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CHAPTER I 

THE PROBLEM 

1.1 Introduction. The teacher of mathematics in a 

secondary school need not search beyond the realm of his own 

experience to recognize the existence of a situation prob

ably unique to American education. All ch:tldren who have a 

potential for some kind of learning will enter the mathemat

ics classroom for a period of at least one year. The 

mathematics teacher is therefore faced with undertaking to 

provide adequate instruction artd materials commensurate to 

the wide range of intellectual potential of his students. 

As a result the mathematics curriculum which has evolved in 

most secondary schools consists of either a sequence of 

courses beginning with algebra in the ninth grade or, as an 

alternative, a more general course in mathematics, usually 

terminal. In either case all the concepts, principles, and 

procedures of ninth grade mathematics carryover into the 

work of later years and in fact form the very foundation of 

that work. Thus, the ninth grade is a most critical grade 

so far as mathematics is concerned. It is"in the ninth 

grade that the serious study of mathematics begins for most 

students and, unfortunately, it is with this grade that it 

ends for many of them. Here the student1s interest is 

either kindled and nourished or allowed to die. 
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1.2 Statement of the problem. To create and 

maintain interest is one of the most important tasks of the 

teacher of seoondary-school mathematios. It is also one of 

the most difficult problems the teaoher enoounters. In 

general the mathematics textbook is not organized so as to 

initiate the recognized power of sheer intellectual curiosity 

as a motive for the highest type of work in mathematics. 

Thus, the responsibility of creating and perpetuating inter

est in mathematics lies squarely with the teacher. The 

purpose of this thesis is to provide the ninth grade 

teacher of mathematics with selected materials, situations, 

and problems designed to stimulate the student's interest 

in mathematics through a challenge ~o his ouriosity. 

1.3 Backsround of the problem. As a rule, students 

become interested in things which are new or exciting, in 

things for which they can perceive practical values for 

themselves or applications to situations in which they are 

already interested, and in things which involve puzzle 

elements or elements of mystery. Other things being equal, 

the possession of a background of related information tends 

to intensify interest in new work, but this is neither a 

necessary oondition nor a sufficient guarantee for the 

awakening of interest. Novelty is sometimes more compelling 

than familiarity. The elements of novelty, of usefulness, 
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and of sheer intellectual curiosity are the primary stimul 

for the awakening of interest. l 

Students tend to remain interested in those things 

which they can do most successfully and which they under

stand most completely. Inability to understand or to 

perrorm satisfactorily usually creates a condition of list

lesaness, inattention, and general loss of interest which 

often ripens into open disaffection. This is not to say 

that the work should be made easy and should never present 

difficulties to the students. Nothing could cause interest 

to lag more quickly than this, and nothing could be more 

undesirable from the educational point of view. The work 

must present a continual challenge, but it must not be 

merely drudgery at tasks devoid of meaning or unreasonably 

difficult. Consequently, it is important that work in 

mathematics be so organized and conducted as to emphasize 

the values and the inherent intellectual challenge of the 

subject. Equally important, understanding and a reasonable 

degree of competence should be ensured by keeping the sub

ject matter and the activities at a level of difficulty 

appropriate to the intellectual maturity of the students. 

lCharles H. Butler and F. Lynwood Wren, The Teaching 
of Secondary Mathematics (second edition; New York: 
-CGraw-Hill Book Company, Inc., 1951), p. 126. 
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Within these conditions are to be found the motives basic to 

hard and effective work in mathematics. 2 

Genuine interest in mathematics probably depends 

basically upon the problem-solving aspect of the sUbject. 3 

athematical situations and problems need not lack essential 

curiosity provoking possibilities. Puzzle problems, often 

popular with the layman, may well have a mathematical basis 

somewhat obscured, perhaps, by a screen of mysticism which 

only serves to stimulate curiosity. eople are interested 

in seeing how numbers behave, and one aspect of mathematics 

is the science of the behavior of numbers. Many problems in 

mathematics are often criticized as being unreal or having 

no genuine application to life situations. Experience in 

teaching mathematics, however, will convince the most skep

tical critic that problems do not need to represent "real" 

situations in order to be interesting to students. As a 

matter of fact, it is quite possible that the presence of 

the mystery element in problems is often a greater stimulus 

to interest than those elements of so-called "reality" 

2 Ibid., pp. 126-27. 

3Maurice L. Hartung, "Motivation for Education in 
Mathematics," The Learning of Mathematics, ill Theory and 
Practice, Twenty-first Yearbook of the National Council 
of Teachers of Mathematics (Washington, D. C.: National 
Council of Teachers of Mathematics, 1953), p. 51. 



5 

which are usually incorporated in the problems. 4 It should 

also be said that even the lowliest and most unimportant 

looking problem may possibly lead to general and important 

considerations. Some apparently simple problems have led to 

mathematics of such diffioulty that they are still unsolved. 

In any case, much energy and ingenuity has been expended by 

professional mathematicians on what may be called 

mathematical amusements or recreations. 5 

The student must be given the opportunity to develop 

a taste for mathematics. The opportunity can be lost even if 

the student has some natural talent for mathematics because 

he, as everyone else, must discover his talents and taste~. 

He may find that a mathematics problem is as much fun as a 

crossword puzzle and that vigorous mental effort is not all 

drudgery. Having tasted pleasure in mathematics he will 

not forget it easily and there is a good chance that 

mathematics will come to mean something to him. 6 

Mathematics, of course, must not be regarded as 

nothing but a collection of tricks or frivolous and trivial 

recreations and pastimes. Nevertheless, if mathematics i5 

4Butler and Wren, QQ. cit., p. 128. 

5Moses Richardson, Fundamentals of Mathematics (rev. 
ed.; New York: The MacMillan Company, 1958), p. 223. 

6G• Polya, How to Solve It (Garden City, New York: 
Doubleday and Company, Inc., 1957), p. VI. 
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properly taught it presents the student with an abundance of 

problems designed expressly to initiate curiosity and inter

est. With each successful solution he feels a sense of 

satisfaction and as a result he seeks more experiences of 

the same kind. As the student grows in mathematical matu

rity he obtains satisfaction also from realization of the 

power of his methods. This behavior is relevant to inter

est, however, because it leads the student to seek more 

experiences with mathematios, to discuss it favorably with 

other people, and to value it for what it does for him 

personally.? 

Students can be helped to creativity and problem 

solving ability only if their teachers repeatedly lead them 

to and through problem solving situations and encourage 

them to strike out mentally for themselves into areas new 

to them. 8 

Thus, a teacher of mathematics has a great 

opportunity. If he fills his alloted time with drilling 

his students in routine operations he kills their interest, 

hampers their intellectual development, and misuses his 

opportunity. If he sets problems before them that ohallenge 

7Hartung, loco oit. 

8The Committee, "Preface," The Growth of Mathematical 
Ideas; Grades ~-12, Twenty-fourth Yearbook of-rhe National 
Council of Teachers of Mathematics (Washington, D. C.: 
National Council of Teachers of Mathematics, 1959.), p. V. 
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the curiosity of his students, and helps them solve their 

problems with stimulating questions, he may give them a 

basis for some appreciation of mathematics, and some means 

of independent thinking. Such problems should, of course, 

be proportionate to their knowledge. 9 

Obviously there must be system and organization in 

mathematics. Arithmetic and algebra cannot and should not 

consist entirely of special problems, situations or recrea

tions. Courses in mathematics must be developed in 

sequential form. Haphazard or piecemeal work will achieve 

nothing of value. But within the framework of the system

atic organization of a course in mathematics at any level 

of secondary instruction there are many opportunities for 

motivating the work by deliberate stimulation of the 

curiosity of the students along the lines indicated. The 

greater the extent to which this is done, the greater will 

be the interest, understanding, and diligence with which 

the students will work and the more meaningfUl and worth 

while will the work become to them. 10 

9Polya, £2. cit., p. V. 

10But1er and Wren, Q2. cit., p. 128. 
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1.4 Limitations of the study. The first limitation 

in the selection of materials for this thesis has been based 

on the author's evaluation of the material in terms of nec

essary related mathematical knowledge required of the 

student on the ninth grade level. Further, the materials 

selected are expected to be commensurate to the maturity 

level of the student and stimulating to his intellectual 

curiosity. A wealth of books is available which treat 

mathematics in the form of a recreational activity. It is 

from such books that the material of this thesis has been 

selected and organized subject to the limitations stated 

above. 

An assumption that the material selected should 

prove interesting to the student is based on the fact that 

such materials do appear in books which purport to lend 

fa.scination and intrigue to mathematics, and the fact that 

such books have gained acceptance by mathematicians, 

educators, and the general pub11C. 

In the organization of the thesis the problems and 

situations presented are merely representative of a kind; 

they are not intended to indicate the totai scope of the 

subject under consideration. 

Though the primary purpose here is to organize and 

present a mathematical approach to situations which involve 

the curious and the unusual, it does not mean that 
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mathematical principles will be sacrificed. On the 

contrary, the selection of material has been based on the 

premise that either new mathematical principles will be 

discovered or principles already familiar to the student 

will be strengthened. 

1.5 Sources of material. The discussion of the 

background of the problem in Chapter I is based on the 

writing of men in the fields of education and mathematics 

but who are not primarily concerned with the area of 

recreational mathematics. 

The material in Chapters II through VII has been 

selected from numerous books in the area of mathematical 

recreations. Some of the material has also been collected 

from such other books as Fundamental Mathematics by Harkin, 

Introduction to Finite Mathematics by Kemeny, The ~E~d~u~c~a~t=i~o~n 

2! T. C. ~ by Lieber, Making Sure of Arithmetic by 

Morton, and Algebra--Book Two by Welchons and Krickenberger. 

1.6 Organization of the thesis. Chapter II presents 

the positional notation concept of the familiar decimal 

system of numeration and demonstrates the fdentical struc

ture of other systems using different bases. Translatlon 

from the decimal system of numeration to other systems, and 

conversely, is presented in considerable detail. 
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Representative problems are suggested for ~se in the 

Classroom. 

Chapter III presents the operations of addition, 

subtraction, multiplication, and division in systems of 

numeration other than the decimal. The processes are 

treated primarily by example and representative practice 

problems are included. 

In Chapter IV a relation between certain systems of 

numeration is discussed and accompanied by representative 

problems. 

Chapter V introduces the fraction and "decimal" in 

other systems of numeration and cemonatratee methods for 

translating from the ten-system to other systems, and 

conversely. 

In Chapter VI several unusual problems involving 

probability are presented as well as a discussion of tree 

diagrams. 

Chapter VII presents a selection of wide and varied 

problem situations involving the use of one or more mathe

matical principles or concepts. The problems were selected 

because of their unusual character and are "not classified 

as to type or kind. 

Chapter VIII is devoted to a summary of the content 

of the thesis. 
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1.7 To the teacher. Though muoh of the oontent of 

this thesis is devoted to problem solving situations, Chap

ters II through V necessarily require a somewhat lengthy 

development of systems of numeration other than the decimal 

system. However, the discussion and development of other 

systems should in itself prove interesting as well as being 

relative to a problem solving situation. It is the opinion 

of the author that Chapters II and III should be presented 

in their entirety to most students whereas Chapters IV and V 

may well be reserved as optional units for smaller groups 

and individuals. The stage of instruction at which any 

material presented here should be introduced shall be left 

entirely to the discretion of the teacher. 

A few words may be in order concerning the 

presentation of problems. A problem may be presented to 

the entire class at a time felt to be appropriate by the 

teacher, or to a smaller group or even a single student. 

In the case of a group or the entire class being involved, 

the presentation and discussion of the problem should of 

course be a part of the lesson plan and sufficient class 

time must be allotted for this work just as in any other 

planned lesson. After presentation of a problem there 

should be ample opportunity for questions and further 

discussion. Once the teacher is reasonably assured that 

the students understand the problem it may be well to 



12 

allow a day or more to pass before pursuing it further. 

Students should be encouraged to hand in a copy of their 

solution as soon as possible and asked to indicate the 

approximate amount of time they spent in finding it. It is 

important to allow every student as much time outside of 

school as he cares to take so as to insure as many successes 

as possible rather than hurry on to other aspects of the 

problem. The urgency of moving Qg should not be felt here 

as it often is by the teacher in his attempt to "cover" a 

textbook. 

The purpose of these problems is clearly to create 

interest and original thinking and hence the creatlon of a 

learning situation. Therefore the teacher must lend 

encouragement to the student but refrain from describing 

the solution to the problem. Showing a class or an indi

vidual how defeats the purpose and may result in loss of 

attention as well as interest. Time after time it has been 

observed that those students who are shown answers either 

try to memorize the solution or lose interest in it 

entirely. 

uggestions as to problem solving te'clmiques and 

methods of attack may be presented by the teacher as well 

as well chosen directed questions which tend to lead the 

student into self discovered methods of approach to a 

problem. A book on the different aspects of problem 
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solving by G. Polya could be very instructive and an 

invaluable aid to the teacher and student alike in 

overcoming certain difficulties in the solving of problems. ll 

A trial and error approach to a problem has always 

been one of the first ways of investigating a new problem. 

