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CHAPTER I

THE PROBLEM

1.1 Introduction. The teacher of mathematics in a
secondary school need not search beyond the realm of his own
experience to recognlize the exlistence of a situatlion prob-
ably unique to American education. All children who have a
potential for some kind of learning will enter the mathemat-
ics classroom for a period of at least one year, The
mathematics teacher is therefore faced wlth undertaking to
provide adequate instruction and materials commensurate to
the wide range of intellectual potential of his students.
As a result the mathematics curriculum which has evolved in
most secondary schools consigts of elther a sequence of
courses beginning with algebra in the ninth grade or, as an
alternative, a more general course in mathematics, usually
terminal., In elther case all the concepts, principles, and
procedures of ninth grade mathematices carry over into the
work of later years and in fact form the very foundation of
that work., Thus, the ninth grade 1s a most critical grade
so far as mathematics 1s concerned. It is in the ninth
grade that the serlous study of mathematics begins for most
students and, unfortunately, it 1s with thls grade that it
ends for many of them., Here the student's interest is

elther kindled and nourished or allowed to die.



1.2 Statement of the problem. To create and

maintain interest is one of the most important tasks of the
teacher of secondary-school mathematics. It is also one of
the most difficult problems the teacher encounters. In
general the mathematics textbook is not organized so as to
initiate the recognized power of sheer intellectual curiosity
as a motive for the highest type of work in mathematics.,
Thus, the responsibility of creating and perpetuating inter-
est in mathematics llies squarely with the teacher, The
purpose of this thesls is to provide the ninth grade
teacher of mathematics with selected materials, situations,
and problems designed to stimulate the student's interest

in mathematics through a challenge to his curiosity.

1.3 Background of the problem. As a rule, students

become interested in things which are new or exciting, in
things for whilch they can perceive practical values for
themselves or applications to situations 1n which they are
already interested, and in things which involve puzzle
elements or elements of mystery. Other things belng equal,
the possesslion of a background of related information tends
to intensify interest in new work, but this is neither a
necessary condition nor a sufficient guarantee for the
awakening of interest. Novelty 1s sometimes more compelling

than familiarity. The elements of novelty, of usefulness,
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and of sheer intellectual curiosity are the primary stimulil

for the awakening of interest.l

Students tend to remain interested 1n those things
which they can do most successfully and which they under-
stand most completely., Inability to understand or to
perform satisfactorily usually creates a condition of list-
lessness, lnattentlion, and general loss of interest which
often ripens into open disaffection, This is not to say
that the work should be made easy and should never present
difficulties to the students. Nothing could cause interest
to lag more quickly than this, and nothing could be more
undesirable from the educational point of view, The work
must present a continual challenge, but 1t must not be
merely drudgery at tasks devoild of meaning or unreasonably
difficult. Conseguently, it is important that work in
mathematics be so organized and conducted as to emphasize
the values and the lnherent intellectual challenge of the
subject. Equally important, understanding and a reasonable
degree of competence should be ensured by keeping the sub-
Ject matter and the activities at a level of difficulty

appropriate to the intellectual maturity of the students.

lCharles H. Butler and F. Lynwood Wren, The Teaching
of Secondary Mathematics (second edition; New York:
McGraw-H111 Book Company, Inc., 1951), p. 126.
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Within these conditions are to be found the motives basic to
hard and effective work in mathematics,?

Genulne interest in mathematlcs probably depends
basically upon the problem-solving aspect of the subject.3
Mathematical situatlions and problems need not lack essential
curlosity provoking possibilities., Puzzle problems, often
popular with the layman, may well have a mathematlcal basis
somewhat obscured, perhaps, by a screen of mysticism which
only serves to stimulate curlosity. People are interested
in seeing how numbers behave, and one aspect of mathematics
1s the sclence of the behavior of numbers. Many problems in
mathematics are often criticized as being unreal or having
no genuine application to 1life situations, Experience in
teaching mathematics, however, will convince the most skep-
tical critic that problems do not need to represent "real'
gituations in order to be interesting to students., As a
matter of fact, it is quite possible that the presence of
the mystery element in problems 1s often a greater stimulus

to interest than those elements of so-called "reality"

2Tbid., pp. 126-27.

Maurice L. Hartung, "Motivation for Education in
Mathematics," The Learning of Mathematics, Its Theory and
Practice, Twenty-first Yearbook of the National Council
of Teachers of Mathematics (Washington, D, C.: National
Council of Teachers of Mathematics, 1953), p. 51.




5
which are usually incorporated in the plr'oblems."+ It should

also be saild that even the lowliest and most unimportant
looking problem may possibly lead to general and important
considerations., Some apparently simple problems have led to
mathematics of such difficulty that they are still unsolved,
In any case, much energy and ingenuity has been expended by
professional mathematiclans on what may be called
mathematical amusements or recreations,>

The student must be given the opportunity to develop
a taste for mathematics. The opportunity can be lost even 1if
the student has some natural talent for mathematics because
he, as everyone else, must dlscover his talents and tastes.
He may find that a mathematics problem i1s as much fun as a
crossword puzzle and that vigorous mental effort 1s not all
drudgery. Having tasted pleasure in mathematics he will
not forget 1t easily and there is a good chance that
mathematics will come to mean something to him.6

Mathematics, of course, must not be regarded as
nothing but a collection of tricks or frivolous and trivial

recreations and pastimes, Nevertheless, 1f mathematics is

“Butler and Wren, op. cit., p. 128.

SMoses Richardson, Fundamentals of Mathematics (rev.
ed.; New York: The MacMillan Company, 1958), p. 223.

6G. Polya, How to Solve It (Garden City, New York:
Doubleday and Company, Inc., 1957), p. VI,
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properly taught it presents the student with an abundance of
problems designed expressly to initiate curlosity and inter-
est. With each successful solution he feels a sense of
satisfaction and as & result he seeks more experiences of
the same kind. As the student grows in mathematical matu-
rity he obtains satisfaction also from realization of the
power of his methods. Thlis behavior 1s relevant to inter-
est, however, because 1t leads the student to seek more
experiences with mathematics, to dlscuss it favorably with
other people, and to value it for what it does for him
personally.7

Students can be helped to creativity and problem
solving ability only 1f thelr teachers repeatedly lead them
to and through problem solving situations and encourage
them to strike out mentally for themselves into areas new
to them.8

Thus, a teacher of mathematics has a great
opportunity. If he fills his alloted time with drilling
his students in routine operations he kills their interest,

hampers their intellectual development, and misuses his

opportunity. If he sets problems before them that challenge

7Hartung, loc. cit.

8The Committee, "Preface," The Growth of Mathematical
Ideas; Grades K-12, Twenty-fourth Yearbook of the Natlional
Council of Teachers of Mathematics (Washington, D. C.:
National Council of Teachers of Mathematics, 1959.), p. V.




the curiosity of hls students, and helps them solve their
problems with stimulating questions, he may give them a
basis for some appreclation of mathematics, and some means
of independent thinking. Such problems should, of course,
be proportionate to their knowledge.9

Obviously there must be system and organlzation in
mathematics, Arithmetic and algebra cannot and should not
consist entirely of special problems, situations or recrea-
tions., Courses in mathematlics must be developed in
sequential form. Haphazard or plecemeal work will achieve
nothing of value., But within the framework of the system-
atic organization of a course in mathematics at any level
of secondary instruction there are many opportunities for
motivating the work by deliberate stimulation of the
curlosity of the students along the lines indicated. The
greater the extent to which this 1s done, the greater wilil
be the interest, understanding, and diligence with which
the students will work and the more meeaningful and worth

while will the work become to them,*°

9Polya, op. cit., p. V.

10gytier and Wren, op. cit., p. 128,
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1.4 Limitations of the study. The first limitation

in the selection of materials for this thesis has been based
on the author's evaluation of the materlal in terms of nec-
essary related mathematical knowledge required of the
student on the ninth grade level. Further, the materials
selected are expected to be commensurate to the maturity
level of the student and stimulating to his intellectual
curlosity. A wealth of books 1s avallable which treat
mathematlics in the form of a recreational activity. It 1is
from such books that the material of this thesls has been
selected and organized subject to the limitations stated
above,

An assumption that the material selected should
prove ilnteresting to the student 1s based on the fact that
such materials do appear in books which purport to lend
fascination and intrigue to mathematics, and the fact that
such books have galned acceptance by mathematiclans,
educators, and the general public. |

In the organization of the thesis the problems and
situations presented are merely representative of a kind;
they are not intended to indicate the total scope of the
subjJect under consideration.

Though the primary purpose here is to organize and
present a mathematical approach to situations which involve

the curious and the unusual, 1t does not mean that



mathematical principles will be sacrificed, On the
contrary, the selection of materlial has been based on the
premise that elther new mathematical principles will be
discovered or principles already famlliar to the student

will be strengthened.

1.5 BSources of material. The dlscussion of the
background of the problem in Chapter I 1s based on the
writlng of men 1n the flelds of education and mathematics
but who are not primarily concerned with the area of
recreational mathematics,

The materlial in Chapters II through VII hes been
selected from numerous books in the area of mathematical
recreations, ©Some of the material has also been collected

from such other books as Fundamental Mathematlcs by Harkin,

Introduction to Finite Mathematlics by Kemeny, The Education

of T, C. Mits by Lleber, Making Sure of Arithmetic by

Morton, and Algebra--Book Two by Welchons and Krickenberger,

1.6 QOrganization of the theslis. Chapter II presents

the positional notatlion concept of the familiar decimal
system of numeration and demonstrates the Identical struc-
ture of other systems using different bases. Translation
from the decimal system of numeration to other systems, and

conversely, 1s presented in considerable detail.
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Representative problems are suggested for use in the
classroom,

Chapter III presents the operations of addition,
subtraction, multiplication, and division in systems of
numeration other than the decimal., The processes are
treated primarily by example and representative practice
problems are included.

In Chapter IV a relation between certain systems of
numeration is discussed and accompanied by representative
problems.

Chapter V introduces the fraction and "decimal' in
other systems of numeration and demonstrates methods for
translating from the ten-system to other systems, and
conversely.

In Chapter VI several unusual problems involving
probability are presented as well as a discussion of tree
diagrams.

Chapter VII presents a selection of wide and varied
problem situations involving the use of one or more mathe-
matical principles or concepts. The problems were selected
because of their unusual character and are not classified
as to type or kind.

Chapter VIII is devoted to a summary of the content
of the thesis.
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1.7 To the teacher. Though much of the content of

this thesis 1s devoted to problem solving situations, Chap-
ters II through V necessarily require a somewhat lengthy
development of systems of numeration other than the decimal
system. However, the discussion and development of other
systems should in itself prove interesting as well as being
relative to a problem solving situation. It 1s the opinion
of the author that Chapters II and III should be presented
in their entirety to most students whereas Chapters IV and V
may well be reserved as optlonal units for smaller groups
and individuals, The stage of instruction at which any
material presented here should be introduced shall be left
entirely to the discretion of the teacher,

A few words may be in order concerning the
presentation of problems. A problem may be presented to
the entire class at a time felt to be appropriate by the
teacher, or to a smaller group or even a single student.

In the case of a group or the entire class being involved,
the presentation and discussion of the problem should of
course be a part of the lesson plan and sufficient class
time must be allotted for this work just as in any other
planned lesson. After presentation of a problem there
should be ample opportunity for questions and further
discusslon. Once the teacher is reasonably assured that

the students understand the problem it may be well to
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allow a day or more to pass before pursuing it further.
Students should be encouraged to hand in a copy of their
solution as soon as possible and asked to indicate the
approximate amount of time they spent in finding 1t, It is
important to allow every student as much time outside of
school as he cares to take so as to insure as many successes
as possible rather than hurry on to other aspects of the
problem., The urgency of moving on should not be felt here
as 1t often 1s by the teacher in hlis attempt to "cover' a
textbook.

The purpose of these problems 1s clearly to create
interest and original thinking and hence the creation of a
learning situation. Therefore the teacher must lend
encouragement to the student but refrain from describing
the solution to the problem, Showing a class or an indi-
vidual how defeats the purpose and may result in loss of
attention as well as interest., Time after time it has been
observed that those students who are shown answers either
try to memorize the solution or lose interest in it
entirely.

