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CHAPTER I
THE FROBLEM

1,1 Introduction. 1In this day and age our soclety
has become more and more complex due to the technologleal

advences in the fields of selence and mathematics. These
changes have caused a great deal of attention to be directed
to our present system pf education and particularly te the
mathematies and sclence that are now being taught in our
secondary achools, There 1s general agreement that our
present educationsl preograms need improvement to fit the
needs of our changing times, but at present, there 1s no
generally accepted answer tc the guestion of how much the
programs of our schools should be altered, Until this
problem 1a adequately solved, there 1s a need to bring our
teaching further intc line with the needs of our times by
properly supplementing the generally accepted programs of

a few years ago.

1.2 Statement of the problem. Many of the teachers
of secondary mathematics in our high schools nave had little

or no introduction to some of the so-called modern aspects
of mathematles that are now of such imvortance., The purpocse
of this thesis 1s to provide the high school teacher of
mathematics with some Information releating toc the theory of



sets, topology, and non-Euclidean geometry, designed to
provide stimlating challenges to the superior student in
mathematies.

The following material is not meant to be offered
to students in regular class room work, It 1s intended to
supplement the material ususlly included in current mathe-
matics text books. However, it 1s expected that some, or
all, of the topies represented in this study may well
beecome standard content of future mathematics text books,

1.3 Limitations of the study. During the school
year of 1957-58, there were 1,037 teachers of mathematics

in the public high schools of Eansas.l First year algebra
was taught by 692 teachers, Plane geometry was taught by
461 teachers, Seecond year slgebra was taught by 279
teachers, Trigonometry was taught by only 79 teachers and
solid geometry by only 71 teachers, 2

During the 1957-58 school year, sixty-three per cent
of all students enrolled in the ninth zrade were enrolled
in first year algebra, Thirty-five per cent of all tenth

ljohn M. Burger, "Background and Academic Prepsration
of the Mathematies Teachers in the Public High Schools of

Kansas 1958-1959,% Th ria State Research Studies
(Bmporie, Kansast di:i-.f. FIviiIii_o? the Kansas otate
Teachers College, Mareh 1959), Vol, VII, Ne. 3, p. 6.

2Ibid., pe 17.



grade students were enreolled in plane geometry. Seventeen
per cent of all eleventh grade students were enrolled in
second year algebra. Fifteen per cent of the twelfth grade
students were enrolled in either trigonometry or solid
geun.tr1.3

On the basis of thls information, it was decided to
limit the material to that whieh might be uaed as supple-
menting to the high school courses of Algebra I, Plane and
Solid Geometry, and Algebra II.

1.} Background of the problem. In many mathematics
classes there are students of superior abilities, who are

capable of doing work well beyond that which would be
expected of the clasd as a whole. The teacher of these
students must be prepared znd able to direct their inter-
ests into areas which, at this time, are not generally
included in secondary mathemstics, This can be done suc=-
cesafully only i1f the teacher has adeguate imowledge of the
subject matter involved.

The background of the problem will be discussed in
more fetail in Chapter II,

3An unpublished report of the mathematics offerings
and enrollments in Kansas high schools, obtained from
George L. Cleland, Director of Instructional Services,
Eansas State Department of Public Instruction, Topeka,
Kansas, July 3, 1958.
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1,5 Sources of materisl. The material presented in
Chapter II is based upon articles written by leading edu-

cators in the field of mathematies. These articles appeared
in The Mathematics Teacher and The Kansas Teacher, Much
emphasis 1s also given to the Twenty-third and Twenty-fourth
Yearbook of the Nationsl Counell of Teachers of Mathematiest
and publiecations of the Commission on Mathematics of the
Cecllege Entrance Exsmination Iurd.s

The material of Chapters III, IV, and V has been
based on mathematies textbooks in the general areas of
theory of sets, topology, and non-Buclidean geometry. Some
of the matorial has 218c been condensed from such books of

mathematical hterest as Riddles in Mathematiss by Northrop,®
Through the Mathescope by Ogilvy,?! Mathematlcs, queen and

hﬂn National Council of Teachers of Mathematies,

‘gfg % Twenty-third !’uﬂook of
tho onal € %’of Mathematics (Washington

D. C.: National Council of Teachers of Mathematics, 1957);

L&t%mmﬁ%o&n

of Mathematics (Washington, D, C,: National Council of
Teachers of Mathematies, 1959).

5oomtni.on on llnthcntiu of the College Entrance

Examination Board, g%; %g (New Iorkt
l'hodontnlonenluh.n €8 o to%f?s_oﬁﬁm

ination Board, March, 1958),

6h¢no P. Northrop gugcg (Hew
York: D, Van Neostrand 0

Toherles Steanley Ogil
vy %afgnlh the Matheseope (New
York: Oxford University Fress, '1 .



Servent of Selencs by Bell,® and What is Mathematics? by
Courant and Robbins.’? Artieles of educational magezines,
sueh as The Mathematiecs Teacherl® and Seientifie Americapll

are noted. The Egoyelopedis Britannical? and Golliers
Rncnlgodnn have been used as references for technical

interpretations,

1.6 Organisetion of the thesis. Chapter II places
the problem in the proper perspective, Modern trends in

the teaching of mathematics are discussed, end some of the
proposals made by the Commission on Msthematics are
presented,

Chapter III presents the fundamental idess of sets,
The more common symbols used in vorking with sets ere intro-

duced, and the meanings of the symbols are explained., Some

SErie Temple Bell, ﬁ %%ggin, Sueen and 3 of
Science (Wew Yori: MeGraw- ompany, Inc., { ﬁf

9Richard Courant and Herbert Robbins, What
Mathematics? (Wew York: Oxford University Prou 1941).

104, 7, Medor, ™Modern Mathematies end Its Flace in

th; Secondary Sehool " The Mathemetics Teacher, October,
1957.

jens Habn, "Geometry and Intuition,” Sclentifig
American, April, 195k,

%Enoyolopedia Britamnies, "Topology,” Chiesge, 1956,

vol, 22.

13c01116rs Encyeclopedis, "Topology" (New York:
P. F. Collier and Son Corporation 1950), vol. 18.



exercises dealing with sets are suggested to help fix the
concept and use of sets in our thinking.

Chapter IV presents some of the basic concepts of
topology. Some of the historieally famous topological
problems and their implicetions are disgussed, Some gues~
tions and experiments are propesed to broaden the under-
atanding and stimulate interest in topology.

Chapter V indicetes how non-Euclidean geometry has
developed as a branch of mathemeties., A finite geometry
based on twenty~-{lve points is desecribed.

Chepter VI summarizes the meterial of the preceding
chapters and indicates the need for further study of modern
mathematics.



CHAPTER IIX

BACEGROUND OF THE PROBLEM

2.1 Introduction. 1In order to put the material of
this study in its proper perspective, it is hselpful tec con-
sider the role that modern methematics is nlaying in our
culture, For many years mathematics has played a major
part in the application and development of the flelds of
physicas, engineering, end technology. More recently, the
use of mathematical methods has been expanded in the arpli-
cations to several areas, such as induatrlal planning,
medicine, blochemistry, blo-physies, scclology, philosopay,
and 1:|.nguiluu.1

2.2 Froposed chenpges in slgebra. The mejor differ-
ences in the algebra of the past and the propeosed algebra
of the rntmz are not' only differences of content but
differences in point of view, The emphasis wlll be shifted
from the manipulative processes of zlgebra to a thorough

lioward P, Fehr, "Mathematics for tho Futurs," The
Ksnsas Teacher, Merch, 1958, p. Ll.

20 ommission on Mathematies of the College Entrance
Examination Board, Program for College Preparatory Mathe-
(New York: Omiuien on lhthmtieu of the College
trance Exemination Board, 1959), pp. 20-2,
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understanding of the fundamental ideas and basic prineiples.3
In order to accomplish this, the concepts and language of
the theory of sets will be used extensively in algebra, as
also in subseguent work in other aress of high school mathe-
matics,

The set conecept, whieh will be discussed in some
detail in Chapter III, is elementary and closely related to
experience. It permits a logical approach to a variety of
problems that eall for ereative and original thinking, It
is one of the great unifying and generalizing concepts of

mathematics,

2.3 Proposed changes in geometry. The Commission
on Mathematics of the College Entrance Examination Board

has proposed changes in gomtryl‘ which, if adopted, will
result in a geometry course very different from courses as
now gemerally taught. Since logilecal deduction will be
stressed not only in goo-;try but throughout tne study of
mathematies, it may not be necessary or profitable to spend
as much time as formerly on formal deductive proofa of geo-
metric theorems, Thils will permit the inelusion of some of

the material usually found in the more uhn'nood courses,

S¥enr, op. elt., pp. 43<h.

hﬂoniuion on Mathemsticas of the Collegze Entrance
Examination Board, op. cit., vp. 22-8.



