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INTRODUCTION 

1.1. Introduction. The subject of group theory is 

indeed an interesting area. The study of finite groups 1s 

but a small segment of the eneral theory of groups, however 

group theory has its plac in all pure and applied 

thematics. 

Through the study of bstract finite groups of a 

given order, it is of interest to determine the subgroups 

Which may contained in the groups under consideration. 

This thesis is concerned ~lth the abstract groups of order 

24. 

1.2. Statement gf !h£ probl The purpose of this• 
study is to construct the lattices of the abstract gr~up6 of 

order 24. To construct the lattice of each group of order 

24, the subgroups contained in each of the abstract groups 

of order 24 will be determined. From the lattice of each 

group it will be possible to determine the number of elements 

of ch order and the order of ch element Gontained in a 

particular abstract group of order 24. 

previously 

tated, this thesis will 1 only with the abstract groups 

of order 24. The purpose of the lattices of groups of order 

1.3. Limitations 2i !h! probl • 
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2, 3, 4, 6, 8, and 12 will to aid i termining th 

subgroups which may be contain in the abstract qroups of 

orCler 24. 

There are fifteen distinct abstract groups of orCler 

. ~.1 Although there are many groups of order 24, each is~ 

isomorphic or a faithful representation of one of th 

abstract groups of order 24 which will be cQnside.ed in 

this thesis. 

1.4. Importance.Qfit!§. study. Through the study of 

the abstract groups of a given order, one can in a better 

understanding of the theory of groups. The contents of this 

thesis could be utilized in analyzing groups whose orders 

include 24 as a factor. This thesis could also be used to 

analyze groups whose orders include the factors of 24 

factors. 

1.5. Organization £i the thesis. Chapter II 

contains a brief history of group theory and mentions som 

of the n who have contributed extensively to the develon ­

nt of the theory of groups. This chaptor also contains
 

orne of the thcor discovered by the
 • 

Chapter III defines the group concept and the axioms 

of group theory. Also cont in this chapter th 

lW. Burnside, Theory of Gro~~~ 
York] a Dover PublicatIons, Inc., • -

([ 



finitions of some of the terms used in the remainder of 

this thesis. Chapter DI presents the lattl.ces 0 

ose oroers are xactors of 2 

V throuah IX constitute the core of th 

thesis. Chaoters V through VII deal with tne qrouos 0 

order 24 whose subaroups of order 8 are Abelian. Chaoter V 

considers the groups of order 24 which contain cyclic 5ub­

roups of order 8. Chapter VI presents the groups of oraer 

24 whose subQrouos of order 8 ore defined by C4 x C2• The 

groups of order 24 considered in Chapter VII contai 

subaroups of order 3 which are defined by C? x C2 x ~2. 

Chapters VIII and IX constitute grouos of order 24 

ose subaroups of order 8 are non-Abelian. Chapter VIII 

discusseD the groups of order 24 whose subgroups of order 

re dicyclic. The groups of order 24 which contain dihedral 

subgroups of order 8 are presented in Chapter IX. 

Chapter X contains a brief summary of the study. 

This chapter also contains somo conjoctures of the ~~iter 

ortalning to abstract finite groups. Table III, shQ~in 

the number of clements of each order contained in ~ 

-ticular group, is contained In this chapter. 



CHAPTER II 

HISTORICAL BACKGROUND OF 

. . GROUP THEORY 

2.1. History of group theory. Evar6ite Galois 

(1811-1832),	 a French mathematician, was the first to use 
lthe term "aroup" in a technieal sense. He proved the 

theorem that every invariant subgroup gives ~ise to 

quotient group which exhibits many properties of the group. 

Galois also showed that groups may be divided into simple 

and compound groups.2 

Some concepts of group theory had been anticipated 

and explored by J. L. Lag~ange (1736-1813) and Paolo Ruffini 

(1765-1822), but Galois revealed the complete concept of the 

theory of groups. Galois, on the eve of his fatal duel, 

wrote a summary of his discoveries pertaining to the theory 

of equations. This summary included hi$ thoughts and ide 

on the theory of gt'OUpS, the key to modern algebra,and 

modern geometry.3 

(New York. 
Simon 
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N. H. Abel (1802-1829), a No~ve9ian mathematician, 

persued Galois' ideas pertaining to group theory. Commuta­

tive groups are called Abelian groups which i& indicative of 

Abel's interest and prominence in the area of group theory.4 

Prior to 1854, th~ thco~y of groups of finite order 

originated from the v~itings of Lagrange, Ruffini. Abel, and 

Galois. The theory of group!3 of finite' order sprang from an 

analysis of the theory 'of algebraic equations and the theory 

of numbers. 5 A. L. Cauchy (1789-l857) is credited as being 

the founder of the theory of groups of finite order. In 

~844 Cauchy proved the theorem which is now known a 

Cauchy's Theorem. This theorem had previously beon stated 
6by Galois but not proven. 

The founding of the theory of abstract groups 1s 

usually credited to A. Cayloy (1821-1895), an English mathe­

matician. L. Kroneck~r (1823-1891), and H. Weber (184 

1913) later gave the formal definitions for abstract groups.7 

,Ludwig Sylow (1832-1918).. a Norwegian mathematician, 

obtained a theorem which was first proposed by Cauchy. out 

4 Ibid., pp. 226-227.
 

5Cajori, ~. £!i., p. 353.
 

6le.!s!.., p• 35",.
 

7!2!S•• pp. 352-353.
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of the study of this theorem, Sylow discovered the theorem 

hich is now kno~n as Sylow's Theor 8 
• 

.1any mathematicians, thi:-ough the centuries, have 

studied group theory. However, th en referred to in thi 

chapter st certainly stand out as pioneers in the area of 

group theory. The r inder of this chaoter is devoted to 

some of the noro significant theorems pertaining to the 

theory of groups. The proofs of these theoremG may be 

found 1n any reput~ble textbook dealing with group theory. 

Hence, th() proofs wlll not be includod in thl$ thesis. 

Galois' Theoreml 

hen n > 4, is a pIe group.9 

Laqrangc's Theorem: 

The order of a subgrouD of a f!nit roup G is a 
factor of the order of G.10 

Cayley's TheQreml 

Every group islisomorphic too a permutation group of 
its ovm elements. . 

Thia., p. ~~. 