Suggestions as to problem solving techniques and
methods of attack may be presented by the teacher as well
as well chosen directed questions which tend to lead the
student into self discovered methods of approach to a

problem, A book on the different aspects of problem
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solving by G. Polya could be very instructive and an
invaluable ald to the teacher and student alike in
overcoming certain difficulties in the solving of problems, 11

A trial and error approach to a problem has always
been one of the first ways of investigating a new problem.
Unfortunately it takes time and often leads to disappoint-
ments., Nevertheless, students at the ninth grade level will
persist in using this approach even under the guidance of a
well trained and quelified mathematics teacher, Persistance,
however, 1s one of the abilities often listed as an aim of
mathematics education, hence even a triasl and error approach
to a problem by a student may glve the teacher a measure of

the students' persistence.

1la, Polye, How to Solve It (Garden City, New York:
Doubleday and Company, Inc., 1957, 253 pDp.)



CHAPTER II
SYSTEMS OF NUMERATION

2,1 Introduction. Recreational activities with
systems of numeration are not mere puzzles, The mathemati-
cal bases for such recreations are deeply rooted in
fundamental properties which need be thoroughly understood.
However, these fundamental propertlies are so analogous to
the properties of the decimal system of notation that the
generalization of the numerical value of the base 1s a pro-
cedure which 1s usually provided for in the fundamental
obJectives of mathematical instruction on the secondary
school level, Thus, the transition from the base 10 to any
other base should not offer many undue difficulties., If
there may be a difficulty, 1t would be assoclated with the
necessity of concentrating one's attention on the fact that

a new numerical base 1is present.l

2,2 Base ten and five. Our numeral system 1ls called
a decimal system because the base is 10, The word "decimal

derives from the Latin word decem which means "ten,"

lAaron Bakst, "Mathematical Recreations," The Mathe-
matics Teacher, March, 1953, 46:pp. 185-87.
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The numeral 527, for example, means
500 + 20 + 7
or 5(10)% + 2(10) + 7(1).
Likewise, the numeral 38090 means
3000 + 800 + O + 9

or 3(10)3 + 8(10)2 + 0(10) + 9(1).
If we did not know how to express 3809 in powers of 10, as
shown above, we could find how many times %809 contains 10,
102, etec., by dividing. We can do this by dividing 3809 by
10, dividing the quotient by 10, etc., until the quotient is
less than 10. Dividing by 10 twice is equivalent to
dividing by 102, dividing three times 1s equivalent to
dividing by 103, etec.

We can use short division, and because it is

convenlent, note the remainders as in the following example.

R 8
10 RO
10)380 R 9

10)3809
This number contains 10° three times, 8 extra 102's (shown
by R 8), no extra tens, and 9 units as shown by R 9, This
can be written as: .
3(10)% + 8(10)2 + 0(10) + 9.
Compare this with the expression originally given for 3809

in terms of powers of 10. Note the pattern established for
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writing 3809 once the successive short divisions by 10 are
performed and the remainders indicated as shown. That is:

2 R8
RO
RO
is 3809.

To generalize this and establish the process, imagine
that the decimal representation of the number has five
places (the process is identical for larger or smaller
numbers) written as

A+10% 4+ B+103 + C+102 + D+10 + E-1,
where A, B, C, D, E represent any of the digits 0, 1, 2,¢--,
9 except that A # O for a five place numeral. Now by

gsuccessive short divisions by 10, the generalized problem

A

107A-10 + B b
10)4-10° + B-10 + C R D
10)A.103 + B-10° + C+10 + D R E
10)A-10% 4 B-102 + C+10¢ + D*10 + E-1

shows that, in order, the final quotient, A, and the
remainders, read downhill, give the proper decimal
representation.2
Apparently, the base 10 1s used because primitive
man counted on his fingers. If primitive man had used the

fingers of only one hand in counting, and some groups did,

2Duncan Harkin, Fundamentel Mathematics (New York:
Prentice-Hall, Inc., 1941), p. 2%,
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the base would be 5. In that case, the numeral 2431 would
mean

2(5)° + 4(5)% + 3(5) + 1.

With the base 10 we must have ten symbols. They are,
of course, 1, 2, 3, 4, 5, 6, 75 8, 9, and 0, with all count-
ing numbers larger than nine belng expressed by means of
place value as described earlier, If the base were 5, we
would need only five symbols, 1, 2, 3, 4, and O, The other
familiar symbols, 5, 6, 7, 8, 9, would not exist; there
would be no need for them,

At this point it becomes necessary to adopt a
convenient notation in order to distingulish a numeral writ-
ten in the 10 numeral system from one written in the 5
numeral system. In the above examples 3809, using the base
10 may be written 3809(10); and 2431, using the base 5,
written as 2431(5).

Recall that 2431(5) means

2(5)3 + 4(5)2 + 3(5) + 1.
When the arithmetlc operations are performed, that is
2(5)7 + 4(5)2 + 3(5) + 1

2(125) + 4(25) + 3(5) + 1
250 + 100 + 15 +1

366(10)

we have 366(10) being written in the 10 system and must be
indicated as such., It is now correct to say that 2431(5> =
366(10), or in other words 2431 using the base 5 represents

the same counting number as 366 using the base 10,
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To further demonstrate the procedure discussed
earlier, let us change the decimal numeral 366(10) back to
the numeral having the base 5., We must find how many times
366(10) contains 5, 52, etc. We can do this by dividing
366(10> by 5, dividing the quotient by 5, etec., until the
quotient obtained 1s less than 5. Dividing by 5 twice is
equivalent to dividing by 52; dividing by 5 three times is
equivalent to dividing by 53; etc, We will use short
division in the manner described earlier,

2 R 4

5L R3
R1

5)3 (10)
This number, 366(10), contains 53 two times, four extra 52'3

(shown by R 4), three fives (shown by R 3), and one unit as
shown by R 1., As a check, we write

24315y = 2(5)7 + 4(5)% + 3(5) + 1

= 250(10) + 100(10) + 15(10) + 1 = 366(10).

2.3 Summary. Numbers written with the base 5 use a
units column, a fives column, a five-squared column, and so
on, instead of a units column, a tens column, a ten-squared
column, and so on. Such numerals may be referred to as the
5 scale or guinary system of numeratlon and identified by

uging a base subscript 1n parentheses such as 243(5). The
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numeral 243(5) means
2(5)2 + 4(5) + 3(1)
and 1s equlvalent to

2(25) + 4(5) + 3(1)

50(10) * 2%u0) * 3(10) = 73(10)
To change a numeral in the 10 scale to 1ts equivalent

in the 5 scale, dlvlide the decimal numeral successively by
5, noting the remainders, until the quotient 1s less than 5.
Using the procedure described earlier, write the numeral in
the 5 scale as follows.
2 R 4

541 R3

5 73(10)
Thus, 73(10) = 243(5>.

Table I, will show representative equlvalent numerals
written in the ten scale and in the five scale.

The symbols 14 and 22, for example, in the last line
should be read as one-four and two-two, respectively, and
not fourteen and twenty-two, since they mean '"one five and
four units" or 1+5 + 4, and "two fives and two units" or
25 + 2, respectively.

The number wrltten as 32(jp) in the 10 scele means
3.10 + 2 which is equal to 1(5)2 + 1(5) + 2 or 1(25) + 1(5)

+ 2 and is therefore written as 112 in the 5 scale,
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twelve
eleven
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ten
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Note that in the ten scale the numeral 10(10) is used
as the base whereas the symbol itself does not occur among
the original ten digits.

In the five scale the symbol 10(5) should technically
be used as the base number but it has been found more con-
venient and less confusing to use the symbol 5(10) as the
base, It is true that regardless of the base system used
the base numeral itself does not occur among the original
set of digits. The names of the numbers and the symbol used
for the numbers are merely a matter of language and must not

be confused with the matter of number concept.

2.4 Problems. Change the following decimal numerals
to numerals having the base five. As a check, change each

number back to the numeral having the base ten.

Decimal(lo) Quinary(S)
4 (4)
7 (12)
21 (41)
50 2oog
64 224
350 2400;
512 (4022
1000 (13,000)
5000 (130,009§
8426 (232,201

This 1list of problems may of course be supplemented
by as many similar problems as the teacher feels is

necessary.
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2.5 Bases two through nine. At this point it might
be well to ask whether other scales, or numeral bases, can
be used to write counting numbers. Other scales could be
used equally well and in fact any rational number except one
may be used as a base, For the purposes of this chapter,
however, we shall deal only with integral number bases of
ten or less in order to confine the work to reasonable
limits and yet demonstrate the arithmetic principles common
to different numeral base systems.

One might, for example, write a number in the 3 scale
using only the three digits, O, 1, 2. Hence twenty-four is
written in the 3 scale as 220(3) (two-two-zero) since 24(10)
= 2+32 4 2¢3% 4+ 0+1, There would be no use for the symbols
3, 4, 5, 6, 7, 8, 9 and they would not exist, Thus, 24(10)
= 220(3).

One should realize now that every point of discussion
concerning the 5 scale will now apply regardless of the base
number being used. Thus,

2 R

2
8 R O
33-5( 10)

If one chooses to use eight as a base number using

and 24(10) = 220(3).

only the symbols O, 1, 2, 3, 4, 5, 6, 7 then,

4 R4
R1
8)289(10)
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for example, 289(10) = 441(8).
That is,
44legy = 4(8)7 + 4(8) + 1(1)
= 4(64) + 4(8) + 1
= 256 + 32 + 1
= 289(10).

If the numeral base is two, the system is called "the
binary system," This system has been much used in elec-
tronic computers although recently the tendency has been to
change to the base four and the base eight.3 The binary
system became popular because it easilly represented two con-
ditions, such as, a hole eppears at a certain place in a
punch card or it does not appear, an electrical contact is
made or it is not made, etc.

The binary system requires only two symbols--1 and O,
Just as 10 in the decimal system means 1 ten and O ones, 10
in the binary system means 1 two and O ones, Thus, 10(10) #
10(2). If the base 1s five, 10 means 1 five and O ones; if
the base 1s eight, 10 means 1 elght and O ones; etc.

In Table II is given the first 25 numerals in the

decimal system and for sake of comparison tﬁe equivalent

JRobert Lee Morton, et. al., Making Sure of Arith-
metic, Teachers Edition, (Morristown, New Jersey. Silver
Burdett Company, 1958), p. 462.
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COMPARISON OF THE FIRST TWENTY FIVE NUMERALS

IN DIFFERENT NUMERATION SYSTEMS

ten scale 2 scale 3 scale 5 scale 8 scale
_Decimal Binary Ternary Quinary Octonary
1 1 ;| 1 1
2 10 2 2 &
3 il 10 3 3
4 100 11 4 4
5 101 12 10 5
6 110 20 11 6
T 111 21 12 7
8 1000 22 13 10
9 1001 100 14 11
10 1010 101 20 12
1l 1011 102 al Uk
12 1100 110 22 14
5 1101 111 23 15
14 1110 112 24 16
15 1111 120 30 17
16 10000 121 31 20
LT 10001 122 32 2l
18 10010 200 33 22
19 10011 201 34 23
20 10100 202 40 24
21 10101 210 41 25
22 10110 211 42 26
23 10111 212 43 27
24 11000 220 Lo 30
25 11001 221 100 31
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symbols for the base of two, three, five, and eight,
respectively--binary, ternary, quinary, and octonary
numerals,

The binary numeral 10 means 1(2) + O(1); 11 means
1(2) + 1(1); 100 means 1(2)% + 0(2) + 0(1); 111 means 1(2)°
+ 1(2) + 1(1); 10101 means 1(2)% + 0(2)3 + 1(2)2 + 0(2) +
1(1); etc.

Now let us change a few decimal numerals to binary
numerals by division. Divide by 2 and continue to divide
by 2 until the quotient is less than 2.

1 RO

1 RO 1 R1 22 R1

1 RO 2)J2 RO 2)3 R1 2 R O

2J2 R1 2 RO 2)7 R1 2J10 RO
275 278 2)15 220

These divisions show that 5(10) = 101(2); 8(10) = 1000(2);
15(10) = 1111(2); and 20(10) = 10100(2). Each of these
numerals has already appeared in Table II.

To reinforce our thinking as to why the last quotient
and the remainders, read downhill, give the proper binary
representation, we will look again at the device used early
in this chapter.

This time imagine that the binary representation of
the number has, for example, five places written as

Ae2% 4 Be23 4 C+22 4 D.2 + E.1,

where A, B, C, D, E represent 1 or O according as the
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corresponding power of 2 is or is not present in the binary
representation of the number, Now, by successive halving,

the generalized problem

A1l R B
2VA"2 + Be1 R G
2)p+22 4 B2 4 C°1 R D
21423 4 Be22 4 G2 + D°1 R E

0)peo% 4 Be23 4 C+22 4 D2 4 E-l

shows that the last quotient and the remainders, read down-
hill, give the proper binary representation.4 The above
verification could be further generalized by allowing the
base number to be x, where x is an integer greater than O.

