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CHAPTER I
INTRODUCT ION

l.1. Introduction. The subject of group theory is
indeed an interesting area. The study of finite groups is
but a small segment of the general theory of groups, however
group theory has its place in all pure and applied
mathematics.

Through the study of abstract finite groups of a
given order, it is of interest to determine the subgroups
which may be contained in the groups under consideration.
This thesls is concerned with the abstract groups of order
24,

1.2, Statement of the problem., The purpose of this

study is to construct the lattices of the abstract groups of
order 24, To construct the lattice of each group of order
24, the subgroups contained in each of the abstract groups
of order 24 will be determined, From the lattice of each
group it will be possible to determine the number of elements
of each order and the order of each element contained in a

particular abstract group of order 24,

1.3, Limitations of the problem., As was previously
stated, this thesis will deal only with the abstract groups
of order 24, The purpose of the lattices of groups of order



2, 3, 4, 6, 8, and 12 will be to aid in determining the
subgroups which may be contained in the abstract groups of
order 24,

There are fifteen distinct abstract groups of order
24.l Although there are many groups of order 24, each is
isomorphic or a faithful representation of one of the
abstract groups of order 24 which will be considered in

this thesis,

l.4, Importance of the study. Through the study of
the abstract groups of a given order, one can gain a better
understanding of the theory of groups. The contents of this
thesis could be utilized in analyzing groups whose orders
include 24 as a factor. This thesis could also be used to
analyze groups whose orders include the factors of 24 as

factors.

l.5. Organization of the thesls. Chapter II
contains a brief history of group theory and mentions some
of the men who have contributed extensively to the develop-
ment of the theory of groups. This chapter also contains
some of the theorems discovered by these men.

Chapter III defines the group concept and the axioms
of group theory., Alsoc contalned in this chapter are the

ly, Burnside, Theor Groups of Finite Ordezr ([New
York]: Dover PubliéatIons, c.. IBSS Js PPe 157=161,



definitions of some of the terms used in the remainder of
this thesis, Chapter IV presents the lattices of groups
whose orders are factors of 24,

Chapters V through IX constitute the core of the
thesls. Chapters V through VII deal with the groups of
order 24 whose subgroups of order 8 are Abelian, Chapter V
considers the groups of order 24 which contain cyclic sub-
groups of order 8. Chapter VI presents the groups of order
24 whose subgroups of order 8 are defined by C4 x Cp. The
groups of order 24 considered in Chapter VII contain
subgroups of order 8 which are defined by Cp, x Cy x Co.

Chapters VIII and IX constitute groups of order 24
whose subgroups of order & are non~Abelian, Chapter VIII
discusses the groups of order 24 whose subgroups of order 8
are dicyclic. The groups of order 24 which contain dihedral
subgroups of order 8 are presented in Chapter IX,

Chapter X contains a brief summary of the study.
This chapter also contains some conjectures of the writer
pertaining to abstract finite groups. Table III, showing
the number of elements of each order contained in a

particular group, is contained in this chaptéi.



CHAPTER 11

HISTORICAL BACKGROUND OF
GROUP THEORY

2,1. History of group theory. Evarsite Galois
(1811-1832), a French mathematician, was the first to use

1 He proved the

the term "group" in a technical sense,
theorem that every invariant subgroup gives rise to a
quotient group which exhibits many properties of the group.
Galols also showed that groups may be divided into simple
and compound groups.2

Some concepts of group theory had been anticipated
and explored by J. L. Lagrange (1736-1813) and Paolo Ruffini
(1765-1822), but Galois revealed the complete concept of the
theory of groups. Galois, on the eve of his fatal duel,
wrote a summary of his discoveries pertaining to the theory
of equations. This summary included his thoughts and ideas
on the theory of groups, the key to modern algebra, and

modern gaometry.3

ljames R, Newman, The World of Mathematics (New York:
Simon and Schuster, Inc:. 1956), 111, pe. 1o

2Florian Cajori, A History of Mathematics (New York:
The Macmillan Company, 1924, 2nd ed.), p. 351,

3pirk J. Struik, A Concise History of Mathematics
(New York: Dover PublicatIons, inc., 1948), 11, pp. 223-225.



N. H., Abel (1802-1829), a Norwegian mathematician,
persued Galois' ideas pertaining to group theory. Commuta-
tive groups are called Abelian groups which is indicative of
Abel's interest and prominence in the area of group theory.4

Prior to 1854, the theory of groups of finite order
originated from the writings of Lagrange, Ruffini, Abel, and
Galois. The theory of groups of finite order sprang from an
analysis of the theory of algebraic equations and the theory
of numbers.” A, L. Cauchy (1789-1857) is credited as being
the founder of the theory of groups of finite order. 1In
1844 Cauchy proved the theorem which 1s now known as
Cauchy's Theorem, This theorem had previously been stated
by Galois but not proven.6

The founding of the theory of abstract groups is
usually credited to A, Cayley (1821-1895), an English mathe~-
matician. L. Kronecker (1823-1891), and H, Weber (1842~
1913) later gave the formal definitions for abstract groups.7

Ludwig Sylow (1832-1918), a Norwegian mathematician,

obtained a theorem which was first proposed by Cauchy. Out

41bid., pp. 226-227.
SCajori, op. cit., p. 353.
61bid., p. 252.

T1bid., pp. 352-353,



of the study of this theorem, Sylow discovered the theorem
which is now known as Sylow's Theorem.8

Many mathematicians, through the centurles, have
studied group theory. However, the men referred to in this
chapter must certainly stand out as ploneers in the area of
group theory. The remainder of this chapter is devoted to
some of the more significant theorems pertaining to the
theory of groups. The proofs of these theorems may be
found in arny reputable textbook dealing with group theory.
Hence, the proofs will not be included in thls thesis,

Galois' Theorem:

When n > 4, A, 1s a simple greup.9

Lagrange's Theorem:

The order of a subgroug of a finite group G is a
factor of the order of G,10

Cayley's Theorem:

Every group is isomorphic to a permutation group of
its own elements,l

81pbid., p. 354,

“Walter Ledermann, Introduction to the Theory of
Finite Groups (New Yorks TInterscilence Publishers, LNncC.,
Iés‘i, 3rd e'ﬁ'.). pe 120,

10z0bert D, Carmichael, Introduction to the Theogx

of %foups of Finite Order (Boston: Ginn and Company, 1937),
Pe ®

jyarehall Hall, Jr., The Theory of Groups (New York:
The Macmillan Company, 1959), pe 9.




