of A, denoted Ă,

is the formula obtained by writing all the “P”s as “F”s, and all the “F”s as “P”s, as they
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appear within the modal operators in A. It follows immediately that the mirror image of Ă

is just A.

Example 13. Consider the formula 〈P〉[F ](p∨q)⊃ 〈F〉q. The mirror image of the formula

is obtained by writing a P for every F and an F for every P as they appear in the operators of

the original formula. Thus the mirror image of the original formula is just 〈F〉[P](p∨q)⊃
〈P〉q.

Other than the modification of the modal operators, the syntax for tense logic is the

same as that for modal logic as discussed in section 1.1 above.

4.2 Possible-Worlds Semantics for Tense Logic

As with its syntax, possible-worlds semantics for tense logic are much the same as for

regular modal logic, with some minor modifications. This means the interpretations still

consist of the construction of models < W,R,V > as outlined in section 2.1 above. Now,

however, the modal operators are explicitly oriented to a temporal interpretation, so a state

of affairs w ∈ W must also be considered as temporally defined and related, perhaps as a

moment w or a world at time w. Furthermore, the relation between the members of W takes

on the special characteristic of temporal sequence: where w1,w2 ∈W are arbitrary worlds,

whatever else characterizes the relation between them, for a possible-worlds interpretation

of tense logic w1Rw2 is taken to mean “w1is temporally prior to w2.”

The possible-worlds interpretation of the tense-logical operators can be summarized as

follows. Let wi ∈W :

• If, for every w j ∈W such that wiRw j, V (A,w j) = 1, then V ([F ]A,wi) = 1; otherwise,

V ([F ]A,wi) = 0.

• If, for some w j ∈W such that wiRw j, V (A,w j) = 1, then V (〈F〉A,wi) = 1; otherwise,

V (〈F〉A,wi) = 0.
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• If, for every w j ∈W such that w jRwi, V (A,w j) = 1, then V ([P]A,wi) = 1; otherwise,

V ([P]A,wi) = 0.

• If, for some w j ∈W such that w jRwi, V (A,w j) = 1, then V (〈P〉A,wi) = 1; otherwise,

V (〈P〉A,wi) = 0.

The interpretation for the future tense operators is identical to the interpretation of the

modal operators seen in Chapter 2. In the context of a possible-worlds model, if [F ]A is

true at w ∈W , this can now be equivocally interpreted as “at all worlds accessible to w, A

is true,” or “at all future times for w, A is true.” Likewise if 〈F〉A is true at w, we could

say “at some future time for w, A is true.” In the possible-worlds interpretation of the past

tense operators, the order of accessibility is reversed, while everything else remains the

same. Thus, if in some possible-worlds interpretation, for every w ∈ W , if every wi ∈ W

which can access w (e.g. for which wiRw) V (A,wi) = 1, then [P]A is true at w under that

interpretation, and we might say “at all times prior to w, A is true.” Likewise if 〈P〉A is true

at w, we would say “at some time prior to w, A is true.”

A possible-worlds interpretation of tense logic can be obtained from an existing in-

terpretation 〈W,R,V 〉 of modal logic with no additional information. The relation R in a

possible-worlds interpretation becomes identically the relation for the operators [F ] and

〈F〉, while the same relation could be expressed for the past operators [P] and 〈P〉 instead

using the converse of the original relation. Expressed formally, let w1,w2 ∈W . Comparing

the original relation R when used as an interpretation of tense logic, where RF is the orig-

inal relation relative to the future operators, and RP is the original relation relative to past

operators, then w1Rw2 if and only if w1RFw2 (the two are identical), but w1Rw2 if and only

if w2RPw1 (the two are converses). This relativity of modal statements about past and future

means that for any interpretation of a statement of tense logic A, there is a corresponding

interpretation of Ă, the mirror image of A, which is obtained by taking the converse of the

relation R in the original relation. Let this converse be denoted Ř, and observe that for any
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w1,w2 ∈W , w1Rw2 iff w2Řw1. It follows that an interpretation of A using R is the same as

an interpretation of Ă using Ř. The following example illustrates this connection.

Example 14. We return to the statement of tense logic, 〈P〉[F ](p∨q) ⊃ 〈F〉q, used in the

previous example. To approximate this statement with English, it maintains that “if, at

some time in the past, it was the case that at all future times p or q is true, then at some

time in the future q is true.” In that example we observed that the mirror image of this

statement is 〈F〉[P](p∨ q) ⊃ 〈P〉q. This statement might be thought of as reading “if, at

some time in the future, it will be the case that at all times in the past p or q is true, then

at some time in the past, q was true.” It is worth weighing the semantic value of these

statements and considering whether they might be valid on an intuitive level. (It turns

out that neither is valid, and we could construct a falsifying countermodel which shows

this). For now, however, we construct an interpretation 〈W,R,V 〉 for which the original

statement, 〈P〉[F ](p∨ q) ⊃ 〈F〉q is true. Then we will see that the mirror image is true in

an interpretation which replaces R with its converse, Ř.