Large decimal numerals can be changed to other base
numerals but where the new base is less than ten, one must
expect in general more digits to appear. In particular,
changing a relatively large decimal numeral to the binary
system will result in many figures in the binary numeral.

For example,

eviatlicfeviiv o= viaviovie ey
HHOHOOHOOHO

4Hartung, loc._cit.
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This numeral means 1(2)11 + 0(2)1° + 1(2)2 + 0(2)8 + 0(2)7 +
1(2)€ + 0(2)5 + 0(2)* + 1(2)3 + 0(2)2 + 1(2) + 1 = 2048 + O
+ 512 + 0+ 0+64 +0+0+8+0+2+1-= 2635(10).

2.6 Summary. Changing from one scale to another is
merely a problem for the packing department. When thirty-
eight is written in the ten scale, it is as though thirty-
eight objects were packed into 3 boxes of 10 each and 8
boxes of one each (38 = 3+10 + 8). Changing to the five
scale amounts to repacking the thirty-eight objlects into one
box of 25 ( = 52), 2 boxes of 5 each and 3 boxes 1 each
(123(5) = 1+52 4+ 2.5 + 3.1), In the ten scale we pack by
ones, 10's, 102'3, 103'5, and so on. In the five scale, we
pack by ones, 5's, 5°'s, 5J's, and so on, always using the
largest box that can be filled.

We are merely discussing different ways of writing
the same o0ld numbers. That is, we are discussing different
systems of notation or different (written) languages. When
we say that the number which is written as 24 in our usual
decimal language would be written as 44 in the "5 scale"
language, or as 11000 in the "binary" language, we are
merely translating from one language to another,

Another point of view that must be reserved for the
student with sufficient algebra preparation deserves brief

mention. In the usual 10 scale, the symbol 231(10) means
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2102 + 3+10 + 1, or the value of the polynomial 2x2 + 3x +
1 when x = 10, or two hundred and thirty-one. In the §
scale, 231(5) means 2-52 + %5 4+ 1, or the value of the
polynomial 2x° + 3x + 1 when x = 5, or the number 66(10).

To avoid possible confusion as to which language or
scale a numeral is written in, we must eilther state the
scale in words or use the subscript in parentheses as has
been done so far, If no subscript 1s used nor any explicit

remark made, the 10 scale 1s always understood.

2.7 ZProblems,

1., Change each of the following decimal numerals to
the 2 scale, 3 scale, 4 scale, 5 scale, 6 scale, 8 scale,
and 9 scale respectively. As a check change each scale back

to a decimal.

Answers
Decimal
2 scale 3 gecale 4 scale 5 scale
24 11000 220 120 Lh
5 101 12 11 10
22 100000 1012 200 112
96 1100000 10120 1200 341

259 100000011 100121 10002 2014
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Answers
Decimal
6 scale 8 scale g scale

24 40 30 26

5 5 5 5

32 52 40 35

96 240 140 116
259 1133 403 =17

—— —_——
—_——— --

2. Rewrite the entire statement "2 + 5 = 7" (now
written in the 10 scale) to express 1t in

(a) the 5 scale Ans, 2(5) + 10(5) = 12(5>

(b) the 2 scale Ans, 10(2) + 101(2) = 111(2)

(c) the 8 scale Ans, 2(8) + Brgy = 7(8)

(d) the 3 scale Ans. 2(z) + 12(5) = 21(3).

3. The following numerals are already written in the

binary or two scale; rewrite them in the ten scale.

(a) 1110 Ans, 14
(b) 1011 Ans. 11
(c) 11010 Ans., 26
(a) 10010 Ans. 18 -

(e) 100100 Ans. 36.
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4, If the numeral 200 is already written in the 4
scale, rewrite it in
(2) the 8 scale Ans, 40
(b) the 2 scale Ans, 100000
(Hint, see problem 1.)




CHAPTER III
FUNDAMENTAL OPERATIONS OF ARITHMETIC

3.1 Introduction. Previous training makes simple
arithmetical operations so mechanical that they must be
analyzed closely in order to apply them to systems of
nuneration other than the decimal.

Consider the opportunities for practice in arithmetic
which new systems of numeration offer., For example, the
addition of 3163 and 4512, when both are written in systems
other than the decimal, requires close attention to the
value of the base, Buch problems may call forth powers of
concentration and analysis as well as develop a deeper

understanding of the fundamental operations of arithmetic.l

3.2 Number facts. Operations with numbers in the
various systems of numeration are simplified by addition and
multiplication tables, similar to the decimal-system tables
taught in one form or another to all grade school pupils.
Following are the tables for addition and multiplication for
the numeratlon systems, base two through bage nine.

To find the sum or product of two numbers take one

number in the first column and one number in the first row.

1raron Bakst, "Mathematical Recreations," The Mathe-
matics Teacher, March, 1953, 46:pp. 185-87.

bl
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TABLE III
ADDITION AND MULTIPLICATION FACTS FOR NUMERATION
SYSTEMS, BASES TWO THROUGH NINE

Addition _ Multiplication

Two-system Tables

+ 1 x 1

110 1l 1

Three-system Tables

+| 1| 2 x| 2
1| 2(10 2111
2(10|11

Four-system Tables

+ 1| 2| 3 x{ 2| 3
Xl 2] 35|30 2 10| 12
2| 31011 3| 12| 21
3110111|12

Five~system Tables

+| 1| 2| 3| 4 x| 2| 3|4
1| 2 4110 2 4111|13
2| 3| 4|10]11 3(11 14|22
3| 4101112 41132231
4110|111 |12|13

Frr
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TABLE III (continued)

Addition Multiplication

Six-system Tables

+# 1] 2 4| 5 x| 2| 3| 4| 5

1| 2| 3| 4| 5(10 2| 4|10(12|14

2 3| 4| 5|10|11 3|10|13(20(|23

3 4| 5|10(11|12 4112|2024 |32

41 5(10|11|12|13 5|14(23|32|41

5/ 10{11 (12|13 |14

Seven-system Tables

+ 1| 2| 3| 4| 5| 6 x| 2| 3| 4| 5| 6
1| 2| 3| 4| 5| 6|10 2| 4| 6|11|13|15
2| 3| 4| 5| 6|10|11 3| 6|12|15|21 (24
3| 4| 5| 6{10(11|12 & 11‘15 22 (26|33
4( 51 6(10(11 (12|13 5|13|21 |26 (34 |42
5 6|10(11|12 (13|14 6|15|24|33|42|51
6|10(11|12(13 (14|15
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Where the column and row intersect is the required number.
Thus, in the four-system tables 2 + 3 = 11 and 23 = 12,
Remember that any number plus O is the number itself
and any number times O is O, Any number times 1 is the num-
ber itself, These facts are not given in the tables but

apply to all systems of numeration being considered here,

3.3 Addition. In totaling a column of numbers
(starting at the right, of course), if a number greater than
10 is obtained, the units are recorded and the remaining
digits (denoting the tens) are carried to the next column
(the tens column). To add 639, 472, and 593 in the decimal
system the process 1is as follows;

639
472

T7G%.

That 1is,
O + 2 + 3 = 14, Record 4 and carry 1.
1 +3+ 7+ 9 =20, Record O and carry 2.
2+ 6+ 4 +5=17. Record 17.

The sum is then 1,704,

The principle of carrying holds for other systems of
numeration. But remember that the number tﬁat represents
the system has no numeral for itself--it is always written

as 10,
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Here is the way to add two (or more) numbers, say
1,101 and 111, in the two-system:

1,101
+ 111
10,100

10, Write O and carry 1.
10, Write O and carry 1.
1l. Write 1 and cerry 1.
10, Write 10.

e
+ + +

HHOH
+ + +
e
TITITI]

Therefore the sum is 10,100,
The addition can be checked by the decimal system,

Thus 1,103 = 13 10
111 = 7510;

10,100 = 20(10)

Numbers in the three-system are added in the same

way. Thus:
2,122
212
121
11,002
l1+2+ 2 =12, Write 2 and carry 1.
1+ 24+1+2 =20, Write O and carry 2.
2+1+2+1 =20, Write O and carry 2.
2 + 2 = 1l Wribte 1ll.

and the sum is 11,002,
Agaln the additlion 1s checked by the decimal system,

2;122 = Ti
2l2 = 23%%8)

11,002(3) = 110(10)

T T ———
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3.4 Problems, Below are examples of addition in

various numeration systems.

Two-system Three-system Four-system
101 1011 112 121 23 3231
11 1101 212 222 e 1353
1000 111 1101 11 101 %12
J1I31Y 2002 11002
Five-system Six-system Seven-system
234 4312 135 45312 61 56543
A1l 422 _h2 5423 722 3635
1200 243 221 }52 6 216
11042 85b% 64030
Eight-system Nine-system
653 64753 387 784521
471 2567 241 63677
1% 471 638 2467
70233 861776

Problem. Check the above sums by the decimal system,

3.5 Subtraction. In subtraction, the method of
"borrowing" will be used. Analysis of the decimal system
technigque may be helpful. Suppose 17 is to be subtracted
from 42,

31
42
il
a5
Since 7 cannot be subtracted from 2, 1 ten is borrowed from
4 tens leaving 3 tens; 7 from 12, then, gives 5 and, finally,

1l from 3 1s 2, and the answer 1s 25.

ARER e .
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Again in the ten system suppose 46 is to be
subtracted from 302,
291
2g2
A6
256
Here since 6 cannot be subtracted from 2, and there are no
tens to be borrowed, borrow 10 tens or 1 one hundred from
the hundred place leaving 2 hundreds; from these 10 tens
borrow 1 ten for the units place leaving 9 tens in the ten
place; then, 6 from 12 gives 6, 4 tens from 9 tens gives 5
tens, and finally no hundreds from 2 hundreds is 2 hundreds
‘and the answer is 256. 3
It should be remembered that, in each system of 5
numeration, the number corresponding to the base of that |
system, or a power of that number, 1is the one borrowed. l
Subtraction in other systems of numeration may be
described in a similar manner. BSubtraction, where borrowing
is not required, is not difficult if one will check himself
on the additlion facts for that system of numeration. Thus,

in the two system

and in the five system
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The answers may be checked by adding the difference and the
subtrahend or by translation to the decimal system.

When borrowing is necessary the procedure is similar
to the method described in the ten system. Thus, in the
binary system. 0 10

g1

i
10

Starting at the right, 1 from 1 1s O, In the 2's column 1
cannot be subtracted from O, Hence 1 four is borrowed from
the 4's column leaving no fours., This four is really two
2's or 10 in the 2's column, Thus, in the 2's column 10 - 1
is 1. In the 4's column O - O is O. The difference,
therefore, is 10(2).

Consider another example of borrowing in the binary

system.

0
x

s
o SR
of~ +

In the units column 1 from 1 is O, 1In the 2's column 1 can-
not be subtracted from O and there are no fours to be bor-
rowed., Hence, borrow 1 eight from the 8's column leaving no
eights., Think of the eight as 10 in the 4's column, meaning
two 4's, Then borrow 1 four leaving 1 four in the 4's col-
umn and write 10 in the 2's column meaning two 2's, Thus

10 - 1 is 1 in the 2's column; 1 - 1 is O in the 4's column;

and O - 0 is O in the 8's column. The answer is 10(2).
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Following is one more example using the eight system

of numeration.

VAR oy

12
2
4

206 2

W

In the units column 1 from 3 is 2, Borrow one 64 from the
64's column leaving four 64's. Think of the borrowed 64 as
8 eights, or 10 eights and add the 2 eights already in that
column giving 12 eights., Hence 12 - 4 is 6 and 4 - 2 is 2,
The difference, then, is 262(8).

Remember, 1t is absolutely essential that the base

being used is kept constantly in mind.

3.6 Problems. Following are examples of subtraction

JEFFEETY »

in various numeration systems. Dots are placed over columns

to indicate that borrowing took place in those columns,

Two-system Three-system Four-system
101011 22110 312023
1101 _1202 332351
11110 20201 212132
Five-system Six-system Seven-system
3420 452050 611012
25 Tot03 R
Eight-system Nine-system
12472 73421

_Q%Y_'l 8678
3472 63632
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The results may be checked by addition or by

translation into the decimal system.