Cauchy's Theorem:

If p is a prime factor of the order of a groug G,
then G contains at least one element of order p.+2

Sylow's Theorem:

Eve{y group whose order 1s divisible by p®, but not
pitl, p biéng a prime number, contains l+kp subgroups
of order p™W,

Other Theorems:

The order of an element of G is a factor of the order
of G.

A group of prime grder has no proper subgroups and 1s
necessarily cyclic.l

All subgroups of a cyclic group are cyclic, If {A}
1s a cyclic group of order g, then corresponding to
every divisor h of g there exists one, and only 3?

subgroup of orxder h, which may be generated by A :16

12 edermann, op. cit., p. 129,
13Cajori, op. ¢git., p. 354,
l4carmichael, op. cit., p. 45,
15Ledermann, op. cit., p. 38.
161p1d.



CHAPTER 11I

THE AXIOMS OF GROUP THEORY

3.1, Axioms of group theory. To form a group, a

set of elements must obey the following axioms:

Definition 1. A set G of a finite or infinite number
of elements, for which a law of composition ("multipli-
cation") is defined, forms a group if the following
conditions are satisfiled:

(I) Closure: to every ordered pair of elements A, B
of C there belongs a unlque element C of G, written

C = Ab
which is called the product of A and B.

(I1) Assoclative law: if A, B, C are any three
elements of G, which need not be distinct, then

(AB)C = A(BC)
80 that either side may be denoted by ABC.
(II1) Unit Element: G contains an element I, called
the unit element or identlity such that for every
element A of G

Al = IA = A,
(IV) Inverse or reciprocal element: corresponding to
every element A of G, there exists in G an element
A-! such that

M-l = p-lpa= 1,1

3.2, Definition of terms. This section will define

some of the terms used in this thesis.

lWalter Ledermann, Introduction %ﬁbthe Theory of
Finite Groups (New York: Intersclence 1Ishers, Inc.,

1957’ 3I‘d ed.)' pp. 2-3.



ubgroup. If there is a set, H, of elements in a
group G which, by themselves form a groups then H is a

subgroup of G.2

Improper subgroup. Every group contains two improper
subgroups; namely, the subgroup compesed of the unit element
alone and the subgroup which contains all the elements cof
the group.3

Proper subgroup. All subgroups of a group G except
the two improper subgroups are proper subgroups.4 In this
thesis the term subgroup implies proper subgroup unless
otherwise stipulated,

Common subgroup. A subgroup which is contained in
two or more subgroups of a given group, G, is called a common
subgroup, That is, if A is a subgroup contained in subgroups
B and C, then A is a common subgroup of B and C.

Abelisn group. A group which has the property that
every element commutes with every other element is an Abel-
ian group. That is, in a given group, if AB = BA for any A
or B then the group is Abelian,”

“Richard V, Andree, Selections from Modern Abstract
Algebra (New York: Henry'Ho t and Company, 19587, p. 9l.

SLedermann, op. git., pe 31.
41bid.

5;b;do s DPe 3e
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Non-Abelian group. If in a given group, some
element is not commutative with some other element then
the group is non-Abelian,

Order of a group., In a finite group, the number of
elements contained in the group is the order of the group.6

Order of an element. If A9 equals the unit element
where g is the least positive integer for which this
condition is true, then the order of A is g.’/

Cyclic group. A cyclic group of order g is a group
which contains at least one element, A, of order g. The
element A is sald to generate the group.8

Dicyclic group. The dicyclic group is defined by the
following relations,

= {A,B}, where A2M = I, AN = (AB)? = B2, (n>1),
and is of order 4n.9

Dihedral group. The group defined by

Gop = {A,B}, where A" = B2 = (AB)? = 1

is the dihedral group of order 2m.10

6Andree, loc. cit.
7Ledermann, op. ¢it., p. 21.
81bid., p. 24.

9Robert D. Carmichael, Introduction to the Theor¥ of

Groups of Finite Order (Boston: Ginn and Company,
P Igﬁ

107p14,
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Isomorphic groups. By an isomorphism between two
groups G = {A,Bs...} and G' = {A',B',...} is meant a one-to-
one correspondence A*A' between their elements which
preserves group multiplicatlion--that is, which is such that
if A*A' and B2B', then AB*A'B',

Defining relations., A set of generating elements
and their relationship from which a group may be derived is
called the defining relations of the group. That is,

G = {A,B}, where A% = B2 = I, AB = BA,

completely defines an Abelian group of order 8, The eight
elements contained in this group are I, A, A2, A?, B, AB,
A%B, and ASB,

3.3. The lattice. A lattice 1s a diagram which
reveals the structure of a given group., The lattice dis~-
closes the subgroups contalned in this group. The letter G
in a lattice indicates a group or subgroup. The numerical
subscripts of a certain G indicate the order of that group
or subgroup. The alphabetical subscript of a group or sub-
group, G, is used to indicate a particular group or subgroup.
For example G, and G4, are groups or subgroups of orders 2
and 4 respectively, Ggg and Ggp, two subgroups or groups of

order 6, which may or may not be isomorphic, are nevertheless
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distinct subgroups or groups. In a lattice, the lines
extending downward from a given group, G, to various sub-
groups indicate the subgroups which are contained in the
group G,

-Flgure 3,1 is the lattice of a group of order 8. Gg
indicates that this group is of order 8. Gg contains three
distinct subgroups of order 4. G,ae @ subgroup of order 2,
is common to the three subgroups of order 4., Hence, Gp, is

also contained in Gg. The unit element, I, is contained in
Gg and all subgroups of Gg.