Unfortunately it takes time and often leads to disappoint

ments. Nevertheless, students at the ninth grade level will 

persist in using this approach even under the guidance of a 

well trained and qualified mathematics teacher. Persistance, 

however, is one of the abilities often listed as an aim of 

mathematics education, hence even a trial and error approach 

to a problem by a student may give the teacher a measure of 

the students I persistence. 

llG. Polya, How to Solve It (Garden City, New York: 
Doubleday and Company, Inc., 1957, 253 PP.) 



CfiAl>TER I I 

SYSTEMS OF NUMERATION 

2.1 Introduction. Recreational activities with 

systems of numeration are not mere puzzles. The mathemati

cal bases for such recreations are deeply rooted in 

fundamental properties which need be thoroughly understood. 

However, these fundamental properties are so analogous to 

the properties of the decimal system of notation that the 

generalization of the numerical value of the base is a pro

cedure which is usually provided for in the fundamental 

objectives of mathematical instruction on the secondary 

school level. Thus, the transition from the base 10 to any 

other base should not offer many undue difficulties. If 

there may be a difficulty, it would be associated with the 

necessity of concentrating onels attention on the fact that 

a new numerical base is present. l 

2.2 Base ten and five. OUr numeral system is called 

a decimal system because the base is 10. The word "decimal" 

derives from the Latin word decem which means "ten." 

lAaron Bakst, "Mathematical Recreations," The Mathe
matics Teacher, March, 1953, 46:pp. 185-87. --



CHAPTER II 

SYSTEMS OF NUMERATION 

2.1 Introduction. Recreational activities with 

systems of numeration are not mere puzzles. The mathemati

cal bases for such recreations are deeply rooted in 

fundamental properties which need be thoroughly understood. 

However, these fundamental properties are so analogous to 

the properties of the decimal system of notation that the 

generalization of the numerical value of the base is a pro

cedure which is usually provided for in the rundamental 

objectives of mathematical instruction on the secondary 

school level. Thus, the transition from the base 10 to any 

other base should not offer many undue difficulties. If 

there may be a difficulty, it would be associated with the 

necessity of concentrating one's attention on the fact that 

a new numerical base is present. l 

2.2 Base ten and five. OUr numeral system is called 

a decimal system because the base 1s 10. The word "decimal" 

derives from the Latin word decem which means "ten." 

lAaron Bakst, ItMathematioal Recreations," The Mathe
matics Teacher, March, 1953, 46:pp. 185-87. --
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The numeral 527, for example, means 

500 + 20 + 7 

or 5(10)2 + 2(10) + 7(1). 

Likewise, the numeral 3809 means 

3000 + 800 + 0 + 9 

or 3(10)3 + 8(10)2 + 0(10) + 9(1). 

If we did not know how to express 3809 in powers of 10, as 

shown above, we could find how many times 3809 contains 10, 

102 , etc., by dividing. We can do this by dividing 3809 by 

10, dividing the quotient by 10, etc., until the quotient is 

less than 10. Dividing by 10 twice is equivalent to 

dividing by 102 , dividing three times is equivalent to 

dividing by 103, etc. 

We can use short division, and because it is 

convenient, note the remainders as in the following example. 

This number contains 103 three times, 8 extra 102,s (shovm 

by R 8), no extra tens, and 9 units as shown by R 9. This 

can be written as: 

3(10)3 + 8(10)2 + 0(10) + 9. 

Compare this with the expression originally given for 3809 

in terms of powers of 10. Note the pattern established for 
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writing 3809 once the successive short divisions by 10 are 

performed and the remainders indicated as shovm. That is: 

3	 R 8 
R 0 
R 9 

s 3809. 

To generalize this and establish the process, imagine 

that the decimal representation of the number has five 

places (the process is identical for larger or smaller 

numbers) written as 

A-I04 + B-l03 + C'102 + D'lO + E'l, 

here A, B, C, D, E represent any of the digits 0, 1, 2"", 

9 except that A ~ 0 for a five plaoe numeral. Now by 

successive short divisions by 10, the generalized problem 

A RB10)A'10 + B R C 
lO)A.l02 + B·lO + C R D 
10)A.103 + B'lOz + C'lO + D RE 
lO;A'104 + B'103 + C'102 + D·lO + E'l 

shows that, in order, the final quotient, A, and the 

remainders, read downhill, give the proper decimal 

representation. 2 

Apparently, the base 10 is used because primitive 

man counted on his fingers. If primitive man had used the 

fingers of only one hand in oounting, and some groups did, 

2Duncan Harkin, Fundamental Mathematics (New York: 
Prentioe-Hall, Inc., 1941), p. 24. 
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the base would be 5. In that case, the numeral 2431 would 

mean 

2(5)3 + 4(5)2 + 3(5) + 1. 

With the base 10 we must have ten symbols. They are, 

of course, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0, with all count

ing numbers larger than nine being expressed by means of 

place value as described earlier. f the base were 5, we 

would need only five symbols, 1, 2, 3, 4, and O. The other 

familiar symbols, 5, 6, 7, 8, 9, would not exist; there 

would be no need for them. 

At this point it becomes necessary to adopt a 

convenient notation in order to distinguish a numeral writ

ten in the 10 numeral system from one written in the 5 

numeral system. In the above examples 3809, using the base 

10 may be written 3809(10); and 2431, using the base 5, 

written as 2431(S). 

Recall that 2431(S) means 

2(S)3 + 4(5)2 + 3(S) + 1. 

When the arithmetic operations are performed, that is 

2(5)3 + 4(5)2 + 3(5) + 1 = 
2(125) + 4(25} + 3(S) + 1 = 

250 + 100 + 15 + 1 = 366(10) 

we have 366(10) being written in the 10 system and must be 

indicated as such. It is now correct to say that 2431(5) = 

366(10)' or in other words 2431 using the base S represents 

the Bame counting number as 366 using the base 10. 
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To further demonstrate the procedure discussed 

earlier, let us change the decimal numeral 366(10) back to 

the numeral having the base 5. We must find how many times 

366(10) contains 5, 52, etc. We can do this by dividing 

366(10) by 5, dividing the quotient by 5, etc., until the 

quotient obtained is less than 5. Dividing by 5 twice is 

equivalent to dividing by 52; dividing by 5 three times i8 

equivalent to dividing by 53; etc. We will use ahort 

division in the manner described earlier. 

2 R 4 

1
1 R3
 
R 1 

5 366(10) 

This number, 366(10)' contains S3 two times, four extra 521 s 

(shown by R 4), three fives (shown by R 3), and one unit as 

shown by R 1. As a check, we write 

2431(S) = 2(S)3 + 4(S)2 + 3(5) + 1 

= 250(10) + 100(10) + 15(10) + 1 = 366(10)· 

2.3 Summary. Numbers written with the base S use a 

units column, a fives column, a five-squared column, and so 

on, instead of a units column, a tens column, a ten-squared 
. 

column, and so on. Such numerals may be referred to as the 

5 scale or qUinary system of numeration and identified by 

using a base subscript in parentheses such as 243(5). The 
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numeral 243(5) means 

2(5)2 + 4(5) + 3(1) 

and is equivalent to 

2(25) + 4(5) + 3(1) = 
50(10) + 20(10) + 3(10) = 73(10)

To change a numeral in the 10 scale to its equivalent 

in the 5 scale, divide the decimal numeral successively by 

5, noting the remainders, until the quotient is less than 5. 

Using the procedure described earlier, write the numeral in 

the 5 scale as follows_ 

2 R 4 
5114 R 3 
5m(lO) 

Thus, 73(10) = 243(5). 

Table I, will show representative equivalent numerals 

written in the ten scale and in the five scale. 

The symbols 14 and 22, for example, in the last line 

should be read as one-four and two-two, respectively, and 

not fourteen and twenty-two, since they mean "one five and 

four units" or 1-5 + 4, and "two fives and two units" or 

2·5 + 2, respectively_ 

The number written as 32(10) in the io scale means 

3·10 + 2 which is equal to 1(5)2 + 1(5) + 2 or 1(25) + 1(5) 

+ 2 and is therefore written as 112 in the 5 scale. 
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Note that in the ten scale the numeral 10(10) is used 

as the base whereas the symbol itself does not occur among 

the original ten digits. 

In the five scale the symbol 10(5) should technically 

be used as the base number but it has been found more con

venient and less confusing to use the symbol 5(10) as the 

base. It is true that regardless of the base system used 

the base numeral itself does not occur among the original 

set of digits. The names of the numbers and the symbol used 

for the numbers are merely a matter of language and must not 

be confused with the matter of number concept. 

2.4 Problems. Change the following decimal numerals 

to numerals having the base five. As a check, change each 

number back to the numeral having the base ten. 

Decimal(lO) Quinary(s) 

4 (4) 
7 (12) 

21 (41)
SO (200) 
64 (224 ) 

350 (2400 ) 
512 (4022) 

1000 (13,000) 
5000 (130 ,009)
8426 (232,201) 

This list of problems may of course be supplemented 

by as many similar problems as the teacher feels is 

necessary. 
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2.5 Bases ~ throu ~. At this point it might 

be well to ask whether other scales, or numeral bases, can 

be used to write counting numbers_ Other scales could be 

used equally well and in fact any rational number except one 

may be used as a base. For the purposes of this chapter, 

however, we shall deal only with integral number bases of 

ten or less in order to confine the work to reasonable 

limits and yet demonstrate the arithmetic principles common 

to different numeral base systems. 

One might, for example, write a number in the 3 scale 

using only the three digits, 0, 1, 2_ Hence twenty-four i 

written in the 3 scale as 220(3) (two-two-zero) since 24(10) 

= 2.32 + 2-3 + 0·1_ There would be no use for the symbols 

3, 4, 5, 6, 7, S, 9 and they would not exist. Thus, 24(10) 

= 22°(3)

One should realize now that every point of discussion 

concerning the 5 scale will now apply regardless of the base 

number being used. Thus, 

2 R 2 
318 R ° 

3)24(10) 

and 24(10) = 220(3)

If one chooses to use e t as a base number USing 

only the symbols 0, 1, 2, 3, 4, 5, 6, 7 then, 

4 R 4 srn R 1 
SJ289(lO) 
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for example, 289(10) = 441(8). 

That is, 

441(8) =4(8)2 + 4(8) + 1(1) 

= 4(64) + 4(8) + 1 

= 256 + 32 + 1 

= 289(10)· 

If the numeral base is two, the system is called "the 

binary system." This system has been much used in elec

tronic computers although recently the tendency has been to 

change to the base four and the base eight. 3 The binary 

system became popular because it easily represented two con

ditions, such as, a hole appears at a certain place in a 

punch card or it does not appear, an electrical contact is 

made or it is not made, etc. 

The binary system requires only two symbols--l and O. 

Just as 10 in the decimal system means 1 ten and 0 ones, 10 

in the binary system means 1 two and 0 ones. Thus, 10(10) f 

10(2). If the base is five, 10 means 1 five and 0 ones; if 

the base is eight, 10 means 1 eight and 0 ones; etc. 

In Table II is given the first 25 numerals in the 
. 

decimal system and for sake of comparison the equivalent 

3Robert Lee Morton, et. al., Making Sure of ith
metic, Teachers Edition, (Morristovm, New Jersey: ilver 
Burdett Company, 1958), p. 462. 
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TABLE II 

COMPARISON OF THE FIRST TWENTY FIVE NUMERALS 

IN DIFFERENT NUMERATION SYSTEMS 

ten scale 2 scale 3 scale 5 scale 8 scale 
Deoimal Binary Ternary Quinary Octonary 

1 1 1 1 1 
2 10 2 2 2 
3 11 10 3 3 
4 100 11 4 4 
5 101 12 10 5 
6 110 20 11 6 
7 III 21 12 7 
8 1000 22 13 10 
9 1001 100 14 11 

10 1010 101 20 12 
11 1011 102 21 13 
12 1100 110 22 14 
13 1101 III 23 15 
14 1110 112 24 16 
15 1111 120 30 17 
16 10000 121 31 .20 
17 10001 122 32 21 
18 10010 200 33 22 
19 10011 201 34 23 
20 10100 202 40 24 
21 10101 210 41 25 
22 10110 211 42 26 
23 10111 212 43 27 
24 11000 220 44 30 
25 11001 221 100 31 
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symbols for the base of two, three, five, and eight, 

respectively--binary, ternary, quinary, and octonary 

numerals. 

The binary numeral 10 means 1(2) + 0(1); 11 means 

1(2) + 1(1); 100 means 1(2)2 + 0(2) + 0(1); III means 1(2)2 

+ 1(2) + 1(1); 10101 means 1(2)4 + 0(2)3 + 1(2)2 + 0(2) + 

1 (1); etc. 

Now let us change a few decimal numerals to binary 

numerals by division. Divide by 2 and continue to divide 

by 2 until the quotient 1s less than 2. 
1 R 0
 

1 R 0 1 R 1 2 R 1
 
1 R 0 R 0 Rl 2 R 0
 

2)2 R 1 ~~ R 0 2 R 1 2 10 R 0
 ig 2N 2~15 2120 

These divisions show that 5(10) = 101(2); 8(10) = 1000(2); 

15(10) = 1111(2); and 20(10) = 10100(2). Each of these 

numerals has already appeared in Table II. 

To reinforce our thinking as to why the last quotient 

and the remainders, read downhill, give the proper binary 

representation, we will look again at the device used early 

in this chapter. 