The length of time now devoted to the study of plane and
solid geometry, usually one and one-half years, will be
shortened to one school year,

As suggested by the Commission on Mathematics, the
unit will start with a look at geometric ideas and a dis-
cussion of the nature of deductive reasoning, The formal
study will start with the postulation of congruence theorems
and preoceed rapidly through e chain of six or eight funda-
mental theorems to the proof of the Pythagorean theorem,

It is possible thet time will be given to the study of geo-
metries other then ths Euclidean geometry which formerly
mzde up the entire course, Algebraic methods may be used
in proofs of certain theorems where synthetic methods were
used in the paot.s

2.4 Summary. There will be some major changes in
the teaching of high school mathematics if the propored
change in emphasis is adopted, It has been freguently
stated thet the present programs for the study cf mathe~
matics in our seocondary schools are inadequate for the
needs of cur present eulturo.6 It is generally secepted

that the main body of subJect mattsr which has been studied

srchr, op. eit., p. Ui,
b1o14., p. 2h.
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in the past 1is still useful, and only such topies skhould be
eliminated &8 now serve no apparently useful purpcse,

The transition from teaching the traditional mathe-
matics to the teaching of the new mathematics currioculum
can not be brought about without some difficulties. Ome
serious problem is the preparation of teachers for instruc-
tion in material which will be part of the revised
mathematies program, One recent report by the Naticnal
Council of Teachers of Mathematics states:

New processes taﬁ new points of view in mathematics
have provoked 2 revelution in many college courses dur-
ing the past decade which has resulted in emphasis now
being glven to concepts and technigues that could pe
found only in graduate courses prilor to that time.

Our high school teachers should underatand the role of
modern mathematies iIn our seientific eulturs. The term,
"modern mathematies,” is used to designate the content and
points of view of the proposed new courses, Though this
modern mathematics 1Is not universally teaught in our second-
ary schools today, the capable students in our class rooms
should be siven ths opportunity to explore these new flelds

as Tar as time end ability will allow,

Teruce E, Meserve, "Implisstions for the Mathematics
Curriculum ® Insights intec Modern Nathematics, Tuenty-third
Yearbook of the Na onal Council of Teachers of Mathematics
(Washington, D, C.s National Couneil of Teachers of Mathe-
maties, 1957), p. Lok,
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The changes in our mathematics programs have not yet

crystelized, and text books tec effeet these changes ars not
available at the time of this writing, the summer of 1959.

The Commission on Mathematics ha® given consideration to the

followingz proposals o

(1) That increased emphasis be placed upon the
teaching of algebra a8 the study of mathematical strue-
ture in contrast to the develcpment of menipulative
skills alone, and that in a limited way the ldeas of
modern mathematlics be introduced into this instruction,

(2) Thet the idess of graphing commonly taught be
extendsd intc a development of the concepts of elemen~
tary analytiec geometry, and thet analytiec as wel) es
synthetie proofs be accepted in geometry.

(3) That inereased emphasis be placed upon deductive
reasoning in areas of mathematics other than geometry.

(4} That the traditional courses in deductive solid
geometry be abandoned, but that spatial econcepts be
developed ir eonnection with those of the plane,

(5) Thet inereased emphasis be plassd upon the
trigometrie funetions and their properties as functions
of real numbers, with a consequent lessened emphasis
upon such e %o.tieml trigonometry as solution of

triangles by logarithms,

(6) That inereased emphasis be placed upon proba-
billity and statistical inference as a type of thinking
of the greatest importance,

(7) That provision be made for the inclusion of the
elementary osleulus of polynomials in the high school
program, but that a standard ocourse in amalytic geometry

8Commission on Mathematics of the College Entrance

Examinetion Board g%;_ug;g . tics (New Yorl:
Commission on llltﬁm ¢s of the College Entrance Examination
Board, March, 1958),
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and caleulus be considersed as a college-level course,
which 1f teught in high school shouléd be regarded as a
ccllege course taught to abls studants for advanced
plecement,

(8) Thet a student who completes a full four year
program in sscendary school methemsties should be pre-
pared to take analytic geometry and caleulus as his
freoshman college course,

The Cormission on Mathematics has recently meodified

its stand on the seventh proposal., There ars differences
of opinion a3 to whether celoulus should be taught as & high
school subject.

These proposals are most aignificant to the tsachers
of secondary schocls, If these proposals are adopted, it
will be necessary for many teachers to take courses in
modern mathematles in order to suceessfully prepare students
in asccordance with the elight proposals of the Commission
on Mathematics,

The School Mathematies Study Group has taken signifi-
cant steps in the direction proposed by the Commission on
Mathematles. In its session at Yale University, New Haven,

»
Gonnestieut, from June 23 to July 18, 1958, the group worked
out tentative courss outlines for grades nine through twelve.
This group plans %o contimue 1ts work in enoiher session

from June 21 to August 22, 1959, at Boulder, Colorado.



CHAFTER III
THEORY OF SETS

3.1 Sets. 42 far back &s lenguege has been
recorded, man hes been thinking in terms of sets. To
illustrate this point, one may think of the collective
nouns used in the phrases, "herd" of cattle, "floock" of
sheep, "swarm® of bees, or "field" of corn. The words,
herd, flock, swarm, and flsld ere used to give the mental
coneept of many things grouped into = single, coherent set.
Thus, the basie 1dea of set 1s simple and obvious. However,
sets did not become a recognized part of mathematics until
less than a eentury ago.l Todsy, mathematiclians &nd scien-
tists regularly use the symbolism and the algebra of sets
in their work.

2et is en undefined concept waiech mey be associlated
with a ecolleetion of objects or entities.2 There may be an

slement of intereat in sets of things in non-mathematical

L4
situcticns, such as Tootball players, bowling pins, class

1z, J. MeShane, "Operating with Sets," Insights into
ggggg% !g%!;g;!%gg, Twenty-third Yearbook of the National
ouncil of Teachers of Mathematies, p, 36.

2oseph 3reuer, Introducticn to the Theory of Set
(Engleweod Cliffs, Wew Jersey: Frentice-Hall, Ine., 1658),

De é and A, J, Meder, "Modern Mathemstics and Its Place
in the Secondary School," The Mathematles Teacher, October,
1957' Fe hZZ.



1,
officers, and so on. In the study of mathematles, however,
it 1s advisable to limit the ccmsiderations of asets to
coilections of mathematical interest, such as sets of

numbers or sets of peints,

3.2 BSet notations. The elements of a set are
usually identified by the use of small letters, such zs,

a, b, ¢, ete. Capltal letters will be used tc identify the
sets, themselves, The symbol, ¢ , 1s used to designate the
phrasge, "is & mewber of" or "is an element of," To indicate
that x is a mewber of set A, one would write, in symbols,

X € A, To indieate thet x is not a member of set 4, one
would write, x ¢ A,

A fini%e set, that 1s, a set with s limited number
of members, may be designsted by maming 21l its members.
This method of designating e set 4=z called the roster
method, or the enumeration method, An example cf = finite
set is the set, 4, ol integers between one and four,
inclusive, A = {1, 2, 3, 4}. The set, B, woose eloments
are thes aquares of the four slements of A, is
B=f{1, 4, 9, 16}. Changing the order of the vlements
does not change the aset. For exampls, the t;at A could also
be designeted by 4 = {i4, 2, 1, 3}, and the set B might be
designated by B = {9, 1, 16, 4}. In the following material,
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for easier ldemtification, the sets will be designated with
the elisments in numerical order,

' It may be that the number of elements of a finite
set is B0 large Lhet it 1s not convenient to identify them
all, indlvidually, as in the roster notation. For example,
consider the set of the first 100 natural numbers, Here
it would be mest inconvenient to use the roster notation,
indicating esoh of tThe one hundred elements, The listing
of the elements could be satiafactorily condensed into the
convenient and suggestive sgmbol, {1, 2, 3, . . ., 100},

A set may also be named by deseribing the conditions
vwhich ldentify the members of the set. For example, the
set of the first seven positive integers could be designated
by the symbol, {as a ¢ ¥ and & £ 7/, where W is the set of
natural numbers, The colem, "3," arpesring immedistely after
the element ir this set symbol, is tc be translated as "such
that," The set symbol would thern be read as "tha set of all
elewarts a, such that a is one of the firal seven natursl
mmbers,® Similarly, the set of the first one hundred
ratural numbers could te designated by the symbol
{a: ael and 2 & 100}, This methed of representation of s
set is called the deseription notation or the set-builder
notation.