Figure 3,1. Lattice of a group of order &,



CHAPTER IV

LATTICES OF GROUPS WHOSE ORDERS
ARE FACTORS OF TWENTY-FOUR

4,1. Groups of order one. Since the number one is
prime, all groups of order one are cyclic, Hence, there is
only one type of group whose order is one, The group of
order one is composed of only the unit element which is
always of order one., The lattice of such a group is triv-
ial and therefore is not shown. The defining relations of
this group are:

Gy = {A}, where A = I,

4.2, Groups of order two. The groups of order 2
are cyclic, Since two is a prime number, the groups of
order 2 do not contain any subgroups. All groups of order
2 are isomorphic and may be represented by the lattice in
Figure 4.1, The defining relations of the group of order 2
are as follows: )

G, = {A}, where A? = 1,

Go

1
Figure 4.1. Lattice of gioup of order 2,



la
4,3. GCroups of order three. Three is a prime
numbers hence, all groups of order 3 are cyclic and do not
contain any subgroups., All groups of order 3 are isomorphic
and are represented by the lattice in Figure 4.2, Since the
order of the elements must be factors of the order of the
group and the unit element must be unique, this group con-
tains two elements of order 3 and the unit element of order
one. The defilning relatioqs for the group of order 3 are:
Gy = {A}, where e A
G3

I
Figure 4,2. Lattice of group of order 3.

4,4, Groups of order four., There are two distinct
groups of order 4, both of which are Abelian.l As the
factors of 4 are 1, 2, and 4, the subgroups contained in a
group of order 4 must be of order 2. The cyclic group of
order 4 contains two elements of order 4, an element of
order 2, and the unit element. This group contains a

subgroup of order 2 as shown in the lattice in Figure 4.3.

lWalter Ledermann, Introduction to the Theory of
Finite Groups (New York: TInlerscience Publishers, %nc..
. 3r"d"—e"g.), p. 48,
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The defining relations for the cyclic group of order 4 are

as follows:

G4 = {A}, where A = 1,

Figure 4,3, Lattice of cyclic group of order 4.

The second group of order 4 contains three elements
of order 2 and the unit element. This group is referred to
as the four-group or quadratic group and contains three
subgroups of order 2. Flgure 4.4, shows the lattice of the
quadratic group., The defining relations of such a group
are as follows: _

G, = {A,B}, where A2 = B2 = (AB)? = 1,
Gs

I
Flgure 4.4, Lattice of quadratic group of order 4.
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4,5, Groups of order six. There are two distinct
groups of order 6; one is cyclic and the other non-Abelian,?
The cyclic group of order 6 contains two elements of order
6, two elements of order 3, one element of order 2, and the
unit element, Figure 4,5 is the lattice of such a group
and shows the subgroups of orders 2 and 3. The cyclic
group of order 6 is defineq by the following relatilons:

Gg = {A}, where AC = I,
Gg

I
Figure 4,5, Lattice of cyclic group of order 6.
The non=Abelian group of order 6 is shown in Figure
4,6, This group 1s composed of two elements of order 3,
three elements of order 2, and the unit element, There are

three subgroups of order 2 and a subgroup of order 3

21bid., p. 49.
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contained in this group., The defining relations of this
group are as follows:

Gg = {A,B}, where A3 = B% = (AB)2 = I,
Ge

I
Figure 4,6, Lattice of non-Abellan group of order 6.

4.6, Groups gﬁ_gggég_g;gg_. The five groups of
order 8 consist of three Abelian and two non-Abelian groups.3
The cyclic group of order 8 is represented by the lattice in
Figure 4,7, This group contains four elements of order 8,
two elements of order 4, one element of order 2, and the
unit element. There are two subgroups contained in this

group; a cyclic subgroup of order 4 and a subgroup of order 2.

3Ibid., p. 5l.
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The c¢yclic group of order 8 1s defined by the following
relations: )
Gg = {[A}], where A8 = I,
Gg

I
Figure 4,7. Lattice of cyclic group of order 8,
Another Abelian group of order 8 contains seven
elements of order 2 and the unit element. Thils group 1s the
direct product of three groups, each of which is of order 2.
The group contains seven subgroups of order 4 and seven sub-
groups of order 2., The subgroups of order 4 are quadratic
subgroups. Filgure 4.8 1s the lattice of this Abelian group
of order 8. The defining relations for the group are as
follows: A
Gg = {A,B,C}, where A2 = B2 = ¢c2 = I,
AB = BA, AC = CA, BC = CB,
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of group of order 8 of type Co x Co x Co.

4,8, Lettice

Figure
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The third Abelian group of order 8 is the direct
product of a cyclic group of order 4 and a group of order 2.
This group 1s composed of four elements of order 4, three
elements of order 2, and the unit element. The group con-
tains two cyclic subgroups and one quadratic subgroup of
order 4. There are also three subgroups of order 2. The
lattice of this group is represented in Figure 4.9, The
group is defined by the following relations:

Gg = {A,B}, where A% = B2 = I, AB = BA,

Gg
\
Ggc Gsa Csb
Goe G2a Gop
I

Figure 4.9, Lattice of group of order & of type C4 x Co.
The dihedral group of order 8 is non-Abelian and 1is
composed of two elements of orxder 4, five elements of order

2, and the unit element. This group contalns one cyclic
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subgroup and two quadratic subgroups of order 4., There are
five subgroups of order 2 contained in this group of order
8. Figure 4,10 is the lattice of the dihedral group of order
8 which is defined by the following relationss

Gg = {A,B}, where A% = B? = (aB)2 = I,

Cg
Cap G4a Gy
Gog Goy, Goa Goc G2e
I

Figure 4,10, Lattice of dihedral group of order 8.

The fifth group of order § is also non-Abelian and is

the dicyclic group of order €, This group is represented by
the lattice in Figure 4.11l, and contains six elements of

order 4, an element of order 2, and the unit element. The
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group contains three cyclic subgroups of order 4 and a
subgroup of order 2. The defining relations for the
dicyclic group are:
Gg = {A,B}, where A% = B4 = I, A% = B2 = (AB)Z,

a

I
Figure 4,11, Lattice of dicyclic group of order 8.

4,7, Groups of order twelve., There are flve distinct
groups of order 12,4 Two of the groups are Abelian and
three are non-Abelian, The cyclic group of order 12 is
composed of four elements of order 12, two elements of
order 6, two elements of order 4, two elements of order 3,

an element of order 2, and the unit element., This group

4Robert D, Carmichael, Introduction io the Theory of
Groups of Finite Order (Boston: Ginn and Company, 1537;
Pe 38



contains a cyclic subgroup of order 6. The subgroup of

order & contains a subgroup of order 3 and a subgroup of

order 2, The group of order 12 also contains a cyclic sub-

group of order 4 which contains a subgroup of order 2, The

lattice of the cyclic group of oxder 12 is shown in Figure

4,12, This group 1s defined by the following relations:
Gyo = {A}, where A2 = I,

G12

I
Figure 4,12, Lattice of cyclic group of oxder l12.

