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CHAPTER I
INTRODUCT ION

For the past five years, many individuals and organi-
zations have been actively engaged in improving the mathe-
matics program in the American public schools., Most of
their efforts have been directed towards the secondary
schools, Teachers at that level have been recipients of
various grants to help them acquire more subject matter
knowledge. High school curriculums have been examined by
authorized committees which have in turn made suggestions
for revisions. Sample textbooks have been written and
are being tested and improved by some of the best mathe=-
maticians and mathematics teachers in the country.

While proposals for improving the program in grades
one through six are being studied by such organizations
as the School Mathematiecs Study Group, the National Council
of Teachers of Mathematics Elementary School Cupriculum
Committee, and the University of Illinois Committee on
School Arithmetic, very little has been accomplished at
the time of writing this thesis,

Yet it is in these grades that the student gets his

first formal instruction in mathematics. It is here that



the foundation is laid for all future study. Here the
student develops likes and dislikes for the various branches
of learning, Both his ability and his desire to proceed

in the study of mathematics are largely determined during

these years in the elementary school.
The Problem

It was the purpose of this study to develop a series
of talks to be given to elementary teachers. No attempt
has been made to instruect them in methods of teaching arithe
metic, Instead, the emphasis has been on giving to the
elementary teachers an overview of the number systems,
their properties, their limitations, and their relation-

ships,.
Importance of the study

Since the secondary teachers have been receiving
additional instruction, it seemed that they should be the
first to carry the attempts at improvement into the ele-
mentary school. These talks have been developed in con-
sideration both of the ability of the secondary teachers
to give such and that of the elementary-teachers to under=-

stand them,



Scope of the study

The talks were completed after they had been given
informally to the teachers of the St. John Elementary School,
St. John, Kansas. They were written in a style which seemed
most comprehensible to the teachers. Both content and
form were modified to include answers to some questions

which arose at that time.
Organization

There is a total of five talks,

The f£irst one is an introduction concerned with a
justification of the talks. It includes some background
information on who is ecriticizing the mathematics program,
what those criticisms are, why it is necessary to heed
them, what efforts are being made to meet them, and what
part the elementary teachers have in these efforts.

The second talk develops the set of natural numbers,
their basic properties, and the operations which may be
performed with them.

The third talk is concerned with the set of positive

rational numbers.

In the fourth talk, consideration is given to the
development of the integers. The rationals are then defined

in terms of the integers so that the negative rationals

are included,
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In the final talk, the set of real numbers is devel-
oped, ‘Irrationals are introduced as non-repeating infinite
decimals. The relationship of all t%e number systems is
illustrated by use of the number line.

The order o the deveiopment was determined by the
order in which the number systems are introduced in the

schools.
Sources of data

The principal sources of material used in the pre-
paration of this thesis have been books and textbooks,
essays, and magazine articles. Of particular assistance
have been the chapter on “Number and Operation' in the
Twenty-fourth Yearlook of the National Council of Teachers
of Mathematics, and the book, Understanding Arithmetic,

by Robert L. Swain.



CHAFTER II
INTRODUGTORY TALK

The mathematics program in the American publie schools
is under fire. The battle has been going on for several
years,

Business and industry, the armed services, the col-
leges and universities, research institutes, mathematics
teachers and their fellow scientists, govermmental agencies,
the politicians, and Mr. John Q. Public, himself, are all
levelling the charges. Everyone is in the firing squad.
Shells fly thick and fast.

The bullets, however, have been cast chiefly in two
molds., The first one is that not enough young people are
being trained in mathematics. The second one is that their
training is not good enough. Concern for both quantity
and quality has shaped the molds.

The assailants make no secret of the formula for
the powder which they pour into the molds, Criticism of
the educational aims provides one of the ingredients.
Trying to make “well adjusted®™ individuals is not enough.
These so=called “well adjusted! individuals need to know

something. Also, trying to educate all students by the



same process is the wrong approach and not really demo=
cratic, Individual differences in children should be
recognized and accepted by teachErs,\pupils, and parents
alike, This country should, of course, provide equal edu~
cational opportunities for all American children. It is
flying in the face of mature to insist that those oppor-
tunities must be identical. By insisting that all children
be put through the same mill, we have not only £rustrated
and poorly equipped the below-average, provided the average
student with a very inadequate background of this-and~that,
but we have bored and sadly neglected the above-average
student who is the potential mathematician.

A second ingredient is criticism of the curriculum,.
Mathematics is a live and lusty discipline. It is growing.
A large amount of new mathematics has been created in the
past one hundred years. Almost none of it is being intro-
duced into the public schools. The mathematics curriculum
has remained much as it was a century ago. Consequently,
high school graduates are getting mno introduction to the
new mathematicse

Besides the courses, the content of those courses
has been watered down and sugar-coated until the result
is superficial. Furthermore, it takes a student too many

years to go through the courses now considered the maximum

of public school training. Content from courses which,




for a long time, have been considered senior high school
material could be introduced in the junior high, where

the present mathematics courses get ;epetitious and boring.
Many ideas not now considered could well be introduced at
the elementary level.

Another ingredient is criticism of the text books,.
Many of them have been written by people who dontt know
anything about mathematics., The authors and publishers
are more concerned with catching the eye than educating
the students. Many of the text books turn out to be mathe-
matically unsound,

Criticism of the teachers is an ingredient. The
teachers are not well educated in mathematics. They haventt
studied it long enough or thoroughly enough to understand )
it themselves. Consequently, they teach it as tricks and
skills. This is not enough.

As a result, the students have no real understanding
either. They can do only what machines can do, and that
not as well, It is no longer enough to be able to add,
subtract, multiply, divide, periode The mneed is for people
who know why and can tell the machine what to do and when.
The need is for people who can solve problems which they

have never seen before. What is even more important, they

need to be able to recognize what a problem ise



Criticism of the American way of life provides more
explosive ingredients. We have failed to recognize that
showing a credit in mathematics on pa;er is not the same
as a good, thorough, systematic study and some knowledge
of the subject. We childishly cling to the idea that we
can eat our cake and have it, too.

We have made heroes of the wrong people. Our children
grow up thinking it is more important to be a sexy television
“singer," or a daredevil driver of a sportscar, or be ambi-
dextrous with side arms than it is to be an intellectual,

We use very unglamourous terms to describe the latter. We
hold our moses while we use those terms; brain, egghead,
square.

We are also uninterested in anything unless we can
see an immediate use for it. That use largely implies
physical use. We are so concerned with measuring every-
thing by a material yardstick that we have failed to develop
a more important but less tangible method for determining
what is important.

These and many other lesser ingredients are all
part of the mixture which provides the explosion. The
mixture is then poured into the molds, the bullets are

cast, and more ammunition is rushed to the firing squad.

The barrage continues.



The target, the mathematics program in the American
public schools, is literally shot full of holes.

No doubt the battle is justif}ed. Much of what is
being said about the program has already been said by the
mathematics teachers themselves. Many of them have been
genuinely concerned about it for years., However, what is
done is over, It is not with the past that our salvation
lies. Whether all of the criticisms are justified is not
a question with which we are concerned.

In order to avoid arguing the validity of all the
criticisms, let's start with the assumption that the mathe-
matics program was adequate for yester years., Does it
necessarily follow that it will continue to meet future
needs?

Whether we are aware of it or not, we have been
undergoing a revolution. It has been described by those
who were aware of it as beilng as great as any revolution
man has ever experienced, Those who have been studying
it have called it the Scientific Revolution.

Like all upheavals, it has changed conditions. Ti
has created new demands. It has brought new opportunities
also. It has resulted in an altered way of life, Standards

have changed. The old order is thrown out of gear. Before

it is fully understood, scapegoats are sought. Charges

are made, blame placed.



When the smoke settles, however, one unalterable
fact emerges. In the new order creaFed by the Scientific
Revolution, mathematics has become the language for describ-
ing our expanding universe and the mathematicians are the
authors of such descriptions,

There is little room in this new era for the mathe-
matically illiterate. The untrained laborer will have
more and more difficulty finding work. There will be fewer
jobs for him in the future.

Rather, the need is developing with the speed of a

chain reaction for the trained intellect, for the statesman
who has an understanding of science and mathematics, for
more mathematics, for more people to understand and create
more mathematics, for young people with a background which
equips them to solve problems which haven®t yet arisen.

A tremendous effort has already been made to meet
the demands growing out of the change.

Industry has financed and conducted examinations
on its own., It has made evaluations both in view of past
achievements and future needs. It has offered suggestions
for improvement.

Various goverment investigating committees and
the armed services have uncovered situations. These have
led to suggestions and demands., As a result, the govern-

ment, which is the people of the United States, has spent
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great sums of money to supplement the training of mathe-
matics teachers already in the field.

The high schools are trying go improve their programs
to close the gap.,

Outstanding mathematicians and mathematics teachers
have met in authorized groups to study needed curricular
changes. They have been granted funds to use in writing
sample textbooks. Some of those textbooks have already
been tested in the classroom. They have been and are being
revised.

Efforts are being made, both in the schools and
through various other agencies, to seek out those students
who are capable of being trained. They are being enticed
and persuaded to continue studying mathematics. Scholar-
ships are growing larger and more plentiful,

The whole public school system is being given a
good long look. Some of the educational philosophies of
bygone days are being re-examined and discarded.

The first of these is that children will learn mathe-
matics incidentally. The schools have been operating under
a philosophy which is not even a correct grammatical state-
ment. You've all heard it. 'We teach children.™ !Children’
is not subject matter, hence it is not tt}e direct object
of the sentence. A correct statement is, 'We teach.matheT

matics to children.®" Mathematics is what is being taught,



’childrent is the indirect object. Both the object and
the indirect object are important, ang consideration must
be given to each. The child is a human being with back-
ground, inate abilities, desires, drive, all making their
contributions to his individuality. It would be folly

to ignore this. But it is equally foolish to think the
child is the only problem. When all is said and done, it
must be mathematics which is taught to the child if that
is what he is expected to learn.