A given set may have an Infinite number of elements,
For example, the set of all natural numbers hes an infinite
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Answer. {h: 2 is 2 rational number and 0 € a £ 1},
or {a:1 & = m/n, m < n, m,n relatively prime, m,n € N}.
Exercise 6. Designate the set of numbers x which
setisfy the equation x2 - 3x - 10 = 0.
Answer. {-2, 5}, or {x: x2 - 3x ~ 10 = 0},

3.3 Venn Diagrams. Certein relstions of sets will
be introduced plctorially in figures. These flgures make
use of circles to provide graphic representations of sets.
These figures are Venn diagraml.3 The circles in a Venn
diagrem may represent either finite or infinite sets, &nd
11lustrete the relations existing between two or more sets
by their relstive positions. Figures 3.1, 3.2, 3.3, &nd

3.4 are Venn diagrams.

3.& Relations between sets. There ere three

relations which may exist between two sets, A esndé B.

(1) All elements of A mey be the same as some, but not all,
of the elements of B, In this case, A 18 a proper subset
of B. Or the elements of A and B are identiecel, in which
case each of the sets, A and B, is said to be a subset of
the other. (2) Some of the elements of A may also be

elements of B, The set of these common elements is called

370ohn G. Kemeny, J. Leurie Snell, end Gerald L.
Thompson, Introduction to Finite Mathemstics (Enclewood
Cliffs, New Jersey: Prentice-Hamll, inc., 1957), PPs 59-60;
and McShane, op. eit., pp. 39-40.
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the intersection of sets A end B, (3) The elements of A
may be entirely different from the elements of B, That 1s,

there is no element of A whieh is also an element of B.

3.5 Subsets. As hes glready been indicated, if
all the members of ome set are elso members of another set,
then the {irst set is a subset of the second sset. Thus, the
set of positive odd integers less than 10 ls & proper subset
of the positive odd integers less than 12.

A8 another example of a subset, comslder the sets
defined by A = {x: x° - 3x + 2 20} andB = {m 0 < x ¢ 5}
where X is & real number, The zet A msy also be rapresanted
by the symbol {1, 2], It 2= epparent that the members of 4
are included in the aet B, This relsticn of the two sets
is indlcated Ly The symbolic statemert AC B, read, A §s a

proper subset cf B,

3.6 Intersestion of two sets, It may be that, as
in the case above, two sets may have some members in common,

The set of slsments common to the two sets, A and B, i3
called the intersection of A and 3, and if revresented by
the aymbol 4 N B, For example, the two finite seils,

Az {1, 4) and B 5 {4, 7}, bave the element L in commen.
The set of commom elaments, in this case, the eclement L,

is ealled the intersection of A and B.
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The shaded portion of Figure 3.2 represents the
intersection of the two sets pictorially.

3.7 Union of two sets, The concept of the union of
two sets may be thought of as putting the elements of both
sets into one single set. The symbol, A V B, indicates the
union of the two sets, A and B, and ireludes all of the mem-
bers of A and B, 4 simple example of this relation i1s the
following, Consider the union of ths set A = (1, 5, 6, 93
and the set B = {3, ¥, 6, 7, 9, 12}. The set indicated by
AUB1s the set {1, 3, 5, &, 7, 9, 12}.

The shaded portlions of the Venn dlagrams in Figure
3.3 1llustrate the unlon of twe seits when A is a proper
subset of B, when A intersects B, and when 4 and B 4o not

intersect.

3.8 The universe. The given set which contains all
elsments of s glven study is called the universal set, or
universe, I o study 1s eoncerned with the points of a
plane, the universal set is the set of 21l points on the
plans, The wniverse of peints in & plane weuld not neces~
sarily be the universe for all studiesz which might be ccn-
cerned with a plens, That 1s, the universal set must be
given in order to limlt the study to the elements intended
for study. The cepital letter U is frequently used for the
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THE INTERSECTION OF TWO SETS
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universal set. The universe from which the slements of a

get are taken should always be indicated or clesarly impliled.

3.9 Complement of a set; reiative complement of a
set, The complement of & given set consists of all of the

elements of the universe that are not containsd in the clven
set, As a non-mathematlcal exemple, i the set of all the
residents of Kansas constitutes the universe, U, and the set
of all the residents of Wichita identifies a set A, then the
complement of A eonslsts of all the residenta of Kansas who
are not residents of Wichita, The complement of A is
usually indicated by the symbol ~A, or A, The complement
of A 1s shown graphically by the shaded rortion of Figure
3ol

If U is taken to be the set {2, 3, 4, 5}, and 4 1is
the set {3, 4}, then the complement of 4 is the set {2, 5].
Symbolieally, this would be written A = {2, 5}.

If A and B are sets, the set of elements In A that
are not elements of B is calied the relstive complement
of B in A, This relatlion may be indicated by the symbol
4 n‘E, or A - B, This latter symbol should not be associ-

ated with numerical subtraction.

3.1C Ordered pairs. A palr of elements, such as o
and b, of whieh the first element and the seccnd element

have separate ldentifications, 1s called an ordered palr
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and is represented by the symbol (a, b). Ordered pairs of
numbers are used to designate points of a graph in Cartesian
cocrdinates. The ordered pair, (x, y), identifies the point
where the vertical line through the point representing the
number x on the horizontal axls crosses the herizontal line
through the point representing the number y on the vertical
axis, Thus, it mey be stabted that the first number of the
number pair, (x, y), is always associzted with a point on
the horizontal axis, while the second is assoclated with a
point on the vertical axis,

If A and B are two sets, then the set of all ordered
pairs, (e, b), which can be formed from the elements of the
two sets, a being an element of the set A end b an element
of the set B, 1s ealled the Cartesian rroduct of 4 and B
and is written A X B, It 1s often convenient to use a

single set A as the socurce of a Cartesian product, A X A,

3.11 Use of sets in studylng eguations in two

variebles, The concept of sets rnermits a much wider varlety

of graphs to be introduced into high school work. Since

a locus is a set of all points that satisfy a given con-

dition, and only those points, it 1s guite nstural that the

set conecept be used to study the set of points of a locus,
If x and y are varisbles replaceable by elements of

the set, ®, of real numbers, then the solution set of the
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equation, y = x = 1, is {(x, y): y = x - 1}; and the solu-
tion set of the imequality, y» z -1, is {{x, ¥)s ¥ > x -~ 1},
where X € R and y € R,

The graphical representation of the solutlon set of
the equation y ® x - 1 consists of all vroints which lie on
a certain straight line, as indiecated in Pigure 3.6. The
grephical representation of the solution set of the lnegual-
ity y 7 x = 1 1s a half plane of peints whieh lies above the
line of the equation, y = x - 1. This half plane c¢f points
congiste of the shaded uortioln of the incomplete graph in
Figure 3.6.

If x and y represent reel varisbles, and x -y = 2
and 2x ¢+ y = 4 are equations involving these variables,
then there are ordered pairs of real numbers for which both
statements are true simultaneously. The solution set of
these equations is the set, (2, 0) , consisting of one
ordered pair element, (2, 0), whieh corresponds tc the point
of intersection of the two lines representing these equations,

Exercise 7. Whet is the solution set of the pair of
equationa, 2x ¢+ y - 2= Cand 3x ¢ y ¢ 7 = OF

L 4

beommission on Mathematies of the College Entrance
Examination Board, Sets, Relstions, and ctions (New York:
Commission on Hatﬁonatfél of the Ualfogo trance Examination
Board, 1958), pe« 13; end Introductory Frobability snd
on

Statistica inrerongo for chooil ow York:
Commission on Mathematics of the College Entrance Examination

BO&l‘d’ 1957), Toe 133-
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answer. {(-9, 20)].

Exercise 8. What 1s the intersection of the two sets
of {(z, y)t x+y=-3=0}and {(x, ¥)i x+ y+5 = 0}?

Answer, @

The famlliar cirele graph of the equation,
x2 ¢ y2 = ), is the set of points on the eircle whose
coordinates satisfly the equation, The solution set of the
inequality, x2 » 12 £ I, where x ¢ R and y € R, is the set
of peoints on the eirele and within the cirele, This is
illustrated by the sheded portion of Figure 3.7.

The preceding are examples of infinite sets cof points.
These same equations may be represented graphically even
when the universe is finite, with a limited number of points,
For example, 1f U = {-2, -1, 0, 1, 2}, then there are only
2 finite nmumber of distinct ordered pairs whose first and
second numbers are selected from the set U. The number of
points which may be designated by the ordered pairs of U 1is
the Cartesian product U X U, and is the set {(x, y)}, where
Xx € Uand ye U,

3.12 Solution sets ol inegualitles. 4s i1llustrated
in Pigure 3.6, ths solution set of the inequality,
¥y < x -1, ecorresponds to the half plane of peints repre-
senting the ordered palrs of U X U. Consider the sclution
set of the three inequalities, y > x -1, y> =x ¢ 1, end
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FIGURE 3.8

GRAPH OF {(x, y): x2 ¢+ y2 = |, x € U ye U}
WHERE U= (-2, =1, 0,1, 2}’
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FIGURE 3.9

GRAPH OF {(x, y): x2 ¢ y2 0}, x e U, y ¢ U}
WE U= {-2, -1, 0, 1, 2}
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¥y < 2. The locus of sach solution set is a half plane of
points, The guestion may be raised, is there a set of
points which 1s common to the three lececl, or is there a set
of ordered pairs which are common te the three soclution sets?
The net of points of sach sclution set of the inequalities
will be called A, B, and C, respectlively. If the solution
seta, A, B, and §, have a point in common, there is a non-
empty solution set for the three inegualitles. In other
words ANBNC Z @,

The solution sets of twoe inegqualities may or may not
have a set of points common to both setz, Consider the
solution sets of the inegqualitiea, y> x ¢ 1 and x > 2.