The remaining Abelian group of order 12 contains six
elements of order 6, two elements of order 3, three elements
of order 2, and the unit element. This group is the direct
product of the quadratic group of oxder 4 and a group of
order 3, Three cyclic subgroups of order 6 are contained



in this group. The group also contains one quadratic
subgroup of order 4, a subgroup of order 3, and three sub-
groups of order 2. The group is represented by the lattice
in Figure 4.13 and is dcf;ned as follows:
Gyp = {A;B,C}, where A% = B2 = ¢° = I,
AB = BA, AC = CA, BC = CB,

I

Figure 4,13. Lattice of Abelian group of order 12.
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The alternating group of order 12 i1s composed of
elght elements of order 3, three elements of order 2, and
the unit element., This group contains one quadratic sub-
group of order 4, and therefore contains three subgroups
of order 2, The group also contains four subgroups of
order 3, The lattice of the alternating group is shown in
Figure 4,14, The defining relations for this group are as
followss

Gy, = {A,B}, where A® = B° = (AB)2 = I.

Figure 4.14. Lattice of alternating group of order 12,
The dicyclic group of order 12 is represented by the
lattice in Figure 4,15, Two elements of order 6, six ele~-
ments of order 4, two elements of order 3, an element of
order 2, and the unit element constitute this group. Three
cyclic subgroups of order 4 are contained in the group. The

group also contains a cyclic subgroup of order 6 which has a
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subgroup of order 3 and a subgroup of order 2 which 1s
common to the subgroups of order 4. The defining relations
of thls group are:

Gyp = {A,B}, where AP = 1, AS = B2 = (AB)Z,

Ci2

Figure 4,15, Lattice of dicyclic group of order 12,

The lattice in Figure 4,16 represents the dihedral
group of order 12. This group is composed of two elements
of order 6, two elements of order 3, seven elements of order
2, and the unit element:. There are three subgroups of order
6 contained in the dihedral group. One of the subgroups of
order 6 is cyclic. However, all of the subgroups of order
6 contain a common subgroup of order 3. There are three
quadratic subgroups of order 4 and each of these subgroups
contain three subgroups of order 2., One of the subgroups
of order 2 is commé% to the cyclic subgroup of order 6 and
to all quadratic subgroups of order 4. The following rela-
tions define this group:

Gy, = {A,B}, where A® = B2 = (AB)? = I.



Figure 4.1l6.

> I

Lattice of dihedral group of order 12.
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CHAPTER V

Gogq WITH CYCLIC SUBGROUPS OF
CRDER EIGHT

5.1, Iype one. This group of order 24 is Abellan
and 1s defined by the following relations:

Goq = {A,B}, where AB = B® = I, AB = BA,

Figure 5,1 is the lattice of this group. The number
of elements of each order is shown in Table III,

This group is cyclic and necessarily contains only
¢yclic subgroups. The subgroups of orders 8 and 12 have Gy,
as a common subgroup., Gjny; and Ggy have a common subgroup
of order 3. The subgroup Go, is common to all the subgroups

whose orders are multiples of two.

5.2, Iype two. The group defined by‘
Goq = {A,B}, where A% = B3 = 1, A~1lBA = B-l,

is non-Abelian and is shown in Figure 5.2. Table III shows
the number of elements of each order in this group.

All subgroups of this group are cyclic. The three
subgroups of order 8 and the subgroup of order 12 have G4,
as a common subgroup. A subgroup of order 6 is contained in
Gyog+ The subgroups‘hba and Gjg4 contain a common subgroup
of order 3. Goy 1s again contained in all subgroups whose

orders are nmultiples of two.



Gog
Gléa GBa
G\G4P
Gaa Gpe
L
I

Figure 5.1, Lattice of Gpy of type one.

29



Figure 5.2.

(%)

24

I

Lattice of Gp4 of type

twWo .

30



CHAPTER VI

Gpgq WITH SUBGROUPS OF ORDER EIGHT
OF TYPE C, x Cp

6.1, Iype three., The group of order 24 defined by
Goy = {A,B,C}, where A% = B2 = ¢ = I,
AB = BA, AC = CA, BC = CB,
is Abelian, This group 1s the direct product of a group of
order 8 of type C4 x Cp and a group of order 3, The number
of elements of each order may be noted in Table III,

As may be observed in Figure 6.1, this group contains
three subgroups of order 12. Gjo, 1is an Abelian subgroup
and contains three cyclic subgroups of order 6 which have
Gy, @s a commen subgroup. The quadratic subgroup contained
in Gjoy contains ihree subgroups of order 2,

The two cyclic subgroups of order 12 are Gyop and
Gioce These subgroups are isomorphic and contain Ggyz as a
common subgroup of order 6. Each subgroup contains a cyclic
subgroup of order 4. Gya, G4p, and Gg, contain a common
subgroup; Go,. The subgroup Ggg also contains Gzy; a
subgroup of order 3. ’

The subgroup of order 8 is Abelian and is isomorphic
to the group in Figure 4.9. This subgroup contains two
cyclic groups of order 4 and a quadratic subgroup of order

4, The three subgroups of order 4 have a common subgroup
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G12¢ Glop

Figure 6.1, Lattice of Gpy of type three.
L]



33
whose order 1s 2., Thls common subgroup is Goz. The

quadratic subgroup contains the three subgroups of order 2.

6.2. Type igg;._ This group is defined by
Gpg = {A,B,C}, where A* = B2 = 3 = I,
AB = BA, BCB = c~1, a~lca = c,
and is shown in Figure 6.2, The number of elements of each
order is shown in Table III.

This group of order 24 contains three subgroups of
order 12, Gj,y is cyclic and is isomorphic to the group in
Figure 4.12, This subgroup contains Gg, which is cyclic.
Gga contains Gz, and Gp, as subgroups. The cyclic sub-
group of order 4 contained in G123 also contains Goy as a
subgroup.

Gyoe is a dihedral subgroup of order 12 and contains
one cyclic and two non-Abelian subgroups of order 6. The
subgroups of order 6 contain Gz, as a common subgroup of
order 3., Ggp and Ggo each contain three subgroups of order
2. Gjpe also contains three quadratic subgroups of order 4,
all of which contain Gp, as a common subgroup.