Let W = {w1,w2,w3} and suppose R = {w1Rw2,w1Rw3,w2Rw3,w3Rw3}. For the con-

struction of V it is enough to suppose that q is true at w3. To see that this construction

provides an interpretation 〈W ,R,V 〉 for which 〈P〉[F ](p ∨ q) ⊃ 〈F〉q is true, notice that

since q is always true, for every wi ∈W , for at least one w j ∈W , wiRw j and V (q,w j) = 1.

Thus 〈F〉q is true in the interpretation 〈W ,R,V 〉 , and so the original statement is as well.

The corresponding interpretation of the mirror image, 〈W, Ř,V 〉, is found by taking

the converse of R, so that Ř = {w2Rw1,w3Rw1,w3Rw2,w3Rw3}. Then the mirror image

〈F〉[P](p∨ q) ⊃ 〈P〉q is true in this interpretation by a similar reasoning, since for every

world in W there is at least one world (w3) which can access that world and for which q

is true. Thus 〈P〉q is true in the interpretation 〈W, Ř,V 〉, and so the mirror image is true as

well.

Because possible-worlds interpretations of [F ], 〈F〉, [P], and 〈P〉 are already familiar,

their tableaux rules are not difficult to provide. As might be expected, tablueaux rules for
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[F ], 〈F〉, and their negations are identical to the analagous rules for � and ♦. Similarly,

the rules for [P] and 〈P〉 are the same as these rules with the relation R reversed. All eight

of these tableaux rules appear in Figure 7 (page 81 below). With these rules in place, it

becomes possible to test a statement of tense logic for validity with the same procedure

outlined in section 2.2.

Definition. Let Z be some system of modal logic, with Z being the class of frames relevant

to the validity-definition of Z. Then Zt is the system of tense logic based on Z.

An interesting feature of tense logic is that it enables one to test the validity of vari-

ous tense-logical formulas under different conceptualizations of temporality based on the

class Z of frames under consideration. In the previous chapter it was shown how these

frames were connected with specific systems of modal logic. For example, it might seem

reasonable to assume that moments of time carry the transitive property (e.g., if w1, w2 and

w3 are moments, then if w1 is prior to w2 and w2 is prior to w3, then w1 is prior to w3).

However, the class of transitive frames was called F in the previous chapter, and it was

demonstrated that F -validity is linked with the modal system K4, and so it might be of

especial interest to work with theorems of the system of tense logic K4t or even S4t (see

Section 4.3 below). Arthur Prior (especially in [1967]) engaged in the first elaborate hunt

for the system of modality which was the “true” representative of temporality as we know

it. The question is complicated and highly interesting; a brief and illuminating discussion

takes place in Hughes and Cresswell [1996, p. 127-136].

Most fundamentally, we call Kt the system of tense logic based on the modal system

K, recalling that K-validity is special since K-valid formulas are valid on every frame.

Because of its foundational significance for so many other systems of modal logic, and the

near-universality of K-validity, Kt provides a tense logic which makes as few assumptions

about the nature of time as possible. So this system will be the tense logic we explore in this

section, with the thought that such an exploration lays the main groundwork for extensions

to various other systems of tense logic (it is relatively straightforward to extend possible-
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worlds interpretations for extensions of tense logic beyond Kt (see Priest [2008] for a brief

discussion). For the remainder of this section we will be showing that Kt is sound and

complete with respect to possible-worlds semantics. This involves extending the proofs

given in Chapter 2 for soundness and completness of K with respect to possible-worlds

semantics.

Theorem. If a formula is a theorem of the system Kt, then it is K-valid.

Proof. The proof consists in showing that the tense-logical versions of the axiom [K] are

true for an arbitrary possible-worlds interpretation 〈W,R,V 〉 of tense logic. This means

showing the formula [F ](A ⊃ B) ⊃ ([F ]A ⊃ [F ]B) and its mirror image, [P](A ⊃ B) ⊃
([P]A ⊃ [P]B) are true regardless of the choice of frame. For the future-tense version of

[K], the proof has already been done, since the semantics for [F ] are identical to those for

�. To show that the past-tense version of [K] is valid on every frame, suppose not; that

is, suppose there exists a possible-worlds interpretation 〈W,R,V 〉 for which this formula is

false at some wi ∈W . Then V ([P](A ⊃ B)⊃ ([P]A ⊃ [P]B),wi) = 0. For this interpretation,

by definition of implication, V ([P](A ⊃ B),wi) = 1, V ([P]A,wi) = 1, and V ([P]B,wi) = 0.

Hence there must be some world w j ∈ W such that w jRwi and V (B,w j) = 0. But since it

follows from the assumptions that V (A,w j) = 1 and V (A ⊃ B,w j) = 1, we conclude by

definition of implication that V (B,w j) = 1, a contradiction.

Theorem. If a formula is K-valid, then it is a theorem of the system Kt.