The sclutlion set of ¥y > x ¢+ 1 1s represented by e half plane
of points to the right of the line formsd by the graph of

the equation, y = x # 1. The sclution set cf x > 2 1s repre-
sented by & half plane of poinits to the right of the graph
of the equation, x = 2. The graph of the solution set which
satisfies both inequalities conslsts of the points on the
right of the graph of the eguation x = 2 and above the graph
of the equation y = x ¢« 1, Points on these lines are not
included., The incomplete graph of this solution set is
represented by the doubly sheded area of Figure 3.11.
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FIGURE 3.10

INCOMPLETE GRAPH OF THE SOLUTION SET OF THREE INEQUALITIES



FIGURE 3.11

INCOMPLETE GRAPH OF THE SOLUTION SET

OF TWO INEQUALITIES



CHAPTER IV

TOFOLOGY

4.1 Fundamental ldess of topology. Topolegy 1s one
of the newsr mathematical subjects., Its development has

taken place almost entirely within the past ecentury. Such
noted mathematicians as Bermhard Rismann, CGeorg Canter, and
Henrl Folnecare, contributed much to the development of top-
ology in their researches durins the nineteenth century,l
Topology 1s often, though inadequately, described as
being coneerned with those propertics of a geometric figure
which are left unchanged after the figure has been subjected
to stretehing, bending, folding, dut without breaking or
t'artng.z For this reason, topology 1s frequently referred
to as a "rubber sheet® geenotry.3 Torological suplications
of great imrortance have been made in szlmost every fleld of

modern mathematies,

lanynond Louls Wilder, "Topology,” Encyelopedia
Britannica (Chleago, 1956), xxx:, 298,

25, D, Wallace, "Topology," Colliers Enczg; opedis,
(Wew Yorks F. F. Collier and Som Corporation, 1950
IVIII, 603.

3Richard Courant and Herbert Robbins, "Topology,"

The World of Mathematiecs (New York: Simon and Shuster
6! Vol. 1, p. 581; and 8, B Gould “Origina and Devel-

opmont of GonQths of Geometry," Ins %g ts Lg % Hodg%g
Mathema E;gl, Twenty-third Yesrhork of thas ¥ onal Council

of Teachers of Mathematies, Washington, D. C., 1957, p. 304.
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4.2 The Jordan Curve Theorem. One of the basie
theorema of topology 1s the Jordan Jurve Theorem., The
theorem may be stated as follows. Any simple closed curve

in & plens divides thet plans into exactly two regions.l
According to this theorem, every simple closed curve has

an "inside™ end an "outsilde™ whieh sre separated by the set of
polnts of the curve. The entire Euclidesn plane, exclusive

of the points of the simple closed curve, is divided into

twe sets of polnts which have no point in common end neither
of whieh has any point in common with the simple closed

curve. One of these sets is called the interior of the

simple closed curve, and the other the exterilor, the latter
being defined as the set which includes points at infinity.
The curve 1s the common boundary of the two regions,

A simple arc in a plane may be thought of as sny line
which joinas two points of the plane and does not cross itself,
The notion of "betweenness" of any three distinct points
of a simple erec is fundamental in tepology. Figure L.l
1llustrates a gimple are.

A simple closed curve in & plane consists of two
simple ares which have thelr end points in common hut have
no other points in commen, Flgure l,2 1s an illustrztion

of & simple clcsed curve,

bsruce E. Meserve, Fundamental Concepts of Gecometry
(Cambridge, Massachusetts: Addiscm-Wesley Publishing
Company, Ine., 1955), p. 294.
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FIGURE 4.1
A SIMFLE ARC

FIGURE 4.2
A SIMPLE CLOSED CURVE
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FIGURE 4.3

A POINT QUTSIDE A POLYGON
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It could be mentioned here that it is not always
obvious whether & given point is in the interilor cr the
extorior of a simple closed curve. For example, consider-
able sttention would be nscessary to decide that, the point
P of Figure 4.3, 1s asctually in the exterlcr of the indi-
cated polyzon.

If two points are so situsted in the plane that one
belongs to the interior c¢f the simple closed curve and the
othar to the exterior, they are sald to be on opposite sides
of the simple closed curve. A very important thooroms of
topology whileh is not easlly proved, called the Jordan Curve
Theorem, states that il two points, P and ¢, 1ie on opposite
sides of a simple closed curve, ¢, then any aslmple are, PQ,
jolning these two points, will have &t lsaszt one polint in
cormon with the boundary, c¢. The relative positions of Ywo
peints and a simple closed curve &8 deseribed sbove is
illustrated by Figure L.h.

An elementary exercise in btopology might be propesed
s follows, Gilven the cirele €, and the polnt F inside the
eirecle, the point & cutside the circle, and the peint R on
the cirecle; 1if this circle weére to be distorted by some
continmnous transformation, as by stretchings and contrac-

tions in several dlirections, the topclogical propertles of

5 id., p. 295. (This is an equivalent statement of

Jordan!s Curve Theorem to that given on page 36.)
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the {igure are unchenged. The curve C is distorted into a
simple closed curve C', and the peints P, Q, and R are
transformed inte points P!, Q') and R', respectively. As
P is inside C, so P' will be insice C'. as ¢ is ocutside C,
so Q' 1s outside C', As R is on C, so R' is on C!', The
topelogleal distortion of the cirele i1s iliustrated by the
topolorical deformatlon on the cirele in Figure 4.5.

4.3 Topelogieal eguivalence. any zecmetric figure
is a point aot.6 Felnt set topeclegy is generslly concermed

with topological equivalence of point sets,

A one-to=-one correspondence mey ba thougzht of as the
situation which exlsts when everv element =2f one 88t can be
mede to correspond tc one and only one elemant of & second
set, end conrorsoly.7 Two point seis sre topologicelly
equivalent if there is a ons-to-one correspondence between
them whieh is contlnuous both weys., Two sets may be in &
cne=to-one correspondence though no amount of streteching
or bending will take one onto ihe other, This may be illus-
trated by two sets of two tangent sphores in whieh the

bHoward Eves and Carreoll V, Newscm Ag Antroduction

to the _mnggi_m dzamu.-m; m_m%e &_9.6____1:133
(New York: ehart an ne., 19 p. 230,

TR, H, Bing, "Point Set Topology," Insights into
Modern Hntgs!gt%gl Twenty-third Yearbook of the vaticnal
Council of Teachers of Mathematics, Washingten, D. C,

1957 Ps 309.



FIGURE L.h
TWO POINTS SEPARATED BY A SIMFLE CLOSED CURVE

FIGURE 4.5

A TOPOLOGICAL TRANSFORMATION OF A CIRCLE
INTO A SIMFLE CLOSED CURVE
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spheres are tangent internelly in the set A and are tangent
externally in the set B, No amcunt of stretching or bending
will ake A onto B,S

There sre other topologically egquivelent curves which
cannot be made Yo e¢oincide by any known deformation. An
interesting exereise for the beginning student of topology
would be to find 2 nmumber of such pairs of equivelent fig-
ures whieh cannot be deformed onto sach other by any
topological transformation.