A second philosophy which must go is that mathematics
can be taught as a few isolated skills and tricks. The
manipulations that a student learns to perform in the course
of studying mathematics will have little wvalue if he doesntt
understand them. He will neither remember the tricks very
long nor know when to use them. DMathematics is integrated,
it has purpose and direction, patterns repeat, ideas are
related, DNone of this will ever become evident to the
student who gets it in bitse.

Another philosophy which is inadequate for present
and future needs is that anyone trained to teach can teach
mathematicse This is about as foolish as ?%teaching chil-
drent. I am not saying that a teacher should not be trained
to teach. I am saying such training is not all that is
needed, 1In fact, experience is showing that it is a very

small factor in the success of a mathematics teacher.
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Now, no teacher can possibly know all the mathematics there
is. But to know none at all is to f%il completely. The
fallacy in the philosophy that to teach mathematics all
you need is training to teach has been so widely recognized
that every effort is being made to expand the mathematical
background of the teacherse.

Another philosophy, closely related to the ones
just mentioned, is equally erroneous. It is, "The teacher
needs to kmnow no more mathematics than he is expecting to
teach." More than any other philosophy, this one comes
closest to exposing the shallowness of our education,

One cannot know very much about mathematics until he sees
its relationships. The public school student in his day=-
by-day study won't get this overview, He'ts too close to
details., If the teacher doesntt have it so that he can
point out the relationships, the child may never study
enough mathematics to discover theme

Also, there is the matter of leading the student.
If the teacher is down on the level of day-to-day details,
he isn*t going to be able to chart any sort of efficient
course., He is apt to wander with the student through all
the byways and hedges and never arrive ;ny place.

_ A final error is that mathematics can be taught
through applications alonme. Playing store or £illing out

income tax forms or writing formulas to express some social
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science relationship or natural science law are only some
of the things that can be done with mathematicse. They

N\
are not mathematics itself and will not replace a syste-
matic study of the subject any more than eating food teaches
the fundamentals of cooking.

What, then, is mathematics? It can'®t be definéd
in a few words--or perhaps many. We can, however, look
at some of its characteristics.

It is a science. It is not a natural science in
which certain basic laws operate whether man knows what
they are or not. Mathematics is an artificial science
for it has been crcated in the minds of men. Men have
defined the elements, men have made certain laws, men have
outlined the operations. Mathematics 1s man made. Con-
sequently, it is a science in which both the old and the
new must be studied, because both the old and new mathew~
matics is wvalid,

Mathematics also, Yhas a triple role as a tool, a
language, and a mode of thought.“l We are most familiar
with it as a tool. s applications arc many and varied.

Business, industry, and the social sciences apply it in

lstewart Scott Cairns, "Mathematical Education and
the Scientific Revolution,™" Mathematics Teacher, (February,
1960), pp. 66, 67.
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such a diversity of ways that it "is a matter of astonish-
ment to professional mathematicians,™

As a language, it describes the world in which we
live, both mentally and physically. As a way of thinking,
it reaches mnecessary conclusions in a logical waye.

It is to mathematics as a way of thinking that we
will give further consideration.

Mathematical ideas present themselves to a child even
before he starts to school, His first experiences in kinderw
garten and the carly grades are related to what he has
already discovered. Because mathematics is sequential,
those early ideas are the foundation for all further study,.
Their Importance cannot be overestimated. His success in
those years will have a direct effect on his attitude towards
mathematics and his desire and ability to continue his study.

As has been said, the mathematics program in the
public schools needs improving., It can?®t all be done at
any one level, It takes twelve years to get a student ready
for college mathematics. If we are to improve the program
and equip the student in more able fashion, we must begin
before his last four years. We must begin at the beginning.

Much is being planned to improve the elementary mathe-

matics program. New text books are being prepared by those

21pid,
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who understand mathematics, The whole curriculum is being
scrutinized. Some changes are *just around the corner'.

Meanwhile, it seems well to t;ke one of those 16ng
Llooks at what it is we are all trying to teach. We each
work in our own grade or department. We are apt to forget
that what we are all dealing with is part of one system.

Finally, this is no attempt to tell you how to teach
arithmetic. This is an attempt to help you see arithmetic
as it is related to the whole structure which is called

mathematics.




CHAPTER III \
SECOND TAILK

The beginning of numbers pre-dates recorded history
so that any attempt to reconstruct the origin involves a
lot of guessing. Two guesses, however, can be made with
confidence. The inception was very early, perhaps even
before man learned to speak. Moreover, it was a result.
It was the consequence of man's effort to meet certain needs
as they arcse in his development.

It 1s thought that primitive man learned early to
group together objects which had some quality in common,
Undoubtedly he gathered each day those objects which he
could eat. Of the edibles, he selected, if only in his
owvn mind, those which he enjoyed eating. The acts which
he must perform to insure life and protection for himself
and his family were recognized. Friendly animals were
menbers of a special class. ALl those objects waich be-
longed to him comprised one of the most important sets of
all,

This idea of group, collection, class, herd, set

was undoubtedly basic in the thinking of primitive man.

Some characteristic which certain elements had in common
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determined whether they could be thought of simultaneously
as a unit., If an object possessed that characteristic,
then it was a member of the set. If it did not possesé
that characteristic, then it was not an element of the set.
For example, consider all the tribes-women who made up the
set of a man's wives. Lither a tribes-woman was one of
his wives, or she was not. If she was, then she was a mem=-
ber of the set. IfL£ she was not, then she was not a member
of the set.

A set didnf't need to be composed of material elements.
The elements could be sensations, ideas, emotions, as well,

Likewise, they need not be grouped in space. The
collection of all those people who were friendly to a man
could be thought of simultanecusly as a unit even though
they were not brought together in one meeting place. The
days on which the weather was cold could be classed together,
although they were scattered throughout the ycar, or many
years.

The formation of a set, then, was a mental process,

If primitive man wanted to describe the collection
under counsideration, he could use either of two methods.
One consisted of naming, whether by gesture, drawing, or
sound, the elements. The equipment which he took with him
when he left his dwelling in the morning could be listed;

his club, his knife, his dog. A second way was to describe
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the members of the group. This could be done very simply
in his mind., ALL those people who could be counted on to
defend the threatened village f£rom f;focious animals or
warring tribes constituted a very important set. A second
such might be those who would run and hide,

The grouping of elements having some common charac-
teristic into a set is basic in the structure of mathematics.

A second mathematical éoncept developed equally early
from man?!s need to know thow many?t.

When the shepherd took his small £lock of sheep to
graze in the early morn, he needed a method of determining
if all the sheep returned with him in the evening. He pro-
bably used a simple method; a finger, a sheep. In the eve-
ning, if a finger was left over, then he knew a sheep had
failed to return and must be sought,.

As the size of the herd increased, fingers and also
toes, were exhausted too soon. The shepherd devised other
methods. In the morning for each sheep going out, he put
a pebble on the pile; in the evening, for each sheep back,
he took a pebble off the pile. ILater, for each sheep out
he made a notch on a stick or tied a knot in a string.

This setting up of a one-~to-one &torrespondence between
the sheep and the pebbles was a powerfil idea. Even before
primitive man could speak or count, he arrived at a comparison

of the size of sets by putting theilr eclements into a one=-
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to-one correspondence., For if the members of the herd could
be so related to the pebbles in the pile, the shepherd knew
that the size of the f£lock matched tﬁe thow many?! of pebbles
in the pile. -

If the set of his wives, the set of his spears, the
set of earthen pots in his dwelling, and the set of fur
garments in his wardrobe could be put into one~to-one cor-
respondence with the fingers on one hand, he came to recog-
nize that the size of the sets matched. They shared a quality,
their size or 'manyness?® which, by mathematicians, is called
their cardinality.

A mants fingers made handy basic sets with which to
compare other sets. The next step, then, was to attach a
label or tag to all the basic sets. The labels could then
be used to name the size of those sets whose elements could
be set into one-to~one correspondence with the standard
sized sets,

The labels may have been marks traced in the sandj;
they may have been motions of the fingers or head; they may
have been gruﬁts or other odd sounds or words. Whatever
form they took, they were the names denoting the manyness
or cardinality of the sete and have been called numerals by

the mathematicians., Numerals, then, are simply the names

or symbols expressing numlrer ideas.
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The idea Qf an empty set, though not given a label
until much later, was recognized. If our primitive friend;
for example, had the misfortune to hgve no sons, then the
set of all his sons was an empty set.

Other concepts developed.

If a shepherd had only black sheep in his flock;
then the set of all his sheep was identical to the set of
all his black sheep. The same label could be attached to
the size of each herd. If, however, his flock included
some white sheep also, then the set of black sheep was a
subset of all his sheep. Here the label used to name the
size of his whole flock could not be the same as the one
he used for the set of black sheep.

It is thought that man early recognized ‘*more than'
.and *less than'. In the instance described above, he could
recognize that the subset of black sheep was not only not
the same size, but ?less than'! the set of all his sheep.

It would have been possible to go on indefinitely
matching sets with the basic or standard sized sets and
attaching labels there~to. No one knows how long such a
system was used. However, as man became aware of unequi-
valent sets and the need for different .tags or numerals,
he found it convenient to introduce some order.

He found that he could use the idea of unequal sets,

and make an ordered sequence where each set could be put
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into one-to~-one correspondence with the preceding set, with
one element left over. This *and one more® could go on

and on. The arrangement of non-matching sets in order of
fone more! was more advantageous than the old random matching
of sets with standard sized sets. The ordered sequence of
the cardinals is called the ordinals.