This time imagine that the binary re~resentation of 

the number has, for example, five places written as 

A.24 + B-23 + 0-22 + D-2 + E-1, 

where A, B, 0, D, E represent 1 or 0 according as the 
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corresponding power of 2 is or is not present in the binary 

representation of the number. Now, by successive halving, 

the generalized problem 

A·l 
2~A-2 + B-1 

2)A-23 + B-22 + C-2 + D-l 

R B 
R C 
R D 

R E 

2)A-24 + B·23 + C·22 + D·2 + E-l 

shows that the last quotient and the remainders, read down

hill, give the proper binary representation. 4 The above 

verification could be further generalized by allowing the 

base number to be x, where x is an integer greater than O. 

Large decimal numerals can be changed to other base 

umerals but where the new base is less than ten, one must 

expect in general more digits to appear. In particular, 

changing a relatively large decimal numeral to the binary 

system will result in many figures in the binary numeral. 

For example, ...1. R 0 
R 1
 
R 0
 

R ° R 1 

R ° R 0 
R 1 
R 0 
R 1 
R 1 

Thus, 2635(10) = 101,001,001,011(2)_ 

4Hartung, loc_ cit. 
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This numeral means 1(2)11 + 0(2)10 + 1(2)9 + 0(2)8 + 0(2)7 + 

1(2)6 + 0(2)5 + 0(2)4 + 1(2)3 + 0(2)2 + 1(2) + 1 = 2048 + 0 

+ 512 + 0 + 0 + 64 + 0 + 0 + 8 + 0 + 2 + 1 = 2635(10). 

2.6 Summary. Changing from one scale to another is 

merely a problem for the packing department. When thirty-

eight is written in the ten scale, it is as thou thirty-

eight objects were packed into 3 boxes of 10 each and 8 

boxes of one each (38 = 3·10 + 8). Changin~ to the five 

Bcale amounts to repacking the thirty-eight objects into one 

box of 25 ( = 52), 2 boxes of 5 each and 3 boxes 1 each 

(123(5) =1.52 + 2·5 + 3-1). In the ten scale we pack by 

ones, 10's, 102,s, 103's, and so on_ In the five scale, we 

pack by ones, 5's, 52 ,s, 53 's, and so on, always using the 

largest box that can be filled. 

We are merely discussing fferent ways of writing 

the same old numbers. That is, we are discussing different 

systems of notation or different (written) languages. When 

we say that the number which is written as 24 in our usual 

decimal language would be written as 44 in the 115 scale ll 

language, or as 11000 in the "binary" langua.ge, we are 

merely translating from one language to another. 

Another point of view that must be reserved for the 

student with sufficient algebra preparation deserves brief 

mention. In the usual 10 scale, the symbol 231(10) means 
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2-102 + 3-10 + 1, or the value of the polynomial 2x2 + 3x + 

1 when x = 10, or two hundred and thirty-one_ In the 5 

scale, 231(5) means 2-52 + 3-5 + 1, or the value of the 

polynomial 2x2 + 3x + 1 when x = 5, or the number 66(10)

To avoid possible confusion as to which langua~e or 

scale a numeral is written in, we must either state the 

scale in words or use the subscript in parentheses as has 

been done so far_ If no subscript is used nor any explicit 

remark made, the 10 scale is always understood_ 

2 _7 Problems_ 

1_ Change each of the following decimal numerals to 

the 2 scale, 3 scale, 4 scale, 5 scale, 6 scale, 8 scale, 

and 9 scale respectively. As a check change each scale back 

to a decimal_ 

Decimal 
2 scale 3 

Answers 

scale 4 scale 5 scale 

24 11000 220 120 44 

5 101 12 11 10 

32 100000 1012 200 112 

96 1100000 10120 1200 341 

259 100000011 100121 10002 2014 



2. Rewrite the entire statement "2 + 5 = 7" (now 

written in the 10 scale) to express it in 

(a) the 5 Bcale Ans. 2(5) + 10(5) = 12(5) 

(b) the 2 Bcale Ans. 10(2) + 101(2) = 111(2) 

( c) the 8 scale Ans. 2(8) + 5(8) = 7(8) 

(d) the 3 scale Ans. 2(3) + 12(3) = 21(3)· 

3. The following numerals are already written in the 

binary or two scale; rewrite them in the ten scale. 

(a) 1110 Ans. 14 

(b) 1011 Ans. 11 

( c) 11010 Ans. 26 

(d) 10010 Ans. 18 

( e) 100100 Ans. 36. 
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4. If the numeral 200 is already written in the 4 

scale, rewrite it in 

(a) the 8 scale Ans. 40 

(b) the 2 Bcale Ans. 100000 

(Hint, see problem 1. ) 



CHAPTER III 

FUNDAMENTAL OPERATIONS OF ARITHMETIC 

3.1 Introduction. Previous training makes simple 

arithmetical operations so mechanical that they must be 

analyzed closely in order to apply them to systems of 

numeration other than the decimal. 

Consider the opportunities for practice in arithmetic 

which new systems of numeration offer. For example, the 

addition of 3163 and 4512, when both are written in systems 

other than the decimal, requires close attention to the 

value of the base. Such problems may call forth powers of 

concentration and analysis as well as develop a deeper 

understanding of the fundamental operations of arithmetic. l 

3.2 Number facts. Operations with numbers in the 

various systems of numeration are simplified by addition and 

mUltiplication tables, similar to the decimal-system tables 

taught in one form or another to all grade school pupils. 

FollOWing are the tables for addition and multiplication for 

the numeration systems, base two through base nine. 

To find the sum or product of two numbers take one 

number in the first column and one number in the first row. 

lAaron Bakst, "Mathematical Recreations,1I The Mathe
matics Teacher, March, 1953, 46:pp. 185-87. --
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TABLE III
 

ADDITION AND MULTIPLICATION FACTS FOR NUMERATION
 

SYSTEMS, BABES TWO THROUGH NINE
 

Addition Multiplication 

Two-system Tables 

~ m
 
[TI~ 

Three-system Tables 

+ 1 2 

1 2 10 

2 10 11 

rn
 
L1=J
 

Four-system Tables 

+ 1 2 3 

1 2 3 10 

2 3 10 11 

3 10 11 12 

x 2 3 

2 10 12 

3 12 21 

Five-system Tables 

+ 1 2 3 4 

1 2 3 4 10 

2 3 4 10 11 

3 4 10 11 12 

4 10 11 12 13 

x 2 3 ·4 

2 4 11 13 

3 11 14 22 

4 13 22 31 



33 

TABLE III (continued) 

Addi tion Multiplication 

Six-system Tables 

+ 1 2 3 4 5 

1 2 3 4 5 10 

2 3 4 5 10 11 

3 4 5 10 11 12 

4 5 10 11 12 13 

5 10 11 12 13 14 

x 2 3 4 5 

2 4 10 12 14 

3 10 13 20 23 

4 12 20 24 32 

5 14 23 32 41 

Seven-system Tables 

+ 1 2 3 4 5 6 

1 2 3 4 5 6 10 

2 3 4 5 6 10 11 

3 4 5 6 10 11 12 

4 5 6 10 11 12 13 

5 6 10 11 12 13 14 

6 10 11 12 13 14 15 

x 2 3 4 5 6 

2 4 6 11 13 15 

3 6 12 15 21 24 

4 11 15 22 26 33 

5 13 21 26 34 4-2 

6 15 24 33 4-2 51 
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TABLE III (continued) 

Additlon Multiplicatlon 

Eight-system Tables 

+ 1 2 3 4 5 6 7 

1 2 3 4 5 6 7 10 

2 3 4 5 6 7 10 11 

3 4 5 6 7 10 11 12 

4 5 6 7 10 11 12 13 

5 6 7 10 11 12 13 14 

6 7 10 11 12 13 14 15 

7 10 11 12 13 14 15 16 

x 2 3 4 5 6 7 

2 4 6 10 12 14 16 

3 6 11 14 17 22 25 

4 10 14 20 24 30 34 

5 12 17 24 31 36 43 

6 14 22 30 36 44 52 

7 16 25 34 43 52 61 

Nine-system tables 

+ 1 2 3 4 5 6 7 8 

1 2 3 4 5 6 7 8 10 

2 3 4 5 6 7 8 10 11 

3 4 5 6 7 8 10 11 12 

4 5 6 7 8 10 11 12 13 

5 6 7 8 10 11 12 13 14 

6 7 8 10 11 12 13 14 15 

7 8 10 11 12 13 14 15 16 

e 10 11 12 13 14 15 16 17 

x 2 3 '+ 5 6 7 8 

2 4 6 8 11 13 15 17 

3 6 10 13 16 20 23 26 

4 8 13 17 22 26 31 35 

5 11 16 22 27 33 38 44 

6 13 20 26 33 40 46 53 

7 15 23 31 38 46 54 62 

8 17 26 35 44 53 62 71 
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Where the column and row intersect is the required number. 

Thus, in the four-system tables 2 + 3 = 11 and 2·3 = 12. 

Remember that any number plus ° is the number itself 

and any number times ° is 0. Any number times 1 is the n 

ber itself. These facts are not given in the tables but 

apply to all systems of numeration being considered here. 

3.3 Addition. In totaling a column of numbers 

(starting at the right, of course), if a number greater than 

10 is obtained, the units are recorded and the remaining 

digits (denoting the tens) are carried to the next column 

(the tens column). To add 639, 472, and 593 in the decimal 

system the process is as follows; 

639 
472 

1,70-.. 

That is, 

9 + 2 + 3 = 14. Record 4 and carry 1. 
1 + 3 + 7 + 9 = 20. Record ° and carry 2. 
2 + 6 + 4 + 5 = 17. Record 17. 

The sum is then 1,704. 

The principle of carrying holds for other systems of 

numeration. But remember that the number that represen~s 

the system has no numeral for itself--it is always written 

as 10. 
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Here is the way to add two (or more) numbers, say 

1,101 and Ill, in the two-system: 

1,101 
+	 111 
10,100 

1 + 1 = 10. 
1 + 0 + 1 = 10. 
1 + 1 + 1 =11. 
1 + 1 =10. 

Therefore the sum is 10,100. 

vrite 0 and carry 1. 
Write 0 and carry 1. 
Write 1 and carry 1. 
Write 10. 

The addition can be checked by the decimal system. 

Thus: 1,101 = 13(10)
111 = 7(10) 

10,100 = 20(10) 

Numbers in the three-system are added in the same 

way. Thus: 

2,122 
212 
121 

11,'50'2 

1 + 2 + 2 =12. Write 2 and carry 1. 
1 + 2 -I- 1 + 2 =20. Write 0 and carry 2. 
2 + 1 + 2 -I- 1 =20. Write 0 and carry 2. 
2 + 2 =11. Write 11. 

and the sum is 11,002. 

Again the addition is checked by the decimal system. 

2,122 = 71(10) 
212 = 23(10) 
121 = 16(10) 

11,002(3) - 110(10) 
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3.4 Problems. Below are examples of addition in 

various numeration systems. 

Two-system Three-system Four-system 

101 1011 112 121 23 3231 
11 1101 212 222 12 133 

1000 III rror 112 101 312 
11111 2002 11002 

Five-system Six-system Seven-system 

234 4312 135 45312 61 56543 
411 432 42 5423 .25 3635 

1200	 ~ 221 ~ 6 216 
IT5Zi2 55534 64030 

Eight-system Nine-system 

653 64753 387 
ill 2567 241 

1344 471 638 
7023 

Problem. Check the above sums by the decimal system. 

3.5 Subtraction. In subtraction, the method of 

"borrowing" will be used. Analysis of the decimal system 

technique may be helpful. Suppose 17 is to be subtracted 

from 42. 
31 
~2 
11 
25 

Since 7 cannot be subtracted from 2, 1 ten is borrowed from 

4 tens leaVing 3 tens; 7 from 12, then, gives 5 and, finally, 

1 from 3 is 2, and the answer is 25. 
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gain in the ten system suppose 46 is to be 

subtracted from 302. 
291 
~¢2 

46 
256 

Here since 6 cannot be subtracted from 2, and there are no 

tens to be borrowed, borrow 10 tens or lone hundred from 

the hundred place leaving 2 hundreds; from these 10 tens 

borrow 1 ten for the units place leaving 9 tens in the ten 

place; then, 6 from 12 gives 6, 4 tens from 9 ten ives 5 

tens, and finally no hundreds from 2 hundreds is 2 hundreds 

and the answer is 256. 

It should be remembered that, in each system of 

numeration, the number correspondin~ to the base of that 

system, or a power of that number, is the one borrowed. 

Subtraction in other systems of numeration may be 

described in a siillilar manner. Subtraction, where borrowing 

is not required, is not difficult if one will check himself 

on the addition facts for that system of numeration. Thus, 

in the two system 

11011 
1001 

1'6OIO 

and in the five sYstem 

4332 
- 2321 

2011. 
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The answers may be checked by adding the difference and the 

subtrahend or by translation to the decimal system. 