3.7 Multiplication. Multiplication is performed the
same way 1ln all systems of numeration. In systems other
than the decimal the chief difficulty i1s a tendency to think
in terms of the decimal system. To avolid this, remember
that the number denoting the system 1s always written as 10,
The multiplication tables given in this chapter also will be
useful.

Multiplication in the two-system is so easy that it
bears out the statement that this is the simplest of all
systems., There are of course only two digits, O and 1, and
O+l = 10 = Q3 11 = 1; Thus?

10011
101
10011
10011
1011111.
The product of two numbers in the three-system is
obtained as follows:
112
221
112 .
1001
1001
110222,
The multiplication by 1 results in the original numeral 112,

Multiplying 112 by 2 is done this way:



The product, therefore, is 1,001.

checked by using the decimal system.

112
221
112
1001
1001
110,222

3.8 ZEroblems.

multiplication.

252 = Ll
21 = 2, and 2 + 1 = 10,
21 =2, and 2 + 1 = 10,

42

Write 1 and carry 1.
Write O and carry 1.
Write 10.

The results may be
Thus:

14

22

70

28

350.

Below are representative examples of

Problems such as these may be done in class

and similar problems glven to students as exercises.

Two-system

10110

101

10110
101100

1,101,110

Five-system
342
.
3023

555

Three-system

221

22

1212
1212

21,102

Eight-system
34T
226
2552

316

Examples of multiplication using other bases are left

to the teacher,

decimal system.

A check may be made by translating to the
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3.9 Division. Division, too, follows the same
pattern in all systems of numeration, The student, however,
should be well versed in subtraction and multiplication
before proceeding with division.
Below are examples of division:
Two-system
Divide 100011 by 111
101

1115100011
111
13
00
111
111

Three-system

112
1272122
12
22
12
102
101
1

Thus, 2, 122 % 12 = 112 + I%‘
Four-system

Lel

21%)33210
21

iy iy ad BITH
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Note that in the last example, when 1,131 was divided
by 213, 2 was chosen as a quotient; 3 was not chosen because
from inspection 3+2 = 12, and the first two digits of 1,131
are 11, Thus, 3 would have been too large.
Five-system
02
123)4321
424
314
301
13

Thus, the answer is; 02 + 13 or 302 + 4.
us, € 3 123’ k- -52;

3,10 Problems.
I. Add or subtract as indicated.

Two-system

1. 111 + 101 4, 1110 - 111
2. 1110 + 1010 5. 10101 + 1010
3. 1011 - 1010 6. 111010 - 10011

Five-system

1. 23 + 24 4, 414 4+ 223 4+ 143
2., 413 + 224 5. 341 - 233

3. 432 - 122 6. 301 - 213

II. Multiply or divide, as indicated.

Two=-system

1. 11-11 4, 11001 + 101
2. 1110-101 5. 101101 + 1001
3. 1000 + 10 6. 100111 + 1101
Five-system

1. 24-32 4, 14 + 3

2. 243.23 5. 242 + 13

3« 100 + 10 6. 333 + 104

BEEE ST P
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Check the preceeding problems by the decimal system.
Any desired number of problems similar to the above may be

presented using other systems of numeration.

T S —



CHAPTER IV
RELATED NUMERATION SYSTEMS

4,1 Introduction. The writing of numbers in the
two~-system of numeration becomes very cumbersome. However,
this writing may be simplified., The simplification which
follows is introduced into the construction of the binary
electronic computing devices so that the recording and the
typring of the final numerical results become comparatively

simple.l

4,2 Bases two and eight. Note the following
combinations of the digits "O" and "1" in the two-system of

numeration.

100 represents
101 represents
110 represents
111 represents

000 represents
001 represents
010 represents
011l represents

WO
~ W\t

These triplets may be employed in translating numbers
written in the two-system of numeration. By translating the
triplets according to the system above,

11,001,010,000,101,110,100,011,111

becomes 312,056,437.
The numeral 312,056,437 is, however, not written in

the decimal system of numeration, but rather the eight-system

lparon Bakst, Mathematical Puzzles and Pastimes (New
York: D. Van Nostrand Company, Inc., 1954), p. 40.

BRORAZ 2N £ . i
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(which is also known as the octal system)., Note that the
digits 8 or 9 do not occur in the translation, nor could
they possibly occur since the translation 1s into the
elght-system,

The advantage of the octal system over the two-system
of numeration lies in the fact that in the octal system
fewer digits are required for writing numbers. The transla-
tion of a numeral written in the octal system of numeration
into the two-system of numeration can be performed with
almost no effort. ZElectronic computing devices make provi-
sions for such translations automatically.2 Thus, for
example, the numeral 15,675,217,346(8) in the octal system
is translated into

1,101,110,111,101,010,001,111,011,100,110
in the binary system, Note that each digit in the octal

representation of the number is represented by a group of

three digits in the binary system.

4.3 Problems, The following problems are merely

representative of a kind that could be presented at this

point.

1. Translate 11,110,101,011,111,010,000,100,010(2)

into the octal system of numeration.

21bid., p. 41.

ERPFFI AR i i
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2. Translate the octal numeral, 157,634,527,100 into

the two-system of numeration.

4,4 Bases two and four, The "counting" in different

numeral systems may be related to some "primary" number
syst.ems.3 Such a relationship between the two-system and

the octal system has just been discussed., A similar relation
exlsts between the two-system and the four-system of enumer-
ation, By writing the first four numbers in the two-system
of numeration we have:

00 represents O 10 represents 2
01 represents 1 11 represents 3

Then, a number written in the two-system of numeration, say,
11011001010110
may be rewritten, pairing off the digits from right to left,
and obtain
1101,10,01,01,01,10.,

Now, employing the stated relationship, rewrite this number

as 3121112
in the four-system of numeration, If these two numerals were

translated into the decimal system, the results would be the

same.:
ol3 L 212 | 210 29 L 26 4 2% 4 02 4 2
(3+46) 4 (45) + (2:4%) + (43) + (42) + (4) + (2)

13,910(10)-
13,910(10).

1

31bid., p. 51.
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If a number is written in the four-system of
numeration, then it can be quickly translated into the two-
system of numeration. For example, suppose that the number
written 1n the four-system is
230110312.

The four relations discussed above make possible the trans-
lation of this numeral into the two-system of numeration,

resulting in
10,11,00,01,01,00,11,;01,10.

4.5 Problems,
1, Translate the two-system numeral
110100010110111
into the four-system.
2. Translate the four-system numeral

30221011033210

into the two-system.

4,6 Summery. In the discussion of related systems
of numeration it has been shown that the two-system can very
conveniently be translated into the four-system or the elght-
system and conversely. The two-system would therefore be
defined as the "primary" system in relation to the four-
system and the eight-system respectively. To translate from

the two-system to the four-system of numeration, group the

ERrrasdd # adr- .
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digits in the binary number by two's from right to left,
then translate each group individually into the symbols O,
1, 2, or 3 as they may occur. To translate from the two
system to the eight-system of numeration, group the digits
in the binary number by three's from right to left, then
translate each group individually into the symbols O, 1, 2,
3, 4, 5, 6, or 7 as they may occur.
To translate the four-system, or the eight-system of
numeration into the two-system, translate each digit in the
higher base system number to the equivalent number symbol in
the two-system. Thls process 1s more convenlently performed
by working from left to right. More examples:
1. 101101011101(2) — 10,11,01,01,11,01(2) =
231131(4).

2, 101101011101(
5535(8).

D 23123(4) = 10,11,01,10,11(2).

2 B 101,101,011,101(2) =

4, 7234165(8) = 111,101,011,100,001,110,101.

4.7 Problems.

1. What relationship do you suppose exists between
the two-system and the four-system; and the two-system and
the eight system of numeration that makes such a convenient
translation possible? [Ans, 4 and 8 are perfect powers of

2,1

.
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2. Do you suppose a "primary" relation exists between
the three-system and the nine-system of numeration.
3. Write a number in the three-system of numeration.
Try to translate this numeral into the nine-system directly.
Check your results by translating each numeral into the
decimal system. Do they check, that 1s, are the resulting

decimal numerals the same?

S &8 £ o>~



CHAPTER V
FRACTIONS AND "DECIMALS"

5.1 Introduction. Fractions and decimals and their
relation to other systems of numeratlon, and conversely,
will be given brief consideration here. Some students may
develop conslderable interest in this area because of the
unfamiliar and often strange appearing results.

The decimal numeral or decimal fraction as known in
the ten system of numeration has its counterpart in other
systems of numeration. The numerals and fractions in other
systems should not, strictly speaking, be referred to as
decimal numerals or fractions since the base of the system
being used is not ten. Rather than invent special names for
these numerals expressed in different numeration systems the
author will use the word "decimal" but use a subscript in
parentheses to indicate the base number of the system being
used. Thus, .01(2) is a decima1<2) written in the two
system of numeration. "Decimal" in quotation marks shall
mean a numeral other than base ten but no specific base

implied.

5.2 "Decimals'". "Decimal" numerals in other systems
of numeration have place value Jjust as in the decimal(lo)

system, Just as

AN E s E d & s~
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.235(10) = 2(gg) + 3(1—}.-?> S(E?)

50 1101,y = L(F) + O 1) + 1(2;)

and 23y = 2( ) + 3(——) + 4(;3)

In other words
.235(10) = 16 * T8 * T8 = I%ég(lo)
A0L(y =3 % = g(lo)

Ui i

L3, bk _ 69

and -23%4(5) 25 * 125 = 12544

To convert a "decimal" in another system to a
decimal(lo) simply convert the "decimal" into a fraction(lo)

by the above method and then divide,

5.3 Fractions. A decimal(lo) fraction may be
changed into a fraction in any other numeration system
simply by translating its numerator and denominator into

the new system. Thus

A fraction written in a system other than the ten
system may be converted to a "decimal" form of the same base
by the division process described in unit 2,15. Thus in the

three system
1

I_(B) = .0202(3)

F TP TR F1 8 A = .



since .0202° ¢
11)1.0000
22
100
22
1
Notice that % = .2500(10)
(10)
i 8
- = ,0202¢4-
01 *
(%) (3)
and % .
- 11
(10) (3)
. 2500 = ,0202¢¢°-
therefore 5 (10) (3)

5.4 "Decimal" conversion. The process of changing a
decimal(lo) to the equlivalent "decimel" in another system 1s
rather involved. One method of course (1f the decimal(lo)
is terminal) is to convert the decimal(lo) to an equivalent

fraction )? then translate the numerator and denominator

(10
of the fraction(lo) into the system belng dealt with before
dividing. Thus

1
-2500.'.(10) = I

(10)
o I =T ‘
(100 (2
and by division I 4 _ R
100(2) = ,0100 (2)

therefore 425007 %% (1) = -0100%**(5)

R P A & i
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Another method of conversion could be as follows.
Example. Change .7(10) to the binary scale.

Solution. 1.4 halves or 1(%) + 4 halves

*7(10) =
4 halves = .8 fourths or O(%) + .8 fourths

.8 fourths = 1.6 eighths or l(%) + .6 eighths
.6 eighths = 1,2 sixteenths or 1(I%) + .2
sixteenths
and so on,
Thus 07(10) = ololl.'.(2)
— 1 1 1yeoo
That is .7(10) = 1(5) + O(E) + 1(5) + I(Ig)

To convert a numeral such as 25.25(10) to a

(10)
numeral in another system of numeration requires two
distinct operations.
Example, Change 25.25(10) to the binary system.
1 R1

2 R
2 R
1 R
2

HOoOO

2)12
2)es5,

Thus 25. ) &= 11001(2)

(10
The .25(10) may be translated by either of two ways.

Thus «25(10) = %(10) = 0(%) i 1(%) .
and .25(10) = .01(2)
or .25(10) = .50 halves or O(%)

.50 helves = 1.00 fourths or 1(z)

and .25(10) = .01(2).

i -y

o
a8

B fiia::
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Therefore 25.25(10) = 11001.01(2)

5.5 Problems,
1. Verify some of the "decimal equivalents given
in Table IV by procedures described in this unit.
2. Change the decimal fraction to a bilna
(10) 2(10) Ty

fraction.

3, Change IU%%(Q) to a decimal(a) equivalent.

4, Change .3333(10) to a decimal(g).