A simple elosed curve is topolozically equivalent
to any other simple closed curve. Such geometrie fisures
as the cirele, square, and trilangle are all topologieslly
equivalent, for, by some transformation such as strestching,
kﬁ;ading, or bending, but without breaking or tearing, each
could be made te colncide with the other, Some Torolngi-
cally equivalent figures are illustrated in Figure L.6 and

Fim. ll-t?-

by The Brides of Konigsberg Problem. Although
the first systematic work in topology appeared about the
middle of the nineteenth century, Euler’ had published the

“mig.
ourant and Robbins, "The Seven Bridges of
Koniglberg§ gg g;&., PP 57 ; Bruce B, Meaerve,
or See

"Topology ary Schools, ' The Mathematies Toacher
November, 1953, p. {71; and Eugene P, Wor hrop, Riddles
in Mathemstics (New York: D, Van Nostrand Conpany, 9L ),
. 5.
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FIGURE L4.6
"TOPOLOGICALLY EQUIVALENT LINES

Hi5

TOFOLOGICALLY EQUIVALENT SIMPLE CLOSED CURVES

FIGURE .7
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first tonclogical study on recerd nearly one hundred years
eariler in solving a problem gencrally referred to as the
"gpridges of Xonigsberg Problem,®™ The problem seems to have
originated in the town of Konigsberg, CGermany, whsre thers
were seven bridgea connecting both banks of the river Pregel
and wo islands in the river, &s indlcsted in Figure L4.8.
One of the islands was connected with each bank of the river
by twe bridges, and The cther 1slend was connected with each
bank of the river by s single brildge, A single bridge con-
nected the islenda., The eitizens of Kenigsberg were fond
of taking Sunday walks, and meny attempted to cross all
seven brildges, in sequence, without erossing the same dridge
twice., It Tinally grew more and more svident that this was
ne elementsry problem, as all attempts met with lailure,

In nls solution of the problem, Euler replaced the
origzinal figure with a simpler, topologlecally equivalent
figure, as shown in Figure li,9. The problem was then
reduced to that of starting at any point of the figure
and tracing esch arc of the curve preclsely onee, without
skipping any are or retracing the same are.lo

Foints A and B8 represent peints on the two sides of

the river, and points C and D represent polnts on the

loneaerva, “Topology for 3econdary Schools,®
op. eit., p. 475.
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islands, BEuler observed that there were an odd number of
1lines at each of the vertices of Figure 4.9.

Eulsr cleassified each of the vertices of the equiva-
lent figure as elther odd or even. Even vertices are those
which have an even mumber of concurrent lines, Since an are
has two ends, there must always be an even number of odd
vertices., Under the conditions of the problem, nc line may
be traced more than once though 1t is permissible to cross
at the vertices any number of times,

Consider the case of a figure with two odd vertices,
such as a square and its diagonal., We are to trace the
figure wilthout retracing any line, and we may cross a line
at a vertex, i1f we wish. Remember that there are an odd
number of lines econcurrent at an odd vertex., If the start-
ing point is not at an odd vertex, then each time an odd
vertex is reached, there are an even number of lines from
this v;rtox that have not been traced. Continuing ‘rom the
vertex along one of the untraced lines, there will be left
an odd nmumber of untraced lines. The tracing is contimied
until there is only one untraced line. When this last line
is traced, and the final vertex reached, the tracing must
stop at this point. Meanwhile, the second odd vertex must
have at least one line left untraced, This line of reason-
ing leads to the fellowing conclusion. If the starting
point is an odd vertex, then the tracing cannot end at this



FIGURE 4.8

THE BRIDGES OF EONIGSBERG

FIGURE 4.9
TOPOLOGICALLY EQUIVALENT FIGURE FOR KONIGSBERG BRIDGES
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untraced afver the first line has been traced from this
vertex. This condition is necessary if every line at an
odd vertex 1s to be traced. Also, if the starting point is
one of two odd vertices, then the ending pcint will be the
remaining odd vertex.

Since it 1s necessary to begin at one ocdd vertex
end end at another odd vertex, 1t follows that 1t will be
necessary to make half as many separate trips as there are
odd vertices, The figure for the Konigsberg Bridges has
four odd vertices, and must require at least two trips to
traverse every line without retracing. Therefore, the
bridges cammot be crcssed in one trip without recrossing
at least one bridgo.ll

It is interesting to note that a solution of the
problem would be possible if one of the bridges from A to
D or from D to B were replaced by another bridge from A to
C. Also, the addition of an eighth bridge would permit the
problem to be solved, In elther case, the figure would have

only two odd vertices, and could be traversed in one trip.

4.5 The Moebius Strip. A shoet of ﬁaper has two
sides, It is lmpossible to get from one side to the other
without first crossing an edge.

1l1pia,
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Take an ordimary strip of paper, like adding machine
tape, twenty-four inches long and two or more inches wide.
Paste both ends together to form a e¢ylinder. With a crayon
or eolored pencil, color the inside surface of the strip,
Alsc, color one edge of the strip.

Now take a second strip of paper of the same length
end width, and give one end a half twist befecre pasting the
two ends together, Take a erayon, as before, and begin
coloring any place on the interior surface, and color the
edge of the strip as before. How does the surface of the
second strip differ from the surface of the first strip?
Does the edge of the second strip have any property differ-
ent from the first strip? How many surfaces does the second
strip have? The name for the second type of strip is the
Moeblus strip, named after its inventor, A, F, Foebius,12
The strip hes been found to have other pecullar properties,
as willl be found from the following experiments.

Experiment 1. Begin coloring one edge of the Moebius
strip, and continue untll the starting point has been
reached, How many edges does the strip have? How does the
length of one edge of a Moebilus strip compare with the
length of one edge of the two sided surfacef

lalorthrop, Dp. °_1£., Pe T1,
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Experiment 2. With seissors, start cutting dowm the
ecenter of a Moeblus strip, and continue cutting until the
starting point has been reached. How many strips will be
obtained from this cutting? Color the intericr of each
strip. Color one edge of esch strip. Do the two strips
aprear to have the same propertles?

Experiment 3. Take a strip of paper of convenient
length and wildth as has been suggested before, and give ons
end of the strip two half twists before pasting the ends
together, Color the interilor surface of this strip. Color
one edge of the strip. What will be the result of cutting
this strip down the center? How do the results of this
experiment differ from those of Experiment 27

Variations of these experiments may be carried on
with very intrigulng results, It is suggested that a num-
ber of experiments be porroz;nod with strips constructed
with twists differing in number from those of the preceding
experiments, Intuition will be found to be of little value
in predicting the results cof such experiments. In these
experiments, 1t 1s advissble to select strips of paper long
enough, in proportion to the wildth, to permit the desired
number of twists without undue entanglement or tearing,

4.6 Topological curves., A simple closed curve, as
defined in Paragraph 4.2, divides the plane in which it lies
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into two parts, one inside the curve, and the other ocutside
the curve, Thus, according to the Jordan Curve Theorem, it
is not possible to get from the inside of a simple closed
curve to the outside of the curve without crossing the curve
at least onece, There are other curves, not simple closed
curves, where it may be necessary to penetrate the curve
more than once in order to reach points outside the glven
curve., One such curve might be the square with one diago-
nael, If the regions within the square which are separated
by a dlagonal are lebeled A and B, and if the reglon cutside
the square is labeled U, then 1t 1s possible to zet from any
point in A or B to any point in U by crecssing the figure at
any one point if that point is not on the diagonal, If the
diagonal 1s crossed, a second crossing must still be made
before any point of U can be reached. It may be szaid that
relative to the region A, B is neither inside nor outside

the ecurve,3

4.7 Topological surfaces. It is possible to stert
from any point in the Inside of a sphere and proceed tc any
peint outside the sphere by a eimple erc, penetrating the
surface of the sphere only once, This is téue for any

simple closed surface. Simple closed surfaces can be found

131pid., p. 67.



FIGURE 4,10
A SIMPLE CLOSED CURVE

FIGURE 4,11
A CLOSED CURVE WITH TWO INSIDES
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in a variety of geometrie solids, For example, a cube, &
cylinder with both ends, =nd a prism are topological simple
closed surfaces,

All topological surfases cannot be classified as
gimple closed surfaces. If one end of a pipe were soldered
to the outside surface of a hollcw sphere at an area desig-
nated by A, and the other end soldered to a hole in the
sphere which is designated by B, the resulting surfeece is mno
longer a simple closed surface, It is possible to start at
any point on the inside of the sphere eand proceed to any
peint ocutside the sphere by penetrating the surface only
once with the exception of that portion of the surface at A,
If the penetration were in the surface designated by A, it
would st1ll be lmpos=ible to reach any point cutside the
sphéro without a second penetration. A topolosical descrip-
tion of this surface might be that it has an inside and sn
outside, execept for the small portion of the sphere at A.lu
One might imagine the eoloring of the interior surfece of
this surfece. Observe that both sides of the surface desig-
nated by A will be colored, Are both sides of the surface
at A on the inside of the surface?f

Another interesting surfece, called "Klein's bottle,”

can be constructed., One end of a hollow tube is bent around

n"l.'bid;, Pe 68.



FIGURE 4,12

A CLOSED SURFACE WITH AN INSIDE AND OUTSIDE
EXCEPT AT A

FIGURE L.13

KLEIN'S BOTTLE
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and inserted through a hole in its side, and the two ends
of the tube are welded together. The resulting surface is
an 1llustration of Klein's bottle. To illustrate one of
the peculiar properties of this surface, imagine two points,
each located on the outside of this surface. Then, imagine
the drawing of a simple are from one of the points and
penstrating the surface of the Klein bottle, Can this are
be extended to the second point without sgain penetrating
the surface of the Klein bottle?

As another experiment with the Klein bottle, imagine
the eoloring of the surface of the bottle. How does the
result of this ecoloring compare to the coloring of the
Moebius strip in Paragraph l},57 Does this suggest any

relation between the Klein bottle and the Moebius strip?