When borrowing is necessary the procedure is similar 

to the method described in the ten system. Thus, in the 

binary system. o 10 
t ¢ 1 

1 1 
1 0 

Starting at the right, 1 from 1 is O. In the 2's column 1 

cannot be subtracted from O. Hence 1 four is borrowed from 

the 4's column leaving no fours. This four is really two 

2's or 10 in the 2's column. Thus, in the 2's column 10 - 1 

s 1. In the 4's column 0 - 0 is O. The difference, 

therefore, is 10(2)' 

Consider another example of borrowln n the blnary 

system. 1 
o +b 10 
t ¢ ¢ 1 

111 
1 0 

In the uni ts column 1 from 1 16 O. In the 2' B col'UDln 1 can

not be subtracted from 0 and there are no fours to be bor

rowed. Hence, borrow 1 eight from the 8's column leaving no 

eiRhts. Think of the eight as 10 in the 4'8 column, meaning 

two 4's. Then borrow 1 four leaving 1 four in the 4'8 col

umn and write 10 in the 2'8 column meaning two 2's. Thus 

o - 1 is 1 in the 2 1 s column; 1 - 1 is 0 in the 4'8 column; 

and 0 - 0 is 0 in the 8's column. The answer is 10(2)' 
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Following is one more example using the eight system 

of numeration. 
412 
15 ? 3 
2 4 1 
2 6 2 

In the units column 1 from 3 is 2. Borrow one 64 from the 

64's column leaving four 64's. Think of the borrowed 64 as 

8 eights, or 10 eights and add the 2 eights already in that 

column giving 12 eights. Hence 12 - 4 is 6 and 4 - 2 is 2. 

The difference, then, is 262(8). 

Remember, it is absolutely essential that the base 

being used is kept constantly in mind. 

3.6 Problems. Following are examples of subtraction 

in variO numeration systems. Dots are placed over columns 

to ind te that borrowing took place in those columns. 

T"TO-system Three-system Four-system 
• • • ....
 

101011 22110 312023 
1101 1202 231 

11110 20201 212132 

Five-system Six-system Seven-system 

43420 452050 611012 
3jt42

34 23 
4~443 

40 203 
256261 

·321421 

Eight-system Nine-syst.em ....
 
12472 73421 
filIl. 8678 
3472 636-:S2 
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The results may be checked by addition or by 

translation into the decimal system. 

3.7 u1tiplication. ultiplication is performed the 

same way in all systems of numeration. In systems other 

than the decimal the chief difficulty is a tendency to think 

in terms of the decimal system. To avoid this, remember 

that the number denoting the system is always written as 10. 

The multin1ication tables given in this chapter also will be 

useful. 

Multiplication in the two-system is so easy that it 

bears out the statement that this is the simplest of all 

systems. There are of course only two digits, 0 and 1, an 

0·1 =1·0 = 0; 1·1 = 1. Thus: 

10011 
101 

100IT 
10011 
1011111. 

The product of two numbers in the three-system is 

obtained as follows: 

112 
221 
112 

1001 
1001 
110222. 

The mUltiplication by 1 results in the original numeral 112. 

MUltiplying 112 by 2 is done this way: 
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2·2 = 11. Write 1 and carry 1. 
2·1 = 2, and 2 + 1 = 10. Write 0 and carry 1. 
2·1 = 2, and 2 + 1 = 10. Write 10. 

The product, therefore, is 1,001. The results may be 

checked by using the decimal system. Thus: 

112 = 14 
221 = E.2
ill 70 

1001 28 
1001 

110,222 = 350. 

3.8 Problems. Below are representative examples of 

mUltiplication. Problems such as these may be done in c~ass 

and similar problems ven to students as exercises. 

Two-system Three-system 

10110 221 
101 22 

10110 1212 
101100 1212 

1,101,110 21,102 

Five-system Eight-system 

347 
26 

2552 

616 
2 

Examples of multiplication using other bases are left 

to the teacher. A check may be made by translating to the 

decimal system. 
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3.9 Division. Division, too, follows the same 

pattern in all systems of numeration. The student, however, 

should be well versed in subtraction and multiplication 

before proceeding with division. 

Below are examples of d.ivision: 

T\'1o-system 

ivide 100011 by III 

101 
111)100011 

111 
11 
o 
III 
III 

Three-system 

112 
12)2122 

12 
22 
12 
102 

101 
1 

Thus, 2, 122 + 12 =112 + 1~. 

Four-system 

121 
213)33210 

213 
1131 
1032 

330 
£L 
III 
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Note that in the last example, when 1,131 was divided 

by 213, 2 was chosen as a quotient; 3 was not chosen because 

from inspection 3·2 = 12, and the first two digits of 1,131 

are 11. Thus, 3 would have been too large. 

Five-system 

123 

4Thus, the answer is; 302 +...1:2, 0 302 + 34"'123 

3.10 Problems. 

I. Add or subtract as indicated. 

Two-system 

1. III + 101 4. 1110 - III 
2. 1110 + 1010 5. 10101 + 1010 
3. 1011 - 1010 6. 111010 - 10011 

Five-system 

1. 23 + 24 4. 414 + 223 + 143 
2. 413 + 224 5. 341 - 233 
3. 432 - 122 6. 301 - 213 

II. Multiply or divide, as indicated. 

Two-svstem 
. 

1. 11·11 4. 11001.;. 101 
2. 1110·101 5. 101101';' 1001 
3. 1000';' 10 6. 100111 + 1101 

Five-system 

1. 24'32 4. 14.;. 3 
2. 243' 23 5. 242';' 13 
3. 100.;. 10 6. 333';' 104 
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Check the preceeding problems by the decimal system. 

Any desired number of problems similar to the above may be 

presented using other systems of numeration. 



CHAPTER IV 

RELATED NUMERATION SYSTEr-1S 

4.1 Introduction. The writing of numbers in the 

two-system of numeration becomes very cumbersome. However, 

this writing may be simplified. The simplification which 

follows is introduced into the construction of the binary 

electronic computing devices so that the recording and the 

typing of the final numerical results become comparatively 

simp1e. 1 

4.2 Bases ~ ~ eight. Note the following 

combinations of the digits "0" and "I" in the two-system of 

numeration. 

000 represents ° 100 represents 4 
001 represents 1 101 represents 5 
010 represents 2 110 represents 6 
OIl represents 3 111 represents 7 

These triplets may be employed in translating numbers 

written in the two-system of numeration. By translating the 

triplets according to the system above, 

11,001,010,000,101,110,100,011,111 

becomes 312,056,437. 

The numeral 312,056,437 is, however, not written in 

the decimal system of numeration, but rather the eight-system 

1Aaron Bakst, Mathematical Puzzles and Pastimes (~ew 
York: D. Van Nostrand Company, Inc., 1954~p. 40. 
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(which is also known as the octal system). Note that the 

digits 8 or 9 do not occur in the translation, nor could 

they possibly occur since the translation is into the 

eight-system. 

The advantage of the octal system over the two-system 

of numeration lies in the fact that in the octal system 

fewer digits are required for writing numbers. The trans1a

tion of a numeral written in the octal system of numeration 

into the two-system of numeration can be performed with 

almost no effort. Electronic computing devices make provi

Sions for such translations automatical1y.2 Thus, for 

example, the numeral 15,675,217,346(8) in the octal system 

is translated into 

1,101,110,111,101,010,001,111,011,100,110 

in the binary system. Note that each digit in the octal 

representation of the number is represented by a group of 

three digits in the binary system. 

4.3 Problems. The following problems are merely 

representative of a kind that could be presented at this 

point. 

1. Translate 11,110,101,011,111,010,000,100,010(2) 

into the octal system of numeration. 

2Ibid., p. 41.-
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2. Translate the octal numeral, 157,634,527,100 into 

the two-system of numeration. 

4.4 Bases.!:!!Q and four. The "counting" in different 

numeral systems may be related to some "primary" number 

systems. 3 Such a relationship between the two-system and 

the octal system has just been discussed. A similar relation 

eXists between the two-system and the four-system of enumer

ation. By writing the first four numbers in the two-system 

of numeration we have: 

00 represents ° 10 represents 2 
01 represents 1 11 represents 3 

Then, a number written in the two-system of numeration, say, 

11011001010110 

may be rewritten, pairing off the digits from right to left, 

and obtain 

1101,10,01,01,01,10. 

Now, employing the stated relationship, rewrite this number 

as 3121112 

in the four-system of numeration. If these two numerals were 

translated into the decimal system, the results would be the 

same: 

213 + 212 + 210 + 29 + 26 + 24 + 22 + 2 = 13,910(10). 
(3.46 ) + (45 ) + (2.44 ) + (43 ) + (42 ) + (4) + (2) = 13,910(10). 

3Ibid., p. 51. 
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If a number is written in the four-system of 

numeration, then it can be qUickly translated into the two-

system of numeration. For example, suppose that the number 

written in the four-system is 

230110312. 

The four relations discussed above make possible the trans

lation of this numeral into the two-system of numeration, 

resul ting in 

10,11,00,01,01,00,11,01,10. 

4.5 Problems. 

1. Translate the two-system numeral 

110100010110111 

into the four-system. 

2. Translate the four-system numeral 

30221011033210 

into the two-system. 

4.6 Summary. In the discussion of related systems 

of numeration it has been shown that the two-system can very 

conveniently be translated into the four-system or the eight
. 

system and conversely. The two-system would therefore be 

defined as the "primary" sYstem in relation to the four-

system and the eight-system respectively. To translate from 

the two-system to the four-system of numeration, group the 
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digits in the binary number by two's from right to left, 

then translate each group individually into the symbols 0, 

1, 2, or 3 as they may occur. To translate from the two 

system to the eight-system of numeration, group the digits 

in the binary number by three's from right to left, then 

translate eaoh group individually into the symbols 0, 1, 2, 

3, 4, 5, 6, or 7 as they may occur. 

To translate the four-system, or the eight-system of 

numeration into the two-system, translate each digit in the 

higher base system number to the equivalent number symbol in 

the two-system. This process is more conveniently performed 

by working from left to right. More examples: 

1.	 101101011101(2) =10,11,01,01,11,01(2) = 

231131 (4). 

2.	 101101011101(2) = 101,101,011,101(2) = 

5535(8)· 

3.	 23123(4) =10,11,01,10,11(2)· 

4.	 7234165(8) = 111,101,011,100,001,110,101. 

4.7 Problems. 

1. What relationship do you suppose exists between 

the two-system and the four-system; and the two-system and 

the eight system of numeration that makes such a convenient 

translation possible? [Ans. 4 and 8 are perfect powers of 

2.J 
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2. Do you suppose a "primary" relation exists between 

the three-system and the nine-system of numeration. 

3. Write a number in the three-system of numeratlon. 

Try to translate this numeral into the nine-system directly. 

Check your results by translating each numeral into the 

decimal system. Do they check, that ls, are the resulting 

decimal numerals the same? 



CHAPTER V 

FRACTIONS AND "DECIMALS" 

5.1 Introduction. Fractions and decimals and the1r 

relation to other systems of numeration, and conversely, 

will be given brief consideration here. Some students may 

develop considerable interest in this area because of the 

unfamiliar and often strange appearing results. 

The decimal numeral or decimal fraction as known in 

the ten system of numeration has its counterpart in other 

systems of numeration. The numerals and fractions in other 

systems should not, strictly speaking, be referred to as 

decimal numerals or fractions since the base of the system 

being used is not ten. Rather than invent special names for 

these numerals expressed in different numeration systems the 

author will use the word "decimal" but use a subscript in 

parentheses to indicate the base number of the system being 

used. Thus, .01(2) is a decimal(2) written in the two 

system of numeration. "Decimal" in quotation marks shall 

mean a numeral other than base ten but no specific base 

implied. 

5.2 "Decimals". "Decimal" numerals in other systems 

of numeration have place value just as in the decimal(lO) 

system. Just as 
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.235(10) = 2(th) + 3(~) + 5(~)
10 10 

so .101(2) = 1(1) + 0(-1) + 1(-1)
2 22 23 

IIIand = 2(-) + 3(--) + 4(--).234(5) 5 52 53 

In other words 

.235(10) = 1~ + ~ + ~ = ~(10) 

1 1
.101(2) - - + - 

- 2 8 - 8(10) 

_ 2 + -l + ---1 _ .-Q2.and .234 (5) - 5 25 125 - 125(10) 

To convert a "decimal" in another system to a 

decimal(10) simply convert the "decimal" into a fraction(10) 

by the above method and then divide. 

5.3 Fractions. A deCimal(10) fraction may be 

changed into a fraction in any other numeration system 

simply by translating its numerator and denominator into 

the new system. Thus 

11 
i(10) = 100(2) 

A fraction written in a system other than the ten 

system may be converted to a "decimal ll form of the same base 

by the division process described in unit 2.15. Thus in the 

three system 
1
 

11(3) = .0202~3)
 



54
 

since .0202· .. 
11 )1. 0000 

22 
---rOO 

-22
1 

Notice that	 1 
4 = •2500( )

(10) 10 

1 = .0202··· 
11(3) (3 ) 

and	 1 1 
4(10) = 11(3) 

therefore	 .2500 (10) = .0202(3) 

5.4 "Decimal" conversion. The process of chang1ng a 

decimal(lO) to the equivalent "decimal" in another system is 

rather involved. One method of course (if the decimal(lO) 

is terminal) is to convert the decimal(lO) to an eqUivalent 

fraction(lO)' then translate the numerator and denominator 

of the fraction(lO) into the system being dealt with befor 

d1viding. Thus 

.2500 .•• (10) 
1 =4(10) 

but	 11 = 
4(10) I'OO(2) 

and by division 1 
100 = .0100···(2)

(2 ) 

therefore .2500•.. (10) = .0100···(2) 
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Another method of conversion could be as follows. 