9Walter Ledermann, Introduction to the Theory of 
Finite GrOU 6 (New Yorkl InterscIence PubIIihers, Inc.,a 120.1957, 3rd c.), p. 

lORobert D. Carmichael, Ir.troduction ~ !h! Theory
2i Groups £i Finite Order (Boston: Ginn and Company, 1937), 
p. 44. 

ll~~r£hall rmll, Jr.~ The Theory £i Groups (New York: 
T acmillan Company, 1959). p. 9. 
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uchy's Theorem:
 

If
 ctor of the order of a grouc G, 
then G least one element of order p.~2 

Sylow-s Theorem: 

Eve+y group whose order is divisible by pm, but not 
y pm+J., p bQirng (], prime numbor, contains l+kp subgroups

of order pm. 

other Theorems: 

The order of an element of G 1s a factor of the order 
of G.l4 

~oup of primelgrdcr no pr r subaroups and is 
nec sax-ily cyclic. 

All subgroups of a cyclic group are cyclic. If {A}
16 a cyclic group of order g, then corresponding to 
very divisor h of 9 there exists one, and only oq~'16 

subgroup of order h. which m~y be ganorated by A9I • . 

l2Tedermann. £Q.. cit., P. 12 7 • 

13Cajori. ~. cit., p. ~~.
 

l~Carullchael. £2. £!i•• P. 4~.
 

1 dcrmann, ~. £!1., p. 3v.
 

lOIbid.
-
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.cUP THEORY 

.1. "'.. __.... theory. To form a group, a 

set of 01 the f 011 ov/!.nQ a:=ioms: 

efinitlon 1. A sot G of a finite or infinito number 
of elements, for If/hleh a law of composition ("multipli­
,cation") is dofined, forms a group if the following
conditions arc satisfied: 

(I) Closure: to every ordered pair of elements At B 
of G there longs a uniquQ clement C of G, vtrltten 

c = 
Jhich is culled the product of A and • 

(II) Associative law: ,if A, B, C are any three 
elements of G, which need not be distinct, then 

(AB)C ;;: A{BC) 

60 that either 51 uy b noted by ABC. 

(Ill) Unit Element: G contains an element I, called 
the ur.ltelement or identity such that for every
le_mont A of G 

AI ;;: IA = A. 

(IV) Inverse or reciprocal elementl corresponding to 
ev~ry clement A of G, there exists in G an element 
A-L such that 

M-l = A-IA = r. l 

3.2. Definition £i terms. This etion will define 

some of the terms us in this thesis. 

lWalter Ledermann, Introduction to the Theor1of 
Finite Groups (New York: Intersclence PUbIIShers,nc., 
1957, 3rd cd.), pp. 2-3. 



ich&rd V. 
Algebra (New York: 

Ledermann, ££. cit., 1.• 
4Ibid. 

5Ibid., P. 3. 



10 

~-Abelian group. If in q given group, so 

lement is not commutative with so other element then 

the group is non-Abelian. 

Order ~~ group. In a finite group, the number of 

elements contained in the group 1s the order of the group.6 

Order ~ !n _el=e_m.e.n_t. If Ag equals the unit element 

where g is the least positive integer for which this 

condition is true, then the order of A is 9. 7 

Cyclic group. A cyclic group of order 9 is a group 

which contains at least one element, A, of order g. The 

element A is said to generate the group.8 

Dicyclic group. The dlcyclic group is defined by the 

following relations, 

2G4n = {Ata}, where A2n = I, An = (AD)2 =a , (n>l), 

and is of order 4n. 9 

Dihedral group. The group defined by 

= {A,B}, where Am = B2 = (AB)2 = IG2m
 
10
is the	 dihedral group of order 2m. 

6Andree, lQ£. .ill. 
7Ledermann, Ope cit., p. 21 • 

.!!2..!&.,	 p. 24. 
I
Robert	 D. Carmichael, Introduction 12 !h! Theoxrof 

Grou~s	 £1 Finite Order (Boston: GInn and Company, 1937 t 

p.	 1 3. 

lOIbid. 
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_ ............... eo-", ;a'" ... -It..... By an isomorphism between two 

groups G = {A.B•••• } and G' '= {A'.D' •••• } is meant a one-to­

one cor~espondence At between their elements which 

reserves group multiplication--that is. which is such that 

if I¢.A' and " then 'B t • 

-- - .._ ..2 ... ~.,.... ...... v •• <fiI. A t of generating elements 

nd their relationship from which a group may be derived is 

called the defining relations of the group. That is, 

G = {A,B}, where A4 = B2 = I. AB = BA, 

completely defines an Abelian group of order 8. The eight 

elements contained in this group are I. A, A2 , A~, B, AB, 

A2D, and n. IJ. 

3.3. The lattice. A lattice is diagram which 

rev Is the structure of a given group. The lattice dis­

closes the subgroups contained in this group. The letter G 

in a lattice indicates a group or subgroup. The numerical 

subscripts of a certain G indicate the order of that group 

or subgroup. The alphabetical subscript of a group or sub­

group. G, is used to indicate a particular group or subgroup. 

For example G2a and G4b are groups or subgroups of orders 2 

and 4 respectively. G6a and G6b' two subgroups or groups of 

order 6, which mayor may not be isomorphic, are nevertheless 
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distinct SUDQrOUpS or oups. In a lattice, t lines 

extend dOVln roup, G, to various sub­

'icatQ t SUbCTt'OUpS ',",hie contain in t 

roup u. 

Figure 3.1 is the lattice of a group of order 8. Ga 
indicates that this aroup is of order 8. GQ contains thr 

distinct subaroups of order 4. G2:l f a subgroup of order 2. 

is common to the three subOroups of order 4. Hence, G~~ is 

also contained in Go. The unit element, I, is contained in 

Ga and all subarou of Ga. 

Ga 

G4c G4a G4 b 

G2a 

I 

F!gur .1. ttice of a aroup of 0 • 



CHAPTER rJ
 

LATTICES OF GROUPS WHOSE ORDERS
 

ARE FACTORS OF TWEtr.rY-FOUR
 

4.1. Groups of o~der~. Since the number one i 

prime, all groups of order one are cyclic. Hence, there 1s 

only one type of group whose order 1s one. The group of 

oraer one 1s composed of only the unit element which 1 

always of order onc. The lattice of such a group is triv­

ial and therefore is not shown. The defining relations of 

this group ar 

Gl = {AJ, where A = I. 