The third subgroup of order 12 is dicyclic and is
denoted by Gjope Thils subgroup contains three cyclic sub-
groups of order 4 and a cyclic subgroup of order 6. The
subgroups of orders 4 and 6 contain Goz as a common
subgroup of order 2. *The subgroup of order 6 is the same

subgroup which is contained in Gj,,.
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The three subgroups of order 8 are isomorphic and
each one may be represented by the group in Figure 4.9,
Ggg» CGgbs and Gg. each contain two cyclic subgroups and a
quadratic subgroup of order 4. Gyg is common to all of the

subgroups of order &.

6.3, Iype five. The group of order 24 defined by
Goq = {A,B,C}, vhere A* = B2 = C3 = I,
AB = BA, A~lca = ¢-1, BC = CB,
is shown in Figure 6.3. The number of elements of each
order may be noted in Table III.

This group of order 24 contains three subgroups of
order 12, Gjoa 1s Abelian and contains three cyclic sub-
groups of order 6 and G4z, @ quadratic subgroup of order 4,
The subgroups of order 6 contain G55 as a common subgroup.
The three subgroups of order 2 contained in the subgroups
of order 6 are all contained in Gy .

Gyop and Gyge are dicyclic subgroups of order 12 and
contain a common subgroup of order 6. Gjpp contains Gy,
Gyes and Ggq which are cyclic subgroups of order 4. The
cyclic subgroups of order 4 contained in Gjp..are Gggey Gyfs
and Ggge All the subgroups of orders 4 and 6 contained in
Gjop and Gjp. contain a common subgroup cf order 2, which
is Gype



Figure 6.3. Lattlce of Ggg of type five.
&
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The three subgroups of order 8 contained in this
group of order 24 are Abelian, These subgroups are iso-
morphic and contain G,, as a common subgroup. Each sub-
group of order 8 alsc contains two cyclic subgroups of
order 4., The seven subgroups of order 4 contain a common

SUng‘OUp 3 sz .



CHAPTER VII

Gogs WITH SUBGROUPS OF ORDER
EIGHT OF TYPE C; x Cp x Co

7.1. TIype six, This group of order 24 is the direct
product of a group of order 3 and an Abelian group of order
8 of type Cy x C; x Cps The defining relations of this
group ares _

Gog = {A,B,C,D}, where A% = B2 = c2 = D3 = I,
AB = BA, AC = CA, BC = CB,
p-1AD = A, D=1BD = B, D~lcD = ¢,
The lattice of this group is shown in Figure 7.1, The
number of elements of each order may be observed in Table III.

G,4 contains seven Abelian subgroups of order 12,

The seven subgroups are lsomerphic and each may be repre-
sented by Flgure 4.13. These subgroups each contain a
quadratic subgroup of order 4 and three cyclic subgroups of
order 6. Each of the quadratic subgroups contain three sub-
groups of order 23 hence, three subgroups of order 2 are
contained in each Gyp. In a given subgroup of order 12,
each of the subgroups of order 6 contain a sdbgroup of
order 2 which is common to the quadratic subgroup. Each of
the seven subgroups of order 6 is common to some three of
the seven subgroups of order 12. Gg, is common to all sub-
groups of order 6 and therefore is common to all subgroups

of order 1l2.
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The subgroup of order © is Abelian and isomorphic to

the group shown in Figure 4.,8. Gg, contains seven quadratic

a
subgroups of order 4, Each of the seven subgroups of order

2 1s contained in some three of the quadratic subgroups.

7.2. TIype seven. The group of order 24 defined by

the following relations,
Goy = {A,B,C,D}, where A2 = B2 = c2=p3 = I,
AB = BA, AC = CA, BC = CB, AD = DA,
p~isp = ¢, p-lcp = Be,
is shown in Figure 7.2. The number of elements of each
order may be observed in Table III.

Go4 contains one subgroup of order 12, which is an
alternating subgroup. Gj,, contains a subgroup of order 4,
four subgroups of order 3, and three subgroups of order 2.
G4g is a quadratic subgroup of order 4. This quadratic
subgroup contains G,4y Goey and sz, which are subgroups of
order 2, The four subgroups of order 3 are Ggsy Ggps Gges
and Gqqe

There is one subgroup of order € contained in Goy.
Gg, contains seven quadratic subgroups of order 4, Each
of the quadratic subgroups contain three subgroups of order
2, As 1s indicated in the lattice, each subgroup of oxder

2 is common to some three of the seven quadratlc subgroups.

The four subgroups of order 6 are cycllc, Gog, a

subgroup of order 2, is common to the four subgroups.
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Since each of the subgroups of order 6 is unique, each must
contain a different subgroup of order 3. Gga contains Gg,3
a subgroup of order 3. G3b is the subgroup of order 3
which is contained in Ggp. The subgroups Gge and Ggg
contain Gy, and Ggy respectively.

7.3, Iype eight. This group is defined by the
following relations: ‘
Gog = {A,B,C,D}, where A2 = B2 = 2 = D3 = I,
AB = BA, AC = CA, BC = CB,
cpc = D=1, ADA = D, BDB = D,
The number of elements of each order is shown in Table III.
The structure of this group is such that the complete
lattice if shown on one flgure would be difficult to inter-
pret. Therefore, Tables I and II are included as a guide to
the structure of the group. Figures 7.3 and 7.4 show the
two t&pes of subgroups of order 12 which are included in
Goge The structure of each of the three subgroups of order
8 1s shown in Figure 7.5.
G1oas an Abelian subgroup of order 12, is shown in
Figure 7.3. This subgroup contains three cyclic subgroups
of order 6 and G,,3 a quadratic subgroup of order 4. Gg,,
Gghe and Gggy the cyclic subgroups of order 6, each contain
a subgroup of order 2 which is commcn to the quadratic sub-
group. Gazy @ subgroup of order 3, is common to the three

subgroups of order 6.



Figure 7.3.