Example. Change .7(10) to the binary scale. 

Solution. = 1.4 halves or 1(~) + .4 halve.7(10) 

.4 halves = .8 fourths or O(~) + .8 fourths 

.8 fourths =1.6 eighths or l(~) + .6 eighths 

.6 eighths =1.2 sixteenths or 1(-1) + .2
16 

sixteenths 

and so on. 

Thus .7(10) = .1011···(2)
 

That is - 1(1) + 0(1) + 1(1) + 1(-1) •••
.7(10) - 2 4 8 16 

To convert a numera1(10) such as 25.25(10) to a 

numeral in another system of numeration requires two 

distinct operations. 

Example. Change 25.25(10) to the binary system. 

1 ~ ~ 
2 6 R 0 

2 12 R 1 
2 25.1

Thus 25.(10) = 11001(2) 

The .25(10) may be translated by either 0 two vlays • 

Thus •25(10) = ~(10) = O(~) + 1(~) 
and .25(10) = .01(2) 

or .25(10) = .50 halves or O(~) 

.50 halves = 1.00 fourths or 1(1 

and .25(10) = .01(2). 
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Therefore 25.25(10) = 11001.01(2) 

5.5 Problems. 

1. Verify some of the "decimal" equivalents given 

in Table IV by procedures described in this unit. 

2. Change the decimal(lO) fraction ~ to a binary
(10) 

fraction. 

3. Change ~ to a decimal(2) equivalent.
(2 ) 

4. Chan~e .3333(10) to a decimal(2). 

5. Change .101000···(2) to a fractlon(10). 
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TABLE IV 

COMMON FRACTIONS EXPRESSED AS "DECIMALS" 

IN VARIOUS NUMEP~TION SYSTEMS 

Common 
Fractions 

Ten 
System 

10ths 
100ths 

1000ths 
10000ths 

T,...o 
System 
halves 

4ths 
8ths 

16ths 

Three 
System 
thirds 
9ths 

27ths 
81sts 

Four 
System 
fourths 
16ths 
64ths 

256ths 

Eight 
System 
e1shths 

64ths 
512ths 

4096ths 

1/2 .5000 .1000 .1111 .2000 .4000 

1/3 .3333 .0101 .1000 .1111 .2525 

1/4 .2500 .0100 .0202 .1000 .2000 

1/5 .2000 .0011 .0121 .0303 .1463 

1/6 .1666 .0010 .0111 .0222 .1252 

1/7 .1428 .0010 .0102 .0210 .1111 

1/8 .1250 .0010 .0101 .0200 .1000 

1/10 .1000 .0001 .0022 .0121 .0631 

1/12 .0833 .0001 .0020 .0111 .0525 

5/6 .8333 .1101 .2111 .3111 .6525 

3/8 .3750 .0110 .1010 .1200 .3000 



CH.AJ?TER VI 

PROBABILITY 

6.1 Introduction. Some of the simpler ideas of 

permutations, combinations, and probability may be inter

jected into a ninth grade mathematics course usually with 

wide acceptance by the students. The element of chance 

tends to lend intrigue to almost any endeavor in any walk of 

life. A child has experience in the playing of ~ames and in 

other endeavors where the element of chance will bear on the 

outcome of his experience. He recognizes the element of 

chance in his choice of an answer to a true or false 

question on a test, especially if he is ill prepared. 

Thus, chance is a facet of mathematics familiar to 

the child but usually not in the mathematical sense. 

The two problems selected for this chapter and the 

presentation of tree diagrams as a method of analyzing cer

tain situations involving the element of chance were 

selected to demonstrate to the student the role that mathe

matics can play in predicting the outcome of varied 

situations involving chance. Further, it is expected that 

these problems may well suggest a form of mathematics 

heretofore unknown to him. 
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The problems are not intended to introduce any 

formal approach to probability theory, nor is there any 

direct reference to permutations or combinations. Any formal 

approach to this topic is left to the discretion of the 

teacher. 

6.2 Buffon's Needle Problem. An interestin~ number 

used as a multiplier in computation of the circumference of 

a circle is the number known as n. It is approximately 

equal to 3.14159. We know that it is impossible to deter

mine rr exactly, but we shall see now that it is possible to 

approximate its value during the process of a very simple 

and unusual experiment. 

On a large piece of paper or drawin~ board construct 

a series of parallel lines such that the distance between 

them is twice the length of an ordinary needle. Place the 

paper.or drawing board on a horizontal surface and drop the 

needle onto the paper. Continue dropping the needle a 

lar~e number of times, a hundred or a thousand times; the 

greater the number of times the greater the probability 

will be that a closer result will be obtained. Eaoh time 

the needle is dropped note whether it crosses some line, 

considering it a crossing when even the end of the needle 

touches a line. Now, if the total number of times the 

needle was dropped is divided by the number of times it 
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crossed a line, the result will be the approximate value of 

IT. That is, if B is the number of times the needle is 

dropped and A is the number of times the needle touches or 

crosses a line, then ~ ~ IT. 

Explanation. Suppose that the number of crossin~s is 

A, and assume that any part of the needle has the same 

chance of fallin~ across any of the lines. If the needle is 

two inches long, then, since every part of the needle has 

the same chance of falling across a line, the number of 

crossings for one inch of the needle would be just one-half 

Athat for two inches, or 2'. If the needle is divided into n 

equal parts, the number of crossings for each part is ~. 

The number of crossings for two such parts is 2A, and for n 
ten such parts lOA. From the preceeding discussion we 

n 
arrive at the conclusion that the number of the crossings 

is proportional to the length of the needle. Thus, if the 

len~th of the needle is r, then A = Kr where K is a 

constant. 

Now suppose we have a needle that is bent into a 

circle and the radius of the circle is equal in length to 

the original needle. When such a circle is dropped onto the 

paper (the distance between the lines is thus equal to the 

diameter of the circle), it will either cross one line 

twice or will touch two lines. Let us suppose that the 
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number of times the circular needle is dropped is B, then 

the number of crossings is 2B, because every time this cir

cular needle is dropped it must either come in contact with 

one line twice or touch two lines. The length of the cir

cular needle (if its radius is r, which is the length of the 

original needle) is 2nr. Thus the circular needle is 2rr 

times the length of the original straight needle. We also 

have established that the number of crossings is propor

tional to the length of the needle. Thus, the number of 

possible crossings of the circular needle is 2rr times the 

number of possible crossings of the original needle. 

In other ,,,ords, 

2B = A·2TT 

and from thls 

TT ~ Xapproximately. 

That is 

• Number of times the needle was dropped 
n - Mumber of times the needle crossed a line 

In terms of probability, or the chanoe that the 

needle will cross a line it may be stated that 

A _ Number of times the needle crossed a line,
B- Number of times the needle was dropped 

which is the probability of the needle crossing a line. 

Since TT ; ~, then ~ =~, and the stated probability is 

given by ~ =0.31831. 
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In other words the chance of the needle crossing a line is a 

little less than one time out of three and a little better 

than three times out of ten. 

Summary of the explanation. 

Let A = the number of crossings of the straight needle a 

ength r. 

B = the number of times either needle is dropped 

(circular or straight). 

C = the length of the circular needle of radius r. 

1. A = Kr or r = .f::.
K 

2. 2B = the number of times the circular needle crosses. 

3.	 :.2B = KC, and since C = 2TTr 

2B = K(2TTr) 

4. .~2B ; K'2TT.~ by substitution. 

5. and B ~ 1iA 

6. TT :... 12 
- A' 

Note. In step 4 above the approximation symbol was 

introduced because of the experimental relation between B 

and A. Also in step 4, K is assumed to be the same 

proportionality constant for both the straight and the 

circular needle. 

! further consideration. The needle need not be 

straight; suppose that it is bent as shown in Figure 6.2. 

Suppose that Be contains m parts of the needle (after it is 
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BUFFON'S NEEDLE PROBLEM
 

c 

FIGURE 6.2 

A BENT NEEDLE 
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divided into n equal parts). Then the remaining portion of 

the needle (cn) will contain (n - m)parts. Their respec

tive number of crossings will be rnA d (n - m)A 
n an n and 

the total sum of the crossings is still equal to A. However 

it should be noted that a bent needle may fall so that it 

will cross the same line several times. If this happens, 

all the crossings must be counted. l 

6.3 Three card problem. Here is a famous problem in 

probability that is said to have trapped even skilled mathe

maticians into error from time to time. Yet it is easily 

stated, and appears innocent enough. 

Three cards are identical in appearance except for 

their coloring, which is as follows: one card is red on 

both sides, one is white on both sides, and one is red on 

one side and white on the other. I shuffle them in a closed 

bag, and then reach in and draw one out and lay it on the 

table, without looking at or letting you see the side that 

is down. Suppose the side that 1s up is red. I then say, 

"Obviously this is not the white--white card. Therefore it 

is either the red--white or the red--red. I!ll bet you 

even money that it is the red--red." If you take this bet 

and we repeat the game often enough, you will go home a 

lAaron Bakst, Mathematics--~Magic and Mastery
 
(New York: D. Van Nostrand Company, Inc., 1941), pp. 350-52.
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lot poorer than when you came. The chances that it is the 

red--red are not even, but two to one in my ravor. 

This problem was stated and the solution given in an 

article in the October 1950 Scientific American by Warren 

Weaver, the director of the natural sciences divlsio~ of the 

Rockefeller Foundation. A spirited exchange of letters 

between Dr. Weaver and a professional gambler who challenged 

the correctness of the solution appeared in the December 

1950 correspondence column of the same magazine. 2 

Solution. Suppose a card is drawn from the bag and 

turned face up on the table. If red is the color turned up 

this means that the white--white card is still in the bag 

and the card on the table must be either red--red or red-

white. At this point the uninitiated will believe that 

there is an eaual chance of the card being red--red or red-

white. However, of the two cards in question, three sides 

are red and only one side 1s white. This means there are 

two ways red could be up such that the down side of the card 

would be red, while there is only one way that red could be 

up such that the down side of the card would be white. 

Hence the odds are two to one in favor of the red--red card. 

Of course if white turns up on the draw of the card the odds 

would be two to one in favor of white--white by similar 

20. Stanley Ogilvy, Through ~ Mathescope (New York: 
Oxford University Press, 1956), Pp. 32-330 
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reasoning. Hence by Qalling red--red or white--white 

depending on the up color of the drawn card it is obvious 

that two of the three cards in the bag are winners while 

only one is a loser. 

6.4 ~ diagrams. Problems are many and varied 

which deal with the processes of making an exhaustive search 

for all the possible outcomes in a situation where more than 

one outcome exists. In pure mathematics such problems are 

often found in situations involved with mathematical proba

bility, permutations, and combinations. Much of the 

language of this subject is necessarily beyond the level of 

presentation intended here; therefore this work will be 

treated principally by example with the use of technical 

terms avoided as much as possible. 

The term logical possibilities shall be used to mean 

the several outcomes or possible results that may be deter

mined from a given physical situation. A very useful tool 

for analyzing logical possibilities is the drawing of a 

"tree" diagram. This deVice will be illustrated by several 

examples. 

Problem 1. Consider the following problem which is 

of a type often studied in probability theory. "There are 

two urns; the first contains two black beads and one white 

bead, while the second contains one blaok bead and two 
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white beads. Select an urn at random and draw two beads in 

succession from it. Now there is certainly more than one 

way in which this operation could be performed and we are 

interested in how many different ways it could be done " o 

Solution. Draw a "tree ll diagram as shown in Figure 

6.3. Start at a single point and draw two "branches" lead

ing to each of the first two logical possibilities, that 

the choice of either the first urn or the second urn. From 

the first urn three branches are drawn to represent the log

ical possibilities of selecting anyone of the three beads 

in it. The two black beads are made distinguishable by 

identifying one as BI and the other as B2. From each of 

these branches, Ell B2 and W, draw two branches to represent 

the remaining possibilities after the first bead is selected. 

The diagram now represents all the logical possibilities or 

different ways in which two beads may be drawn in succession 

if the first urn is chosen. The branches from the second 

urn are drawn in a similar manner with the two white beads 

being distinguished by WI and W2

The student should note that there are twelve 

logical possibilities or possible outcomes, all different, 

and these are the only outcomes possible. He should trace 

each of the twelve paths from start to end in order to 

enforce this concept. 
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2 3 4 5 6 7 8 9 10 II 12
 

82 W 8, W 8 1 82 B W2 8 WI WI W2
 

B, 82 w WI Wz 8
 

u, Uz
 

START 

FIGURE 6.3
 

TREE OF LOGICAL POSSIBILITIES
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Questions. 

1. In how many ways may a black bead be drawn 

followed by a white bead? (Answer: Four ways. Paths 2, 4, 

11, and 12.) 

2. In how many ways may two black beads be drawn? 

(Answer: Two ways. Paths 1 and 3.) 

3. If by the chance or probability of a particular 

outcome occuring we mean the number of ways it can happen 

divided by the total number of all outcomes, what is the 

chance of two black beads being drawn in succession? 

2 1(Answer: The chance is ~ or o' That is, one chance out of 

six.) 

4. What is the probability of a black bead being 

selected followed by a white? (Answer: The probability is 

~ or 1. That is,one chance out of three. )
12 3 

5. What 1s the probability that the second bead 

drawn will be white? (Answer: The probability is ~ or ~. 