4.2. Groups of order!:!L2.. The groups of order 2 

are cyclic. Since two is a prime number, the groups of 

order 2 do not contain any subgroups. All groups of order 

2 are isomorphic and may be represented by the lattice in 

Figure 4.1. The defining relations of the group of order 2 

are as folloVJs: 

G2 ={Al, where A2 = I.
 

G2
 

I 

Figu 4.1. Lattice of glouP of order • 
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4.3. Three is a prlJ!le 

numDer; ncnce. all au ~ are cyclic and do not 

contain any subqxo s. ~.l gro Of order 3 are isomorphic 

and are rep:resente by the lattic 10. Figure 4.2. Since the 

order of the e1 ts must be factors of t order of the 

group and the unlt elnment must be unique., this group con­

tains two elements of order 3 and the unit element of order 

nee The defining relations for the nroup of order 3 are: 

G3 ={A1. where A3 = I. 

G 

I 

Figure 4.2. Lattice of group of order 3. 

4.4. Gro'ups £i order~. There aX'e two distinct 

group& of order 4, both of which are Abelian. l As the 

factors of 4 are 1, 2, and 4, the subgroups contained in a 

group of order 4 st be of order 2. The cyclic group of 

order 4 contains two elements of order 4, an element of 
. 

order 2,. and the unit element. This group contains a 

subgroup of order 2 as shown in the lattice in Figure 4.3. 

lWalter Ledermann, 
Finite Groups (New York: 
1957, 3rd cd.). p. 48. 
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The defining relations for the cyclic group of order 4 are 

as follows: 

G4 ={AJ, where A4 = I. 

G4 

I
 
G2a 

I
 
I 

Figure 4.3. Lattice af'cyclic group of order 4. 

The second group of order 4 contains three elements 

of order 2 and the unit element. This group is referred to 

~s the four-group or quadratic group and contains three 

subgroups of order- 2. Figure 4.4. shows the lattice of the 

quadratic group. The defin~ng relations of such a group 

are as followsl 

G4 = [A,a}. where A2 =32 = (AB)2 = I. 

G4 

G2b 

I 

Figure 4.4. Lattice of quadratic group of order 4. 



1 

4.5. Groups ~ order~. There are two distinct 

g.roups of o%der 6; one is cyclic and the other non-Abelian. 2 

The cyclic group of order 6 contains two ,~lement8 of order 

6, two elements of order 3, one element of order 2, and the 

unit element. Figure 4.5 is the lattice of such a group 

and shows the subgroups of orders 2 and 3. The cyclic 

group of order 6 1s defined by the following relations I 

G6 = {Al, where A6 = I.
 

G6
 

G2a 

I 

FiQure 4.5. Lattice of cyclic group of order 6. 

The non-Abelian group of order 6 i$ shown 1n Figure 

4.6. This group is composed of two elements of o~der 3, 

three elements of order 2, and the unit element. There ax 

three $ubgrou,s of order 2 and a subgroup of orde~ 3 

2Ibid., p. 49. 



17 

contained in this aroup. The defining relations of this 

group are as follows: 

G6 ={A,B}, where A3 = a2 = (AB)2 = I. 

G6 

I
 

G2b 

Fi9u~e 4.6. Lattice of non-Abelian group of order 6. 

4.6. Groups gf order eight. The five groups of 

order 8 consist of three Abelian and two non-Abelian groups.3 

The cyclic group of order is represented by the lattice in 

Figure 4.7. This group contains four 01 nts of order 8, 

two elements of order 4, one element of order 2, and the 

unit element. There are two subgroups contained in this 

group; a cyclic subgroup of order 4 an subgroup of order 2. 

31l?!5!., p. 51. 
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eo oy the followingThe cyclic eroll. QIul:::.J: i 

reJ.ations: 

~ {A}, where AO = I. 

GS 
I 

G4a 

G2 

I 

Figure 4.7. Lattice of cyclic group of order 8.
 

Another Abelian group of order 8 contains seven
 

elements of order 2 and the unit element. This group is the
 

direct product of three groups, each of ~1hich is of order 2.
 

The group contains seven subgrou. of order 4 and soven sub­

groups of order • T subgroup of order 4 arc quadratic 

subgroups. Figure 4.8 1s tho 1 of this Abelian group 

of order S. The definina relation for the grauo are as 

foll 

Ga ={A,B,e}, where A2 = 82 = C2 = I,
 

AB = BA, AC = CA, Be = CD.
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G2eG2cG2a 

G4g 

G8
 

G2g 

I
 

Figure 4.8. L2ttice of group of order 8 of type C2 x C2 x C2· 
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The third Abeltan group of Qrder 6 is the direct 

product of a cyclic group of order 4 and a group of order 2. 

Thi' group 1$ composed of four elements of order 4, thr 

elements of order 2, and the unit element. The group con~ 

tains two c.yclic subgroups and one quadratic subgroup of 

order 4. There are also three subgroups of order 2. The 

lattice of this group is represented in F1gure 4.9. Th~ 

roup is defined by the following relations: 

Ga = [A,B}. where A4 = B2 = It AB = BA. 

G4c G4a G4b 

I
 

G2b
 

Figure 4.9. Lattice of group of order 8 of type C4 x C2• 

The dihedral group of order 8 is non-Abelian and 1 

composed of two elements of order 4, five elements of or~~ 

2, and the unit element. This group contains one cyclic 
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sUbgroup and t~o quadratic subgroups Of order 4. There are 

five subgroups of order 2 contained in this group of order 

8.	 Figure 4.10 is the lattice of the dihedral group of order 

vhlch is defIned by the following relations I 

GO = {A,B}. where A4 = B2 = (AB)2 = I.
 

Ge
 

G4b G4a G4c 

G2aG2d G2b	 G2c G2e 

I 

Figure 4.10. Lattice of dihedral group Df order 8. 

The fifth group of order 8 1s also non-Abelian and is 

the dicyclic group of order 8. This group is represented by 

the lattice in Figure 4.11, and contains six elements of 

order 4. an elament of order 2, and the unit element. The 
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group contains three cvclic subqrouos of order 4 and 

subgroup of order 2. Th fining relations for tne 

cyclic group arQl 

GO =(A,B}, where A4 =B4 =I, A2 =32 =(AB) • 

Gu 

G4c G4a 'G4b 

Gr>a 

I 

Figure 4.11. Lattice of dicyclic group of order 8. 