From matching equivalent sets to comparing unequi-
valent sets to arranging unequivalent sets in an ordered
sequence, he had reached a great achievement. Man had learned
to count.

Each attaimment, however, in man's development has
been accompanied by new difficulties.

Now he was faced with a different problem. He could
perceive the difference in the size of sets, so he realized,
by whatever name he called it, °*manyness? or cardinalitye.

He could arrange sets in order so he had a conception of
ordinality. Now the labels, the names, the numerals which
expressed these ideas demanded attention. Undoubtedly at
first the numerals were gestures or marks traced in the
sand. Random words were adopted, a different word for each
sized set.

When life was simple and possessions few, such a
system servedlver§ well. Man could invoice his assets with-
out counting very far. Eventually such a system became

cumbersome. Introducing a different word or symbol for
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each number idea taxed the early vocabularies and required
memorizing many new mumerals, .

The system man employed to relieve this new difficulty
was very convenient. If he was using his fingers with which
to count, then one object called for one finger; two objects;
two fingers; eee, £ive objects, five fingers or one hand;
six objects, one hand and one finger; ..., eleven objects,
two hands and one finger.

He was using a base of five which seems, along with
a base of ten, to have been employed quite early.

Other bases have been and still are being used by
various peoples. While the Egyptians and Romans used ten
as a base, twenty was used by the Mayas, and sixty by the
Babylonians. Two was used by primitive Australian tribes
and even yet by the latest high speed computers.

Having learned to employ a base in counting, man
now needed fewer words or symbols in numeration. To the
idea of base he annexed the idea of adding on. In the Roman
system, for example, a V represented the idea of five, and
an I the idea of one. The idea of seven which is five and
one more and one more could then be written VII. The numeral
conveyed the idea of V and I and I. .

The notions of a base and adding on simplified the

numeration process. Even so, as f£locks enlarged, population

increased, and wealth accumulated, more and more symbols
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were needed. It became so difficult to express and handle
large number ideas that only a specialist was equal to the
task. v
Man then discovered that he needed fewer symbols
i1f he was careful as to their placement. Combining the
ideas of base, adding on, and placement resulted in a numera-
tion system that was relatively simple, concise, and adequate
for the size ideas which he needed to expresse.
The numeration system which we use makes use of the
three concepts. It is called the Hindu-Aragbic system.
The Hindus, and perhaps others, were responsible for its
origin but it was introduced into Europe sometime before
800 A.D. by the Arabs.
The system employs ten symbols, is positional, and
additive. One of the ten symbols i1s zero, the label for
the empty set. The whole organization has proved to be so
adequate and versatile that it gives every indication of
carrying us to infinity--and beyond, with an indebtedness
so large that to express even the interest would have been
beyond the ability of the early systems of numeration.
Hindu-Arabic numeration made it possible for man to
count as far as necessarye. Zach numera} was followed by
a numeral representing one more and preceded by a numeral
representing one less, excepting one. The numeral one repre-

sented the first of the counting or natural numbers.
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Man found that counting numbers were very useful,.

Suppose a shepherd had f£ive sheep in one pen and
three sheep in another pen. He decided to put them in the
same pen. So he moved the five into the pen with the three
sheep and counted the result. He had eight sheep.

Another day, however, he decided it would be more
simple to move the three sheep into the pen with the five
sheep. When he counted the result he had eight sheepe.

Five sheep and three sheep is equal to three sheep
and five sheep. The order of combining the sets didnft
make any difference in the total (5 + 3) = (3 + 5).

With eight sheep now in the pen, he decided to move
in four more. When he counted the result, he had twelve
sheep. Next time, he grouped them in a different waye.

He moved the three sheep into a pen with four, and counted
the result, seven sheen. Then he moved the seven into the
pen with the five. The final count totaled twelve. He
thought over the result. Five and three more made eight
sheep. Eight shegp and four more, and he had twelve sheep.
On the other hand, five sheep and the result of putting
the three and four together first still resulted in twelve
sheepe (G +3) + 4 =5 + (3 + 4). )

Andther idea emerged. A set of seven sticks and a
set of two sticks, six sticks and three more, or five sticks

increased by four, all resulted in the same sized set of

nine stickse.



Suppose, instead, that our shepherd was a hunter
with a set of seven spears. His leas? favorite brother-
in-law promised to settle an old obligation by paying him
the set of all the brother-in-law!s spears. He learned
to his sorrow that he still had a set of seven spears, since
the set of said brother-in-law's spears was an empty set.

Another interesting property of the counting numbers
became apparent. No matter how many subsets of varying
numbers of elements were jJjoined together, the number of
elements in the set created could always be expressed by

one of the counting numbers,

Sometimes, however, man suffered reverses,

If he had seven arrows and lost three, how many
remained? Or, suppose he had seven arrows and his enemy
had only three. WYow much better armed was he than his
enemy? If he left his dwelling in the morning armed witp
seven arrows and returned in the evening with'only three,
how many had he lost during the day? Finally, if he had
a set of three arrows and needed ten to be adequately armed,
how many more arrows did he need?

Counting still provided the answer for these important
problems, but the approach was differente.

He found also that the order of %taking away' made
a Lot of difference., Whereas two arrows united to three

was identical to three arrows united to two, five arrows



take away three arrows was not the same as three arrows
take away five. In fact, the 1atter\operation didntt make
any sense, If he had only three arrows to begin with, he
certainly couldn?®t go to the forest and lose five arrows.

This take-away business was tricky. Sometimes; he
couldn®t perform the operation. When he could, it could
be explained like this. If three sheep are in a pen and
he put four more sheep in the same pen, the resulting group
numbers seven. If from the seven sheep, he took away four,
he was back to three sheep again.

Bringing sets together and taking sets apart were
operations like building a man®s dwelling and tearing it
down again, like hunting and being hunted, like daylight
and dark.

A short-cut emerged.

It was found that if a set of three stones, another
set of three stones, a third set of three stones and yet
a fourth set of three stones were united into one set and
counted, that the same result could be obtained by another
method. Taking the number of elements in one set times
the total number of sets was quicker. It couldn?t always
be used, the sets must each contain the same number of
elements.,

This new process, besides being more convenient,

developed some characteristics on which man could depend.



Four sets of three knives each was equivalent to
three sets of four knives each. In either case, the result
was twelve knives, (3G x 4) = (4 x 35. Two such sets of
twelve knives each gave a set with twenty-four knives., Yet,
three sets of two knives each gave a set of six knives.
Four of those sets resulted in a set of twenty-four knives.
The manner of grouping didntt disturb the answer. (4 x 3)
x2=4x (3x 2). Besides, it all made sense. The result
was always a counting number.

The short-cut operation worked with the empty set,
too. Three empty sets resulted in an empty set, Our friend
had already discovered that if his miserly neighbor had
many choice collections of three knives each, but gave
him none of these, he would have no knives. (3 x 0) =
0= (0 x 3).

One came in for further consideration, Man had

long considered it the f£irst of the counting numbers,

Now, he discovered an additional property. He found that
three sets of one coin ecach resulted in a nmew collection
of three coins. On the other hand, one set of three colns
remained a set of three coinse. (3 x 1) =3 = (A x 3).

A combination of two operations was the most mar-
velous of all, Our ancestor learned that three sets of
two bricks each joined to three sets of f£ive bricks each

resulted in a super set of twenty-one bricks., Yet he arrived



at the same result if he joined a set of two bricks to

a set of five bricks, making a stack of seven bricks.,
Three such stacks totaled twenty-one\bricks alsoe (3 x 2)
+ (3 x 5) =302 + 5).

There was the reverse story here, alsoe

Suppose a man had fourteen very special sheep and
he wished to separate them into pairs. To how many of
his children could he give a pair? Or perhaps it was the
question of giving each of his twoAchildren an equal numbex
of sheep.

He could solve ecach problem by repeated take-away.
Also, he found that he could relate it to the ?ttimes?®! processe.
If two sets of seven elements gave a set of fourteen ele-
ments, then fourteen elements could be separated into two
sets of seven elements,

This process, finding how many groups of so many
elements each the set could be separated into, had limits,
For one, he couldntt reverse the order. TFourteen elements
could be separated into two sets of seven elements each,
but two couldntt be separated into fourteen sets of seven
elements each. 14 > 2 £ 2 3 14,

A collection of f£ive earthen pots could be made

into five different collections of one pot each or remain
one collection of five pots. DBut how many sets of no pots

each could he form?
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The last operation had other limits. Fifteen live
sheep could be apportioned among three people, but how
about four people? Then there was the question concerning
what a father did if he had two equally deserving sons
and only one sheep to give them.

Man had not yet found all the answerse.

Great strides he had made, however. He had learned
to count. He had a numeration system, and he had certain
operations which he could perform with his counting numbers.
These achievements were the results over many centuries
of meeting his needs as they arosee.

The mathematician loocked over all the achievements
and said, "We arentt concerned in mathematics with whether
welre dealing with sheep, arrows, people or what have you.
Our concern 1s the framework. We want to examine the ele=-
ments to see how we can operate with them and to determine
what propertilies will be present."

MJle1ll begin with the idea of sets, one-to-one cor-
respondence, and the set of natural mmbers. These we will
not attempt to define since we must begin someplace. By
the elements of a set we mean the members. Zero 1s the
mmber of elements in the empty set.’™ |

0ne is the first number in the natural numbers.
Each one which follows 1s one more. There is no stopping

place.™
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"tJe have two operations which we can always perform -
with the set of natural numbers."