That is, one chance out of two.) 

6. What 1s the chance that the first bead chosen 

will be black? (Answer: Refer to the section of the tree 

that represents the logical possibilities on the first 

draw. The first bead can be chosen in six different ways 

while three of these ways result in the selection of a 

black bead. Therefore the chance of drawing a black bead 
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on the first draw is t or~. That is, one chance out of 

two. ) 

7. What is the probability that the first urn will 

be selected? (Answer: ~, or one chance out of two. ) 

8. If the first urn is selected, what is the chance 

that the second bead drawn will be black? (Answer: ± or 
6 

~; two out of three.) 

9. If the first urn is chosen what is the probabil

ity that two beads of different colors will be chosen? 

(Answer: ± or g; two out of three.)
6 3 

10. If the first urn is chosen, what is the proba

bility that the first bead chosen will be black and the 

second one white? (Answer: t or~; one out of three.) 

Problem g. This problem is similar to Problem 1 

except that one urn has two black beads and two white beads 

in it, while the second urn contains one white bead and 

four black beads. Select an urn and draw two beads from 

it. Construct the tree diagram of logical possibilities. 

How many possibilities are there? (Answer: 32.) After 

the tree diagram is properly drawn the teacher may ask 

questions similar to those follOWing Problem 1. 

Problem l. As another example, construct the tree of 

logical possibilities for the outcomes of a World Series 

played between the Dodgers and the Yankees. In Figure 6.4 
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is shown half of the tree corresponding to the case when the 

Dodgers win the first game (the dotted line at the bottom 

leads to the other half of the tree when the Yankees win the 

first game). In the figure a liD" stands for a Dodger win 

and a "Y" for a Yankee win. A circled letter indicates that 

the series has ended at that stage with the circled letter 

indicating the winner of the series. There are 35 possible 

outcomes (corresponding to the circled letters) in the half-

tree shown, so that the World Series can end in 70 different 

ways. This example is different from the previous one in 

that the paths of the tree end at different levels corre

sponding to the fact that the World Series ends whenever one 

of the teams has won four games. 3 

Problem i. Construct the other half of the tree 

corresponding to the fact that the Yankees win the first 

game. 

Questions. 

1. In 1955 the Dodgers lost the first two games of 

the World Series but won the series in the end. In how many 

ways can the series go so that the winning team loses the 

first two games? (Answer: 10.)' 

3John G. Kemeny, J. Laurie Snell, and Gerald L. 
Thompson, Introduction to Finite Mathematics (Englewood 
Cliffs, N. J.: Prentice-Hall, Inc., 1957), pp. 25-30. 
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2.	 What is the chance that a team will win the 

10series after losing the first two games? (Answer: or 1
70 7 

one out of seven.) 

3. In how many ways can the World Series be played 

(see Figure 6.4) if the Dodgers win the first game and 

(a) No team wins two games in a row. (Answer: 1.) 

(b) The Dodgers win at least the odd-numbered games. 

(Answer: 5.) 

(c) The winning team wins four games in a row. 

(Answer: 4.) 

(d) The losing team wins four games. (Answer: 0.) 

4. What is the probability of each occurrence 

happening in the preceeding question? 

(a) -! or lout of 70. 
70 

(b) or -1,. lout of 14. o 14' 
( c ) 4 or ...1." 2 out of 35.70 3~'
 

0
(d) -" or no chance at all. 
70' 

Problem 2. If a family is to have four children in 

how many ways may the births occur by sex classification 

(Answer: 16.) Draw a tree to show all the possibilities. 

Questions. 

10 In how many ways may the family consist of 

exactly two boys and two girls? (Answer: 6.) 
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2. In how many ways may the family consist of at 

least two boys ( Answer: 11.) 

3. What i8 the probability that the family will 

consist of exactly two boys and two girls? (Answer: l~ or 

~; three out of eight.) 

4. What is the probability that the family wil 

contain no boys? (Answer: -l or one out of sixteen.)
16 



CHAPTER VII 

FACTS FALLACIES AND DIVERSIONS 

7.1 Introduction. The remainder of this thesis is 

devoted to problem situations of a varied nature, selected 

with the primary intent of arousing interest and encourag

ing mathematical thinking. There are problems which involve 

the use of one or more simple mathematical principles and 

concepts but deal with phenomena or experiences with which 

the student may not have had much previous contact. There 

are problems which may require a certain amount of exper,

mentation and assembling of pertinent data before convincing 

the student that a solution is possible. Some problems may 

lead to the need of acquiring new techniques and operations 

which have not been studied previously. Finally, there are 

some problems which lead to the conjecturing and eventual 

proof of specific statements. 

The teacher should find that some of the problems are 

appropriate only for Algebra students while others may be 

used in both the general mathematics and the Algebra class. 

The ordering of problems from first to last"in this chapter 

has been determined by the depth of mathematical knowledge 

required of the student to cope \nth the problem 

successfully. 
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The author suggests that problems such as these 

should be freely intermingled with the other more routine 

problems. The inclusion of such problems may make rote 

learning slower and somewhat less efficient than drill pro

cedures, but may also produce less mechanical behavior and 

more productive thinking. It is hoped that students will 

find some interest and challenge in facing and coping with 

new and changing problem situations. 

A reference to the bibliography will afford the 

teacher an opportunity to select and refer to numerous books 

which offer a wealth of problems similar to the ones 

presented here, as well as many types not included here. 

7.2 ~~ water problem. Let us suppose that we 

have in one glass a certain quantity of water and in another 

glass an equal quantity of wine. We take a teaspoonful of 

wine from the second glass, put it in the glass of water, 

and stir. We then take a teaspoonful of the mixture and put 

it back in the wine glass. Is the quantity of water now in 

the first glass greater or less than the quantity of wine 

now in the second glass? 

A rousing good argument can be started with this 

one--but only because nearly everyone tries to do it the 

hard way. It is an elementary illustration of something 
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that often happens in more serious mathematics: the right 

attack "breaks'! the problem in a minimum t~me. 

Explanation. Suppose for simplicity that we start 

ith 4 teaspoonsrul each of water and wine. If we put one 

teaspoonful of wine in the water, the resulting five tea

spoonsful of mixture is ; wine and ~ water. When we 

transfer one teaspoon of the mixture to the glass of wine, 

we are returning ~ of a teaspoonful of wine--thu8 leaving ~ 

of a teaspoon of wine in the Via ter--and are adding ~ of a 

teaspoon of water to the wine. Thus there are equal 

qUantities--~ of a teaspoonful--of wine in water and water 

in wine. Incidentally, it makes no difference whether or 

not the mixture is stirred! Finally, the operation with 

the spoon may be repeated as many times as desired--the 

lanswer to the original question will be the same. 

7.3 A salary problem. A large business firm was 

once planning to open a new branch in a certain city, and 

advertised positions for three clerks. Out of a number of 

applicants the personnel manager selected three promising 

young men and addressed them in the followi~ way: "Your 

salaries are to begin at the rate of $3000 per year, to be 

paid every half-year. If your work is satisfactory, and we 

lEugene P. Northrop, Riddles in Mathematics (New 
York: D. Van Nostrand Company, Inc.~1944), pp. 14-16. 
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keep you, your salaries will be raised. Which would you 

prefer, a raise of ~300 per year or a raise of ~100 every 

half-year? II 

One of the three applicants, after a moment's 

reflection took the second of the two alternatives and was 

promptly put in charge of the other two. His alertness of 

mind had resulted in not only a higher position than his 

companions, but in a higher annual income as well. 

The two possibilities may be treated in the following 

How much more than his companions woUld the bright 

yOill1g man have earned at the end of ten years?2 

7.4 Ring and circle problem. n Figure 7.1 one 

",{ould not immediately suspect that the two shaded portions 

of the figure have equal areas. 

Assume that the radius of the inner circle is of unit 

length 1 and that each successive concentric circle is 

2Eugene P. Northrop, Riddles in Mathematics (New 
York: D. Van Nostrand Company, Inc.;-1944), PP. 10-11. 
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increased in radius by unit length 1. Can you prove that 

the two shaded portions are equal in area? 

Proof. If the radius of the largest circle is taken 

as 5, then the inner radius of the shaded ring is 4, and the 

radius of the shaded circle is 3. Hence the area of the 

shaded circle is 

nr2 = n·32 or 9rr square units. 

The area of the shaded ring is 

IT·52 - rr.42 = 25rr - 16rr = 9n square units. 

This proof, as presented here, is very direct and 

brief. A student, especially in general mathematics may 

well use the fraction 2~ or the decimal 3014 as an 

approximation of rr and become involved in considerable more 

arithmetic. 3 

7.5 Rope around 1h! equator! Suppose there were a 

rope fitting tightly around the equator of the earth. Also 

imagine that the surface of the earth at the equator is 

perfectly uniform, that is no mountains or valleys, bumps 

or irregularities to interfere with our thinking that the 

equator is a perfect circle. Now suppose t~at this rope is 

cut at one place and we splice in an additional piece 10 

( New 
York: 
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feet longer than the original one. Finally we have a means 

of fixing this rope 60 that (because of its extra length) it 

will be the same distance from the equator all the way 

around the earth. 

Now how large a space would there be between the rope 

and the earth? 

Would it be large enough for 

(a) a man, 6 feet tall, to walk through, 

(b) an average dog to walk through, 

(c) a piece of tissue paper to just slip through? 

Remember the distance around the equator and therefore the 

length of the original rope is approximately 25,000 miles. 

Explanation. (1) C = 2rrr for any circle no matter 

how large or how small. 

If we increase the radius of a circle with radius r 

by an amount x (see Figure 7.2) and make a new, larger, 

circle whose radius is now (r + x) the new circumference 

would now be C' = 2rr(r + x). This may now be written 

(2) ot = 2rrr + 2rrx 

using the distributive law for multiplication over additlon. 

If we now compare this with the value of C given above, 

namely 

(1) C = 2rrr 

we see that ct is more than 2rrr by an amount 2rrx. In other 
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words subtracting (1) from (2) 

(2 ) Or = 2rrr + 2rrx 

(1 ) C = 2rrr 

(3 ) cr-C = 2rrx. 

Since in this problem (Cr - C) 1s 10 feet then 

(4) 10 = 2rrx 

and 

So by inserting 

x = ~ or about 1.6 feet. 
IT 

an extra 10 feet of rope into our 

25,000 miles of rope we have increased the radius by over 

l~ feet and our average dog should have little trouble in 

walking under the rope. 

Problem. If a 6 foot man could walk around the earth 

at the equator, how much farther than his feet would his 

head travel?4 

7.6 Cigarette paper problem. Paper to be fed to 

cigarette machines comes in long bands wound in a tight roll 

around a wooden spool. The diameter of such a paper roll is 

16 inches, that of the spool itself, 4 inches. If the paper 

1s --1 of an inch thick and we assume there is no measurable 
5 

space between the layers, how long is the paner?5 

4Lillian R. Lieber, The Education of T. C. Mits (New 
York: W. W. Norton and Company, Inc., 1944)~ pp. 32-39 

Joseph De Grazia, Math is Fun (New York: Emerson 
Books, Inc., 1954), p. 94.---- ----- 
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Solution. Imagine cutting through the paper 

lengthwise to the spool such that the mass of paper could be 

removed from the spool and laid out on a flat surface as in 

Figure 7.3. Now the cross section of this mass of paper is 

an isosceles trapezoid with one base having a length equal 

to the circumference of the spool and the other base equal 

in length to the circumference of the roll of paper. Thus 

one base is 4n inches and the other 16n inches in length. 

The height of the trapezoid is 

~(16 - 4) or 6 inches. 

The average length of a single sheet of paper in this mass 

is the length of the med~an or 

1(16n + 4n) or 10n inches. 
2 

There are 

6(250) or 1500 sheets of paper, 

hence, 1500(lOrr) is the total length of paper contained on 

the spool. 

1500(10rr) = 15000n inches 

or 47,100 inches approximately. 

This is approximately 3925 feet! 

Problems. 

1. If it requires l~ inches of paper to manufacture 

one cigarette, how many ci~arettes could be made from one 

spool of paper? (Answer: 33,680.) 
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2. How many packs, if there are 20 cigarettes in a 

uack? (Answer: 1684.) 

7.7 ~ circle problem. Construct a circle 0 having a 

one-inch radius and construct two diameters AB and CD per

pendicular to each other. Now select any point E on the 

circle and construct EF parallel to CD meeting AB at F and 

EG..L CD meeting CD at G. 

How long is line GF? (See Figure 7.4.) 

Solution. Many students have worked a considerable 

length of time on this problem without success because they 

became fixed in their attack on the problem. The focus of 

attention is the ri~~t trianRle. The pythagorean theorem is 

a powerful tool but when that fails the able problem solver 

is one who is able to shift his attention. 

The teacher is in a good position to help the student 

realize the dangers of rigidity and help him to broaden his 

approach to the problem. A statement such as the following 

could be helpful; "When you are having trouble \nth a prob

lem look at it in a different manner than you have been 

doing. You have been thiru{ing about triangle GOF or 

triangle GEF, have you tried thinking about the 

quadrilateral EGOF? Try it. Get in the habit of asking 
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yourself questions about the problem as you work on it. II 

Of course GF is one inch long since GF =OE.6 

7.8 The grindstone problem. A couple of shopworn 

carpenters who had an axe to grind decided to go halvers and 

buy a very large grindstone. They were able to get one at a 

very low price, so they each invested an equal amount in it. 