Thera are five distinct4.7. GrOll-
groups of orde~ 12.4 T\10 of the groups arc Abelian and 

three are non-Abelian. The cyclic group of order 12 is 

composed of four elements of order 12, two e~ements of 

or~er 6, two element oraer 4, two elements of order 3, 

an element of order , nd the it element. This group 

o the Theorr of 
Company, 1937 ,­
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in this group. The grouD also contains 0 qu~ar(J.tic 

sungroup of order 4, uOQroup of order 3, and three sub­

groups of order 2. T rouo is reor ted by the lattice 

.13 and is defin follows: 

= {A, 2 = R2 = c3 = I,G12 

= , c= , Be = CI.I. 

Gl 

• 2b 

I
 

Figure 4.13. Lattice of Abelian group of order 12.
 



25 

The alternating group of order 12 is composed of 

eight elements of order 3, three elements of order 2, and 

the unit element. This group contains one quadratic sub­

group of order 4, and therefore contains three subgroups 

of order 2. The group also contains four subgroups of 

order 3. The lattice of the alternating group 1& shown in 

Figure 4.14. The defining relations for this group are as 

follows. 

G12 ={A,a) , where A3 =a3 = (AB)2 =I. 

G12 

G3d
 

I 

Figure 4.14. Lattice of alternating group of order 12. 

The dicyclic group of order 12 is represented by the 

lattice in Figure 4.l~. Two elements of orde~ 6, six ele .. 

menta of order 4, two elements of order 3, an element of 

order 2, and the unit element constitute this group. Three 

cyclic subgroups of order 4 are contained 1n the group. The 

group also contains a cyclic $ubgroup of order 6 which has 



26 

subgroup of order 3 and a subgroup of order 2 ~h1ch 1s 

common to the subgroups of arder 4. The defining relations 

of this group area 

G12 ={A,B}. where A6 = I. A3 =B2 = (AB)2.
 

Gl
 

G6_a 

G4b G4c 

I 

Figure 4.15. Lattice of dicyclic group of order 12. 

The lattice in Figure 4.16 r,epresents the dihedral 

group of order 12. This group is composed of two elements 

of order 6, two elements of orqer 3, seven elements of order 

2. and the unit element. There arc three subgroups of order 

6 contained 10 the dihedral group. One of the subgroups of 

order 6 is cyclic. However. all of the subgroups of order 

6 oontain a common subgroup of order 3. There are thr~e 

quadratic subgroups of order 4 and each of th~se subgroups 

contain three subgroup$ of order 2. One of the subgrol,lps
•

of order 2 is conunon to the cyclic subgroup of order 6 and 

to all quadratic subgroups of ordor 4. The following rela­

tions define this groups 

Gl2 = [A,B), where A6 = B2 = (AB)2 =I. 



27 

G12 

• I
 

Figure 4.16. Lattice of dihedral group of order 12. 



CHAPTER V 

G24 WITH CYCLIC SUBGROUPS OF
 

ORDER EIGHT
 

'5,,1. ~ .Q.!l£.. This nroup of order 24 is Abelian 

and 1s defined by the follo~inQ relationsl 
-

Gn.4 = (A,B} , where A"O ::: BV = I, AS::: BA" 

Figure 5.1 is the lattice of this group. The number 

of elements of each order is shown in Table III. 

This group is cyclic d necessarily contains only 

cyclic subgxoups. The subgroups of orders 8 and 12 have G4a 

as a common subgroup. Gl no G6a have a common subgroup 

of order 3. The subgroup G2a Is common to all the subgroups 

whose orders are multiples of two. 

5.,2. Type two. The group defined by 

G24 ={A,B}, where A8 = D3 =I, A-1BA =a-I, 
is non-Abelian and 1s shovm in Figure 5.2. Table III shows 

the number of elements of each order in this (J.t'oup. 

1 subgroups of this group are cyclic. The throe 

~ubgroup5 of order 8 and the subgroup of orde~ 12 have G4 
a common sUbgroup • A subgroup of order 6 is contained 1n 

•
G12a· The subgroups Goa and G12a contain a common subgroup 

of order 3. G2a 1s again contained in all subgroups whose 

orders arc multiples of two. 
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G12c~ GSc1 

G62 G4a 

G2~~
 

I 

Figure 5.1~ L~ttiGB of G24 of type 0 
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• ,­.... 

Fig~re 5.2. L2tt of G24 of tvoe 



VI 

G24 VIITH SUBGROUPS OF ORDER EIGl-ff 

if TYPE C4 x C2 

6.1.	 ~ three. The group of order 24 defined by 

= {A,B,C}, ~here A4 = B2 = C3 = I,G24 

- BA, AC = CA, DC =ca, 
is Abelian. This group is the direct product of a group of 

order 8 of type Cd x C2 and a group of order 3. The number 

of elements of each order may be note~ in Table III. 

s may be observed in Figure 6.1, this group contains 

three subgroups of o~der 12. G12a is an Abelian subgroup 

and contains three cyclic subgroups of order 6 which have 

as a common subgroup. The quadratic subgroup containedG3a 

in GI2a contains three subgroups of order 2. 

The two cycli~ subgroups of order 12 ar'e G12b and 

G12c. These subgroups are isomorphic and contain G6a as a 

cormnon subaxoup of order 6. Eact. subgroup contains a cyclic 

subgroup of order 4. G48, G4b. and G6~ contain a common 

subgroup; G2a • Th buroup G6a also contains G3a' a 

subgroup of order • 

The subg~oup of order 8 1s Abelian and is isomorphic 

to the group in Figure 4.9. This subgroup contains two 

cyclic groups of order 4 and a quadratic subgroup of order 

4. The	 three subgroups of order 4 have a common subgroup 
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I
 

Figure 6.1. L~ttice of G24 of ~y ....... ree •
 
• 
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ho o r 1s 2. Thiscormnon subgroup 1s G2a • The 

quadratic subgrou contains the three subgroups of order 2. 

6.2.	 ~~. This group is defined by 

={A,D,C}, where A4 = B2 = C3 =I,G24 
An = BA, BCD = C-1, A-lCA =C, 

and is shown in Figure 6.2. The number of elements of each 

order is shown in Table III. 

This group of order 24 contains three subgroups of 

order 12. G12a is cyclic and is isomorphic to the group in 

Figure 4.12. This subgroup contains G6a which is cyclic. 

G6a contains G3a and G2a as subgroups. The cyclic sub­

group of order 4 contained in G12a also contains G2a as a 

subgroup. 