4.8 The four color map problem. One of the most
famous problems of topology is still unsolved, This is the

four color map problul.ls The problem 1s tc determine
whether or not Tour colors are sufficlent to color any map
that might be d&rawn on the surface of a2 plane or a sphere,
The requirement of the problem 1s that nc two countries with
e common border may have the same color, A.linglo point

is not regarded as & common border, The problem 1is so

15¢har1es Stanley Ogllvy, the Mathescope

(New York: Oxford University Fress, 1956), p. 125.
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simply stated that it may seem surprising that it haa not
been proved that four cclors are either sufficient or are
not sufficlent.

Experiment 4. Draw a msp of several countries thet
¥ill regquire no more than twe eclors,

Experiment 5. Draw a map of several countries that
will require no more than three colors.

Experiment 6., Draw a map of several countries that
will require at least four 4ifferent colors,

0ddly enough, corresponding problems have been solved
for surfases more complex than the sphers. It h:s been
established that the torus, or doughnut, requires nc more
than seven eolorl.16

It has been established that five colors are suffi-
clent for every map on a plane or a sphere, but to this
date, no map on « plamne or a sphere has ever been produced
that regulres all five eolors.17 It has also been esteblished
that four celors are sufflelent for any mav containing less
than 83 countries, snd the number of colors 1is independent

of the sizes and shapes of the countriol.ls

lblorthrop’ SP. 011‘-., De 75-

17Richard Courent and Herbert Robbins, What is Mathe-
matics? (Wew York: Oxford University Press, 19E15, Pe 24T

13Hoservo, "Topology for Secondary Schools,” loe. cit.



FIGURE l.14

A MAF REQUIRING THREE COLORS

FIGURE 4.15
A MAP REQUIRING FOUR COLORS




57

4.9 The three utilities problem. According to the
Jordan Gurve Theorem, as stated sarlier, 1f two points are
on opposite sides of a simple closed curve in a plane, then
any simple are ccomnecting these points will have at least
one roint in common with the simple clossd curve.

Suppose that three eccentric neighbors, on the same
aide of the street, each wanted a gas line, an electric
line, and a water line direet to the utillity plants. Each
neighbor refused to allow his line to be crossed by any
other line,

Experiment 7. Make a drawing to show how many of
the eccentric neighbors can be satisfied by the three utili-
tles,

If there were two nelighbors, there would be no
difficulty. Lines could be taken t- each neighbor from the
respective plants withcut crossing any other line. This
fact 1s 1llustrated by the drawing in Figure 4.17. The
lines from the three utilities to two neighbors form a
clesed curve with two interior regions. One of the utili-
tiles will be inside this curve. No matter where the third
house 1is located, it will be cut off from one of the three
utilitles. That 1s, acoording to the Jordan Curve Theorem,
it wlll be necessary tc cross some line in order to connect

the third house with all three utilities,
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FIGURE L4.16

THE UTILITY COMPANIES PROBLEM

FIGURE L4.17

THREE UTILITIES AND TWO NEIGHBORS

B

FIGURE 4.18
TOPOLOGICAL EQUIVALENT OF FIGURE-L.16
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This application of the Jordan Curve Theorem has
important application in the theory of stamped or printed
oircu1t|.19 The cireuits of electronic devices are so
intricate that it is often simpler %o stamp or print the
circuits with some conductor of electrieity than it is to
lay insulated wires, Sueh circuits cammot cross if they
are to give the desired results, The question of what cir-
cults are avallable 1s an outgrowth of the three utilitles
problem,

A second problem invelving the Jordan Curve Theorem
1s the following.2® Imegine s tribal chief of 2 primitive
tribe whe has =& boautiful daughter, There are many suitors
who wish to marry the daughter, In order to select the best
man for his daughter, the chief proposes twe problems,

Given a set of points, labeled 1, 2, 3, from which
perpendiculars are drawn to a given line g, and & second
set of peints, also labeled 1, 2, 3, in the same order from
which perpendiculars are drawn to a line b, parallel to a.
The first problem is to conneet the matching numbers with
lines which do not interseet or cross any line defined in
the above data,

190g11vy, op. eit., p. 127.

i 2%Meserve, Fundamental Concepts of Geometry, op. eit.,
De @
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FIGURE L4.19
SUITOR'S FIRST PROBLEM
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bbb

FIGURE 4L4.20
SUITOR'S SECOND PROBLEM
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The second problem is like the first, with the
exgception that the numbers on the second pair of perpendicu-
lsrs are arranged in opposite order,

Experiment 2. Draw the figure for the suitor's first
problem and draw the lines to connect the points with like
numbers,

Experiment 9. Draw the figure for the suitor's
second problem, Try %o comnmect the points with like num-
bers, Is this possible? Why?

The soluticn of both problems 1s left to the reader.
The second problem can not be solved, The reader will sus-
peet this, when his efforts to solve the problem are not
successful. And the chief's beautiful daughter remains

unmarried.



CHAPTER V

FON-EUCLIDEAN GEOMETRY

5.1 Meaning of geometry. A geometry is a branech of
mathematlics which starts with certain space concepts,

assumptions, and definitieons, and develops imto a logical
system of spatial relations, The most common type of goom=-
etry 1z the Buclidean geomstry which has been traditionally
taught in the secondary schools,

When the great geometer, Puelid, compiled his menu-
mentel Elements, sometime around 300 B, C., he stated certain
postullt.i, axioms, and definitions, From this list of
accepted assumptions, he derived s system of geometry which
iz logiecally dependent upon these sssumptions, It is now
recognized thaet some of the terms used, such es a point,
line, and plane, are properly undefineble, Other ccncepts
or configurations are defined in terms of the fundamental
concepts,

Buelid listed ten basic essumptions wihlch he regarded
as self=-gvident truths, These assumction= are to be
accepted without proof, The ten assumptions of Euelid are
divided into two sets. The first five sssumptions, or
postulates, deal with gecmetricel relations sc self-evident
they are to be eaccepted without preof, The second five
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assumptions were called common notions, or statements of
generally sccepted truths,

The five geometriecal postulates of Buelid desecribe
the baslec operations which mey be sccomplished with the
prescribed tools of geometry, the ummarked straight edge
and compass, snd basic geometrical facts, These five
geometrical postulstes are as follows.l

(1) To draw a straight line from eny point to any
point,

(2) To produce a finite streight line continuously
in a straight line,

(3) To describe a cirele with any center and
distance,

(4) That all right angles are equel to one another.

(5) Thet Af a straight line falling on two straight
lines make the interior angles on the same side leas
than two right angles, the two straight lines, if pro-
dueced ind itely moot on that side on whieh are the
angles less than tﬁo twe right angles,

The five common notions of Eueclid, menticned sbove,

are astated as 1'011M.2

(1) Things which are equal to the same thing are
elsc equal to one another,

(;) I equals be added to equals, the wholes are
equsal,

Lthomas L. Heath, Books of };g s
!'L_-I.?E' (New York: Dover %&m Inc., . " 1950),
PPe 53 end Harold E, Wolfe, %ﬁ%? £o Hon-Buelidean
Geometry (New York: The nroydon ess s Pe U

21hid.




(3) 1If equals be subtracted from equals, the
remainders are equal,

(4) Things which coincide with one snother are
equal to ome another,

(5) The whole is greater than the part.

These five geometrical poastulstes of Buclid were
suggested by experience znd intultion, No previous knowl-
odge of geometriesl relations 1s assumed other than the
basic postulates and definitions. Any edditionsl zeometri-
ecal truths must be logleal derivations of the basic axioms
or postulates, Any attempt %o prove, logleally, any one of
the fundemental postulates must lead inevitadly te the com-
pletion of a vieclous ecircle where one proposition mmst
depend upon ancther for its proer.3 However, some critical
investigations of Eucllid's geometry have revealed 2 number
of defects in the logleal strueture of the gemmetry. An
example of onme such defect might be i1llustrated as follows,
Euclid's fifth postulate gives the condition necessary for
two stralght lines to intersect at a point, but no postulate
is glven to indlcate the condition necessary for two circles
or & cirele and a straight line to intersect. The essump-
tion that cirecles do intersect cirecles and lines intersect
eircles is used by Buclid in the proof of certain theorems,
This assumption cannot be proved from any of the listed

3Holro, op. eit., p. 2.
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cormon notious or postulates and should be listed as an
additionel postulate.l

The strueture of all geometries are similser to thst
of Buelidean geometry, Buclidsan geometry is besed on a set
of assumptions end definitions which are compatible,

Rothing else 1s essumed. Other ideas, or relastions, stated
a3 theorams, must be derived logieally from what has been
agssumed or previously established, The following paragraph
illustrates how & geometry may be built from a complete and
consistont set of definitions and postulates, even if these
ere contrary te our intultion.