“"The first of these, the brinéing together of the
elements of two or more subsets into one set and counting
the elements, we'll call addition. The result of addition
wetll call the sum, and the symbol for addition will be a
small cross. Since we can always f£ind the sum in our set
of natural numbers, we?ll name that property closure. The
order of addition doesn®t matter; that is, 2 + 3 = 3 + 2,
The property of order we®ll call commutativity. Grouping
in addition wont®t affect the result. Two added to three,
then added to six is equal to two added to the sum of three
and six. That property we!ll call associativity. (2 + 3)
+6 =2+ (3 +6). Wetll call zerc the identity element
because adding zero to any natural number does not change
the identity of that number.®

“'he inverse of addition wetll call subtraction and
define it in terms of addition. One mumber subtracted from
a second equals a third number if, and only if, the sum
of the third and first numbers equals the second., The
symbol for subtraction will be a small line. The result
of subtraction we?ll call the differences. 7 = 3 = 4 if,
and only if, 4 + 3 = 7. There is no closure under subtrac-
tion since we cannot always £ind a solution in our set of

natural numbers.e 7 -~ 3 = & but 3 - 7 has no solution in the

natural numbers.®
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"The second operation wetll define as repeated addi-
tilon where all the sets to be added are of the same size.
This operation wetll call multiplicafion and the result
of the operation welll call the product. The symbol for
multiplication will be a small x. The product of two natural
numbers 1s a natural number which is the property of closure.
Order in multiplication doecsn?!t affect the product. That
is the property of commutativity and can be illustrated
thus; (2 x 3) = ( 3 x 2). Associativity, which has to do
with grouping, is also present. Multiplying two numbers
together and their product by the third leads to the same
result as multiplying the f£irst by the product of the second
and third., Since any natural number multiplied by one equals
the natural number, we!ll call one the multiplicative iden-
tity.h

A combination of multiplication over addition, that
is, the product oif one number and the sum of two numbers,
is equivalent to the sum of the products of the first mumber
and each of the two mnumbers of the sum, 2 x (3 + &) =
{(2x3) + (2x 4). This we'll neme distributive property
of multiplication over addition,"

"The inverse of multiplication we*ll call division

and wetll define it in terms of multiplication. One tumber

divided by a second equals a third if, and only if, the

product of the second and third numbers is equal to the
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first. The symbol for division is a short line with a
dot above and below it., An example of the definition of
division can be stated. 8ix divided\by three equals two
if, and only if, two times three equals six. The result
of division is called the quotient. This inverse opera-
tion does not possess closure, Five divided by three is
equal to what? Three divided by six is equal to what?
Neither quotient can be found in the set of natural nuﬁbers.“
“Division by zero is never possible because under
the definition, the quotient cannot be determined, Six
divided by zero 1s not equal to zero because zero times
zero does not cqual six., Six divided by zero is mnot equal
to six because zero times six does not equal six. The
result of dividing zero by zero is not defined either,
since zero times any rmumber 1s equal to zero. Zero divided
by zero equals what? So division by zero is never possible,™
“"Now, so that we won®t be limited to particular
natural numbers, we?ll generalize by using letters to de-
note any natural numbers., We?!ll add a few more symbols
to speed the writing. The total result, a mathematical
structure, we can then state very concisely.'

This is what the mathematician means by mathematics,.
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CI:IZ\-PEER IV ~
THIRD TAIXK

Whatever else may be new under the sun, fractions
are not,

One of the oldest mathematical documents in exis-
tence today is an Lgyptian papyrus called the Rhind, It
was written sometime between 1788 and 1580 B. C. by Ahmes.
He acknowledged having copied it f£rom an older document
dating back to 1849 B. C. There is supposition that the
older document may also have been a copy but that has
never been verified, Whether that supposition is ever
confirmed, the Rhind papyrus gives enough evidence to
prove that Egyptian mathematics had reached a considerable
degree of usability,

A problem in the papyrus is ™the making of loaves
9 for men 10", The actual solution of the problem is not
shown but the result is given and proved. The important
information to be gained from a study of the problem and
others in the papyrus is that the Egyptians by 2000 B. C.
were able to work with fractions,

Their methods were not so simple. They could oper-
ate only with unit fractions, those with a mumerator of

one., Excepting 2/3s, every fraction used by the Egyptians
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had to be expressed as the sum of a series of fractions,
having one in the numerator. For example, 3/4 was written
%93 (they did not use a plus sign be%ween). The fraction
2/61l was expressed as 1/40, /244, 1/488, 1/610.

Unit fractions continued in use even under Greek
mathematicians. Archemedes wrote %, % for 3/4. However,
the later Greeks developed a religious attitude towards
tunity'. It became for them a Diety symbol and so they
were disinclined to take parts of a unit. For that reason,
the Greeks largely ignored the partitive interpretation
of a £raction and treated only ratios of matural numbers,

With the counting numbers, man had already discovered
one way to express the comparison of two sets. If one
man had a set of two spears while his neighbor had a set

of five, his meighbor'®s set then included three more spears

7
than his own. This was an absolute comparison. It was
accomplished by the inverse operation of addition, that
of subtraction.

The Greeks emphasized a second way of comparing
two setse.

If one Greek master owned six slaves, and a second
owned two, the comparison could be expressed as six to
two, or 6/2. The first owner had three times as many slaves
as the second. But if the first owner had six slaves and

and the second one had seven, then the relation between



the two sets was expressed as the ratio of six to seven,
or 6/7. The set of slaves of the first owner was 6/7s
of that of the second. )

However, 6/7 was not a natural number. It was a
new number, a fraction. The Greeks emphasized the inter-
pretation of the fraction az that of a ratio.

There are two other interpretations of fractions
which are important to concider. One of those is the idea
of partition. Ian was early concerned with thow much?,

If our citizen was a man of substance and decided
to divide his wealth equally into f£ive bags, each bag would
contain 1/5 of his wealth. Suppose he decided to give
two of these bags to his eldest son., His son received
two 1/5ths or 2/5ths of the ‘otal wealth,

The 2/5ths could also be regarded as 1/5 of two
units., Suppose our rich friend had his wealth in the form
of gold coins and Jewels, the total value of the coins
being equal to that of the jewels. He divided his coins
into f£ive bags equally. iach bag then held 1/5 of his
coir. wealth. The jewels he divided equally into f£ive por-
tions, each portion being 1/5 of his wealth in jewels.
Then suppose he gave nls son one bag of jewels and one
bag of coins., In short the son was being given 1/5 of
two different units. The son received the equivalent of
2/5 of his father?®s wealth in coins, or 2/5 of his Zatherts

wealth in jewels.



38

Two-£ifths Iin the f£irst example named the number
property of a set of two elements each of which was 1/5
of a unit. Two f£ifths in the second case could be regarded
as 1/5 of two units.

The third interpretation of a fraction is that of
division. A set of six elements could be very nicely di-
vided by a set of two eclements under the natural numbers,
The result was three sets of two elements each. But six
elements divided by f£ive elements or six divided by seven
had no solution in that number cystem. With fractions,
six divided by five we can express as 6/5, and six divided
by seven as 6/7. Since division by zero was ruled out
under the natural mumbers, we can never have a denominator
of zero.

The elementary student is introduced to all three
interpretations: wratios, partition, and division. Each
is expressed by the same symbolism. A pailr of natural
nuabers is used. The one written below the line is called
the denominator. The other natural number, written above
the line, is called the numerator. The order of writing
the two numbers is very important for 2/3 is not equal
to 3/2. .

Sut what does the student mean by the equality of
wo fractions? He usually gains an idea by considering

some unit such as a freshly baked pie of his favorite flavor.
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the ple is cut into two equal parts, then each piece
1s one-half of the pie. Suppose that one-half is to be
the student?s share. He may, of cou%se, eat his share at
this time. 1If, however, he restrains himself, the story
grows more interesting. A second equal division of the
pie recults in four equal portions, each one being % of
the whole pie. The student®s share is {two $ths of the
pie. Now if he eats his 2/4ths, he will be devouring the
same amount of pie as he would have eaten when his share
was one-half of the pie. Lvidently one-half is equal to
2/4. Should the student be particularly well disciplined
so that he will pErmit one more cutting of the pie before
his feast, and it is divided into eight equal portions,
his % or 2/4 becomes Zour 1/8ths or 4/8ths of the pie.

By now the pie is mutilated and the studentt®s patience
has been tried beyond the breaking point, It is high time
that he eats his 4/8ths and considers the results. % =
2/4 = 4/8. 1If he looks at the equality, he can see that
2/4 can be arrived at by simply multiplying the natural
mumber, one, in the numerator by wwo and natural number,
two, in the denominator by two. He thereby arrives at
2/4ths which he knows from his experience with the pie

is equal to one-half, What about 2/4 and 4/8? Lere again
he can arrive at the second fraction by multipiying the

numerator and denoninator of the f£irst fraction by twoe.



Why does it work? Well, when he multiplies both
numerator and cdenominator by the same amount, he is really
multiplying the whole fraction by ong, since 2/2 = 1. He
learned with the natural numbers that one was the multipli-
cative identity because multiplication by it did not change
the identity of the number being multiplied. t would
seen that the fractions also contain a multiplicative iden-
tity element.

If the student examines the equality again but in
reverse, 4/8 = 2/4 = 1/2, he caa see that he will arrive
at the 2/4ths from the 4/8ths by dividing both the numerator
and denominator by two,

This idea can be more fully developed when we are
ready to consider multiplication of fractions. Meanwhile,
we have arrived at a very important rule which sums up
the process. If the numerator and the denominator of any
fraction are multiplied by {(or divided by) the same number,
the resulting fraction is equivalent to the original frac-
tion.,

Since the student has already seen the equivalence
of 1/2, 2/4, 4/8, and the process by which he arrived at
equivalent fractions, he knows that 1/2, 2/4, 4/8 are dif-
ferent names for the same number idea. This repeats a

concept developed earlier with the natural numbers. Just

as (6 + 2), (7 + 1), (5 + 3), and 8 are labels for the
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same number idea in the natural nmumbers, so 1/2, 2/4, 3/6,
/8, 5/10, ... are diffcrent labels for the same fraction.
This set of fractions constitutes what is called, for very
obvious reasons, an equivalence class.