G12c is a dihedral subgroup of order 12 and contains 

one cyclic and two non-Abelian subgroups of order 6. T 

subgroups of order 6 contain G3a as a common subgroup of 

order 3. G6b and G6c each contain three subgroups of order 

2. G12.c also contains three quadratic subgroups of order 4, 

all of which contain G2a as a common subgroup. 

The third subgroup of order 12 is dlcy~llc and is 

denoted by Gl2b. This subgroup contains three cyclic sub­

groups of order 4 and a cyclic subgroup of order 6. The 

subgroups of orders 4 and 6 contain G2a as a common 

subgroup of order 2. ·The subgroup of order 6 is the same 

subgroup which is contained in G12a • 
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v ... 

Figure 6.2 • • U.ttice of G24 of iy'pe f\)uI'. 



c t e subarou of order re isomorphic and 

each one may be reorc~cnt by the oup in Figure 4.9. 

GSa' GSb, and G8c each contain two cyclic subgroups and a 

quadratic subgroup of order 4. G4a is common to all of th 

subgroups of order • 

•3. Type .fm.• Tho group of order 24 defined by-
G~4 ={A,B,C}, where A4 = B2 =C3 = I, 

AB =BA, A-leA =c·l, BC = CB, 

is shovm in Figure 6.3. The number of elements of each 

order may be noted in Table III. 

This group of order 24 containc three subgroups of 

order 12. G12a i lian and contains three cyclic 5ub­

roups of order 6 and G quadratic subgroup of order 4.• 
The subgroups of order 6 contain G as a common subgroup. 

The three subaroups of oroer contain in the subar'oups 

of order 6 are all contained in G4~. 

G12b and G12c a dlcyclic subarou of order 12 and 

contain common subaroup of order 6. Gl contains G4b, 

and G4d which are cyclic subgroup of order 4_ TheG4c ,
 

cyclic subgroups of order 4 contain in G12c. are G4e • G4f.
 

and G4g - All the SUDoro of or s 4 and 6 contained in
 

whichG12b and G12c contain a co on sub oup a 

is G2b­

•
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,~~C
 

..­
..!. 

Figure 6.3. 
• 

Lattice of G24 of type five • 
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The three subgroups .of order 8 contained in this 

group of order 24 arc Abelian. Those subgroups are iti,o­

orphic and contain GA.a as a common subgroup. Each sub­

group of order 8 alsa contains two cyclic subgroups of 

order 4. The seven subgroups of order 4 contain a common 

subgroup; G,.,t... 

•
 



CHAPTER VII 

G?4 WITH SUBGROUPS OF ORDER
 

EIGHT OF TYPE C2 x C2 x C2
 

7.1. Type~. This Qrouo of order 24 is the direct 

product of a group of order 3 and an Abelian group of order 

a of type C2 x C2 x C2• The defining relations of this 

eroup are: , 

~ {A,B~C,D1, where A2 =B2 = C2 =D3 = I.G24 

AB = BA, AC = CA, DC = CB, 

D-lAD = A. D-lBD = D. D-ICD = C. 

The lattice of this group is shown in Figure 7.1. The 

number of clements of each order may be observed in Table III. 

G".4 contains seven Abelian subgroups of order 12. 

The seven $ubgroups are i$omorph1~ and each may be repr g
­

nted by Figure 4.13. These subgroups each contain a 

quadratic subgroup of ordor 4 and three cy,clic subgroups of 

order 6. Each of the quadratic subgroups contain three sub­

9rouPS of order 2; hen,ce J, three subarouDs of order 2 are 

contained in each G12. In a given iubgl'oup of order 12, 

each of the sUbgxoups of order 6 contain a subgroup of 

order 2 which i.s common to the quadratic subgroup. Each of 

the seven subgroups of order 6 16 common to lome three of 

the sev~n subgroup$ of order 12. G';l~ 1s common to all sub­

groups of order 6 and thereforo is common to all subgroups 

of order 12. 

..
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"gure 7.1. ~·ttice of Gn4 of tyoe six. 

c 
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i allan and isomorphic to 

the group shown in Figure 4.8. Gsa contains seven Quadratic 

subgroups of order 4. ach of the seven subgroups of order 

2 is contained in som 

The subgrou 

of the au tic subgroups. 

7.2. ~ seven. The group of order 24 defined by 

the	 following relation~t 

{A,B,C.DJ, where A2 = B2 =C2 =03 = I,G24 : 

AB = BA. AC = CA. Be = CB. AD =DA. 

D-laD =C, D-ICD =BC. 

is shown in Figure 7.2. The number of elements of each 

order may be observed in Table III. 

G~4 contains one subgroup of order 12, which is an 

alternating subgroup. G12a contains a subgroup of order 4, 

four sUbgroups of order 3, and three subgroup$ of order 2. 

G49 is a quadratic subgroup of order 4. This quadratic 

subgroup contains G2dl G20* and G2f , which are subgroups of 

order 2. Tho four subgroups of order 3 are G3a' G3b• G3c ' 

and G3d • 

There is one subgroup of order 8 contained in G?4. 

G contains seven dratic baroups of 4. ch 

of the quadratic subgroups con~ain thr SUbarou of or 

2.	 is indicat in the lattic~. c uOClr of del' 

2	 is common to sornQ thr of t v ouadratic 

The four suh.'"!,..,..",.."l: ot oracr are cyclic. 2a. a 

• 

~ubgroup of order 2, 1s common to the four subgroups. 
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G24
 

I
 

Figure 7.2. L2ttice of G24 of T,ype seven. 

~-----------_._-
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Since each of the subarou of order 6 is unique, each must 

contain a different subgroup of order 3. G contains G3A • 

a subgroup of order 3. G3b 1$ the subgroup of order 3 

which 1s contained in G~b. The subgroups G6c and G6d 

contain G3c and G3d respectively. 

7.3. ~ eight. This group is defined by the 

following relationsl 

G24 = (A,B,e,D}, where A2 =B2 = C2 = 03 =I, 

AB = BA, At:, = CA, BC = CB, 

CDC = 0-1, ADA =0, BOB = D. 

The number of elements of each order is shown in Table III. 

The structure of this group is such that the complete 

lattice if shown on on~ figure would be difficult to inter­

pret. Therefore, Tabl I and II are included a guide to 

the structure of the group. Figures 7.3 and 7.4 show the 

two type,s of subgroups of order 12 ,,·,hich are in9luded in 

The structure of each of the three subgroups of orderG24 • 
8 is shown in Figura 7.5. 