5. Change .101000---(2) to a fraction(lo).




TABLE IV
COMMON FRACTIONS EXPRESSED AS "DECIMALS"Y
IN VARIOUS NUMERATION SYSTEMS

Ten Two Three Four Eight

System System System System System

Common 10ths halves thirds fourths eighths

Fractions 100ths 4ths 9ths 16ths 64ths

1000ths 8ths 27ths 64ths 512ths

10000ths 16ths 8lsts 256ths 409€6ths
1/2 . 5000 .1000 0 1 ki o . 2000 .4000
1/3 « 3555 .0101 .1000 .1111 .2525
1/4 .2500 .0100 .0202 .1000 .2000
1/5 .2000 .0011 .0121 .0303 1463
1/6 .1666 .0010 .0111 .0222 1252
1/7 .1428 .0010 .0102 .0210 <1111
1/8 .1250 .0010 ,0101 .0200 .1000
1/10 .1000 .0001 . 0022 .0121 L0631
1/12 . 0833 . 0001 .0020 .0111 .0525
5/6 «8333 .1101 .2111 <3111 .6525

3/8 . 3750 .0110 .1010 .1200 . 3000




CHAPTER VI
PROBABILITY

6.1 Introduction., Some of the simpler ideas of
permutations, combinations, and probablility may be inter-
Jected into a ninth grade mathematlics course usually with
wide acceptance by the students. The element of chance
tends to lend intrigue to almost any endeavor in any walk of
life. A child heas experience in the playing of games and in
other endeavors where the element of chance will bear on the
outcome of his experience. He recognizes the element of
chance in his choice of an answer to a true or false
guestion on a test, especially if he is 111 prepared.

Thus, chance 1s a facet of mathematlics familiar to
the child but usually not in the mathematical sense.

The two problems selected for this chapter and the
presentation of tree dlagrams as a method of analyzing cer-
tain situations involving the element of chance were
selected to demonstrate to the student the role that mathe-
matics can play in predicting the outcome of varied
situations involving chance. Further, it ié expected that
these problems may well suggest a form of mathematics

heretofore unknown to him,

i
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The problems are not intended to introduce any

formal approach to probability theory, nor is there any

direct reference to permutations or combinations., Any formal

approach to thls topic 1s left to the discretion of the

teacher,

6.2 Buffon's Needle Problem. An interesting number

used as a multiplier in computation of the circumference of
a circle is the number known as m, It is approximately
equal to 3.14159. We know that it 1s impossible to deter-
mine m exactly, but we shall see now that it is possible to
approximate 1ts value during the process of a very simple
and unusuel experiment,

On a large plece of paper or drawing board construct
a series of parallel lines such that the distance between
them is twice the length of an ordinary needle. Place the
paper or drawing board on a horizontal surface and drop the
needle onto the paper. Continue dropping the needle a
large number of times, a hundred or a thousand times; the
greater the number of times the greater the probability
will be that a closer result will be obtained., Each time
the needle is dropped note whether 1t crosses some line,
consldering it a crossing when even the end of the needle
touches a line, Now, 1f the total number of times the

needle was dropped 1s divided by the number of times it

SERREs g A £ 5idi:
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crossed a line, the result will be the approximate value of
m. That is, if B is the number of times the needle 1is
dropped and A is the number of times the needle touches or
crosses a line, then % & T,

Explanation. Suppose that the number of crossings 1is
A, and assume that any part of the needle has the same
chance of falling across any of the lines. If the needle is
two inches long, then, since every part of the needle has
the same chance of falling across a line, the number of
crossings for one inch of the needle would be Just one-half
that for two inches, or %. If the needle 1s divided into n
equal parts, the number of crossings for each part 1s %.
The number of crossings for two such parts is %%, and for
ten such parts l%é, From the preceeding discussion we
arrive at the conclusion that the number of the crossings
is proportional to the length of the needle., Thus, if the
length of the needle is r, then A = Kr where K is a
constant.

Now suppose we have a needle that i1s bent into a
circle and the radius of the circle is equal in length to
the original needle., When such a circle 1s.dropped onto the
paper (the distance between the lines is thus equal to the

diameter of the circle), it will either cross one line

twice or will touch two lines. Let us suppose that the

F 7 T rFrFrP e E "
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number of times the circular needlé is dropped is B, then
the number of crossings 1s 2B, because every time this cir-
cular needle is dropped it must elther come in contact with
one line twice or touch two lines. The length of the cir-
cular needle (if its radius i1s r, which is the length of the
original needle) is 2mwr. Thus the circular needle is 2w
times the length of the original straight needle. We also
have established that the number of crossings 1s propor-
tional to the length of the needle., Thus, the number of
possible crossings of the circular needle is 2w times the
number of possible crossings of the original needle.

In other words,

2B = A.2m
and from this
w2 % approximately.

That is

, Number of times the needle was dropped
LU Number of times the needle crossed a line

In terms of probability, or the chance that the
needle willl cross a line 1t may be stated that

A _ Number of times the needle crossed a line,

B = Number of times the needle was dropped

which 1s the probability of the needle crossing a line.

Since m & Z, then 2+ 2, and the stated probability is
given by % * 0,31831.

R s i
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In other words the chance of the needle crossing a line 1s a

little less than one time out of three and a little better
than three times out of ten.

Summary of the explanation.

Let A = the number of crossings of the stralght needle of
length r.
B = the number of times either needle is dropped
(circular or straight).
C = the length of the circular needle of radius r.
¥. A& =Xrorr:z %
2., 2B = the number of times the clrcular needle crosses.
3. <.2B = KC, and since C = 2mr

2B

I

K(27mr)

4, V2B K-2ﬂ°% by substitution.

5. and B * mA
m =
Note., In step 4 above the approximation symbol was
introduced because of the experimental relation between B
and A, Also in step 4, K is assumed to be the same
proportionality constant for both the straight and the

clrcular needle,

A further consideration. The needle need not be

straight; suppose that it is bent as shown in Figure 6.2.

Suppose that BC contains m parts of the needle (after it is



FIGURL 6.1

BUFFON'S NEEDLE PROBLEM

fr

FIGURE 6,2
A BENT NEEDLE
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divided into n equal parts). Then the remaining portion of
the needle (CD) will contain (n - m)parts., Their respec-

tive number of crossings will be mA and (n - m)A
n n

and

the total sum of the crossings is still equal to A. However
it should be noted that a bent needle may fall so that it
will cross the same line several times. If thls happens,
all the crossings must be counted.l

6.3 Three card problem. Here is a famous problem in

probabllity that 1s said to have trapped even skilled mathe-
maticlens into error from time to time. Yet 1t is easily
stated, and appears innocent enough.

Three cards are identical in appearance except for
their coloring, which 1s as follows: one card is red on
both sides, one is white on both sides, and one 1s red on
one side and white on the other, I shuffle them in a closed
bag, and then reach l1n and draw one out and lay 1t on the
table, without looking at or letting you see the side that
ls down. BSuppose the side that 1s up is red., I then say,
"Obviously this is not the white--white card. Therefore it
is either the red--white or the red--red, 1I!1ll bet you
even money that it i1s the red--red." If you take this bet

and we repeat the game often enough, you will go home a

1paron Bakst, Mathematics--Its Magic and Mastery
(New York: D, Van Nostrand Company, Inec,, 1941), pp. 350-52.
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lot poorer than when you came. The chances that it is the
red--red are not even, but two to one in my favor,

This problem was stated and the solution given in an
artlicle in the October 1950 Scientific American by Warren
Weaver, the director of the natural sciences division of the
Rockefeller Foundation., A spirited exchange of letters
between Dr. Weaver and a professional gambler who challenged
the correctness of the solution appeared in the December
1950 correspondence column of the same magazine.2

Solution. Suppose a card 1s drawn from the bag and
turned face up on the table. If red is the color turned up
this means that the white--white card is still in the bag
and the card on the table must be either red--red or red--
white. At thls point the uninitiated will believe that
there is an equal chance of the card being red--red or red--
white, However, of the two cards in question, three sides
are red and only one slde 1s white, This means there are
two ways red could be up such that the down side of the card
would be red, while there 1is only one way that red could be
up such that the down side of the card would be white.

Hence the odds are two to one in favor of the red--red card.
Of course if white turns up on the draw of the card the odds

would be two to one in favor of white--white by similar

2¢, Stanley Ogilvy, Through the Mathescope (New York:
Oxford Unliversity Press, 1956), pp. 32=33,
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reasoning. Hence by calling red--red or whlte--white
depending on the up color of the drawn card 1t is obvious
that two of the three cards in the bag are winners while

only one is a loser,

6.4 Tree dlagrams. Problems are many and varied
which deal with the processes of making an exhaustive search
for all the possible outcomes in a sgituation where more than
one outcome exists. In pure mathematics such problems are
often found in situations involved wlth mathematical proba-
bility, permutations, and combinations., Much of the
1anguage of this subj)ect 1s necessarily beyond the level of
presentation intended here; therefore this work will be
treated principally by example with the use of technlcal
terms avolded as much as possible.

The term loglcal possibilities shall be used to mean
the several outcomes or possible results that may be deter-
mined from a given physical situation. A very useful tool
for analyzing logical possibilities is the drawing of a
"tree" diagram, This device will be illustrated by several

examples.

Problem 1. Conslder the following problem which is
of a type often studied in probability theory. 'There are
two urns; the first contains two black beads and one white

bead, while the second contains one black bead and two

S —
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white beads. Select an urn at random and draw two beads in
succession from it. Now there is certainly more than one
way in which this operation could be performed and we are
interested in how many different ways it could be done,"

Solution. Draw a "tree" diagram as shown in Figure
6.3, Start at a single point and draw two "branches" lead-
ing to each of the first two logical possibilities, that 1s,
the choice of either the first urn or the second urn. From
the first urn three branches are drawn to represent the log-
ical possibilities of selecting any one of the three beads
in it. The two black beads are made distinguishable by
identifying one as By and the other as Bp. From each of
these branches, By, Bp and W, draw two branches to represent
the remaining possibilities after the first bead is selected.
The diagram now represents all the logical possibilitlies or
different ways in which two beads may be drawn in succession
1f the first urn 1s chosen. The branches from the second
urn are drawn in a similar manner with the two white beads
being distinguished by Wy and Wso.

The student should note that there are twelve
logical possibilities or possible outcomes, all different,
and these are the only outcomes possible. He should trace
each of the twelve paths from start to end in order to

enforce this concept.

““.i il’ﬁ.ilﬂﬂl F i  cnnasaii



68

END
I 2 3 4 5 6 7 8 9 10 12
Bz W B| W B| Bz B WZ B WI Wl Wz
B, B2 W W, W2 B
U| U:
START
FIGURE 6.3

TREE OF LOGICAL POSSIBILITIES
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Questlons.

1. In how many ways may a black bead be drawn
followed by a white bead? (Answer: Four ways. Paths 2, 4,
11, and 12.)

2., In how meny ways may two black beads be drawn?
(Answer: Two ways. Paths 1 and 3.)

3. If by the chance or probablility of a particular
outcome occuring we mean the number of ways it can happen
divided by the total number of all outcomes, what is the
chance of two black beads belng drawn 1n succession?
(Answer: The chance is I% or %. That 1s, one chance out of
six.)

4, What is the probablility of a black bead being
selected followed by a white? (Answer: The probability 1is
i% or %. That is,one chance out of three.)

5. What is the probabillity that the second bead
drevn will be white? (Answer: The probability is .§ or &
That is, one chance out of two.)

6. What is the chance that the first bead chosen
will be black? (Answer: Refer to the section of the tree
that represents the logical possibilities on the first
draw. The first bead can be chosen in six different ways
while three of these ways result in the selection of a

black bead. Therefore the chance of drawing a black bead
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on the first draw is % or %. That is, one chance out of
two. )

7. What 1s the probabllity that the first urn will

be selected? (Answer: l, or one chance out of two.)

2
8. If the first urn is selected, what is the chance
that the second bead drawn will be black? (Answer: % or

%; two out of three.)

9., If the first urn is chosen what is the probabil-
ity that two beads of different colors wlll be chosen?
(Answer: % or %; two out of three,)

10, If the first urn is chosen, what is the proba-
bility that the first bead chosen will be black and the

second one white? (Answer: % or %; one out of three,)

Problem 2. This problem is similar to Problem 1
except that one urn has two black beads and two white beads
in i1it, while the second urn contains one whlte bead and
four black beads. Select an urn and draw two beads from
it. Construct the tree diagram of loglcal possibilities.
How many possibilities are there? (Answer: 32.) After
the tree dlagram is properly drawn the teacher may ask

gquestions similar to those following Problem 1.