The stone measured 5 feet and 6 inches in diameter but 

because of the spindle the carpenters decided that the stone 

would be quite useless when its diameter was reduced to 18 

inches by constant wear. Having nothing better to do they 

further decided that one would uee the stone until his share 

of it was worn away at which time the second carpenter would 

inherit his share of the stone. Now what the carpenters 

wanted to know was how much of the stone the first one could 

grind away from it and still leave an equal amount for the 

second one to use. 7 

Solution. In Figure 7.5 ring A represents the 

portion of the stone to be used by the first carpenter, ring 

B by the second, and circle C the remainder of the stone not 

6Kenneth B. Henderson and Robert E. Pingry, "Problem
Solving in Mathematics," The Learning of Mathematics--.ll.§. 
Theory and Practice, Twenty-first Yearbook of the National 
Council of Teachers of Mathematics, (Washington, D. C.: 
NCTM, 1953), pp. 256-57. 

7Frederlck A. Collins, Fun ~ Figures (New York: 
D. Appleton and Company, 1928), p. 22. 
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usable because of the spindle. For the carpenters to share 

equally in the use of the stone the area of ring A must 

equal the area of ring B. The area of ring A 1s given by 

2	 2n(33)2 - nx . The	 area of ring B is nx - n(g)2. Therefore 

2 2rrx - n(9)2 = n(33)2 - nx

2 2or x - 81 = 1089 - x

2x2 = 1170 

2x = 585 

x = 24.186" 

Since the radius of the original stone is 33 inches the 

first carpenter may wear away 33 inches minus 24.186 inches 

or 8.814 inches. Thus the first carpenter may reduce the 

radius by 8.8 inches resulting in a reduction of diameter by 

17.6 inches or 1 foot, 5.6 inches. 

7.9 ~ "Circular" Paradox. Problem: Consider the 

two equal circular disks, A and B, of Figure 7.6. If B is 

kept fixed and A is rolled around B without slipping, how 

many revolutions will A have made about its own center when 

t is back in its original position? 

Explanation. The answer, if obtaine~ without the aid 

of actual disks, is almost invariably inoorrect. It is gen

erally argued that since the circumferences are equal, and 

since the circumference of A is laid out once along that of 

B, A must make 1 revolution about its own center. But i 
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the experiment is tried with, say, two coins of the same 

size, it will be found that A makes 2 revolutions. This 

fact can be shown diagrammatically as follows: 

In Figure 7.7, let P be the extreme left-hand point 

of A when A is in its original position. A moment's thought 

11 make it clear that when A has completed half its cir

cuit about B, the arc of the shaded portion of A will have 

been laid out along that of the shaded portion of B, and P 

will again be the extreme left-hand point of A. Hence A 

must have made 1 revolution about its own center. The same 

argument holds for the arcs of the unshaded portions of A 

and B when A has completed the second half of its circuit 

about B. 8 

7.10 Curves £! constant breadth. In moving heavy 

objects by means of a slab and rollers, would it be possible 

to use rollers whose cross sections are not circles, but 

some other kind of curve? In other words, are circles the 

only curves of constant breadth? The intuitive answer is 

yes; the correct answer is no. 

By a curve of constant breadth we sh~ll mean exactly 

what the slab-and-roller idea implies. That is to say, if 

such a curve is placed between and 1n contact with two fixed 

8Northrop, £E. cit., pp. 55-56. 
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parallel lines, then it will remain in contact with the two 

fixed lines regardless of how it is turned. 

The simplest curve of constant breadth--aside from 

the circle--is shown in Figure 7.8(a). To construct it, 

first construct the eqUilateral triangle ABC and denote the 

length of each of its sides by r. With A as center, and 

with radius r, draw the arc BC. With B as center, and with 

radius r, draw the arc CA. Finally, with C as center, and 

with radius r, draw the arc AB. This curve can be made 

smooth by prolonging the sides of the triangle any distance, 

say S, as in Figure 7.8(b). Here the arcs DE, FG, and HI, 

with centers at A, B, and 0 respectively, are all drawn with 

radius S; and the arcs EF, GH, and ID, with centers at 0, A, 

and B respectively, are all drawn with radius r + So 

In Figure 7.9, the second of these curves is shown 

placed between two fixed parallel linea. It is eVident 

from the figure that the curve will remain in contact with 

the two lines regardless of how it is turned, for the dis

tance PQ between the highest and lowest points of the curve 

is always the sum of the two constant radii, Sand r + S, 

and 80 is always the same. 

Other curves of constant breadth may be constructed 

using regular polygons as base figures. The student may 

well be inclined toward experimenting with such base figures 

as the pentagon and heptagon. 
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It is well to note that although any roller whose 

cross section is a curve of constant breadth can be used in 

place of a circular roller for the moving of objects on a 

slab, a wheel in the shape of either of the curves in Fi~re 

7.8 could never be used in place of a circular cart wheel 

or a circular gear. For these curves have no real center-

no point, that is, which is equidistant from all points on 

the curve. The circle is the only curve which has this 

particular property. 

Curves of constant breadth need not be regular in 

,shape, as were the two just examined. The irregular curve 

of Figure 7.10 is constructed as follows: With A as center, 

and with any radius AB, swing arc BC. With C as center, and 

with the same radius (the radius remains constant through

out), swing AD. With D as center, swing CEo With E as 

center, swing DF. With F as center, swing EG. With B as 

center, swing AG. (G is the point of intersection of the 

last two arcs.) Finally, with G as center, swinR FE. This 

curve has corner points which can be rounded off by 

extending the lines AB, AC, and the like, as was done in the 

transition from diagrams (a) to (b) in Figure 7.8. 

There should be wooden models similar to the
 

geometric shapes in Figure 7.8 and thick enough to roll
 

along on edge. Pupils should be asked whether any other
 



98 

F 

BA 

E 

FIGURE 7.10 

AN IRREGULAR CURVE OF 

CONSTANT BREADTH 



99 

shape except a circle will roll along a line 80 that the 

highest point is always the same distance from the line. 

Their mental imagery usually says no. Even when the shapes 

are shown to them they doubt it. Actual experiment is 

usually necessary to convince them. The theory by which 

these figures are constructed might be given to them, or 

they could be asked to work it out for themselves. 9 

7.11 Slab and roller problem. Difficulties are 

generally encountered in the problem of a slab supported by 

rollers--a deVice frequently used in moving safes, houses, 

and other heavy objects. 

If the circumference of each roller in Figure 7.11 is 

1 foot, how far forward will the slab have moved when the 

rollers have made 1 revolution? 

Explanation. The usual argument is to the effect 

that the distance the slab moves must be equal to the 

circumference of the rollers, or I foot. The correct answer 

is not I foot, but 2 feet. 

Suppose we resolve the motion into two parts. First 

think of the rollers lifted off the ground and supported at 

their centers. Then if the centers remain stationary, 1 

revolution of the rollers will move the slab fOM~ard I foot. 

9Northrop, 2£. £11., PP· 57-59. 
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Next think of the rollers on the ground and without the 

lab. Then 1 revolution will carry the centers of the 

rollers forward 1 foot. If we now combine these two 

motions, it should be evident that 1 revolution of the 

10rollers will carry the slab forward a distance of 2 feet. 

7.12 ! simple addition problem. An interesting 

property of a finite arithmetic progression is the fact that 

we can obtain the sum of its numbers without recourse to 

addition of all of them. Consider the following indicated 

sum where the terms establish a sequence known as an arith

'metic progression. Suppose we wish to add the first fifteen 

numbers. 

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 +10 +11 +12 +13 +14 +15 
12 +14 +12, +12 +11 +12 +....2. +-ll +....1 +....2 +~ +....i +.-2 +~ +-1 
16 +16 +16 +16 +16 +16 +16 +16 +16 +16 +16 +16 +16 +16 +16 

Below the sequence of the first fifteen numbers write the 

same sequence, term by term, but in reversed order, then add 

the terms vertically. Note that in each case the sum is 16. 

Now there are fifteen such sums, hence the sum of the two 

sequences is 15·16 = 240. But we added two sequences of the 

first fifteen numbers. Therefore the sum of. one such 

sequence is one-half of 240, or 120. 

lONorthrop, Q2. cit., p. 47. 
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This procedure may be applied to the addition of any 

arithmetic progression. Note that the addition of the first 

fifteen numbers was reduced to adding the first and the last 

term, and the sum thus obtained was multiplied by the number 

of terms in the progression. Finally the product was 

divided by 2. 

Problem 1. Find the sum of all the whole numbers 

from 40 to 100 inclusive by the above method. 

Problem g. Find the sum of the even numbers from 2 

to 100 inclusive. ll 

7.13 An experimental paradox. A well known paradox 

nvolves the dissection and rearrangement of a figure. It 

is a good example of the pitfalls of "experimental geom

etry," a topic generally discussed in the early stages of 

any course in plane geometry. However with a little prep

aration the presentation of this experiment to a general 

mathematics or algebra class would certainly whet the 

curiosity of some. 

The student 1s shown how to deduce experimentally 

the fact that the sum of the angles of any ~riangle is a 

straight angle, or 180°. To do so, he makes a triangle of 

paper or cardboard, cuts off the three angles, and 

llAaron Bakst, Mathematics--Its Magic and Mastery 
(New York: D. Van Nostrand Company. Inc., 1941), p. 234. 
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rearranges them as shown in Figure 7.12. Let us see to what 

sort of contradiction this method of proof, not backed up by 

sound logical argument, can lead. 

Suppose we take a square piece of paper and divide it 

into 64 small squares, as in a chessboard, or use rectangu

lar coordinate graph paper and outline a square 8 units by 

8 units. We then cut it into two triangles and two 

trapezoids in the manner indicated in Figure 7.l3(a) and 

rearrange the parts as in Figure 7.13(b). 

Now the resulting rectangle has sides which are 

respectively 5 units and 13 units long, so that its area is 

5·13 = 65 square units, whereas the area of the original 

fi~re was 8·8 =64 square units. Where did that additional 

square unit come from? 

Explanation. The truth is that the edges of the 

parts 1, 2, 3, and 4 do not actually coincide along the 

diagonal P~, but form a parallelogram PSQR which is shown 

n exaggerated proportions in Figure 7.14. The area of this 

parallelogram is the elusive square unit. The angle SPR is 

so small that the parallelogram is never noticed unless the 

cutting and rearrangement is done with great care. Probably 

the simplest explanation would be to show that the slope of 

FS is ~ and the slope of SQ iS~. Certainly ~ and t~ are 

not the same. The same relation can of course be shown 
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for QR and RP. This problem should illustrate very well 

that because physical materials have been drawn, cut, and 

rearranged one should not feel that this is conVincing 

proof. 12 

7.14 The persistent~. When any two-digit number is 

written in reverse order, the new number is also a two-digit 

number. We shall consider here that the reverse of a two

digit number ending in zero is also a two-digit number. For 

example, the reverse of 20, which is 02 shall be considered 

a two-digit number. If the digits in a two-digit number are 

different, the difference between the number and its 

"reverse" possesses an unusual property; it is always 

divisible by 9. For example, the reverse of 74 is 47, and 

74 - 47 = 27. The reverse of 83 is 38, and 83 - 38 = 45. 

The reverse of 20 is 02, and 20 - 02 =18. All of these 

differences, 27, 45, and 18, can be divided by 9 with no 

remainder. Would it be possible to show that this remark

able property is always true without trying all two-digit 

numbers. 

Proof. This fact may be verified by writing a 

general expression for a two-digit number such as lOa + b 

where a ~ b. The reverse of this number is then written as 

l2Northrop, QQ. cit., pp. 49-50. 
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lOb + a. The difference of these two numbers is (lOa + b) 

(lOb + a) = lOa + b - lOb - a and is equal to 

9a - 9b = 9(a - b). 

Since 9 is a factor, this result shows that the difference 

between a two-digit number and its reverse is always 

divisible with no remainder by 9. 

Question. Is it possible that the difference be~ween 

a two-digit number and its reverse be greater than 81. 

Answer. No! Since each difference must be divisible 

by 9 the quotient so obtained would have to be (a - b). But 

(a - b) must be equal to or less than 9 since 9 is the 

largest possible value given a = 9 and b = O. Hence the 

maXimum value of the difference 9(a - b) is 9·9 or 81. The 

only possible differences may be 

1·9 = 9 4·9 = 36 7·9 = 63 

2·9 = IB 5·9 = 45 8·9 =72 

3·9 = 27 6°9 =54 9·9 = 81. 

The sum of any such difference and its Ilreverse" is 

always equal to 99. Thus, 27 + 72 =99, 45 + 54 = 99, and 

72 + 27 =99. Can you prove this statement to be true 

Proof. Let lOa + b be the original two digit number, 

where a 1s greater than b, and subtract from it lOb + a. 

Thus 
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lOa + b 

Subtract lOb + a 

Difference (10 a - 10 - lOb) + (10 + b - a) 

or 10(a - b - 1) + (10 + b - a) 

reverse 1~~10......... + b - a) + (a - b - 1) 

add lOa - lOb - 10 + 100 + lOb - lOa + 10 + b - a + a - b - 1 

which when simplified is 99. 