@)

24

T
S

Lattice of Abelian subgroup of order 12,
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Figure 7.4 and Table I are used as a gulde in
analyzing the six dihedral subgroups of order 12, Each of
the subgroups contaln a cyclic subgroup of order 6. Gjop
and Gyp. contain Ggg. The cyclic subgroup of order 6 which
is common to Gyoq and Gyze 1is Ggpe Gpof and Gypgy contain
Ggc as a common cyclic subgroup of order 6. Each of the
four non-Abélian subgroups of order 6 1s contained in some
three of the dihedral subgroups. Ggq 1s common to Gjop,
Gyogs and Gyoge The non-Abelian subgroup of order 6 which
is common to Gyops Gloes and Gypy 1s Gge. The dlhedral sub-
groups Gjocy Gjogs and Glzg' each contain Gg¢. The seven
subgroups of order 6 contain a common subgroup Ggy, which
is of order 3. Each of the fifteen subgroups of order 2 is
contained in a subgroup of order 6.

With the exception of Gy, each of the quadratic
subgroups of order 4 is contained in a dihedral subgroup of
order 12, There are seven subgroups of order 2 contained
in each dihedral subgroup. One of these subgroups of order
2 1s contained in the three quadratic subgroups and the
cyclic subgroup of order €., Each of the six remaining
subgroups of order 2 is common to a quadraticisubgroup and
a non-Abelian subgroup of order 6.

Since it would be repetitious to show the lattice of
each dlhedral subgroup, only the lattice of Gyop 1s shown,



Figure 7.4.

12b

i
Lattice of dihedral subgroup of order 12.
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TABLE I

DIHEDRAL SUBGROUPS OF ORDER TWELVE
CONTAINED IN TYPE EIGHI

46

G12b Gloc  Glod G12e Gy of G12g
Ged ot Get Gee Ged S
CGea Gea Geb Geb Gec Gec
Goe Cog Gea Gog Gog Goe
G4p G4d CGac Gae Gy G4g
G4h G40 CG4p Gax G4r G4m
Gan Gag Gay Caq Ga1 Gy
Gaa GSa Gaa GSa G3a\ Gaa
G2 Cos Y S2e €24 Y:
Gog G2o Ga1 Gk G20 Gog
G2h Gon Gon Goi G21 G2j
Goa Goa Gop Gop Goe Goc
Goe GZg Gog ng G2g Goe
Go1 G2j Goj Gon Goh Gon
G2m Gok G2h Gzo Gok G2m
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Figure 7.4 is the lattice of this subgroup. Table I
enumerates the subgroups contained in each of the six
dihedral subgroups. For example, column one lists the sub-
groups contained in Gjyop. A system of substitution is
utilized in determining the lattice of each of the remaining
dihedral subgroups. To obtain the lattice of a given dihed-
ral subgroup, each subgroup in column one of Table I is
replaced by the subgroup in the same row of the dihedral sub-
group being considered. Thus, to obtain the lattice of GIZd.
Gyop is replaced by Gyoq3 Ggq is replaced by Gggs Ggy is
replaced by Ggps; and similarly for the remalnder of the
column,

The three subgroups of order 8 contained in G,, are
Abelian, Each of the subgroups contain seven quadratic
subgroups of order 4 and seven subgroups of order 2. Ggj,
Ggh, and Gg. contain a common subgroups Gga of order 4.
Therefore, Goy, Gophy and Gy, are common to the three
subgroups of order 8.

Since the subgroups of order 8 are isomorphic, it
would be redundant to show the lattice structure of each.
Hence, only the lattice of Gg; is shown. Figﬁre 7.5 is
the lattice of thils subgroup. Table II lists the subgroups
contained in each subgroup of order 8. For example, column
one enumerates the subgroups contained in CGg,. As in the

dlhedral subgroups of order 12, a system of substitution is
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employed to determine the lattice of the two remaining
subgroups of order 8. To obtain the lattice of a given
subgroup of oxrder 8, each subgroup in column one is replaced
by a certain subgroup which is contained in the subgroup of
order 8 under consideration. For instance, to determine the
lattice of Ggy, Ggy is replaced by Ggp; Gy is replaced by
Gyrs Gy is replaced by Gyy; and similarly for the remainder

of the column.
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G24

7.5, Lattice of Abelian subgroup of order 8,

Figure



TABLE I1I

SUBGROUPS OF ORDER EIGHT
CONTAINED IN TYPE EIGHT
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Gga Ggb Gge
Ggc G4k G4p
Gyt G41 Gss
Gaq Gaa Gaa
Gag G4j Gaq
Gab Gai G40
Gqa G4n G4n
Gse Ganm Gar
Gad Gok Gon
Gof Gop Gop
G2g Goe Goc
Goa Goa Goa
Goc Gon Gop
Goe Goj Gog
G2b G2i G2l




CHAPTER VIII

G,4 WITH DICYCLIC SUBGROUPS OF
ORDER EIGHT

8.1. TIype nine. This group of order 24 is defined
by the following relations,

Gog = {A,B,C), where A* = B4 = ¢® = 1, a2 = B,

B=1aB = A-1, c~lac = A, c-1lBC = B,

and is shown in Figure 8.1, The group is the direct pro-
duct of a dicyclic group of order 8 and a group of order 3,
The number of elements of each order is shown in Table III,

This group contains three subgroups of order 12,
The subgroups of order l2 are cyclic and contain a common
subgroup of order 6 which is cyclic., The subgroups of
orders 2 and 3 are contained in Gg, and therefore are con-
tained in the three subgroups of order 12. Gjgas Gyops and
G1pc contains G,y Gyps and G4, respectively as the cyclic
subgroups of order 4.

One subgroup of order € is contained in this group
of order 24. Ggg is dicyclic and contains three cyclic
subgroups of order 4. The three subgroups of order 4

contain G,,; a subgroup of order 2,

8.2, TIype ten. The following defining relations
define this group:



Gio¢

Cc

Figure 8.1,

G 2z Gl2b

Lattice of Gpgq of type nine,.
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G,y = {A,B,C}, where a% = % = c® = 1, A% = B2,

5-1AB = A~1, c-lac = B, c-lBC = aB.
As may be observed {rom the lattice in Figure 8.2, this
group does not contain a subgroup of order 12, The number
of elements of each order is shown in Table III,

The subgroup of order 8, which 1s contained in this
group, is dicyclic and contains three cyclic subgroups of
order 4, Gogs a subgroup of order 2, is common to the
three subgroups of order 4.