G12a. an Abelian subgroup of order 12, is shown in 

Figure 7.3. This subgroup contains three cyclic suogroups 

of order 6 and G4a J a quadratic subgroup of order 4. °6;1' 
G6b, and G6e' the cyclic subgroups of order 6, each contain 

a subgroup of order 2 which is common to the quadratic sub­

group. 03a' a subgroup of order 3, 1s common to the three 

subgroups of order 6. 
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G24
 

G12f. 

I
 

FiguTe 7.3. Lattice of A.be 1 1<".11 5ubgro1Jp of order 12. 
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igure 7.4 and Table I are used as a guide in 

analyzing the s1x dihedral subgroups of ordor 12. Each of 

the subgxoups contain a cyclic subgroup of order 6. G12b 

and Gl2c contain G6a. The cyclic subgroup of order 6 which 

is common to G12d and G12e 1s Gob. G12f and G12g contain 

Gec as a common cyclic subgroup of order 6. Each of the 

four non-Abelian subgroups of order 6 is contained in some 

three of the dihedral subgroups_ G6d is common to Gl2b. 

G12dt and G12f. The non-Abelian subgroup of order 6 which 

i6 common to G12b. G12e' and G1 2g is G6e. The dihedral sub­

groups Gl2c' Gl2d' and G12g' each contain G6f- The seven 

ubgroups of o~der 6 contain a common subgroup G3a' which 

is of order 3. Each of the fifteen subgroups of order 2 is 

contained 1n a subgroup of order 6. 

\~J1th the exception of G4a, each of the quadratic 

subgroups of order 4 is contained in a dihedral subgroup of 

ordor 12. There are seven subgroups of order 2 contained 

in each dihedral subgroup. One of" theso subgroups of crder 

2 is contained in the three quadratic subgroups and the 

cyclic subgroup of order 6. Each of the six remaining 
'" sUbgroups of order 2 is common to a quadratic subgroup and 

a non-Abelian subgroup of order 6. 

Since it would be repetitious to show the lattice of 

ch dihedral subg~oup, only the lattice of Gl2b is shown. 
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G12b 

G2d G2m 

I
 

Figure 7.4. Lattice of dihedral sub P of order 12 . 

..
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TABLE I 

DIHEDRAL SUBGROUPS OF ORDER TWELVE 

CONTAINED IN TYPE EIGm 

G12b G12c G12d G12e G12£ G12g. 

G6d G6f • G6f G6e G6d G6"r 

Gh ... G6a G6b . G6b G6c G6c 

G6e G69 G6d G6g G69 G6e 

G4b G4d G4c G4e G4f G49 

G4h G40 G4p G4k G4r G4m 

'G4n G41 64j G4q G41 G4s 
G3a G3a G3a G3a G3a G3a 
G

2d Gz£ G2f G2e G
2d G2f 

G21 G20 G21 G2k G20 G2i 

G"k G2n G2n G21 G21 G2j 

'G2a G2a G2b G2b G2c Gzc 

G2e G2g G2d G29 G29 G2e 

G21 G2j G2j G2m G2h G2n 
G?m G2k G2h G20 G2k G 
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Figure 7.4 is the lattice of this GUbgro Table I• 

enume~ates the subgroups contained in ch of the six 

dihedral subgroups. For example, colu one lists the sU n ­

groups contained in Gl2b. A syst of substitution i 

utilized in determinina the lattice of each of the remaining 

ihedral subaroups. To obtain the lattice of a given dlhed­

ral subgroup, ch subgroup in column one of Table I is 

replaced by the subgroup in the sarno row of the dihedxal sub­

group being considered. Thus, to obtain the lattice of G12d , 

Gl2b 1s replaced by Gl2d; G6d is replaced by G6f; G6a is 

replaced by G6b; unci similarly for the remainder of the 

column. 

The three subgroups of order 8 contained 1n G24 are 

Abelian. Each of the subgroups contain seven quadratic 

subgroups of order 4 and seven subgroups of order 2. GSa' 

Gab, and Gac contain a coeman subgrouPJ G4a of order 4. 

Therefore, G2a , G2b, <lnd G2c are conmon to the thr 

subgroups of order 8. 

Since the subgroups of order xe isomorphic, it 

would be redundant to show the lattice structure of each. 

Hence, only the lattice of G is shown. Figure 7.5 is 

the lattice of this subgroup. Table II lists the subgroups 

contained in each subgroup of order For example, column• 

one enumerates the subgroups contained in GSa. .As in the 

dihedral subgroups of order 12. a system of substitution 1s 



48 

loyed to determine the lattice of the two remaining 

subgroups of order 8. To obt~in tha lattice of a aiven 

subgroup of order a, each subqroup in column one is replaced 

by a certain subgroup which is contained in the subgroup of 

order 8 under consideration. For instance, to determlne the 

lattice of GQh, G8a is replaced by GRb; G4C is replaced by 

G4k J G4f 1s ~cplacod by G41; and similarly for the remainder 

of the column. 
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G4c 

G2d 

G
24 

GSa 

T 
J. 

Fig~re 7.5~ Lattice of Abelian subgroup of order 8. 



TABLE II 
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SUBGROUPS OF ORDER 

CONT AINED IN TYPE 

ErGHr 

ErGHT 

GSa GSb Gtsc 

G4c , G4k G4p 

G4f G41 G4s 

G4d • G4a G4a 

G4g G4j G4q 

G4b 

G4a 

(41 

G4h 

(40 

G4n 

G4e G4m G4r 

G2d G2k G2n 

G2f 

G29 
. 

G2b 

G2c 

G2b 

G2c 

G2a G2a G2a 

G2c 

G2e 

G2h 

G2j 

G2m 

G20 

G2b G21 G21 



CHAPTER VIII 

G24 WITH DICYCLIC SUBGROUPS OF 

ORDER EIGIIT 

.1. ~~. This group of order 24 is defined 

by the following relations, 

GI"')4 = (A,B,C}, re A4 ::: B4 = c3 = I, A2 = a2 , 

B-lAB = -1, c-1AC = A, c-1BC =a, 

'and is own in Figure 8.1~ The group is the direct pro­

duct of a dicyclic group of order 8 and a group of order 3. 

The number of elements of each order is s.hown in Table III. 

This group contains three subgroups of order 12. 

The subgroups of order 12 are cyclic and contain a common 

subgroup of order 6 which is cyclic. The subgroups of 

orders 2 and 3 are contained in G6~ and therefore are con­

tained in the three sUbgroups of order 12. G12a ' andG12b , 

G12c contains G4a , G4b' and G4c respectively as the cyclic 

subgroups of order 4. 