5.2 A geometry of twenty-five points. In developing
e geometry, we are free to select any set of basiec assump-
tions we please, provided that these assumptionz do no%
contradict each other directly or by implicetion, and pro-
vided the set of assumptions is sufficiently complate to
provide a besis for loglcal deductions.

As an example of a geometry, very different from
ordinary Buclidean geometry, consider the finite geometry

ﬁ&_!bluurl Ivum:em::;v.n%) w
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of twenty-five points.s The twenty-five points are arranged
in a square array, with five points in each row and five in
each eolumn, BEach point is designated by one of the twenty-
five letters of the English alphabet from A to Y inclusive,
without duplication, These letters are arranged in three
blocks of twenty-five letters each. Eaeh block represents
& different arrangement of the points so that each pair of
points will appear in precisely one row or cclumn of one of
the three blocks, no pair appearing in a row or column more
than onece. Ho letter representing a point eprears twice in
the same bloek.

Figure 5.1 illustrates the positions of the twenty-
five points, with three sets of lettera representing them,
The blocks of letters representing the points will be desig-
nated by the eclors, red, blue, and yellow, respectively.

As our basie assumptions, let us adopt the following
ideas as the foundation for the gcmetry.6

(1) There are exactly twenty-five points in this
geomotry. Bach point is designated by one of the letters
of the alphabet from A to ¥, inclusive, BEaeh point is

S5john G, Brixey and Richard V, Andres, Moder
Trg%mjn (New York: Henry Holt and Company, 1955),
pps 150-1; and Lillisn R, Lieber, The Educat of I. C.
?étl (New York: W, W, Horton and Company, Cey 15uL) s PPs

6Bri.ny and Andree, op. eit., p. 150,
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Red Blue Yellow
ABCDE AILTW AXQOH
FGHIJ SVEHEKE RKIBY
KLMNO GORUD JCUSL
PQRST YCPFPNQ VTMFD
TYWXY MHMFPXBJ NGEWEP
FIGURE 5.1
ELEMENTS OF A FINITE GEOMETRY OF
TWENTY-FIVE POINTS
represented once in each of the three dlocks; however, the
pointe mey have different letter designations in each of the
three blocks,

(2) A straight line shall mean eny row or column in
any of the three blocks. Since there are five rows and five
colums In each block, there must be exactly thirty distinct
lines in this geometry., A line conslsts of five points,
either in a row or in a column,

(3) A line segment is congruent to another line
segment when both point pairs occcur in rows, or both in
columns, and the number of directed steps 1s the same in
each pair, A step 1s considered to be the distance between
any two adjacent points in & row or columm, The number of
steps between the first and lzst point of a line segment is
alvays counted to the right in a row llne and down in a

column, The first letter cof a row or column is considered
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to follow the last letter of the row or columm. For this
reason, & line may be thought of as econtimuous with no end
point. Any two point designations determine a distinct line
segment in one of the three blocks,

Some examples of congruent line segments are given
as follows, In the line AECDE in the red bleek and the
line GORUD 1n the blue block, the llne segment AD in the
red block 1s congruent to the line segment OD in the blue
block, Eaeh segment, AD and OD, contains three steps, The
segment IR (blue) is congruent to the segment GK (yellow),
but IR (blue) is not congruent to KB (yellow). Each
segment, IR and KB, ecntains the same number of directed
steps, but one is in & row and the other is in a column
and cannot be considered congruent according to the defini-
tion of congruent line segments, Is BF congruent to RX?

Is KN congruent to VE? Why?t

(4) Two 1ines are parallel if they have no point in
common, The line ASCDE 1s parallel to line UVWWXY, and the
line IVOCPF 1s parallel to the line WEDQJ, Can a line have a
parallel line in any other block?

The idea of parallels used in the geometry of twenty-
five peints differs from that of Euclidean geometry in the

fact that no mention is made of the straightness of a line,
In Euclidean geometry, parallel lines are everywhere equi-

distant., In the geometry of twenty-five points, parallel
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lines are everywhere equidistant if one measures this distance
in steps, rather than any unit of measurement in the Buclidsan
sense, Figure 5.2 is used to illustrate the possible
arrangement of the points of the red block.

{ 1
- A i D {
r.~\\\ f:::;""--.~___ —

_‘-—/ l va-—-
F_'/
\\ éﬁJ! éf::f
—U\F I, /ll'__
|
FIGURE 5.2

ONE FOSSIBLE ARRANGEMENT OF TWENTY-FIVE POIFTS

(5) Two lines are perpendicular if, and only if,
there exist two points on one line such that the absolute
distance from these two points to any point on the other
line are equal, The line ARCDE is perpendicular to the line
APEPU and the points B and B may be taken as the points
which are equidistant from each point of the line AFEPU.

It 1s interesting to note some of the differences
between this finlte geometry of twenty-five points and the
Euclidean geometry., While some of the terms are the same,
the interpretations of such terms are guite different.
Polnts are still undefined elements, though they may be
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represented by letters and are finite in number., In
EBuclidean geometry, straight lines may be extended indefi-
nitely and contain an infinite number of points, Lines of
the geometry of twenty-five points are finite and contain
only five points each., This finite geometry makes no mention
of straightness. There 1= no question of two lines meeting
if sufficiently prolonged.

In Buclidean geometry, parallel lines are everywhere
equidistant end will not meet however far extended. In this
finite geometry, parallelism is in partial agreement with
Buclidean parallelism, There 1s no prolonging of lines,
for each line is finite, and the term, distance, in the
Buclidean sense, has no meaning in this peometry. In finite
geometry, the number of ateps between parallel lines is the
same &t all points on the parelilel lines, althousgh & step is
not defined in any unit of measurement in the Buclidean
sense,

A trisngle in the peometry of twenty-five points may
be defined as any triplet of points, suech as H, L, and R,
The sides of the triangle are the line segments determined
by the points, HL, LR, end RH. Since 1line segments must be
taken from the lines, themselves, and lines are found in
rows and columns, the segments must be either in rows or in
colums, The 1line segment HL is found in the yellow block,
LR is In the blue block, and HR 1s in the red block. This
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triangle is completely dismembered. Each side 1ls either
red, blue, or yellow, depending on which block the letters
appear in rows or columns, The sides of the trilasngle may
or may not be congruent to each other, It may be conven~-
ient to define triangles in which no two sides are congruent
s secalene triangles, and trlangles with two congruent sides
a8 isosceles triangles, How does this correspond to the
Eueclidean definition of secalene and isosceles triangles?

In Buclidean geometry, a c¢irele 1s usually defined
a8 the locus of all points at a given distance from a fixed
point., The fixed point 1s called the center of the circle.
In this finite geometry, a circle 1s defined 23 the locus
of points whieh are a given number of steps from a fixed
point, and such that each of the points, when taken with
the center, determines a line segment which is congruent
to all other 1line segments thus formed. The number of steps
between a polnt on the ecircle and the center of the circle
is the radius of the circle,

If we choose the point @ as center of a cirele, and
designate the radius as two steps, then the cirele contains
only the six points, I, J, R, T, W, and P, Wote that GQ, in
the red block, cannot be congruent to line segments which
ere in rows. Therefore, Q is not a point of the given

cirele,
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There are definitions of several terms of Euclidean
geometry whiech might be applicable to the geometry of
twenty-five points., 4 student of this finite geometry could
gain much in experience by attempting to give logical defini-
tions of certain Buclldean terms which do not confliet with
the previously stated basic sssumptions of this gecmetry of
twenty-five points, Give a definition of a quadrilateral
which satisfles the geometrie sssumptions of this flnite
geometry, Could there be diagonals in thls geometry, and
if so, how would they differ from the diagonals of Euclidean
goometry?! Definitions of these and certein other terms
cormon Yo EBuelidean geometry and the twenty-five veoint
geometry are given below,

(1) A point can still be regarded as the intersection
of two lines, in much the same sense as in Buclidean
zecmetry, The prineipal difference is that the number of
points 4n a line 13 limited in this geometry.

(2) A line 1s stlll determined by any two peints,
with the restriction that the polnts must lle in the same
row or column, Lines cannot he obligue as in Buclidean
geomotry., It 1s assumed that any line contains the entire
set of five points, Any line containing less than the five
points is a line segment,

(3) A quadriletersl 1s a four sided figzure deter~
mined by any four point designation. The sides of the
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quadrilateral are the line segments determined by any four
point designations taken in order. The guadrilateral BJUD
hes the line segments BJ (blue), JU (yellow), UD (blue),
and DB (red) for 1ts sides,

(4) A parallelogram is a gquadrilateral wheose oppo-
slte sides are eongruent and parasllel,

(5) A rhombus is a guedrilatersl whose opposite
sides are congruent and parallel and all four sldes contain
the seame number of steps,

(6) Disgonals ars the line segments determined by
the opposite vertices of a quadrilateral,

(7) The mid-point of a line segment 1s the point
which is the same number of steps from each end of the line
segment, Naturally, the point must lie on the line,

(8) 4 line 1s tangent to a circle 1f it contains one
and only one polint of the cirele,

(9) TIines are considered perpendieular 1f they have
one and only oneé polnt in common,

(10) Perpendicular bisectors are the lines passing
through the mid-pointa of line segments,

(11) The altitude of a trianzle is the line through
one vertex of a triangle and perpendicular tc¢ the opposite
side.