There are four subgroups of order 6 contained in
this group of order 24, The subgroups of order 6 are cyclic
and contain a common subgroup of order 2, Each of the
subgroups of order 6 contains one of the subgroups of

order 3,

8.,3. Iype eleven., The group of order 24 with the
following defining relations,

Goq = {A,B,C}, where a* = B4 = 3 = 1, A% = B?,

B-laB = A=}, a-lca = ¢, B-lcp = c-l,

is the dicyclic group of order 24 and is shown in Figure
8,3. The number of elements of each order is_shown in
Table III.

This group contains one cyclic and two dicyclic
subgroups of order 12. The three subgroups contain Ggz; a

cyclic subgroup of order 6. Gpy and Gy, also are common

to the subgroups of order 1l2. Gjog contains Gga; a cyclic
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Gog
_Gga
G6d Gea Gep Ce ¢
G4c C4a S4b
Cag C3a Cap “3c

Figure 8.2, Lattice of Gopgq of type ten.



Figure 8.3.

I

Lattice of Gy, of type eleven.
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subgroup of order 4. G12b contains three cyclic subgroups
of order 4; Ggps C4s and Gyq. The three cyclic subgroups
of order 4 contained in Gjg. are Gyqy CGyfy and Cgge

The three subgroups of order & are isomorphic., Ggg,
Ggps and Gge are dicyclic and each contain three cyclic
subgroups of order 4. G4, and Gg, are common to the three

subgroups of oxder &.



CHAPTER IX

Gps WITH DIHEDRAL SUBGROUPS OF
ORDER EIGHT

9.1. Iype twelve. The group of order 24 defined by
Gog = {A,B,C}, where A* = B2 = ¢° = I,
BAB = A™l, c~lac = A, c-lBC = B,
is shown in Figure 9,1. This group is the direct product of
the dihedral group of order © and a group of order 3, The
number of elements of each order is shown in Table III.

The group contains three subgroups of order 12, The
three subgroups contain a common subgroup of order 6. Caza
and G5 are also common subgroups of the three subgroups of
order 12, Gjoa, which is cyclic, contains Gy,3 a cyclic
subgroup of order 4, The remaining two subgroups of order
12 are Abelian and each contains three cyclic subgroups of
order 6, Gy4p and Gy, are quadratic subgroups of order 4
and are contained in Gjgp and Gype respectively.

This group also contains a dihedral subgroup of
order B, Gg, contains one cyclic and two quadratic sub-
groups of order 4. The three subgroups of order 4 contain
Gpy as a common subgroup of order 2.

The five subgroups of order 6 are cyclic and contain

a common subgroup of order 3, The five subgroups of order 2



24
Gioc G124 G12p
GBa
|"
G6i\\ Géc G6a
G4c
Gog Gopc God . Gop

I

Figure 9.1. Lattice of Gy of type twelve.



29
are contained in the subgroups of order G. However, no two

subgroups of order 6 contain a common subgroup of order 2,

9.2, TIype thirteen. The dihedral group of order 24
is defined by the following relations:
Gog = {A,B,C}, where A = B2 =3 = 1,
BaB = A™Y, a-lca = ¢, BeB = c-l,
The lattice for this group is shown in Figure 9.2. The
number of elements of each order may be observed in Table
11x.

The group defined by the above relations contains
three subgroups of order 12. As in type twelve, the three
subgroups of order 12 contain a common subgroup of order 6;
Gggs Which is cyclic., Since Gy, and G,, are subgroups of
Ggas the two subgroups are common to the subgroups of order
12, Gjoa also contains Gy, which is a cyclic subgroup of
order 4,

G1op and Gjoe are dihedral subgroups of order 12,
Gyop contains Ggj, and Ggg; non-Abelian subgroups of order 6.
The three quadratic subgroups of order 4 contained in Gy
are Ggpy Gyqe and Gyee Gyo contains Gy, and Gg, as non-
Abelian subgroups of order 6. The quadratic subgroups of
order 4 contained in Gj,. are Gy, Ggey and G4g.

The three subgroups of order 8 are isomorphic and

each may be represented by the dihedral group in Figure 4,10,
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The three subgroups contain a common subgroup of order 4,
which is cyeclic. Gg, contains G4, and Gy as quadratic sub-
groups of order 4. The quadratic subgroups contained in Ggp
are Gy, and Ggge Gyq and G4g are the quadratlc subgroups
contailned in Gg.. It may be observed from the lattice that
each quadratic subgroup 6f order 4 contains Goa and some two
of the remaining twelve subgroups of order 2,

The five subgroups of order 6 contain a common
subgroup of order 3. The four non-Abelian subgroups each
contain three subgroups of order 2, The remaining subgroup
of order 2 is contalned in Ggy3 the cyclic subgroup of

order 6,

9.3. Iype fourteen. The defining relations for this

group of order 24 are: ;
G,y = {A,B,C}, where &% = % = ¢3 = I,
BAB = A~1, aA~lca = ¢-1, BCB = C.

The lattice of this group is shown in Figure 9.3. The
number of elements of each order is shown in Table III.

This group contains three subgroups of order 12,
Each of the three subgroups contain Ggz; a cyclic subgroup
of order 6. Since Gy, and G,, are subgroups of Ggg, the two
subgroups are common to the three subgroups of order l2.

Gyoa 1s a dicyclic subgroup of order 12 and contains

a subgroup of order 6 and three subgroups of order 4. The
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subgroups of orders 4 and 6 are cyclic and each contains
Gza; a subgroup of order 2. The three subgroups of order 4
contained in Gygy are Ggps Ghes and Ggge

Giope an Abelian subgroup of order 12, contalns Gy,
a quadratic subgroup of order 4. In addition to Ggg, Giop
contains Gy, and Gg. which are cyclic subgroups of order 6.
G3a is a common subgroup to the subgroups of order 6. Ggg,
Gghs and Gy, each contains a subgroup of order 2, which is
common to Gy,3 the quadratic subgroup of order 4.

"~ The subgroup Gj,. 1s a dihedral subgroup of order

12, Gjg¢ contains one cyclic and two non-Abelian subgroups
of order 6. Ggq and Gge, the non-Abelian subgroups, each
contain three subgroups of order 2. Gga, Ggg, and Gge con-
tain a common subgroup of order 3., The quadratic subgroups
of order 4 contained in Gyo. are Ggcy Gggs and Ggfe. Each of
the quadratic subgroups contain three subgroups of oxrder 2.
It may be observed from the lattice that Gy is common to
the three quadratic subgroups.