The question also arises about the inequality of

ractions. 1Is one fraction greater than another? If so,
how can you tell which is larger?

Consider 2/3 and 3/4. 7o determine if they are
equivalent, lett®s change them so they will have the same
denominators. 2/3 = 4/6 = 6/9 = 8/12., 3/4 = 6/8 = 9/12,
Which is greater, eight 1/12ths or nine 1/12ths? There
1s an order in fractions, a fgreater than? relationship
Jjust as there was in the natural numbers.

The pattern begins to be apparent. Having found
a new mumber idea, and having determined when two such
numbers are equal or unequal, can we perform the same opera-

tions as with the natural numbers?

5
;e

“ractions can be added.

Since the pie has disappeared and the whole idea
of more pie probably doesn®t sound too attractive at this
timz, let®s consider a strip of paper.

Suppose we fold the strip into three equal portions

and cut the paper on the folded lines. 1/3 of the strip
added to 1/3 gives two 1/3rds or 2/3rds of the whole strip.

Suppose, however, we want to add 1/3 to 1/2. Let's take
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a second strip of paper, f£old it into two equal parts and
cut along the folded line. We can add 1/3 and 12 by laying
the two side by side. The sum is 1/5 + 1/2 and can be
expressed if we are not too impatient. However, such a

tag would soon get boring to use. We?d like to express

the sum as one fraction and that we can do if wetll use
what we know about equivalence classes. 1/3 =2/6 = 3/9 =
4/12400e 1/2 =2/4 = 3/6 = 4/8.,.

Suppose we start with two fresh strips of paper.
Iet®s £o0ld each so it is divided into sixths and cut on
the folds., One third is equal to 2/6 so we?ll use two
1/6ths of the first strip. One-half is equal to 3/6 so
wetll use three 1/6ths of the second. When we place them
together and count the result, we find that we have five
1/6ths which is 5/6ths. TFive sixths is much more convenient
than (1/2 + 1/3),

The addition of +two fractions resulis in a fraction,
so we have closure. 1/2 + 1/3 = 1/3 + 1/2, The cocmaucative
law regarding order is in operation. The associative law
is good; 1/2 + 1/3 + 1/4 will yield the same fraction whether
the sum of 1/2 and 1/3, memely 5/6, is added to 1/4; or
whether 1/2 is added to the sum of 1/3.and 1/4., The result
in each instance is 13/12,

Thirteen twelfths is significant if we think of

13/12 as equal to 12 + 1 which in turn is equal to 12/12 +
J.2
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1/12. Twelve twelfths are equal to one, so 12/12 + 1/12 =
L + 1/12 =1 1/12.

Five and 7/8 added to 7 3/8 = 12 and 10/8 = 12 +
8/8 + 2/8 =12 + 1 + 2/8 =13 + 1/4 = 13%. Here the 2/8ths
was reduced to l/4th by using the idea of equivalence classes.

Seven over zero hkas no meaning, since division by
zero is undefined., Iut 0/7 has meaning. No 1/7ths = zero;
or 0 + 7 = 0, because 0 x 7 = 0, Using either interpreta-
tion, 5/7 + 0/7 = 5/7. Zero in the numerator over any
denominator mot zero is the new additive identity since
adding it to a fraction does not change the identity of
the fraction to which it.is added.

Subtraction is again defined in terms of addition.
One third subtracted from one half is equal to 1/6 if and
only if 1/6 + 1/3 = %, To perform the operation, equiva-
lence classes again make it casier. 1/2 = 1/3 = 3/6 - 2/6
=1/6, Just as addition can be thought of as a bringing
toget :r, so subtraction can be thought of as a take~away
procedure, If from 1/2 of a candy bar, we wish to subtract
1/3, the best method is to divide the candy bar into six
equa. parts to begin with. One-half is three 1/6ths, 1/3
is two 1/6ths. If 2/6 is taken away from 3/6, 1/6 of the
candy bar remains.

Subtraction is still a limited process. 1/2 = 1/3

has meaning, since 1/2 is greater than 1/3. Three sixths
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i1s greater than 2/6., But 1/3 -~ 1/2 is not an operation
we can perform with the fractions as we now know them,

What about multiplication?

The approach we used to describe the multiplication
of matural numbers as repeated addition doesntt tale us
very far with fractions. However, it does serve as a starter,

If a board is sawed into f£ive shorter boards of
equal length, each board is 1/5th of the original. Three
times 1/5 is equal to 1/5 + 1/5 + 1/5 = 3/5, One £ifth
times three, sometimes spoken of as 1/5 of three, can be
regarded as three bDoards, ecach divided into f£ive equal
parts. One f£ifth of three boards would be 1/5 of the first
plus 1/5 of the second plus 1/5 of the third, or 3/5 of
one board.

Patterns can be seen if multiplication of fractions

i3 approached from multiplication of natural numbers.

I~

x4 =16, 2 x4 =8, Lx4=04,1/2x 4 =2, 1/bx 4 =1,

Also, 4 x3/4 =3, 2x 3/4t =6/ or 3/2, L x 3/4 = 3/4,

/2 x 3/4 =3/8, L/& x 3/4 = 3/16., 1In each Instance, as
the number being multiplied was divided by 2, the product
was likewise divided by 2., Dut ¥ x 3/4 = 3/8 and ¢ x 3/4
= 3/16 gives some idea concerning the multiplication of
two fractions. TFind the product of the numerators for a
new numerator and the product of the denominators for a

new denominator.
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new numbers arce closed under multiplication. $x 4+ =% x 4.

The commutative law for multiplicatign of fractions 1is
present and active., One-half times i/3 timcs 1/6 = 1/36
whether the product of 1/2 and 1/3 is multipliecd by 1/6,
or 1/2 is nultiplied by the product of 1/3 and 1/6. The
law of associativity is also in operation.
1/2 % (2/3 + 3/6) = L/3 + 3/8 = &§/24 + 9/24 = 17/24.,
1/2 % (2/3 + 3/4) = 1/2 %= (8/i2 + 9/i2) = 1/2 x 17/12
= 17/24.

This 1s an illustration of the distributive law
of multiplication over addition. It works for fractions.

The multiplicative identity, one, is present in

o
O
o
o

this number system. &s was poilnte earlier, any number
which has the same natural number in the numerator as in
the denominator is ecquivalent to one. Thus 2/2, 4/4, 6/6,
all are ecuivalent to onees 1/2 x 2/2 = (L x 2)/(2 % 2) =
2/Lt, Here Doth numerator and denoninator are multiplied
by two, yvet 2/2 =1, so 1/2 = 2/4.

A new property appears. One is the multiplicative
identity. The product of a fraction and its weciprocal,
the fraction inverted, is equal to one. 3/& x &/3 = 12/12
= 1, The reciprocal is called the nultiplicative inverse

of the fraction, since their product is the multiplicative

ident ity °
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The idea of division, which is the inverse of mul-

tiplication, can be developed intuitively.
AY

i If a length of rope is divided into five equal parts,
each part is one-fifth of the rope. 1 ¢ 5 =1/5, Yet
TF the same rope, divided by 1/5, equals five pieces or five
‘ 1/5ths. 1+ 1/5 =5, Two pieces of rope divided by 1/5
would result in twice as many fifths as in the case of
one rope. 2+ 1/5=2 () $1i/5 =2 (5) = 10 pieces. 3
< 1/5 = 3 (5) = 15 pieces.
On the other hand, 1/2 of a length of rope divided

so that each length is 1/5 of the whole rope results in

5/2 or 2 1/2 pieces. In each of these instances:

1+5 =1/5
iv1/5=35

2+ 1/5 =10
LLi/5 =5/2

the result could be obtained by inverting the divisor and

multiplying. The definition of division, 1 = 1/5 = 5 if

cr

Ee

1 and only if 5 x 1/5 =1 is a check in each of the examples.
The process of division by a fraction is applied

when the teacher divides the treat of candy bars into fourths

of candy bars so that she will have four times as many treats.
We have looked at the new number system of fractions
from the view point of the student. The system has not

been completely developed from the mathematical standpoint.
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Werll need another number system before we can develop
the fractions completely. .

Meanwhile, the mathematician looks at this partial
development in his own way. Using the undefined and defined
terms he developed for the natural numbers, and the laws
which were in operation, he builds the fractions,

He defines a fraction as an ordered pair of natural
numbers, a/b, where b is not equal to 0.

Two fractions a/b and c¢/d are equal if and only if
axd=>bxce. This takes care of equivalent fractions.

2/3 = 4/6 because 2 x 6 = 3 x &.

(axd) + (b xc)
bxd

£ddition of two fractions a/b + c/d =

~_2x4) + Gx3) .8+ 9 _17
2/3 + 3/4 = - 3 x & 2 = 2~ ~ IZ

The commutative law, concerned with order, and the associa-
tive law, concerned with grouping, are both eiffective,
The identity element is 0/a where 2 represents any natural
nunber.

Subtraction 1s again defined in terms of addition;

« Subtraction is a limited

operation. The problem a/b = c/d does not have a solution

in the set of fractions if e/d is greater than a/b.
Multiplication of two fractions a/b and c/d is equal

to %—%—%- The product of the numerators gives a new
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numerator, the product of the denominators a new denominator.
There 1s closure since (a x c}{b x d) is also a fraction.