Problem 3. As another example, construct the tree of
logical possibilities for the outcomes of a World Series

played between the Dodgers and the Yankees. In Figure 6.4



FIGURE 6.4

TREE DIAGRAM FCR THE WORLD SERIES
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is shown half of the tree corresponding to the case when the
Dodgers win the first game (the dotted line at the bottom
leads to the other half of the tree when the Yankees win the
first game). In the figure a "D" stands for a Dodger win
and a "Y" for a Yankee win. A circled letter indicates that
the series has ended at that stage with the circled letter
indicating the winner of the serles. There are 35 possible
outcomes (corresponding to the circled letters) in the half-
tree shown, so that the World Series can end in 70 different
ways. Thls example is different from the previous one in
that the paths of the tree end at different levels corre-
sponding to the fact that the World Series ends whenever one

of the teams has won four games.3

Problem 4. Construct the other half of the tree
corresponding to the fact that the Yankees win the first
game,

Questions.

1. In 1955 the Dodgers lost the first two games of
the World Series but won the series in the end. In how many
ways can the series go so that the winning team loses the

first two gemes? (Answer: 10.)

3John G. Kemeny, J. Laurie Snell, and Gerald L.
Thompson, Introduction to Finite Mathematics (Englewood
Cliffs, N. Jd.: Prentice-Hall, Inc., 19575, PP. 25-30,




2. What is the chance that a team will win the
series after losing the first two games? (Answer: %% or l,
one out of seven.)

3. In how many ways can the World Series be played
(see Figure 6.4) if the Dodgers win the first game and

(a) No team wins two games in a row. (Answer: 1.)

(b) The Dodgers win at least the odd-numbered games.
(Answer: 5.)

(c) The winning team wins four games in a row.
(Answer: 4,)

(d) The losing team wins four games. (Answer: O,)

4, What 1s the probability of each occurrence
happening in the preceeding question?

(a) 7% or 1 out of 70.

(b) = or —%; 1 out of 14.
70 14

4 2.,
(c) =5 or 55 2 out of 35,
(a)

;%; or no chance at all.
Problem 5. If a famlly 1s to have four children in
how many ways may the births occur by sex classification?
(Answer: 16.) Draw a tree to show all the possibilities.
Questions.
1. In how many ways may the family consist of

exactly two boys and two girls? (Answer: 6.)



2. In how many ways may the family consist of at
least two boys? (Answer: 11.)

3. What is the probability that the family will
consist of exactly two boys and two girls? (Answer: T% or

g; three out of eight.)

4, What is the probabllity that the family will

1

contain no boys? (Answer: —= or one out of sixteen.)

T4



CHAPTER VII
FACTS FALLACIES AND DIVERSIONS

7.1 Introduction., The remainder of this thesis is
devoted to problem situations of a varied nature, selected
with the primary intent of arousing interest and encourag-
ing mathematical thinking. There are problems which involve
the use of one or more simple mathematical principles and
concepts but deal with phenomena or experiences with which
the student may not have had much previous contact. There
are problems which may require a certain amount of experi-
mentatlon and assembling of pertinent data before convincing
the student that a solution is possible. ©Some problems may
lead to the need of acquiring new techniques and operations
whlch have not been studied previously. Finally, there are
some problems which lead to the conjecturing and eventual
proof of speciflc statements.

The teacher should find that some of the problems are
appropriate only for Algebra students while others may be
used in both the general mathematics and the Algebra class.
The ordering of problems from first to last’in this chapter
has been determined by the-depth of mathematical knowledge
required of the student to cope with the problem

successfully.
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The author suggests that problems such as these
should be freely intermingled with the other more routine
problems. The inclusion of such problems may make rote
learning slower and somewhat less efficient than drill pro-
cedures, but may also produce less mechanical behavior and
more productive thinking. It is hoped that students will
find some interest and challenge in facing and coping with
new and changing problem situations.

A reference to the bibliography will afford the
teacher an opportunity to select and refer to numerous books
which offer a wealth of problems similar to the ones

presented here, as well as many types not included here.

7.2 Wine and water problem. Let us suppose that we

have in one glass a certain quantity of water and in another
glass an equal quentity of wine. We take a teaspoonful of
wine from the second glass, put it in the glass of water,
and stir. We then take a teaspoonful of the mixture and put
it back in the wine glass., Is the quantity of water now in
the first glass greater or less than the gquantity of wine
now in the second glass?

A rousing good argument can be started with this
one--but only because nearly everyone tries to do it the

hard way. It is an elementary illustration of something
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that often happens in more serious mathematics: the right

attack "breaks" the problem in a minimum time.
Explanation. ©Suppose for simplicity that we start

with 4 teaspoonsful each of water and wine., If we put one

teaspoonful of wine in the water, the resulting five tea-

spoonsful of mixture 1is % wine and % water, When we
transfer one teaspoon of the mixture to the glase of wine,
we are returning % of a teaspoonful of wine--~thus leaving %

of a teaspoon of wine in the water--and are adding % of a

teaspoon of water to the wine., Thus there are equal
quantities--% of a teaspoonful--of wine in water and water
in wine., Incidentally, 1t makes no difference whether or
not the mixture is stirred! Finally, the operation with
the spoon may be repeated as many times as desired--the

answer to the original question will be the same.1

7.3 A salary problem. A large business firm was

once planning to open a new branch in a certain city, and
advertised positions for three elerks. Out of a number of
applicants the personnel manager selected three promising
young men and addressed them in the following way: "Your
salaries are to begin at the rate of $3000 per year, to be

paild every half-year, If your work 1s satisfactory, and we

1Eugene P. Northrop, Rlddles in Mathematics (New
York: D. Van Nostrend Company, Inc., 1944), pp. 14-16.
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keep you, your salaries will be raised., Which would you
prefer, a raise of $300 per year or a raise of $100 every
half-year?"

One of the three applicants, after a moment's
reflection took the second of the two alternatlives and was
promptly put in charge of the other two. His alertness of
mind had resulted in not only a higher position than his
companions, but in a higher annual income as well,

The two possibilities may be treated in the following

manner:

3300 reise yearly $100 raise half-yearly
1st year: #1500 + $1500 = $3000 $1500 + $1600 = §3100
2nd year: $1650 + $1650 = £3300 $1700 + $1800 = $3500
3rd year: 51800 + $1800 = $3600 $1900 + $2000 = $3900
4th year: $1950 + $1950 = $3900 52100 + $2200 = $4300

How much more than his companions would the bright

young man have earned at the end of ten years?g

7.4 Ring and circle problem, In Figure 7.l one

would not immediately suspect that the two shaded portions
of the figure have equal areas. .
Assume that the radius of the inner circle 1s of unit

length 1 and that each successlive concentric circle is

2Eugene P. Northrop, Riddles in Mathematics (New
York: D, Van Nostrand Company, Inc.,, 1944), pp. 10-11,
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increased in radius by unit length 1. Can you prove that
the two shaded portions are equal in area?

Proof. If the radius of the largest circle is taken
as 5, then the inner radius of the shaded ring is 4, and the
radius of the shaded circle is 3, Hence the area of the
shaded circle is

2 - ﬂ-32 or 9m square units.

mr
The area of the shaded ring is
ﬂ'52 - me4® = 25m - 16m = 97 square units,
This proof, as presented here, is very direct and

brief. A student, especially in general mathematics may

22
7

approximation of m and become involved in considerable more

well use the fractlion or the decimal 3.14 as an

arithmetic.

7.5 Rope around the eguator! Suppose there were a

rope fitting tightly around the equator of the earth. Also
imagine that the surface of the earth at the equator is
perfectly uniform, that i1s no mountains or valleys, bumps
or irregularities to interfere with our thinking that the
equator is a perfect circle. Now suppose that this rope 1s

cut at one place and we splice in an additional piece 10

JEugene P, Northrop, Riddles in Mathematics (New
York: D, Ven Nostrand Company, Inc., 194%), p. 48
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feet longer than the original one. Flnally we have a means
of fixing this rope so that (because of its extra length) it
will be the same distance from the equator all the way
around the earth.

Now how large a space would there be between the rope
and the earth?

Would it be large enough for

(a) a man, 6 feet tall, to walk through,

(b) an average dog to walk through,

(e) a piece of tissue paper to just slip through?
.Remember the distance around the equator and therefore the
length of the original rope is approximately 25,000 miles.

Explanation. (1) C = 2mr for any circle no matter
how large or how small.

If we increase the radius of a circle with radius r
by an amount x (see Figure 7.2) and make a new, larger,
circle whose radius is now (r + x) the new circumference
would now be C!' = 2m(r + x). This mey now be written

(2) C' = 2mr + 2mx
using the distributive law for multiplication over addition.
If we now compare this wlth the value of C éiven above,
namely

(1) C = 2mr

we see that C' is more than 2mr by an amount 2mx. In other



FIGURE 7.2
RELATION BETWEEN RADIUS
AND CIRCUMFERENCE
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words subtracting (1) from (2)

(2) C' = 2mr + 2mx
(1) C = 2mr
(3) c¢'-c
Since in this problem (C' - C) is 10 feet then

21X,

(4) 10 = 2mx

and X = 2 or about 1.6 feet.

S0 by inserting an extra 10 feet of rope into our
25,000 miles of rope we have increased the radius by over
1% feet and our average dog should have little trouble in
walking under the rope.

Problem, If a 6 foot man could walk around the earth
at the equator, how much farther than his feet would his
head trave1?4

7.6 Cigarette paper problem. Paper to be fed to

cigarette machines comes in long bands wound in a tight roll
around a wooden spool. The dlameter of such a paper roll is
16 inches, that of the spool itself, 4 inches, If the paper
is Eﬁ% of an inch thick and we assume there is no measurable

space between the layers, how long 1ls the paper?5

*Lillian R. Lieber, The Education of T. C. Mits (New
York: W, W, Norton and Company, Inc., 19EE), PP. 32=39

5Joseph De Grazia, Math is Fun (New York: Emerson
Books, Inc., 1954), p. 94.
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Solution. Imagine cutting through the paper
lengthwise to the spool such that the mass of paper could be
removed from the spool and lald out on a flat surface as in
Figure 7.3. Now the cross section of this mass of paper is
an isosceles trapezoid with one base having a length equal
to the circumference of the spool and the other base equal
in length to the circumference of the roll of paper. Thus
one base is 4m inches and the other 16m inches in length.
The height of the trapezoid is

%(16 - 4) or 6 inches.
The average length of a single sheet of paper in this mass
is the length of the median or
%(l6ﬁ + 41) or 10w inches.
There are
6(250) or 1500 sheets of paper,
hence, 1500(10r) is the total length of paper contained on
the spool.
1500(10m) = 15000m inches

or 47,100 inches approximately.
This 1s approximately 3925 feet!

Problems,

1. If i1t requires 1% inches of paper to manufacture
one cigarette, how many cigarettes could be made from one

spool of paper? (Answer: 33,680.)
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FIGURE 7.3
PAPER REMOVED FROM SPOOL
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2. How many packs, if there are 20 cigarettes in a

pack? (Answer: 1684.)

7.7 A circle problem. Construct a circle O having a

one-inch radius and construct two diameters AB and CD per-
pendicular to each other. Now select any point E on the
circle and construct EF parallel to CD meeting AB at F and
EG L. CD meeting CD at G.

How long is line GF? (See Figure 7.4.)

Solution. Many students have worked a considerable
. length of time on this problem without success because they
became fixed in thelr attack on the problem. The focus of
attention is the right triangle. The pythagorean theorem is
a powerful tool but when that fails the able problem solver
is one who is able to shift his attention.A

The teacher is in a good position to help the student
realize the dangers of rigidity and help him to broaden his
approach to the problem. A statement such as the following
could be helpful; "When you are having trouble with a prob-
1em-look at it In a different manner than you have been
doing. You have been thinking about triangie GOF or
triangle GEF, have you tried thinking about the

gquadrilateral EGOF? Try it. Get in the habit of asking
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FIGURE 7.4
FIND THE LENGTH OF GF
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yourself questions about the problem as you work on it,"

Of course GF 1s one inch long since GF = OE.6

7.8 The grindstone problem. A couple of shopworn

carpenters who had an axe to grind declded to go halvers and
buy a very large grindstone. They were able to get one at a
very low price, so they each invested an equal amount in it.
The stone measured 5 feet and 6 inches 1n diameter but
because of the spindle the carpenters decilded that the stone
would be guite useless when its diameter was reduced to 18
inches by constant wear. Having nothing better to do they
further decided that one would use the stone until his share
of it was worn away at which time the second carpenter would
inherit his share of the stone. Now what the carpenters
wanted to know was how much of the stone the first one could
grind away from 1t and still leave an equal amount for the
gecond one to use.7

Solution. In Figure 7.5 ring A represents the
portion of the stone to be used by the first carpenter, ring

B by the second, and circle C the remainder of the stone not

OKenneth B. Henderson and Robert E, Pingry, "Problem-
Solving in Mathematics," The Learning of Mathematics--~Its
Theory and Practice, Twenty-first Yearbook of the National
Council of Teachers of Mathematics, (Washington, D. C.:
NCTM, 1953), pp. 256-5T7.