Problem. When any three-digit number is written in 

reverse order, the new number is also a three-digit number.
 

If at least two of the digits are different, the difference
 

. between the number and its "reverse" is always evenly divis

ible by 99.	 For example, the reverse of 635 is 536, and 

635 - 536 = 99. The reverse of 841 is 148 and 841 - 148 = 

693. The reverse of 512 is 215, and 512 - 215 = 297. Each
 

of these differences is divisible by 99 with no remainder.
 

Proof. This fact may be verified if we write a
 

general expression for a three-digit number as 100a + lOb +
 

c. (Assume a F c and for convenience a greater than c. )
 

The reverse of this number is then written as 100c + lOb +
 

a.	 The difference of these two numbers is
 

(lOOa + lOb + c) - (lOOc + lOb + a)
 

= 100a + lOb + c - lOOc - lOb - a
 

and	 is equal to
 

99a - 99c = 99(a - c).
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This result indicates that the difference between any 

three-digit number and its reverse is always divisible by 99 

with no remainder. 

Question 1. What other numbers would this difference 

be evenly divisible by other than 99. (Answer: 3, 9, 11, 

33. ) 

,uestion What is the largest number value for 

99(a	 - c). (Answer: 891.) 

\Vhy: a - c is greatest in value when a = 9 and c = 
O. Therefore 99(9 - 0) = 99·9 or 891. 

The difference between a three-digit number and its 

reverse cannot ever be greater than 891. In other words, 

the differences may be 

1· 99 = 099 4·99 = 396 7·99 = 693 

2·99 = 198 5·99 = 495 8·99 = 792 

3·99 = 297 6·99 = 594 9·99 = 891. 

The surn of any such difference and its lIreversell is always 

equal to 1,089. Thus, 297 + 792 = 1089, 495 + 594 = 1089. 

Notice that 297 + 792 = 3·99 + 8·99 = 11·99 

and 495 + 594 = 5·99 + 6·99 =11·99. In other words, 

the sum of a difference and its "reverse" is al\'lays equal to 

11·99 = 1,089. 

Can this last statement be proven algebraically? 

The foregoing problems might well be presented to a 

class originally as a trick. By haVing several students 
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select a two-digit or three-digit number and perform the 

several operations on them and then announce to their 

surprise that the result is 99 or 1089 as the case might 

be. 13 

7.15 Why 1089. Here is an interesting exercise. 

Think of any number comprised of three digits; in order to 

avoid negatives it is preferable to make the hundreds digit 

larger than the ones digit. Thus, selecting three numbers 

at random, such as 584, 753 and 872, we carry out succes

sively the following operationa--reverse and sUbtract, again 

reverse and add. 

584 753 872
 

Reverse 48S
 ....2.5.1 -Wi 
Remainder 
or Difference 099 396 594 

Reverse 92Q ~~g 4 

Sum 1089 1089 1089 

No matter what digits are selected the result is always the 

same. Indee t is not difficult to prove algebraically 

that such must be the case. 

roof. Let the three digits be a, b, and c, 

respectively; then, carryin~ out the above operations, 

13Aaron Bakst, Mathematical Puzzles and Pastimes (New 
York: D. Van Nostrand Company, Inc., 1954)~p. 171-172. 
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a b c 

Reverse c b a 

Difference a - c - 1 9 10 + c - a (Why? ) 

Reverse 

Sum 

that is 

10 + c 

9 

10 

- a 2 

(18) 

8 

a - c 

9 

9 

- 1 

Obviously this must be true whatever digits are assigned 

14 

to 

a, b, and c, provided only that a is not equal to c. Why? 

7.16 ! division fa~~acy. 

Let	 a :=b; a I: 0 

2Multiply both sides by a: a = ab 

Subtract b2 from both sides: a2 _ b2 = ab _ b2 

Factor: (a + b) (a - b) = b( a - b) 

Divide both sides by (a - b): a + b = b 

But a = b; therefore 2b = b 

Divide both sides by b: 2 = 1 

Explanation. Of course the trouble is between the 

fourth and fifth lines. Since a = b, the quantity (a - b) 

must equal zero. The fourth line is correct, the fifth line 

is not. We have broken what R. P. Agnewl5 calls the funda

mental commandment of mathematics: Thou Shalt Not Divide By 

14J • Newton Friend, Numbers: Fun and Facts (New 
York: Charles Scribner's Sons, 1954)~p~5-66. 

15R. P. Agnew, Differential Eguations (New York: 
cGraw-Hill, 1942), p. 35. 
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Zero. Division by zero is against the rules of the game, 

and ",henever you try it you will get something meaningless 
16

like 2 = 1. 

7.17 A square root fallacy. 

(x	 + 1)2 = x2 + 2x + 1 

2(x + 1)2 - (2x + 1) = x
 

2
(x+1)2 - (2x+1) - x(2x+l) = x - x(2x + 1)
 

2
(x+l)2_(x+1)(2x+l) + t(2X+1)2 = x - x(2x+l) + !(2X+1)2 

[(x+l) - ~(2X+l)J2 = [x - ~(2X+l)J2
 

(x+l) - !(2x+l) = x - ~(2X+l)
 

x + 1 = x
 

1 = 0.17 

Explanation. The line with the square brackets says 

[~J2 = [_~J2. This is correct. However, taking the square 

1 1root of both sides leaves 2 = -2' which is most certainly 

not correct. You caru10t take the square root of both sides 

of an equation without first inspecting for the possibility 

1of sign trouble. 

160 . Stanley Ogi1vy, Through the Mathescope (New 
York: Oxford University Press, 1956~PP. 38-39. 

170 • Stanley Ogilvy, Through the Mathescope (New 
York: Oxford University Press, 1956~p. 39. 

18 
~., p. 139. 
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7.18 h law of mUltiplication. Wl~y does negative two 

times negative five give positive ten? ttempts at justify

ing this rule include illustrations such as the following. 

It costs the state $5 per day to feed, house, and clothe 

each prisoner at a penitentiary. Two convicts escape. 

Hence the prison counts -5 dollars, times -2 prisoners, and 

shows a profit of +10 dollars on its books for every day the 

fugitives are at large. 

Such an illustration proves nothing. The true state 

or affairs is not in the least mysterious. If a certain law 

of multiplication of positive numbers (the Distributive Law) 

is to hold for negative numbers, too, then the rest follows 

logically. 

(-2) (-5)	 = (-2) (-5) + (0) (+5) 

= (-2) (-5) + (-2 +2) (+5) 

- (-2) (-5) + (-2) (+5) + (+2) (+5) 

= (-2) (-5 + 5) + (+2) (+5) 

= (-2) (0) + (+2) (+5) 

= (+2) (+5) 

= +10 

k~y numbers or letters can be used in place of 2's 

and SIS, to show that 

(-a) (-b) = (+a) (+b).19 

19 .C. Stanley Ogilvy, Through the Mathescope (New 
York: Oxford University Press, 1956~p. 41. 
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7.19 Square roots £I successive approximation. 

Square roots of numbers are obtained either from tables or 

there are special methods for their extraction by 

calculation. 

The usual method of extraction as found in algebra 

textbooks is lengthy, little understood, (even by the 

teacher) and requires much numerical work. Now we may 

learn a method which is not cumbersome, yet yields 

satisfactory results. 

This method utilizes one important idea employed in 

mathematics: If we have a fraction (or a number very small 

in comparison with some other number), the square of the 

fraction is so small that it may be discarded in computa

tion. For example, suppose we have a decimal fraction 0.01 

which is part of a number, say 4.21. This number may be 

written as 4.2 + 0.01. Now if we square this number, we 

have 

4.212 = (4.2 + 0.01)2 =4.22 + 2(4.2) (0.01) + 0.012 

2 or 4.21 =17.64 + 0.084 + 0.0001. 

The square of 0.01, which is 0.0001, may be disregarded 

and discarded; if 4.21 is correct to three "significant 

digits, its square will also be correct to three 

significant digits Without the 0.0001, hence 0.0001 or 0.012 

is of no value to us. 
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With this in mind we may proceed with the extraction 

of square roots. Suppose we wish to calculate /14. (To 

check on our method obtain its value as given in tables of 

square roots and have that 114 = 3.742.) We know that Il4 

is greater than 3 since 32 = 9, and is less than 4 since 42 

= 16. Therefore let 

Il4 =3 + x 

where x is some fraction. Square both sides of the equation. 

We then have 

14 =32 + 2.3x + x2 

or 14 =9 + 6x + x2 • 

Now since x s a fraction, x2 is also a fraction, but much 

smaller than x. We therefore discard x2 and have 

14 == 9 + 6x. 

Solving this equation for x we have that 

14 - 9 == 6x, or 6x =5 &1d 

x =2.6 
From this we have that 

II4 =36 
which is only an approximate value. In decimals then 

ill ; 3.83··· 

Since we have one approximation to the value of Il~, 

we may use this as a basis and apply the same method once 

more. We may say then that 



117 

II4 = 3t + Y
 

where y may be either positive or negative. Again squaring 

both sides of the equation we have 

14 = (~)2 + 2(~)y + y2.
6 6 

Since y is a fraction and we discard its square and have the 

equation 

g,2. 2314 . 
36 + ? 

and from this, by solving for y, we have that 

y ; -2( 5 04-529) 
~ 36 

• -2=2 • 25. · 1 Th or y = 276' or y = - 275 or y = - 11. en 

/l4 ; 3t - 1~ ; 3.83 - 0.09 == 3.74. 

This is a second approximation, and we may proceed 

with another calculation to obtain a third approx~at1on. 

We write ill = 3.74 + z 

where z may be either positive or negative. Squaring both 

sides of the equation we have 

2 2
14 = 3.74 + 7.58z + z • 

We again discard z2 and have 

14 == 13.9876 + 7.58z 

and 7.58z == 0.0124. 

From this we obtain that 

z .; 0.0016 or, 

z == 0.002. 
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Then 

/l4 ; 3.74 + 0.002 

or Ii4 ; 3.742 

and this checks with the value of the square root as 

obtained from a table. 20 Thus, starting with the one sig

nificant digit, 3, four significant digits have been 

obtained since the number of correct digits is virtually 

21doubled at each stage of the approximation process. 

20Aaron Bakst, Mathematics--li! Magic and Mastery 
(New York: D. Van Nostrand Company, Inc., 1941), pp. 218-20. 

21Yudell L. Luke, IINumerlcal Analysis and High School 
Mathematics, II The Mathematics Teacher, November, 1957. 
pp. 507-12. --



CHAPTER VIII 

SUMMARY AND CONCLUSIO 

8.1 Summary. The content of this thesis was 

organized for the teacher of ninth grade mathematics with 

the purpose of supplementing text material in the area of 

both general mathematics and algebra. The criterion for the 

selection of materials was three-fold; (1) the problems and 

demonstrations should be clearly mathematical in principle 

and not merely a collection of puzzles, games, or situat10ns 

nvolving a play on words, (2) the nature of the problems 

should be that of the unusual or out of the ordinary so as 

to enhance the opportunity to create an atmosphere of curi

osity and interest, and (3) the work should be commensurate 

to the maturity and intellectual level of the ninth grade 

mathematics student. 

In Chapter I, section 1.7, suggestions have been 

presented to the teacher for the use of this material. 

Experience may indicate numerous variations of the methods 

suggested and flexibility in presentation may well be 

desirable and necessary in many teaching situations. 

Chapters II through V, on systems of numeration, are 

neluded in this work to demonstrate the basic structure of 

the decimal numeration system. Tne use of any or all of 
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these chapters would require considerable class time and 

would likely be most effective as an integrated unit of 

study. The basic concepts of the fundamental operations of 

arithmetic are, however, dominant in this work and the time 

required for a thorough treatment of this unit, whether in 

general mathematics or algebra, may well be justified. Th 

material presented in this unit is more comprehensive than 

that found in anyone reference used by the author. 

The problems in Chapters VI and VII should introduce 

to the student a variety of mathematical methods and prin

ciples and tend to stimulate both curiosity and interest in 

mathematics. This material is primarily a representative 

sample of problems judged by the author to satisfy the 

criterion established in the early part of this chapter. 

8.2 Conclusion. The teaoher of mathematics in the 

secondary school should be aware of the potential for stim

ulating intellectual curiosity and interest in mathematics 

through the use of supplemental material. The problem 

situations presented in this thesis need not be restricted 

to use at only the ninth grade level but may be used to a 

similar advantage at higher grade levels in the secondary 

school. 

The author suggests that secondary school libraries 

should contain at least several books in the area of 
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recreational mathematics and that mathematics teachers 

should encourage the use of these books. Several references 

listed in the bibliography, identified by an asterisk, were 

judged by the author as very acceptable and are recommended 

for the high school library. 

Finally, it is strongly recommended that mathematics 

teachers use to advantage The National Council of Teachers 

of Mathematics publication The Mathematics Teacher as a 

means of stimulating their own curiosity and interest and as 

a source of mathematics often applicable in the modern 

mathematics classroom. 

8.3 Suggestion for further stUdy. The material in 

this thesis has not as yet been used in the classroom by the 

author. A suggestion is made, therefore, that further stUdy 

could consist of accumulating data by experimental means in 

an attempt to evaluate the effectiveness of such material as 

a motivating factor in ninth grade mathematics. 
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