Proof. (by contraposition). Assume formula A is not a theorem of the system of tense

logic Kt . Then, as before, the semantic tableau for A has an open branch; call this open

branch b. Since the tableaux rules for [F ] and 〈F〉 are identical to those for � and ♦, and

the rest of the tableaux rules are unchanged, the proof is almost the same as the proof for

completeness of K, with the the construction of the interpretation 〈W,R,V 〉, the base case,

and cases 1 through 14 essentially unchanged; the only new cases are for [P] and 〈P〉.
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Case 15. Let A be of the form [P]B. Suppose [P]B,wi is on branch b. Then for every

w j such that wjRwi is on b, by application of the tableaux rule for [P] (Figure 7e) B,wj is

on b. So by construction, wi ∈ W and for every w j ∈ W such that w jRwi, V (B,w j) = 1.

Therefore V ([P]B,wi) = 1.

Case 16. Let A be of the form ¬[P]B. Suppose ¬[P]B,wi is on branch b. Then by

application of the tableaux rule for ¬[P] (Figure 7f), 〈P〉¬B,wi is on b. By application of

the tableaux rule for 〈P〉 (Figure 7g), for some w j it follows that wjRwi and ¬B,wj are

also on the branch. Hence by construction wi,w j ∈W , w jRwi, and V (B,w j) = 0. Therefore

V ([P]B) = 0.

Case 17. Let A be of the form 〈P〉B. Suppose 〈P〉B,wi is on branch b. By application of

the tableaux rule for 〈P〉, for some w j it follows that wjRwi and B,wj are also on the branch.

Hence by construction wi,w j ∈W , w jRwi, and V (B,w j) = 1. Therefore V (〈P〉B) = 1.

Case 18. Let A be of the form ¬〈P〉B. Suppose ¬〈P〉B,wi is on branch b. Then by

application of the tableaux rule for ¬〈P〉 (Figure 7h), [P]¬B,wi is on b. So for every w j

such that wjRwi is on b, by application of the tableaux rule for [P] once again, ¬B,wj is

on b. So by construction, wi ∈ W and for every w j ∈ W such that w jRwi, V (B,w j) = 0.

Therefore V (〈P〉A) = 0.

With these cases in place, it follows that there is an interpretation of K (and so Kt) which

interprets all its premises as true at some wi ∈W but interprets A as false at wi. Therefore

A is not K-valid (and so not valid in the tense logic Kt).

4.3 Topological Semantics for a Future-Tense Logic

Because the formal connection of the future tense operators [F ] and 〈F〉, as well as their

possible-worlds interpretation, are identical to those for the modal operators � and ♦, it is

intuitive that a topological interpretation of tense logic is also possible so long as the tense

logic remains future-oriented: so long as it only involves statements about the future and
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is not extended to statements about the past. It is worthwhile to examine this possibility

carefully, since a topological interpretation of tense logic provides a way of thinking about

modality which is fully independent of the metaphor of “possible worlds,” which was the

goal mentioned in the introduction.

The semantics are virtually identical to those for modal logic given in Chapter 3. Let

X be a topological space and υ : Var→ P(X) be a valuation function. For any x ∈ X and

any propositional variable p or arbitrary well-formed formulas R and S, the following rules

hold in a topological interpretation of future-tense logic:

• x � p if and only if x ∈ υ(p).

• x � ¬R if and only if x � R.

• x � (R∨S) if and only if x � R or x � S.

• x � (R∧S) if and only if x � R and x � S.

• x � [F ]R if and only if there exists an open subset U ∈ T such that x ∈ U and, for

every y ∈U , y � R.

• x � 〈F〉R if and only if, for every open subset U ∈T , if x ∈U then there exists some

y ∈U such that y � R.

Because these valuation rules are identical to those for the modal operators, we can still

extend our conception of υ(R) := {x ∈ X : x � R} as defining a particular subset “where”

in a topological space X a given formula R is interpreted as true. In particular, it is still

the case that the equalities υ([F ]R) = Int(υ(R)) and υ(〈F〉R) = Cl(υ(R)) hold for any

formula R and any valuation function υ .

As the McKinsey-Tarski theorem states, because S4 is the modal logic of all topolog-

ical spaces, when interpreting the future-tense operators topologically we make the added

assumption that S4 is an adequate system of logic for speaking about the future, since any

topologially-valid formula will also be a theorem of the system S4. Thus formulas which
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follow from the axioms of S4 can be read as statements oriented toward the future and

interpreted in terms of interior and closure in a topological space.
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Figure 7. Tableaux Rules for Tense Logic

(7a) (7b) (7c) (7d)
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¬[F]A,i

〈F〉¬A,i
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iRj
A,j

¬〈F〉A,i

[F]¬A,i

(7e) (7f) (7g) (7h)

[P]A,i ¬[P]A,i 〈P〉A,i ¬〈P〉A,i

〈P〉¬A,i [P]¬A,i

jRi
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A,j A,j
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