TPrederick A. Collins, Fun with Figures (New York:
D. Appleton and Company, 1928), p. 22.
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usable because of the spindle. For the carpenters to share
equally in the use of the stone the area of ring A must
equal the area of ring B. The area of ring A is given by
m(33)2 - mx2. The area of ring B is %2 - m(9)2, Therefore

mx® - w(9)2 = m(33)2 - wx2

or x2 - 81 = 1089 - x2
2x° = 1170
X2 = 585
x = 24.,186"

Since the radius of the original stone is 33 inches the
first carpenter may wear away 33 inches minus 24,186 inches
or 8.814 inches. Thus the first carpenter may reduce the
radius by 8.8 inches resulting in a reduction of dilameter by
17.6 inches or 1 foot, 5.6 inches.

7.9 A "Circular" Paradox. Problem: Consider the

two equal circular disks, A and B, of Figure 7.6. If B is
kept fixed and A is rolled around B wlithout slipping, how
many revolutions wlill A have made about its own center when
it 1s back in its original position?

Explanation. The answer, 1f obtained without the aid
of actual disks, 1s almost invariably incorrect. It 1s gen-
erally argued that since the clrcumferences are equal, and
gince the circumference of A 1s laid out once along that of

B, A must make 1 revolution about its own center. But if



FIGURE 7.6
ROLLING A DISK ABOUT AN

EQUAL DIsk
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the experiment is tried with, say, two coins of the same
size, 1t will be found that A makes 2 revolutions. This
fact can be shown diagrammatically as follows:

In Figure 7.7, let P be the extreme left-hand point
of A when A is in its original position. A moment's thought
will make it clear that when A has completed half its cir-
cult about B, the arc of the shaded portion of A will have
been laid out along that of the shaded portion of B, and P
will again be the extreme left-hand point of A. Hence A
must have made 1 revolution about its own center. The same
~argument holds for the arcs of the unshaded portions of A
and B when A has completed the second half of its circuit
about B.8

7.10 Curves of constant breadth. In moving heavy

objJects by means of a slab and rollers, would it be possible
to use rollers whose cross sections are not circles, but
some other kind of curve? In other words, are circles the
only curves of constant breadth? The intuitive answer 1s
yes; the correct answer 1s no.

By a curve of constant breadth we shall mean exactly
what the slab-and-roller idea implies, That is to say, if

such & curve 1s placed between and in contact with two fixed

8Northrop, op. cit., pp. 55-56.
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FIGURE 7.7
THE ROLLING DISK AT THE
HALF-WAY POINT
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parallel lines, then it will remain in contact with the two
fixed lines regardless of how it is turned.

The simplest curve of constant breadth--aside from
the circle--is shown in Figure 7.8(a). To construct it,
first construct the equilateral triangle ABC and denote the
length of each of its sides by r. With A as center, and
with radius r, draw the arc BC., With B as center, and with
redius r, draw the arc CA. Finally, with C as center, and
with radius r, draw the arc AB. This curve can be made
smooth by prolonging the sides of the triangle any distance,
say S, as in Figure 7.8(b). Here the arcs DE, FG, and HI,
with centers at A, B, and C respectively, are all drawn with
radius S; and the ares EF, GH, and ID, with centers at C, A,
and B respectively, are all drawn with radius r + S.

In Figure 7.9, the second of these curves is shown
placed between two fixed parallel lines. It is evident
from the figure that the curve will remain in contact with
the two lines regardless of how 1t is turned, for the dis-
tance PQ between the highest and lowest poilnts of the curve
is always the sum of the two constant radii, S and r + S,
and so is always the same,

Other curves of constant breadth may be constructed
using regular polygons as base figures., The student may
well be inclined toward experimenting with such base figures

as the pentagon and heptagon.



(a)

(b)

FIGURE 7.8

CURVES OF CONSTANT BREADTH
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It is well to note that although any roller whose
cross sectlon is a curve of constant breadth can be used in
place of a circular roller for the moving of objlects on a
slab, a wheel in the shape of eilther of the curves in Figure
7.8 could never be used in place of a circular cart wheel
or a circular gear. For these curves have no real center--
no point, that is, which is equidistant from all points on
the curve., The circle is the only curve which has this
particuler property.

Curves of constant breadth need not be regular in
. shape, as were the two Jjust examined. The irregular curve
of Figure 7.10 1s constructed as follows: With A as center,
and with any radius AB, swing arc BC., With C as cénter, and
with the same radius (the radius remains conatant through-
out), swing AD, With D as center, swing CE, With E as
center, swing DF. With F as center, swing EG. With B as
center, swing AG. (G is the point of intersection of the
last two arcs.) Finally, with G as center, swing FB, This
curve has corner points which can be rounded off by
extending the lines AE, AC, and the like, as was done in the
transition from diagrams (a) to (b) in Figufe T8

There should be wooden models similar to the
geometric shapes in Figure 7.8 and thick enough to roll

along on edge. Puplls should be asked whether any other
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FIGURE 7.10
AN IRREGULAR CURVE OF
CONSTANT BREADTH
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shape except a circle will roll along a line so that the

highest polnt is always the same distance from the line.
Thelr mental imagery usually says no. Even when the shapes
are shown to them they doubt it. Actual experiment 1s
usually necessary to convince them. The theory by which
these figures are constructed might be glven to them, or

they could be asked to work it out for themselves,?

T7.11 BSlab and roller problem. Difficultles are

generally encountered in the problem of a slab supported by
rollers--a device frequently used in moving safes, houses,
" and other heavy objects.

If the circumference of each roller in Figure 7.11 is
1 foot, how far forward wlll the slab have moved when the
rollers have made 1 revolution?

Explanation. The usual argument is to the effect
that the distance the slab moves must be egual to the
circumference of the rollers, or 1 foot. The correct answer
is not 1 foot, but 2 feet.

Suppose we resolve the motion into two parts. First
think of the rollers lifted off the ground gnd supported at
their centers. Then if the centers remain stationary, 1

revolution of the rollers will move the slab forward 1 foot.

9Northrop, op. eit., pp. 57-59.



FIGURE 7.11
A SLAB ON ROLLERS
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Next think of the rollers on the ground and without the
slab., Then 1 revolution will carry the centers of the
rollers forward 1 foot. If we now combine these two
motions, it should be evident that 1 revolution of the

rollers will carry the slab forward a distance of 2 feet.lo

T.1l2 A simple addition problem. An interesting

property of a finite arithmetic progression is the fact that
we can obtain the sum of its numbers without recourse to
addition of all of them. Consider the following indicated
sum where the terms establish & sequence known as an arith-
‘metic progression. Suppose we wish to add the first fifteen
numbers,

1 +2+3+4+ 5+

+ 6 + 7 +
15 +14 +13 +12 +11 +10 + 9 +
16 +16 +16 +16 +16 +16 +16 +16

9 +lO +11 +12 +13 +14 +15

_I 6 + 5 + 4 + 3 +. 2 +_1
16 +16 +16 +16 +16 +16 +16

&

Below the sequence of the first fifteen numbers write the
same sequence, term by term, but in reversed order, then add
the terms vertically. Note that in each case the sum 1s 16.
Now there are fifteen such sums, hence the sum of the two
sequences is 15+16 = 240. But we added two sequences of the
first fifteen numbers., Therefore the sum of one such

sequence 1s one-half of 240, or 120,

10Northrop, op. cit., p. 47.
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This procedure may be applied to the addition of any
arithmetic progression., Note that the addition of the first
fifteen numbers was reduced to adding the first and the last
term, and the sum thus obtained was multiplied by the number
of terms in the progression. Finally the product was
divided by 2.

Problem 1. Find the sum of all the whole numbers
from 40 to 100 inclusive by the above method.

Problem 2. Find the sum of the even numbers from 2

to 100 1nclusive.11

7.13 An experimental paradox. A well known paradox
involves the dissection and rearrangement of a figure. It
is a good example of the pitfalls of "experimental geom-
etry," a topic generally discussed in the early stages of
any course in plane geometry. However with a little prep-
aration the presentation of this experiment to a general
mathematics or algebra class would certainly whet the
curliosity of some,

The student 1s shown how to deduce experimentally
the fact that the sum of the angles of any triangle is a
straight angle, or 180°. To do so0, he makes a triangle of

paper or cardboard, cuts off the three angles, and

11Aaron Bakst, Mathematics--Its Magic and Master
(New York: D, Van Nostrand Company, Inc., 1941), p. 234.
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rearranges them as shown in Figure 7.12., Let us see to what
sort of contradiction this method of proof, not backed up by
gsound logical argument, can lead.

Suppose we take a square piece of paper and divide it
into 64 small squares, as in a chessboard, or use rectangu-
lar coordinate graph paper and outline a square 8 units by
8 units, We then cut it into two triangles and two
trapezoids in the manner indicated in Figure T7.13(a) and
rearrange the parts as in Figure 7.13(Db).

Now the resulting rectangle has sides which are
respectively 5 units and 13 units long, so that its area is
513 = 65 square units, whereas the area of the original
figure was 8°8 = 64 square units., Where did that additional
square unit come from?

Explanation. The truth 1s that the edges of the
parts 1, 2, 3, and 4 do not actually coinclide along the
diagonal PQ, but form a parallelogram PSQR which 1s shown
in exaggerated proportions in Figure 7.14., The area of this
parallelogram 1s the elusive square unit., The angle SPR is
so small that the parallelogram 1s never noticed unless the
cutting and rearrangement is done with great'care. Probably
the simplest explanation would be to show that the slope of
PS is % and the slope of 5Q 1is %. Certainly %% and %g are
not the same., The same relation can of course be shown
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THE DISSECTION AND REARRANGEMENT
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FIGURE 7.14
THE FALLACY
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for QR and RP., This problem should illustrate very well
that because physical materials have been drawn, cut, and
rearranged one should not feel that this 1s convincing

proof.12

" T.14 The persistent 9. When any two-diglt number is

written in reverse order, the new number is also a two-digit
number. We shall consider here that the reverse of a two-
digit number ending in zero 1s also a two-digit number. For
example, the reverse of 20, which 1is 02 shall be considered
a two-digit number., If the digits in a two-digit number are
different, the difference between the number and its
"reverse" possesses an unusual property; it is always
divisible by 9. For example, the reverse of 74 is 47, and
74 - 47 = 27. The reverse of 83 1s 38, and 83 - 38 = 45,
The reverse of 20 is 02, and 20 - 02 = 18. All of these
differences, 27, 45, and 18, can be divided by 9 with no
remainder., Would it be possible to show that this remark-
able property 1s always true without trying all two-digilt
numbers,

Proof. This fact may be verifled by writlng a
general expression for a two-digit number such as 10a + b

where a # b. The reverse of this number is then written as

12Northrop, op. cit., pp. 49-50,
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10b + a., The difference of these two numbers is (10a + b) -
(10b + a) = 10a + b - 10b - a and is equal to

9a - 9b = 9(a - b).

Since @ is a factor, this result shows that the difference
between a two~diglt number and its reverse is always
divisible with no remainder by 9.

Question. Is 1t possible that the difference between
a two-digit number and its reverse be greater than 81.

Answer. No! BSince each difference must be divisible
by 9 the quotient so obtained would have to be (a - b). But
(a - b) must be equal to or less than 9 since 9 is the
largest possible value gilven a = 9 and b = O, Hence the
maximum value of the difference 9(a - b) is 9:9 or 81. The

only possible dlifferences may be

1«9 = 9 4.9 = 36 79 = 63
2:9 = 18 59 = 45 89 =72
39 =27 6°9 = 54 9+9 = 81.

The sum of any such difference and its '"reverse" 1is
always equal to 99. Thus, 27 + 72 = 99, 45 + 54 = 99, and
72 + 27 = 99, Can you prove this statement to be true?

Proof. Let 10a + b be the original two digit number,
where a 1s greater than b, and subtract from it 10b + a.

Thus
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10a + b
Subtract 10b + a
Difference (10 a = 10 - 10b) + (10 + b - a)
or 10(a = b = 1) + (10 + b - a)
reverse 10(10 + b -a) + (a = b - 1)

add 10a - 10b - 10 + 100 + 10b

which when simplified is 99.