Ggas Ggps and Gg. are dihedral subgroups of order 8.
Each of the subgroups contains one cyclic and two quadratic
subgroups of order 4., Gg, contains Gg,, G4b,.and Ggee In
addition to Gy, Ggp contains Gy, and Ggqgs which are quad-
ratic subgroups. The quadratic subgroups contained in Gg.
are Gy, and Gyqe. Gge also contains Gag3 a cyclic subgroup

of order 4. Gya, a quadratic subgroup, is contained in each
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of the subgroups of order 8, Gpgz, a subgroup of order 2; is

contained in all seven subgroups of order 4,

9,4. TIype fifteen. The group defined by the

following relations, | |

Gos = {A,B}, where A% = B3 = (AB)? = I,
is the symmetric group of order 24, The lattice of this
group 1s shown in Figure 9.4, The number of elements of
each order is shown in Table III,

This group contains one subgroup of order 12. Gjo,
1s an alternating subgroup and contains subgroups whose
orders are 2, 3, and 4. The subgroup of order 4, a quad-
ratic subgroup, contains three subgroups of order 2. The
four subgroups of order 3, which are contained in Gy,,,
necessarily contain only the unit element in common,

The three subgroups of order 8 are isomorphic and
each may be represented by Figure 4,10, Each of the sub-
groups of order 8 contain one cyclic and two quadratic sub-

roups of order 4, Gggy @ quadratic subgroup, is common to
the three subgroups of order &, Ggg, a subgroup of order
2, is common to the three subgroups of order 4 which are
contained in Ggy. Ggj, contains G4y G4y and Ggge Gojf

is a common subgroup to these subgroups of order 4. The
three subgroups of order 4 contained in Gg, are Gzy» CGhes
and G4g. Goy, is a common subgroup to the three subgroups

of order 4, which are contained in Gg..
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The four subgroups of order 6 are non-Abelian, Each
contains three subgroups of order 2 and a subgroup of order
3. Any two of the subgroups of order 6 contain a common
subgroup of order 2, Gpy is common to Gg, and Ggqe The
subgroup of order 2 contained in Gg, and Ggp is Gope As a
common subgroup of order 2, Ggy and Ggp, contain Gose Ggg
and Gy, contain G4, @ subgroup of order 2. The subgroup
which is common to G,, and Gg. is Gge. Ggp and Gge contain

Goe as a common subgroup of order 2,
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G122

Gge 8a 8b

Geg Cea Gep 6¢c
543\\ Gy Cse Cag G4t Gy C4q
Gag Gap Cac Caq
Gop,  Gog Goa \G2c G2 Cpp / Gog Goe  Ooj

-

Figure ?;4. Lattice of Gy, of type fifteen,



CHAPTER X
SUMMARY

10,1, Summary. This thesis contains the defining
relations of the fifteen abstract groups of order 24 and an
analysis of the subgroups contained in each group. Table
III shows the number of elements of each order which are
contained in the abstract groups of order 24, For a given
group of order 24, the order of each element and the number
of elements of each order can be determined from the lattice.
The reader is reminded that although there are many groups
of order 24, each is isomorphic to one of the groups
considered in this thesis,

Although this thesis 1s concerned primarily with the
abstract groups of order 24, the lattice of groups whose
orders are factors of 24 are also included. These lattices
aided in determining the subgroups which are contained in
the groups of order 24.

It 1s intéié;ting to note that the number of elements
of order 2 contained in any group of order 24 is always odd.
This condition is also true for all groups whose orders are
factors of 24, It is conjectured by the writer of this
thesis that any abstract finite group whose order is an even

number will contain an odd number of elements of order 2.
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10,2, Suggestions for further study. A study of the

finite groups of any chosen order would be of interest.
However, it is suggested that a study similar to this study
be conducted on the abstract groups of order 1l6., Such a
study would certainly lead to further verification of the
conjecture pertaining to the elements of order 2,

Through the study of finite groups whose order is
24x%, where x is some small prime number say 2 or 3, it
would be of interest to determine if each type of group of
order 24 is present in the groups of order 24x., That is,
it is a conjecture of the writer that each type of group of
order 24 will reveal itself in at least one group of order
24x%.

Another proposed study would be the classification
of the groups of order 24 according to technical types,
that 1s, which groups are nilpotent, which groups are super-
sovable, which groups are Hamiltonian, and so on for other

technical types.



TABLE III

NUMBER OF ELEMENTS OF EACH
ORDER CONTAINED IN THE GROUPS
OF ORDER TWENTY-FOUR

Groups of order ' Number of elements of
twenty-four each order

TYPE i .8 .2 4 6 g 12
one 1 1l 2 2 2 4 4
two R R R 18 4
three 2o 2 4 & <« B
four 2 T 7 8 & = 4
five 1 3 2 )2 8 = =
six E 7 2 » WM - -
Eeéen l 7 8 - & - -~
eight 1 15 2 - 6 =~ =
nine E 32 2 6 2 - 12
ten P2 1 € &6 8 - =
eleven 1 4 2 M 2 - 4
twelve l 5 2 2 10 - 4
thirteen 3 i3 8 2 2 ‘ - 4
fourteen l 9 2 6 6 = =
fifteen 1 9 8 6 = - =







BIBLIOGRAPHY
Alexandroff, P, S, An Introduction to the Theory of Groups.
New York: Hafner Publishing Company, INnC., 1959,

Andree, Richard V., Selections from Modern Abstract Algebra.
Ne& York: Henry Holt and Company, 1958,

Burnside, W, Theory of Groups of Finite Order. [New York]:
Dover Publications, Inc., 1955. 2nd ed.

Cajori, Florian., A listory of Mathematics. New York: The
Macmillan Company, 19 %. 2nd ed.

Carmichael, Robert D. ;gtroduc;%gn to the Theory of Groups
of Finito Order. Boston: Ginn and Company, 1937.

Hall, Marshall, Jr, The Theory of Groups. New York: The
llacmillan éompany%—Ib "

Ledermann, Walter gtgodu.n:;;gg to the Theory of Finite
Gr . New Yorks terscience PuEIIs*ors. Cep 1957.
§r§ eﬁ.

Newman, James R, The World of Mathematics. 4 vols. New
York:s Simon and Schuster, ifC., %533.

Struik, Dirk J. A Concise History of Mathematics. 2 vols.
Ne& York: Dover Publications,

Cep ]