The multiplicative identity, &he, is a/a where a
is any natural number., 4 new property has appeared in
multiplication. There is an inverse, such that the product
of a fraction and its inverse is one., a/b x b/a = 1,
In multiplication, the commutative and assoclative laws

are in operation, plus the distributive law of multipli-

cation over addition.

& o (E + 3) =axb . . a2axs
n (r T nxrzo nxt

Division is defined as the inverse of mulitiplication.
a/b L ¢/d = N if and only if Nx ¢/d = a/b, so a/b T ¢/d =
a/b o d/ce

The fractions include the natural numbers. If we
write the natural mumbers &, D, ¢, ... With denominators
of one, a/il, b/i, c/l we have created ordered pairs of
natural numbers, which are fractions. Yet a/l can be put
inco one-to-one correspondence with a, b/l with b, c/1
with ¢, ... The fractions can thus be said to include

the naturals.

Fractions

o
b
c
4

Naifukr‘-als
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Finally, we can now perform three operations; addi-

tion, multiplication, and division., Subtraction is still
- . . & A . -

a limited operation, Our next concern, then, will be to

explore a number system in which subtraction always has a

solution sete

) ; a
Fraction -- ordered pair of natural numbers, = where b # 0

(¢}

Zquality: .i‘;i = € if and only if ad = be

5 ad + be a .. C . a
Addition: 2 - & =2d + be &+ Lk sl
) b d bd b & d& D
a . (c e)-(a.'0> e
G Rl = i +
5] (d E P d T
0/a, additive identity
kClosure
. a > e e~ e c a
Subtraction: S X=X ¢gff = = = =
b d £ = d b
Limited operation
\ A ] 7 2 - a e C = aC :a:_ @ Cc = _C_ * E
Multiplication: £ T T80 b I =3 -
- 2
& o c.g): a2 . cle
) d £ b dE
a/a, mult. identity
Closure
a +b=1: mult. inverse
\b 2
. Ty e a b 1
ributive S + 2 = Z(a + b
Distr S = n< )
« o . a o
Division: g -~ -‘C-:L— = N iff
C.'T:asoaic aoé
A D-dT D c

Closure



FOURTH TAIK

Man was quite content for many centuriles with the
two number systems which he had developed. He had the
naturals with which he could answer the question thow many?e.
He could add and multiply the natural numbers. e had
fracticns to use when he was concerned with the question
thow mucht., Fractions made divislon always possibie.

Since even the most imaginative of prophets could not have
predicted the United States of Zmerica in the twentieth
century, no one foresaw the idea of deficit spending. The
idea, like the proverbial camel which had gotten its head
in the tent, has now become such a part of our econoly
that we subtract more from less with the greatest facility.
The result we express with a negative number.

The history of this new number system, while older
than contemporary tines, does mot extend much farther back
than the sixth or seventh century A. D. The Hindus prior
to that period had begun to recognize negative numbers and
had defined some processes using them. About 700 year
later, Johann Widman, in a book published in Leipzig, used
plus and minus signs to indicate excess and deficiency.

Iess than 100 years after that, Michael Stifel, z CGerman,
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published a book dealing with equations in which the nega-
tive roots were discarded. However, at about the same
Time, 1545, Cardano, who taught maLnenatﬂcs and practiced
medicine in Milan, toolk some notice of the negative roots
of an equation. Lven so, it was not until the early seven-

Uy

teenth century, after the use of directed numbers on axes
was cdeveloped, that general recognition was given to neza-
tive members and their opposites, the positives.

Likewise, theilr introduction into the formal study
of an American student comes nuch later thean that o the
naturals and the fractions. Yet the student has earlier
experiences with the idea, He plays games in which it is
possible to get a score fin the hole?!. He knows about
above and below zero temperatures; probably, also, about
above and below sea level, Ile charges the cost of i1tems

£

he has no wmoney. He borrcws

at the downtown store when
from Mother against his nex
He may even have tried to subtract a larger number

from a smealler one and have been told that he couldn?®t

o}

do it. In the system of natural numbers such an operation
cannot be performed. There is no closure under .ubtraction,
Signed or directed numbers, howewer, provide the
answer to any subtraction., These mumbers, positive and
negative whole numbers, together with zero, constitute the

1

next set with which we are concerned. They are called the
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integers and they involve the idea both of size and direc-
tion. Six take-away three has been understandable for a
long time but three minus six now makes sense. 3 = 6 = =3,
If we have six dollars and spend three then we have threc
dollars left. DBut if we are modern, we have three dollars
and spend six dollars. Subtracting six f£rom three leaves
us three dollars in the hole. DBoth transactions involve
a difference of three, called the absolute value, but the
signs indicate the opposite states of having and owing.

In fact, money provides an effective iIntuitive
approach to integers and their properties as a number cysteme.

If John has no money and owes none, then his f£inan-
cilal situation may be described as zero. Zero is neilther
positive nor negative. If John has five dollars, he can
use +5 to indicate in his bookkeeping that he 1s solvent,
If, instead of having five dollars, he charges f£ive dollars
at the store, =5 describes his condition. He i1s considerably
poorer at =5 than at +5, ten dollars poorer, in facte

Now suppose on the next allowance day, his Dad gives
him f£ive dollars and tells him to pay the five dollars he
owes at the store. Ie is again even, he nelther owes nor
owns. A debt of five dollars and a payment of five dollars
balances the account. He is in better f£inancial condition

at zero than at -5, but better at +5 than at zero, This

suggests the ordering of signed numbers, that +5 1s greater
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than zero 1s greater than -5, which, by the way, is greater
than =10, Hef®s richer if he owes five dollars than if he
owes ten dollars, Another property d% interest 1s that
-5 and +5 = 0, TFor each positive integer, there is a cor-
responding negative integer and their sum is zero.

Iet?®s return to John now and his early struggles

Tem g oy 2.3 e e o s ey
to keep fout of the redt!. Suppose

he still owes five dollars

at the store, =5, the records show, If his Dad gives him
seven dollars and tells him to pay off his obligation and

keep the change, hils assets are greater than his liabilities.

ct
ro

He invoices a
Suppose Instead, Dad gives John only three dollars,

tells him to pay it on his f£ive dollar indcbtedness at the

store and to ask the wmerchant to wait for the balance,

Then John finds how difficult

2.

- 15 to make ends meet,

F

He pays the three dollars, had no change, and still owes
two dollars. But he could be worse off Supnose when he
owed five dollars, he charged three dollars more. =8. &
has big problems now. Happy indeed, but rarely so, is John
when his financial state is +5 on allowance day and he
receives five dollars more, He is then +10 and on his
way to being a hoarder, .

A cquick look at the addition we have just mrfaumed
shows this. Signs now have two meanings. One sign
onc with the numeral is the sign of the integers; the other

is the sign of operation, addition.
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(=5) + (+5) = 0

(-5) + (+7) = +2 == has more than he owes

(=5) %+ (+3) = =2 =- gwes more than he has

(=5) + (=3) = =8 == owcc and owes again

(#5) + (+5) = +10 == has and Bas again

In the last two instances, the sign is the sane

all the way across. 1In the second and third instances,
the sign depends on whether the absolute value of what
he has or what he owes is larger. The final integer is

the difference of the sizes. This operation is called
adding algebraically.

The operation of the commutative law is evident.
If John has f£ive dollars and spends two dollars, his f£inan-
cial state is the same as if he charged two dollars, and
then paid it up out of f£ive dollars. in either event,

hetll have three dollars left after the transaction is

OVET e
The associlative law also applies. If he has five
dollars and spends two dollars, he has three dollars left.

If, the next day he spends the three dollars, he?s as broke

o

as 1f he had five dollars and spent two dollars aund three

Collars all in the same place.

5

If he has five dollars and adds nothing to it, he's

o

+5, Whereas if he owes five d

e]
I...J
l._l
98]
F}
0]
o]
[aB
Hv]
)
<
n
s
(e}
ot
02
]
3

it, hets =5, Zero is the additive identity.
Finally, notice that each time we added two integers,
the result was an integer, which illustrates that the

integers are closed under the operation of addition.



Subtraction may again be described as the inverse

of addition. Since we kinow how to add signed numbers,
A"
we can uncover a pattern which will dewnonstrate the operz-

tion. We shall leave the definition until later Ffor the
mathematician to make.
five - (+

Positive ) = some number such that the

Il

N

+

U N
~

.

number added to (+2) The number 1t +3, because

U1
[
e

(+3) added to (+2) = (! Similarly, (+5)=(-2)
because (+7) + (=2) = =5, legative five =~ (+2) = (=7)

because (=7) added to (+2) = (=5). inally (=5)=(=2)

v

(=3) because {(=3) + (=2) = (=5).

Subtraction of integers can further be illustrated
by making thermometer rcadings on several days throughout
the year,

t ten o'ciock in

Assume the temperature is read a

nd 1%

j0b)
i

the morning is twenty degrees above zero, represented

by +20. At ncon, a second reading is made and it has warmed
up to £ifty degrees, +50, What is the difference between

the reading at mid-morning and that nmade at noon. The

temperature has risen thirty degree so the difference

between +50 and +20 is +30, On ancther day, the reading
at ten in the morning is ten degreces below zero, =10, AL
noon it has risen to twenty degrees above, +20. hat is

the difference between +20° and -~ 100? Again thirty degrees, '
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and since the temperature was rising, + to show direction.
The difference is +30. .

Now, suppose at ten o'clock it is ten degrees above
zero, but by noon it is twenty degrees below, The difference
between ~-20 and +10 is =30, because the temperature was
dropping. Here we are showing the opposite direction from
the rising in the first two examplese.

Finally, one cold morning at ten in the morning the
thermometer showed ten degrees below zero, =10. Two hours
later, the weather was worse and a quick reading showed
twenty degrees below, =-20. The difference between =20 and

=10 1s-10, negative because the temperature had fallen.