10e. + 10 + b - a + a2 = b - 1

Problem., When any three-diglit number 1s written in

reverse order, the new number is also a three-digit number.

If at least two of the digits are different, the difference

.between the number and its "reverse" i1s always evenly divis-

ible by 99. For example, the reverse of 635 1s 536, and

635 -~ 536 = 99, The reverse of 841 is 148 and 841 - 148 =

693, The reverse of 512 is 215, and 512 - 215 = 297, Each

of these differences is divisible by 99 with no remainder,

Proof., This fact may be verified if we write a

general expression for a three-digit number as 100a + 10b +

¢, (Assume a # ¢ and for convenience a greater than c.)

The reverse of this number is then written as 100c + 10b +

a. The difference of these tw
(100a + 10b + c)
= 100a + 10b + ¢

and is equal to

99%a - 99c

(]

numbers is
(100c + 10b + a)

100c - 10b - a

99(a - ¢).
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This result indicates that the difference between any
three-digit number and its reverse 1ls always divisible by 99
with no remainder.

Question 1. What other numbers would this difference
be evenly divisible by other than 99. (Answer: 3, 9, 11,
33.)

Question 2. What is the largest number value for
99(a - c). (Answer: 891.)

Why: a - c is greatest in value when a = 9 and ¢ =
0. Therefore 99(9 - 0) = 99-9 or 891.

The difference between a three-digit number and its
reverse cannot ever be greater than 891, In other words,

the dlfferences may be

1-99 = 099 4:99 = 396 7:99 = 693
2.99 = 198 5-99 = 495 8:99 = 792
399 = 297 6+99 = 594 9.99 = 891.

The sum of any such difference and its "reverse!" is always

equal to 1,089. Thus, 297 + 792 = 1089, 495 + 594 = 1089,

It
i

Notice that 297 + 792 3.99 + 8-99Q

5499 + 6+99

11499

and 405 4+ 594 1199, In other words,

the sum of a difference and its "reverse" is always equal to
11-99 = 1,089.

Can this last statement be proven algebraically?

The foregoing problems might well be presented to a

class originally as a trick. By having several students
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select a two-digit or three-digit number and perform the
several operations on them and then announce to their

surprise that the result is 99 or 1089 as the case might
be, 13

7.15 Why 1089. Here is an interesting exercise.
Think of any number comprised of three diglits; in order to
avold negatives 1t 1s preferable to make the hundreds digit
larger than the ones digit. Thus, selecting three numbers
at random, such as 584, 753 and 872, we carry out succes-
sively the following operations--reverse and subtract, again

reverse and add.

584 753 872
Reverse _485 257 278
Remainder
or Difference 099 396 594
Reverse 990 538 H98
Sum 1089 1089 1089

No matter what digits are selected the result is always the
same, Indeed it is not difficult to prove algebraically
that such must be the case.

Proof. Let the three digits be a, b; and c,

respectively; then, carrying out the above operations,

13 paron Bakst, Mathematical Puzzles and Pastimes (New
York: D, Van Nostrand Company, Inc., 195%), pp. 171-172.
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a b c
Reverse c b a
Difference a-c¢=-1 9 10 + ¢ - a (Why?)
Reverse 10 + ¢ - & 9 g -~ ¢ =1
Sum 9 (18) 9
that is 10 8 9

Obviously thlis must be true whatever diglits are assigned to
14

a, b, and ¢, provided only that a is not egual to c. Why ?
7.16 A division fallacy.

Let a =b; a £0
Multiply both sides by a: a2 = ab
Subtract b2 from both sides: a2 - b2 = ab - b2
Factor: (a2 +b) (& = b) =bla - b)
Divide both sides by (a - b): a+b=o>»

But a = b; therefore 26 =D
Divide both sides by b: 2 = &

Explanation. Of course the trouble is between the

fourth and fifth lines. Since a = b, the quantity (a - b)
must equel zero. The fourth line is correct, the fifth line
s not. We have broken what R. P. Agnew15 calls the funda-

mental commandment of mathematics: Thou Shalt Not Divide By

14J. Newton Friend, Numbers: Fun and Facts (New
York: Charles Scribner's Sons, 1954), pp. 65-66.

15g, P. Agnew, Differential Ecuations (New York:
MeGraw-H111, 1942), p. 35.
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Zero, Division by zero is against the rules of the game,
and whenever you try it you will get something meaningless

1ike 2 = 1.16

T.17 A sguare root fallacy.

(x + 1)2 = x2 4+ 2x + 1
(x + l)2 -(2x +1) = x
(x+l)2 ~ (2x+1) - x(2x+1) = x° - x(2x + 1)
(x+l)2—(x+l)(2x+l) + %(2x+1)2 = x2 - x(2x+1) + %(2X+l)2
[(x+1) = 2(2x+1)12 = [x - F(2x41)12
(x41) - H(2x41) = x - H(2x+41)
X +1=xXx

1 = 0,17

Explanation. The line with the square brackets says

2

[%] = [-%]2. This is correct. However, taking the square

root of both sides leaves % = -%, which i1s most certainly

not correct., You cannot take the square root of both sides

of an equation without first inspecting for the possibility

of sign trouble.la

160. Stanley Oglilvy, Through the Mathescope (New
York: Oxford University Press, 1956), pp. 3%8=39.

170. Stanley Ogilvy, Through the Mathescope (New
York: Oxford University Press, 1956), p. 39.

181p14., p. 139.
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7.18 A law of multiplication. Why does negative two
times negative five give positive ten? Attempts at Justify-
ing this rule include illustrations such as the followilng.
It costs the state %5 per day to feed, house, and clothe
each prisoner at a penlterntiary. Two convicts escape.

Hence the prison counts -5 dollars, times -2 prisoners, and
shows a profit of +10 dollars on its books for every day the
fugitives are at large.

Such an illustration proves nothing. The true state
of affairs is not in the least mysterious. If a certain law
of multiplication of positive numbers (the Distributive Law)
is to hold for negative numbers, too, then the rest follows
logically.

{-2) (-5)

(-2) (-5) + (0) (+5)

= (=2) (=5) + (=2 +2) (+5)

(=2) (=5) + (=2) (+5) + (+2) (+5)
(=2) (=5 + 5) + (+2) (+5)

(=2) (0) + (+2) (+5)

(+2) (+5)

= +10

1

1l

Any numbers or letters can be used in place of 2's
and 5's, to show that
(=a) (=b) = (+a) (+b).*°

196, stanley Ogilvy, Through the Mathescope (New
York: Oxford University Press, 1956), p. 41.
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7.19 BSquare roots by successive approximation.

Square roots of numbers are obtained elther from tables or
there are special methods for their extraction by
calculation.

The usual method of extraction as found in algebra
textbooks 1s lengthy, little understood, (even by the
teacher) and requires much numerical work. Now we may
learn a method which 1s not cumbersome, yet yields
satisfactory results,

This method utilizes one lmportant idea employed 1n
mathematics: If we have a fraction (or a number very small
in comparison with some other number), the square of the
fraction is so small that it may be discarded in computa-
tion. For example, suppose we have a decimal fraction 0,01
which is part of a number, say 4.21. This number may be
written as 4.2 + 0,01, Now if we sguare this number, we
have

4,21% = (4.2 + 0.01)2 = 4,22 4+ 2(4,2) (0.01) + 0.012

or 4.212

= 17.64 + 0.084 + 0,0001.

The square of 0,01, which i1s 0,0001, may be disregarded

and discarded; if 4,21 is correct to three significant
digits, lts square will also be correct to three

significant digits without the 0,0001, hence 00,0001 or 0.012

is of no value to us.
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With this in mind we may proceed with the extraction
of sgquare roots. Suppose we wish to calculate /1%, (To
check on our method obtain its value as given in tables of
square roots and have that /14 = 3,742.,) We know that /1%
1s greater than 3 since 32 =9, and is less than 4 since 42
= 16. Therefore let

L = 3 + X

where x 1s some fraction. ©Saquare both sides of the equation.
We then have

14 = 32 + 23X + %2

or 14 =9 + 6x + x2.

Now since x is a fraction, x2 is also a fraction, but much
smaller than x, We therefore discard x° and have

14 = 9 + 6x.
Solving this equation for x we have that

14 - 9 = 6x, or 6x = 5 and

2.
From this we have that
/TE £ 32
which is only an approximate value. In decimals then
/% = 3.83°

Since we have one epproximation to the value of J”E,
we may use this as a basls and apply the same method once

more., We may say then that
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=32 +y
where y may be elther positive or negative. Again squaring
both sides of the equation we have
14 = (2%)2 #* Q(g%)y + y2.
Since y is a fraction and we discard its square and have the

equation

+ 229
e 36'%5'

and from this, by solving for y, we have that

y = 52(524%12)

or y = %%2, ory = - 5%% ory & - TT Then
/1'5':35- £ 3.83 - 0.09 = 3,74,

Thls 1s a second approximation, and we may proceed
with another calculation to obtain a third approximation.
We write /I = 3.74 + 2
where z may be elther positive or negative. BSquaring both
sldes of the equation we have

2 2
14 = 3,74 + 7.58z2 + 2°,

E and have

We agaln discard z
14 = 13,9876 + 7.58%z
and T.58z = 0.0124.

From this we obtain that

z 0.0016 or,

Z 0.002,
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Then
Ik = 3,74 + 0.002
or /IE = 3,742
and this checks with the value of the square root as

20

obtained from a table. Thus, starting with the one sig-

nificant digit, 3, four significant digits have been
obtained since the number of correct digits is virtually

doubled at each stage of the approximation process.21

20jaron Bakst, Mathematics--Its Magic and Mastery
(New York: D. Van Nostrand Company, Inc., 1941), pp. 218-20.

2lyugell L. Luke, "Numerical Analysis and High School
Mathematics," The Mathematics Teacher, November, 1957.
pp. 507-12.



CHAPTER VIII
SUMMARY AND CONCLUSION

8.1 Summary. The content of this thesis was
organized for the teacher of ninth grade mathematies with
the purpose of supplementing text material in the area of
both general mathematics and algebra. The criterion for the
selection of materials was three-fold; (1) the problems and
demonstrations should be clearly mathematical in principle
and not merely a collection of puzzles, games, or situatlons
involving a play on words, (2) the nature of the problems
should be that of the unusual or out of the ordinary so as
to enhance the opportunity to create an atmosphere of curi-
osity and interest, and (3) the work should be commensurate
to the maturlity and intellectual level of the ninth grade
mathematics student.

In Chapter I, section 1.7, suggestions have been
presented to the teacher for the use of this material.
Experience may indicate numerous variations of the methods
suggested and flexiblility in presentation may well be
desirable and necessary in many teaching situations.

Chapters II through V, on systems of numeration, are
included in this work to demonstrate the basic structure of

the decimal numeration system. The use of any or all of
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these chapters would require consliderable class time and
would likely be most effective as an integrated unit of
study. The basic concepte of the fundamental operations of
arithmetic are, however, dominant in thlis work and the time
required for a thorough treatment of this unit, whether in
general mathematics or algebra, may well be justified. The
material presented in this unit 1g more comprehensive than
that found in any one reference used by the author.

The problems in Chapters VI and VII should introduce
to the student a variety of mathematical methods and prin-
ciples and tend to stimulate both curiosity and interest in
mathematics., This material is primarily a representative
sample of problems Judged by the author to satisfy the

criterion established in the early part of this chapter.

8.2 Conclusion, The teacher of mathematics in the
secondary school should be aware of the potential for stim-
ulating intellectual curiosity and interest in mathematics
through the use of supplemental material. The problem
situations presented in this thesis need not be restricted
to use at only the ninth grade level but may be used to a
similar advantage at higher grade levels in the secondary
school.

The author suggests that secondary school libraries

should contain at least several books in the area of
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recreational mathematics and that mathematics teachers
should encourage the use of these books. Several references
listed in the bibliography, identified by an asterisk, were
judged by the author as very acceptable and are recommended
for the high school library.

Finally, it is strongly recommended that mathematics
teachers use to advantage The National Council of Teachers

of Mathematics publication The Mathematics Teacher as a

means of stimulating their own curlosity and interest and as
a source of mathematics often applicable in the modern

mathematlics classroom.

8.3 BSuggestion for further study. The material in

this thesis has not as yet been used in the classroom by the
author. A suggestion 1s made, therefore, that further study
could consist of accumulating data by experimental means in
an attempt to evaluate the effectiveness of such material as

a motivating factor in ninth grade mathematics.
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