One subgroup of oraer is contain in this group 

of order 24. G is dicyclic and contains three cyclic 

subgroups of order 4. The three subgroups of· order 4 

contain G2;:1; a subgroup of order 2. 

8.2. ~~. The following defining relations 

define this group: 
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Figure 8.1. Lattice of G24 of type nine. 
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G~4 ~ {A,B.C}, where A4 = 84 ~ C3 = I, A2 = 2, 
a-lAB ~ A-l. C-1AC =a, c-lnc =~. 

As may be observed from the lattice in Figure 8.2, this 

group doe6 not contain a subgroup of order 12. The number 

of elements of each order is shown in ruble III. 

The subgroup of oraer , hich is contained in this 

group, is d1cyclic and contains three cyclic subgroups of 

order 4. G2a' a subgroup of order 2. is common to the 

three subgroups of order 4. 

There are four subgroups of order 6 contained in 

this group of order 24. The subgroups of order 6 arc cyclic 

and contain a common subgroup of order 2. Each of the 

subgroups of order contains one of the subgroups of 

order • 

6.3. IxE! eleven. The group of order 24 with the 

following defining relations, 

G24 ::: {A,B,C}, where A4 = n4 ::: C3 = I, A2 = B2 • 

a-lAB =A-1, A-lCA ::: C, a-1CB =c-l , 

is the dicyclic group of order 24 and is shown in Figure 

8.3. The number of elements of ch order is.shown in 

Table III. 

This group contains one cyclic and two dicyclic 

subgroups of order 12. The throe subgroups contain G6a; a 

cyclic subgroup of order 6. G2a and G3a also are common 

to the subgroups of order 12. Gl2a contains G4a; a cyclic 
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I
 

Figure 8.2. Lattice of G24 of type ten. 
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I 

Figure 8.3. Lattice of G24 of type eleven. 
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subgroup of order 4. G1 contain~ three cyclic sungroups 

of order 4; G4b. G4c ' and, G4d. The three cyclic subgroups 

of order 4 contained in G12c are G4o' G4f' and G4g • 

The three subgroups of order 8 are isomorphic. GHa , 

GOb' and GDc are dicyclic and each contain three cyclic 

subaroups of order 4. G4a and GZa are common to the three 

subgJ;'oup$ of order v. 



CHAPTER IX 

G24 WITH DIHEDRAL SUBGROUPS OF
 

ORDER EIGHT
 

9.1. ~ twelve. The group of order 24 defined by 

G~4 ={A,B,C}, where A4 =B2 = CW = I, 

- A- l C-1A~ - A C-lBC­- • v -. - u, 

is shown in Figure 9.1. This group is the direct product of 

the dihedral group of order 8 and a group of order 3. The 

numDer of elements of each order is shown in Table III. 

The group contains three subgroups of order 12. The 

three subgroups contain a common subgroup of order 6. G3a 
and G2a are also common subgxoups of the three subgroups of 

order 12. G12a. which is cyclic, contains G4~J a cyclic 

suboroup of order 4. The remaining two subgroups of order 

12 are Abelian and each contains three cyclic subgroups of 

order 6. G4b and G4c are quadratic subgroups of order 4 

and are contained in G12b and G12c respectively. 

This group also contains a dihedral subgroup of 

order G contains one cyclic and two quadratic sub­• . 
groups of order 4. The three subgroups of order 4 contain 

G2a as a comnl0n subgroup of order 2. 

Tho five subgroups of order 6 are cyclic and contain 

a common subgroup of order 3. The five subgroups of order 2 
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Figure 9.1. Lattice of G24 of type twelve. 
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are contained in t ub ps of order 6. However; no two 

subgroups of order 6 contain a common subgroup of ordor 2• 

•2. ~ thirteen. The dihedral group of order 24 

is	 defined by the followinQ relations I 

= {A,H,e}, where A"'t = B£ = C" = I,GZ4 
BAB = A- l , A-1CA = C. BCB = C-l • 

I

The lattice for this group is shovm 1n Figure 9.2. The 

nu r of elements of ch order may be observed in Table 

III. 

The group defined by the above relations contains 

three subgroups of order 12. As in type twelve. the three 

subgroups of order 12 contain a common subgroup of order 6; 

G6a. which is cyclic. Since G3a and G2a are subgroups of 

G6a' the two subgroups are common to the subgroups of order 

12. Gl2a also contains G4a. which 15 a cyclic subgroup of 

order 4. 

G12b and G12c are dihedral subgroups of order 12. 

Gl2b contains G6b and G6d; non-Abelian subgroups of order 6. 

The three quadratic subgroups of order 4 contained 1n G12b 

are G4b. G4d • and G4f • G12c contains G6c and.G6e as non­

Abelian subgroups of order 6. The quadratic subgroups of 

order 4 contained in G12c are G4c' G4e. and G4g• 

The three subgroups of order 8 are isomorphic and 

each may be represented by the dihedral group in Figure 4.10. 
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Figure 9.2. Lattice of G24 of type thirteen. 
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The thr, subgroups contain a common subgroup of order 4, 

which is cyclic_ contains G4b and G4e as quadratic sub-­GRa 

groups of order 4. The quadratic subgroups contained in Gab 

are G4c and G4f- G4d and G49 are the quadratic subgroups 

contained in GQc. It may be observed from the lattice that 

each quadratic subgroup of ordor 4 contains G2a and some two 

of the remaining twelve subgroups of order 2. 

The five subgroups of order 6 contain a common 

subgroup of order 3. The four non-Abelian subgroups each 

contain three subgroups of order 2. The remaining sUbgroup 

of order 2 is contained in G6al the cyclic subgroup of 

order 6. 

9- • 
.,
w. ~ f01.trteen• The defining relations for this 

group of order 24 are: 

= [A,B,C}, where A4 = B2 = c3 = I,G24 
BAB : A-I, A-lCA =C-l , BCB ,: C. 

The lattice of this 9roup is shown in Figure 9.3. The 

number of elements of each order is shown in Table III. 

This group contains three subgroups of order 12. 

Each of the three subgroups contain G6a; a cyclic subgroup 

of order 6. Since G3a and G2a are subgroups of G6a' the two 

subgroups are common to the three subgroups of order 12. 