(12) The medians of a triangle are the line segments
Joining one vertex of a triangle with the midpoint of the
opposite side.
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It is really guilte remarkable how similar many of the
Buclidean terms are tc the terms used in the geometry of
twenty-five points, It must be remembered that certaln of
the terms, such &8 point and line, cannot be actually
defined in the true sense of the word. At best, the defini-
tions of these terms are merely descriptions which agree
with our intuition, With the above 1list of definltions and
assumptions of the twenty-five point geometry, 1t 1s actually
posaible to prove some theorems whose statements are the
same as those of the Euclidean system. Some representative
theorems of this type are discussed in the following para-
graphs of this section,

Theorem 1. If two sides of & guadrllateral are con-
gruent and parallel, so are the other two sides,

Discussion, Twec lines must be in the seme block to
be parallel or they would have a common point, Fick any
pair of congruent line segments in any block., For example,
in the yellow block, the line segments VEHK and GCRU zre
both congruent and parallel, ¥ow, V, &, U, and K must be
the vertices of the determined quadrilateral. There rust
be a line segment joining the vertices, V and &, and
likewise the vertices, K and U, In the red bleock, columm
two, we find the line segment VBG determined by V and G,
and in the same bloek, columm cne, we find a parallel seg-

ment EKPU determined by the points, K and U, Both VBG and
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KPU are parallel because they are segments of lines that
have no point in common. The point-pairs, VG and KU, are
congruent as they are two step pairs.

Theorem 2. The diagonals of a parallelogram bisect
each other.

Discussion. From any block, say block three, take
for verticea, the points A, C, U, and K. Thus, R and U
are opposite vertleces determining one diagonal, and C and
K determines the seccnd dlagonal, The 1ine UDGOR in the
red block, row three, has mid-point G blsectlinz it, In
block yellow, column two, line CTGXK has mid-point G, Since
G is the mid-polnt of both dlasgonals, the disgonals bisect
each other at thelr common point, G.

The follovwing theorems are stated in the Euclidean
form, The corollaries sre statesd as results pertinent to
the geometry of twenty=-five points. It is suggested that
the reader verify the theorems and corollaries for this
new geometry.

Theorem 3. At any point on a elrcle, there 1s one
and only one tangent.

Corollary 1. There are six end only six tangents
to any cirecle.

Corollary 2. If a cirecle 1= contained in rows or in
colunms, then the tengents must be in columms or rows,

respectively,
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Theorem li. The medians of 2 triangle are concurrent,

Theorem 5. The altitudes of a triangle are con-
current,

Theorem 6. The medians of a triangle are concurrent
at a point which divides the medisns in the ratio of 1312.

Other theorems which use the language of Buclidesn
geometry might be found whiech are stated exactly the same in
the geometry of twenty-five points, It is left for the
reader to find and establish other theorems cof this nature.

The finite geometry deseribed in the preceding para-
graphs doss not have a common physical model &8 entirely
acceptable as that of Euelid's geometry, but it has been
introduced in order to illustrate more clearly how a geometry
is built, The fundamental tools of any geometry are the
basic essumptions and definitions of the terms used to build
the logical structure. Another examrle of a simrle finite
ceometry 1s the six-polnt geometry briefl, described by
Adler in the book Modern Goometgz.T

5.3 ZIhe Fifth postulate of Buclidean geometry. It
has already been stated in Paragraph 5.1 of this chapter
that mathematliclans did not readily accept the fifth postu-
late of Buelid, Even the earliest commentators did not

Tc1aire Fisher Adler, Modern Geometry (New York:
MeGraw-Hill Book Company, Ine., 19?9), pp. 17-9.
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believe that the fifth postulate was independent of the
others and sufficlently self~evident to be listed with those
rostulates to be accepted without proof. A great number of
noted methematicians from the time of Euelid to the dis-
covery of non-Euclidean geometry attempted to nrove the
fifth postulate by deducing 1t ‘rom the other postulates,
However, all such attempts failed,®

The fifth postulate of Eueclidean geometry is not
usually stated as in Paragraph 5.1, Geometry text books
of today generally replace 1t with a simnler statement
which 1s equivalent tc the originsl or may be deduced from
the coriginal. The usual form of this postulate in present
day text books is that of the Playfailr axiom, that through
a given point not on a given line, one and only omne parallel
cen be drawn to that 1ine.?

At the beginning of the nineteenth century there was
s8till no accepted proof for the psrallel postulate, and
many mathemetlelans had alread; admitted the necessity of
listing 1t among the postulates. However, there were still
those mathematicians who contimued in their efforts to solve

the puzzle. Prominent among these mathematiclans were the

SRoberto Bonolo, Non-Euclidesn Geometry (Ls Salle,
Illinois: The Open Court Publishing Company, 1956), p. 2.

Folre, op. eit., p. 16,
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three men who are generally consldered to be the founders
of the study of non-Buclldean geometry, Gauss in Germany,
Bolyal in Hungary, and Lobachewsky in Russia, It 1s remarka-
ble to note that these three men made essentlally the same
discovery at about the sams tlime, and each worked lndepend-
ently of the other in different countries, Each discovered
that a2 consistent meometry could be bullt if the fifth
postulate of Euelid were replaced by a postulate which
assumed more than one parallel to a given line through a
given poi.llt.’lo

4 non-Euclidean geometry 1s generally regarded as a
geometry which 1s bullt with a substitute for the fifth
postulate of Buclidean geometry, All other axioms and
postulates not affected by the fifth postulste are left
unchanged. The postulate used 1n place of the fifth postu-
late 13 called the characteristic postulete of the new

geometry.

1°Ibid.. P hs.



CHAPTER VI
SUMMARY AND COECLUSION

6.1 Summary. The msterial contained in this thesis
is intended to be of value to the teacher of high school
methematics who has had little or no formal training in
modern methematies, According to cne author, the present
trends in mathematies are two-fold: "(1l) the introduction
of modern mathematies into the ecurriculum, and (2) the
introduction of accelerated programs to the gifted stu-
dents."l These trends are accompanied by an emphasis upon
the "learning«by=-discovery" method of instruetion. It 1is
hoped that the material of this study will helr some teachers
bring their teaching into line with these above stated
trends,

The concepts and language of sets enters, in an
essential way, much of modern mathematics, It is desirable
to introduce the elements of set theory to the high school
student as soon 88 possible in order that he may be better
prepared to continue his studies at a more advanced college

level of mathematics upon gradustion from high school,

1paymond J. Aiken, "Some Comment on Accelerated
Mathematles,"” The Mathematics Teacher, April, 1958, p. 292.
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The introduction of set theory in high school work
will not usually gc far into the abstract theory of sets,
It has been proposed that concepts, vocabulary, and some
of the symbolism of sets be used whenever they contribute
to the interest and understanding of mathenaticl.z
An important chsrscteristiec of both "traditional®™ and
"modern®” mathematics 1s the emphasis upon deduetion,’ The
material on topology and non-Euclidean geometry, im Chapter IV
end Chapter V, respectively, has been introduced to supple-
ment the teaching of geometry by providing intsresting
subject matter based on mathematical deduction and to

interest students in areas of mathematics not generally

included in high school courses,

6.2 Conclusion., The material of this study is not
a complete review of all rhases of modern mathematics, The
teacher of mathematics wlll benefif himself and his teaching
by contimuing the study of sets, topoclogy, and non-Euclidean
geometry beyond the elementary treatment of those toples in
this thesis,

2Gonmission on Mathematics of the College Entrance
Examination Board, Sets, Relations, and Functions, Com-
mission on Mathematics of the Eolloé;-intrance Exsmination
Board, Wew Yerk, 1958, p. L.

3Albert E, Meder, Jr. dern Mathematics and its
lace ;5 7 Secondar éﬁ%ﬁ%&’ ssion on Mathematics
- s ol?ogo iﬁ?ranco nation Board, New York, 1957,

h
Pe h-o
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It 1s also suggested that other areas of moderm

mathematics be considersed for inclusion in the program of
supplementing the teaching of mathematlecs on the seoondari
level, Such mathematical toples as symbolic logie, fune-
tions, 7ields and groups, matrlces, projective geometry,
probability, and statlistical enalysis ere a few of the

topies which might cvrovide interesting and stimulating materilal
to supplement material in the present mathematlics text books.
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