A second look at the last two examples will indicate

a trend.
+5 +5 ( =5) =5
-2 -( =2) - +2) -( =2)
+3 7 7 -5
+500 +20° =20° =20°
-(+20°) ~(-109) ~(+109) ~(=10°)
+300 T¥300 =300 —=I10v

To find the difference between two integers, change
the sign of the subtrahend (number being subtracted) and
add algebraically. )

Subtraction deserves a second look because we have

finally arrived at a number system in which we have closure

under subtraction. The difference between two numbers is
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no longer limited, We can now take six away from three
as easily as we can take three away from six.

The multiplication of the intégers may be developed
concretely, though it gets a little involved.

Using the idea of multiplication as repeated addition
doesn't make the beginning too difficult. If we notice
that for all practical purposes there i1s no difference
between the natural numbers and the positive integers, and
remember that 3 x 5 =5 + 5 + 5 = 15, it isntt too diffi-
cult to accept the interpretation that (+3) x (+5) can
be interpreted as (+5) + (+5) + (+5) = +15, (+3) x (=5)
can then be explained as (=5) + (=5) + (=5) = «15, Then,
1f the commutative law for multiplication is to be wval id,
(=5) x (+3) can be rewritten as (+3)(=5) = (=5) + (=5) +
(=5) = =15, Then the interpretation gets confusing. The
product of two positive integers 1s a positive integer;
the product of a positive and a negative, or of a negative
and a positive, is a negative integere. The joker is a
negative times a negative,

Iet's pretend again. We are standing at a railroad
station watching the train. It i1s noon, and the track
extends east and west. If we represent direction east
by posi tive, then direction west we'll represent by nega-
tive., Three hours later (3 ?. M.) we'tll call +3; three
hours earlier (9 A. M.) we'll call =3, The rate of the

train is f£ifty miles per hour,



If the train is going due east, three hours later
it will be 150 miles east of the station. (+50) x (+3) =
+150, If the train is going east, three hours earlier
(9 A.M,) it was 150 miles west of the station. (+50) x
(=3) = =150,

If, instead the train is going west, then three hours
later it will be 150 miles west, =150. (=50) x (+3) = (~150).
Three hours earlier, it was 150 miles east of the station.
(=50) x (=3) = +150.

The rule emerges as this: Multiplying two integers
with like signs gives a positive integer for the producte.
Multiplying together two integers with opposite signs gives
a negative,

Both the commutative and associative laws applye.
(#50) x (=3) = (=3) x (+50) as we saw with the trainse.

(+#3) x (=4) x (=5) will result in +60, whether we 2L nd
first the product of (+3) and (=4), which is (~12), and
multiply that by (=5); or whether we multiply (+3) tixes
the product of (=4) and (=5). (+3) times (+20) is also
(+60).

The distributive law of multiplication over addition
is in operation with the integers. (=3) times the sum of
(=2) and (+5) is equal to the sum of the two products (+6)

and (~15), Either order results in (=9).
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There is also a multiplicative identity (+1) since

any integer multiplied by (+1) retains its identity. The
\

signed numbers are closed under multiplication; that is,

the product of two integers is an integer.

Since division is the inverse of multiplication, the
same law of signs will hold as for multiplication. However,
until we redefine the fractions in terms of integers, which
we shall presently do, we cannot claim that the integers
are closed under division. Unlike signs in division result
in a negative quotient. (=3) % (+5) = («~3/5), which is
not one of the fracidons with which we are familiar., OFf
course, division by zero continues to remain impossible.

The mathematician sees the integers without a 1 the
trimmings. IHe gets them into the organization by defining
them in terms of ordered pairs of natural numbers. Since
they grew out of the need to f£ind a number system which
made subtraction always possible, they are the elements
of the set which provide the solution for ail problems
of the type (a-b). The mathematician uses a sophisticated
way of writing the ordered pair. We shall however, cling
to the more meaningful way (a=b) knowing that it is not
the same as (b~-a), and that a and b are’any natural nuabers.

When a is greater than b, (a=b) is a positive integer.
When a is less than b, (a=b) represents a negative ilnteger.

When a is equal to b, (a-b) represents zero.



= 60

For example, if a is six and b is two, (a=b) =6 = 2
= 4, a positive integer. On the other hand, if a is three
AN

and b 1s seven, then (a-b) = 3 = 7 = =4, a negative integer.

I

If a =b = 2, then (a=b) = (2 - 2) = 0.

Two integers of the form (a~=b) and (c~d) are defined
to be equal if a + d = b + c. To illustrate: (2=5) is
equal to =3, while (3=6) is equal to =3, also. The defi-
nition says that (2-5) is equal to (3=6) if (2 + 6) = (5 + 3).

Equivalence classes emerge with this definition of
equality, (3 + 2), (4 + 1), (L +4), (6 - 1), and 5 are
all members of the same equivalence class in the natural
numbers. 1/2, 2/4, 3/6, 4/8, etc. are elcments of an equi-
valence class in the fractions. (5-0), (8=3), (6-1), (7=2),
(68-63), etc. are the same type of group in the integers,
while (0~5),(3=8), (1-6), (27-32), ectce. are also equal by
the definition of equality. (Li=6) = (27=32) if (1 + 32) =
6 + 27).

Addition of two integers written in the form of
ordered pairs (a=b) and (c~d) is defined as (a + c) - (b + d).
Two illustrations will make the definition clearer. The
addition of (5=2) and (6~4) is équal to (5+6) = (2+4) or
1leG = 54 (5=2) = 3; (6=4) =235 2 + 3 =5, Also, (2=5)
added to (3=6) according to the definition of addition is

equal to (2 + 3) = (5 + 6) = (5) = (11) = =6, Going back
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to the original problem. (2=5) equals (=3) while (3~6)
= =3, (=3) added to (=3) is equal to (=6).
~
Multiplication is defined also in terms of the

(ac + bd)

ordered pairs., The number (a-b) times (c-d)
- (bc + ad), This looks involved but it isntt so bad when
you see how it i1s applied. (3-6) times (5~2) by the pro-
cess which we worked out intuitively earlier says (=3)

times (43) = =9, The definition says (15 + 12) = (30 + 6)

= (27 = 36) = =9,

The additive identity is (a=a); thatt's equal to zero,
you remnember.

An important property of the integers is that for
every positive integer there exists also a negative integer
so that their sum equals to zero. ((+a) + (=a) = 0.

The multiplicative identity if (L~0), or any elenent
of the equivalence class a-(a=1)., Ixamples are (5-4),
(6-5),(27-26), etc.

The associative and commutative laws for both addition
and multiplication are valid. These were illustrated earlier
under the description of the two operations. Of particular
interest in the integers is the distributive law. To make
it valid under integers it was necessary to define the law

of signs in the multiplication of two negative numbers as

we determined them to be,



The destributive law says saze number *at® times
the sum of two numbers tbt and 7t i§ equal to the product "
of *a?® and *b?! plus the product of ta' and 'c'. Ve saw
how it worked in the naturals and the positive fractions.
A specific instance will illustrate. We know already that
(+5) + (=5) = 0, (~2) times the sum of (+5) and (~5) then
must equal zero because (=2) times zero is equal to zero.
That is, (-2) x [(+5) = (=5) = 0. Using the distributive
law, Y(-2) X (+53 + [(-2) ple (-53 1s equal to (=10) + E-2) X
(-Bi]; But wetve alrcady established the answer by the
other method, The only way (=10) + l2—2) ple (—52] can be
equal to zero is for the product of K-2) and (-53 to be
positive 10. (=10) + (+10) = 0. Tor that recason, mathe-
maticians defined the product of two negative integers to
be a positive integer.

We can sct up a one-to-one correspondence between

the positive integers and the naturals..e.

NGT“TQIS I-h‘hzqcrs

—

A

The integers can then be said to include the naturals so
the illustration can be condensed. In short, the natural

numbers are a subset of the integerse.
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If we go back to the fractions which we defined as
the ordered pair of two natural numbers and re-define them
as the ordered pair of two integers, then with the law of

signs for division for signed numbers, we can include nega-

tive fractions as well as positive fractions. This complete

system 1s called the rational number system, where a rational

number is defined as an ordered pair of two integers, a/b

with b not equal to zero.

Now the diagram can be extended farther. If the
integers are written as =3/l.es, =2/1, =1/l =1/<1.,..
-5/-1-.. we can show that a one-~to-one correspondence can

be set up between the integers and some of the rationals,

_EW\Tu\c._rs ) . Rq’* |oV\a\$

The integers can be included in the rationals, since they

are a subset of the rational number systeme.
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Naturals

With the development of positive and negative frac-
tions, we have a set of numbers in which addition, multipli-
cation, and their inverse operations, subtraction and divi-
sion (eixzcepting by zero) are always possible., The five
basic laws, commutative for addition and for multiplication,
associative for addition and multiplication and the dis=-
tributive law of multiplication over addition are all valid
and lead to no contradictions.

Man nas come a long way slince the *one sheep, one

finger' dayse



CHAPTER VI *
FIFTH TAIK

These talks have been concerned with showing how
a mathematical structure is achieved.

We started with some undefined terms: set, one-to-
one correspondence, elements of a set. With these as raw
materials, we created some building blocks, the natural
numbers, Methods of combining the blocks were evolved,

These methods were addition and multiplication. Basic
specifications were made and met. They were called the
commutative, associative, and distributive laws. We built
the foundation.