G1 2a is a dicyclic subgroup of order 12 and contains 

a subgroup of order 6 and three subgroups of order 4. The 
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Figure 9.3. Lattice of G24 of type fourteen. 
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subgroups of orders 4 and 6 are cyclic and each contains 

2r l a ~ubgroup of order 2. The three subgroups of order 4 

contained in G12a are G4b, G4e' and U4g. 

an Abelian subgroup of order 12, contains G4a lGl2b• 

a quadratic subgroup of order 4. In addition to, G6a' G12b 

contains G~b and G6c which uxe cyclic subgroups of order 6. 

G3a is a common subgroup to the subgroups of order 6. G6a, 

G6b' and G6c each contains a subgroup of order 2, vn11ch is 

common to G4a l the quadratic subgroup of order 4. 

The subgroup Gl2c is a dihedral subgroup of order 

12. G12c contains one cyclic and two non-Abelian subgroups 

of order 6. G6d and G6e, the non-Abelian subgroups, each 

contain three subgroups of order 2. G6a, G6d' and G6e con­

tain a common subgroup of order 3. The quadratic subgroups 

of order 4 contained in G12c are G4c' G4d' and G4£. Each of 

the quadratic 6ubgroups contain three subgroups of order 2. 

It may be observed from the lattice that G2a is common to 

the three quadratic subgroups. 

GA~J Gab. and Gec are dihedral subgroups of order 8. 

Each of the subgroups contains one cyclic and two quadratic 

subg~oups of order 4. GSa contains G4a , G4b. and G4c. In 

addition to G4e , GSb contains G4a • and G4d' which are quad­

ratic subgroups. The quadratic subgroups contgined in GSe 

are G4a and G4f. GSc also contains G49' a cyclic subgroup 

of order 4. G4a. a quadratic subgroup, is contained in each 
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ot the subqroups of ordor 8. , ba:roup 'I is 

contain in	 1 seven bQroups of order 4. 

9.4. ~ fifteen. The group defined by the 

following	 relations, 

= [A,B}, where A4 = 03 = (AB)2 === ItG24 

1s the symmetric group of order 24. The lattice of this 

group is shown in Figure 9.4. The n er of elements of 

ch order is shovm in Table III. 

This group contains one subgroup of order 12. G12a 
1s an alternating subgroup and contains subgroups whose 

orders are 2, 3, and 4. The subgroup of order 4, a quad­

ratic subgroup, contains three subgroups of order 2. The 

four 5ubcroups of order 3, which are contained in Gl2a , 

necessarily contain only the unit element in common. 

The three subgrou of order 8 are isomorphic and 

each may be represented by Figure 4.10. Each of the sub­

groups of order contain one cyclic t~o auadratic 5ub­

roups of order 4. G4g, a quadratic subgroup, is common to 

the three sUb~roups of order 8. G2g, a subgroup of order 

2, is common to tho three subgroups of order 4 which are 

contulned in G • Gab contains G4c' G4f' and G4g. G2i 

is a common subQrou to these sub9roups of order 4. The 

three subgroups of order 4 contained in Gee are G4b , G4Ct 

and G4Q • G2h is a common subgroup to the three subgroups 

of order 4, which are contained in GRc • 
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The four subgroups of order 6 are non-Abelian. Each 

contains three subgroups 6f order 2 and a subgroup of order 

3. Any two of the subgroups of order 6 contain a common 

subgroup of order 2_ G2a is common to G6a and G6d- The 

subgroup of order 2 contained in G6a and G6b is G2b- As a 

common subgroup of order 2, G6d and G6b contain G2f. G6d 

and G6c contain G2dl a subgroup of order 2. The subgroup 

hich is common to G6a and G6c is G2e • G6b and G6c contain 

G2c as a common subgroup of order 2• 

.. 
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Figure ~~. Lattice of G24 of type fifteen. 
--..... 
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CHAP! 

SUMMARY 

10.1. Summary. This thesis contains the defining 

relations of the fifteen abstract groups of order 24 and an 

analysis of the subgroups contained in each group. Table 

III shows the number of elements of each order which are 

contained in the abstract groups of order 24. For' a given 

group of order 24, the order of each element and the number 

of elements of each order can be determined from the lattice. 

The reader is reminded that although there are many groups 

of order 24, each is isomorphic to one of the groups 

considered in this thesis. 

Although this thesis 1s concerned primarily with the 

abstract groups of order 24, the lattice of groups who 

orders are factors of 24 are also included. These lattices 

aided in determining the subgroups which are contained in 

the groups of order 24. 

It is interesting to note that the number of elements 
'---" 

of order 2 contained in any group of order 24 is always odd. 

This condition is also true for all groups whose orders are 

factors of 24. It is conjectured by the writer of this 

thesis that any abstract finite group whose order is an even 

number will contain an odd number of elements of order 2. 

, 



10.2. SuggestiQns fQ£ further study. A study of the 

finite arOUDS of any chosen order would be of interest. 

However, it is suggesteu that a study similar to this study 

be conducted on the abstract groups of order 16. Such 

study' would certainly load to further verification of t 

conjecture pertaining to the elements of order 2. 

Through the study of finite groups v/hose order is 

24x. where x is some emall prime number say 2 or 3, it 

would be of interest to determine if euch type of group of 

order 24 is present in the groups of order 24x. That is, 

it is a conjecture of the writer that each type of group of 

order 24 will reveal itself in at least one group of order 

24x. 

Another Droposed study would be the classification 

of the groups of order 24 according to technical types, 

that ls, which groups are nilpotent, \/hich groups are super­

sovable, which groups are Hamiltonian, and so on for other 

tochnical types. 



TABLE III 

lBER 

ORDER. CONTAINED 

OF EACH 

THE GROUPS 

9 

OF ORDER TWE~rrY-FO 

Groups of order Number of elements of 
twenty·four each order 

TYPE 1 2 3 4 6 8 12 24 

one 1 1 2 2 2 4 4 8 

two .1 1 2 2 2 12 4 

three 1 3 2 4 6 . 8 

four 1 7 2 8 2 •. 4 ... 

five 1 3 2 12 6 

rj 1 7 ,., .' 14 ....:.. 

1 7$.e'ien 

eight 1 15 2 .. 6 

nine 1 1 2 6 2 - 12 

ten 1 i e 6 

,eleven 1 1 2 14 2 - 4 

twelvo 1 5 2 2 10 - 4 

thirteen 1 13 2 2 2 -, 4 

fourteen 1 9 2 6 6 

fifteen 1 9 8 6 ... 
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