A problem arose calling for different building blocks.
The natural numbers were the raw materials from which we ‘
created the new blocks required. The architects called
these the integers. They were slightly different in appear=-
ance and form. The methods for combining them required
slight modifications. IFundamentally the methods were the
same, addition and multiplication. The .new materials met
the basic specifications. The construétion continued.,

The next phase brought a demand for different building
materials. That demand was supplied by using the integers

as raw material. The new blocks were called the rationals.
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They had a more highly glazed appearance. Their use called
for another minor change in methods of combination. The
basic specifications remained the sa&e.

No more needs were anticipated. The structure should
now be complete.

Actually, what more would seem to be needed in the
recalm of number? The mathematician had an enlarged system
called the rationals, defined as the ratio between two
integers, a/b, where b is not equal to zero. With the
set of rationals, he could add, multiply, subtract, and
divide. The results of these operations were also in the
set. Furthermore, these numbers obeyed the laws of commu-
tativity, associativity, and distributivity. What more
could the mathematician want?

He could illustrate the rational number system by
the use of a number linc,

——— = — >
-5 -3 4 L "2 1%
:’ i 4 } i iy N g } i 3 ] =

-3 -3 -1 “&% O Y + - 3

The mid point he labelled zcro. Moving to the right he
called moving in the positive direction. Moving to the
left, which was opposite, he labelled by the negative
symbol, He divided the line from zero in each direction
into units. At the end of each unit, he located the in-
tegers, +1,+2,+3,... and =1,=2,-3,... Lach integer was

a representative of an equivalence class. He then divided



the units into smaller parts. These points of division
located the rational numbers, +1/2, +3/2, -l/2, =5/8, etc.
The +1/2, +3/2, etc. were also repregentatives of equi=-
valence classes,

We have already shown how the rationals can be set
into one-to-one correspondence with the integers, and how
the integers could be put in the same relation to the natural
numbers., The rationals, then, as has already been pointed
out, include the other two number systems.

Every rational number, it was found, could be repre-
sented by a point on the mmber line.

Then, a new crisis arose, It was discovered that
while every rational number could be represented by a point
on the line, there were points on the line which could
not be associated with a rational number.

The story of this new crisis begins with the Zgyp-
tians. They discovered that i1f they neceded to construct
a right triangle, which they frequently did since they
built the Pyramids, they could do so by using a ilength
of rope. They placed two knots in the rope so that the
knots divided the length into three, four and five units.
One man held the two ends and two other-men held the knots,
at the same time pulling the rope taut. The figure created
was a triangle with a man at cach corner. The man standing

at the corner between the three and four unit lengths was

standing at the right angle.
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The mgyptians discovered the method but the Greek
proved it. They stated it in a theorem. The credit for
the proof was given to Pythagoras. The Pythagorean theofem
says that 1f a triangle has a right angle, then a square
on the side opposite the right angle is equal (in area)
to the sum of the areas of the squares on the other two
sides. A square on a side means a square using the side
of the triangle as a side of the square.

The area of a square i1s found in the same way as
the area of any rectangle, the length times the width,

In the case of the square, the length is equal to the width,
The area of a square then is a side s times a side s or s

times s, The convenient notation is s with a small two
2

=

written slightly above and to the right of it, s
The statement of the Pythagorean theorem was later
changed to algebraic form. The square of the hypotenuse
(the side opposite the right angle) is equal to the sum
of the squares of the other two sides. We recognize it

as a formula ¢? = a® + b2, where ¢ represents the length

of the hypotenuse, a and b the lengths of theother two
sides.
With the theorem, the Greeks knew that what the

Egyptians had been doing was right. For 52 = 32 4 42.

52 = 5x 5=25; 32 =3x3=09; 42 =4 x 4 = 16. Twenty-

five did indeed equal nine plus sixteen.
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The trouble arose with a square., Let the length
of the sides of the square be one unit. Draw in a diagopal
which is a line Joining two non-consecutive corners. Then
the square is divided into two triangles. They are right
triangles, because all the angles of a square are right
angles, The diagonal is the hypotenuse of the right tri-
angle. TFinding the length of the diagonal should be easy.
If its leagth is renresented by d, then according to the
theorem, d2 = 12 + 12; 12 = ixl = 1, So d2 = 2, If d2 = 2,

what did d ecual?

t could have been an easy question, IE a2

n
o

then d would equal one of the two cqual factors of &
Since d2 = 22, a = 2, 1If a® = 9, then d° = 3%, so d = 3,
If d2 = 25/49, then d = 5/7.

Finding two equal rational numbers the product of
which was two was not so simple. In fact, the two equal
rational numbers couldn't be found. Some symbolism was
devised, written 12, and read the square root of two, It
represented one of the two equal factors of two. But what
was 1t?

Here was a problem which couldn?t be solved by addi-
tion, subtraction, multiplication or division.

Yet the square root of two was measurable. It could

be located as a point on the number line,
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If one constructed a square using one unlt on the
number line as a side o the square, putting one corner
at zero and one at positive one and drew in a diagonal
from zero to the opposite corner; the length of that dia-
gonal could be laid off on the number line., The end fell

someplace between +1L and +2, a little bit short of +3/2.

AN

-1 o +i ) “+2 .:,;

t was f£inally recognized that the {2 was not a

rational number. A very neat proof was completed, based
on the assumption that the ¥ 2 was equal to the ratio of
two integers, which meant it was rational. The proof led
to a contradiction. Therefore, the square root was not
rational.

Great was the consternation in mathematical circles,
'he news was so embarrasing that it had top secret priority
rating. Gradually, however, the story leaked out to the
general public. Legend has it that the one who told lost
his life, )

Be that as it may, one fact is certain. As a result

of the discovery that the ¥2 was not rational, new numbers
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must be acknowledged. These new mumbers were the non-
rationals, called the irrationals,

The simplest approach to unde;standing irrational
numbers 1s to go back and look at the rationals expressed
as decimal fractions.

A decimal fraction is one whose denominator is
limited to a multiple of ten. Thus, the common fraction,
2/5, becomes a decimal when iﬁ is expressed as 4/10. A
more convenient notation makes use of position. Then 4/10
is expressed as .4 (read point 4 or 4 tenths), 5/100 as
.05 (read point zero five or 5 hundredths), 6/1000 as .006,
and S0 on,

Converting a rational fraction to a decimal was
probably first accomplished by thinking, 'Iwo over five
is equal to what over ten." (2/5 = 4/10). Illere it was
necessary to determine Dy what five was multiplied in order
to get ten, then wultiplying the two by the same amount,
Wetve met this idea before and called it an equivalence
classe,

A quicker mcthod evolved. Since two over five in-
dicated division, divide two by five, add a decimal point
following the two with tihe necessary zeras, and divide
until there is no remainder,

This method worked as long as the denominator of

the common fraction was a multiple of two or five., Fractilons



5 72

like %, %, 2/5, 8/25, etc., could all be written as decimal
fractions because the division finally fcame out even?.
The decimals were called terminating\or finite. They ended.
One half = 5 = ,50 = ,500 = ,5000, No matter how much
farther the division was carried out, the quotient included
only more zeros.

Rational numbers like 1/3 or 2/7 or 3/11 were dif-

ferent, One third = ,333,.. The three dots are the mathe-

maticiants way of saying "“and so on without bounds.™ Two

sevenths = ,2857142857142857142,,. Three elevenths
«272727274.. These rationals, and indeed, all rationals
whose denominators were not multiples of two or five would
never terminate. They were called infinite decimals.
However, in addition to being non-terminating, they
did share an interesting second feature., It was found
that every rational which did not terminate when it was
converted to a decimal repeated after some pattern. Further-
more, every repeating decimal could be converted to a
rational number.
It was found, also, that numbers like 12 were in-
finite decimals but they did not repecat. The decimal form
of {2 begins as if it were going to follow a pattern.
We arce accustomed to using the approximate value 1.414&
for4 2. But the decimal does not terminate and if caried

a bit further, is seen to be non-repeating. Its value
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is 1.414213... Pi is another non-repecating decimal., Ordi-
narily we use the approximation 3.14 or 3.1416, rounded
off to four decimal places. Not rouhded off, it is 3.14159...

William Shanks, an Englishman spent fifteen years
of his life working with the decimal which approximates W .,
He carried it out to 707 places. It was found later that
he had made an error in the 528th place. Since then, com-
puters have carried the decimal wmuch farther. Pi, then,
1s an irrational number. 1Its decimal is non-repeating and
infinite. So, also, are 43, 45, {6, 17, (8, 110,...

With the recognition and acceptance of the irrationals,
a new number system was created. It was called the real
number system. It consisted of all the terminating and
infinite decimals. The rational numbers, which are ter-
minating and infinite decimals repeating in a pattern com-
prise a subset of the set of real numbers.

The creation of the real number system made it
possible to finish the number line. ZEvery real number
could be associated with a point on the line, and what
is more, every point on the line could be associated with
a real number,

You may well ask, "Now, have all man's number needs
been met?"

There are other number systems. The one "“just around

the corner' is fully developed and provides a solution
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set for an equation of the type x° +x + L = O. Third
year high school mathematics students are thoroughly intro-
duced to that set of numbers, called\complex numbers,
There are others, not studied in high school, but fully
developed.

However, we shall end our study of mathematical
structure with the real numbers.

Remember that each number system was created by
man to furnish a solutlon set for some problem bothering
him, The set of natural numbers, 1, 2, 3, 4, ..., enabled
him to count, add and multiply. The set of integers, the
signed or directed whole numbers and zero, made subtraction
always possible., The set of rationals which are the posi-
tive and negative fractions, made division always possible,
The reals, which are the terminating and infinite decimals,
provided a solution set for problems of the type %2 = e

No one can foretell what the future needs of man
may be. Yet, in view of the splendid achievements which
have resulted from his efforts to supply necessities in
the past, it seems safe to make one prophecy. Whatever
crises may arise which call for new systems to provide

solution sets, man's intelligence will create the numbers

which will supply the answers,
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