

AN ABSTRACT OF THE THESIS OF

________Sophia Crossen______ for the ______________Master of Science _________

in ________Mathematics______ presented on _________April 23, 2015_____________.

Title: _____________The Mathematics of Bitcoin_____________________________

Abstract approved:___

Bitcoin is among the first successful, fully implemented cryptocurrencies. As it slowly

emerges into mainstream use, it is necessary to understand how a transaction works,

involves an entirely digital currency. This paper provides an overview of a bitcoin

transaction from the point of view of the user, looking at the details and security of an

individual transaction, transaction blocks, and the Bitcoin public ledger, or block chain. It

also discusses the mathematics implemented to secure and maintain the trust in the

Bitcoin network. Security for the individual transaction is achieved through use of digital

keys and digital signatures. Elliptic Curve Cryptography using the secp256k1 curve and

Elliptic Curve Digital Signature Algorithm are the algorithms most commonly used in a

bitcoin transaction. The Secure Hash Algorithm 256 (SHA256) condenses information in

a one-way hash function. Double SHA256 insures the security of individual transactions

and secures the block chain against tampering.

Keywords: bitcoin, transaction block, block chain, SHA256, Merkle tree, Merkle root,

elliptic curve, secp256k1, digital key, pubkey script, signature script, block header,

nonce, target difficulty

THE MATHEMATICS OF BITCOIN

A Thesis

Presented to

The Department of Mathematics

EMPORIA STATE UNIVERSITY

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Sophia Lillian Muse Crossen

May 2015

ii

Approved by the Department Chair

__

Approved by the Dean of the Graduate School and Distance Education

iii

TABLE OF CONTENTS

TABLE OF CONTENTS ... iii

LIST OF TABLES ... iv

LIST OF FIGURES .. v

1 INTRODUCTION ... 1

2 ANATOMY OF A TRANSACTION.. 3

3 DIGITAL KEYS.. 18

4 SECURE HASH ALGORITHM 256 .. 27

5 SUMMARY... 35

GLOSSARY ... 36

REFERENCES ... 38

iv

LIST OF TABLES

CHAPTER 2

1 Transaction Included in Block #350650……………………………………….... 7

2 Block #350560………………………………………………………………....... 9

3 Hashes…………………………………………………………………………… 9

4 The Coinbase Transaction for Block #350560………………………………….. 10

5 Current Target and Difficulty…………………………………………………… 14

CHAPTER 4

1 Words 0 – 15 in Hex and Binary………………………………………………... 28

2 Finding Word 16………………………………………………………………… 29

3 Beginning Constants…………………………………………………………….. 30

4 Constants to Binary……………………………………………………………... 30

5 Majority Value…………………………………………………………………... 31

6 Σ0 ……………………………………………………………………………….. 31

7 Choosing Value…………………………………………………………………. 32

8 Σ1 ……………………………………………………………………………….. 32

9 First Sum………………………………………………………………………... 33

10 New A…………………………………………………………………………… 33

11 New E…………………………………………………………………………… 33

12 Final Words…………………………………………………………………….. 34

13 ‘cryptography3’ Hash…………………………………………………………… 34

14 ‘cryptography2’ Hash…………………………………………………………… 34

v

LIST OF FIGURES

CHAPTER 1

1 Traditional Privacy Model……………………………………………………. 1

2 New Privacy Model…………………………………………………………... 2

CHAPTER 2

1 Aggregating Transaction……………………………………………………… 5

2 Distributing Transaction……………………………………………………… 5

3 Common Transaction…………………………………………………………. 6

4 Transactions Hashed in a Merkle Tree……………………………………….. 11

5 Simplified Bitcoin Block Chain………………………………………………. 15

6 Normal Occasional and Rare Extended Forking……………………………... 16

CHAPTER 3

1 Point Addition………………………………………………………………… 21

2 Point Doubling………………………………………………………………... 22

3 Elliptic Curve 𝑦2 = 𝑥3 + 7…………………………………………………... 24

4 𝐾 = 𝑘𝐺 ………………………………………………………………………. 24

5 Creating a Public Key Hash to Receive Payment…………………………….. 25

6 Bitcoin Transaction Signature Chain…………………………………………. 26

1

1 INTRODUCTION

Cryptocurrency, a relatively new form of currency, uses cryptography,

networking and open source software to establish trusted transactions and control

creation of new units (Greenberg 2011). In his article, “bmoney,” Wei Dai describes

cryptocurrency in rather broad terms, never actually naming his proposed medium of

exchange (1998). Dai described two protocols to define an electronic medium of

exchange and a method of enforcing a contract (1998). Dai’s premise inspired much

speculation over the next decade. In 2008, the white paper entitled “Bitcoin: A Peer-to-

Peer Electronic Cash System,” was published by an anonymous author under the

pseudonym Satoshi Nakamoto, inspiring the creation of many cryptocurrencies.

Nakamoto proposed “an electronic payment system based on cryptographic proof instead

of trust, allowing any two willing parties to transact directly with each other without the

need of a trusted third party” (2008, p. 1). He goes on to outline a basic system for

establishing a cryptocurrency (Nakamoto 2008). In 2009, bitcoin was introduced (Velde

2013). A trusted third party, like a bank, is no longer required for processing electronic

payments (Nakamoto 2008).

In a traditional bank account, all account information and transaction details are

kept private with none of the details available to anyone not a party to the interaction

(Fig. 1.1). In a bitcoin transaction, the transaction is entirely open to the public except the

Figure 1.1 (Nakamoto 2008)

2

identities of the parties involved (Fig. 1.2) (Nakamoto 2008). While it is often possible

through much research to determine the identities of the parties involved, these identities

are not kept as part of the transaction record, allowing for pseudo anonymity (Bryans

2014). The entire transaction becomes part of the public ledger, known as the block

chain. In this ledger, each transaction is a line in the ledger, and each bitcoin “account” is

a different page of the ledger. Because there is no central authority, in order to ensure the

integrity of the public ledger, high levels of digital security are employed at multiple

stages of the transaction, including digital keys and signatures and double SHA256

cryptographic hashes (Antonopoulos 2014). Understanding these functions and their

implementation in a bitcoin transaction begins by exploring the parts of a transaction.

Figure 1.2 (Nakamoto 2008)

3

2 ANATOMY OF A TRANSACTION

 Trade in bitcoin is now as easy as signing up with an online wallet service since,

like any other currency, bitcoin is “stored” in a wallet. This wallet service, and other sites

like it, may provide other services associated with trade in bitcoin, and are often nodes in

the peer-to-peer Bitcoin network themselves. A bitcoin wallet is an electronic record of

all bitcoin a user owns, or with which her digital signature is currently associated.

Accessing an online bitcoin wallet is similar to accessing an online bank account. Users

simply log into their account, or wallet, and either transfers money to another user’s

account or accepts transfers from other users (Antonopoulos 2014).

For an illustration of a transaction from the point of view of a typical bitcoin user,

consider the following example transaction. Alice would like to buy an e-book from Bob,

but the only form of payment Bob accepts is bitcoin (BTC). Alice doesn’t have any

bitcoin; she only has hard currency, specifically US dollars ($). First, Alice creates an

account with a wallet service, making certain to choose one that provides currency

conversion into bitcoin. Alice needs 0.01 BTC for her purchase from Bob. Her wallet

provider tells her the current rate for 1 bitcoin in US dollars: $250 per bitcoin (although

close to the current exchange rate, this amount is used as example only). Bob is asking

$2.50 for his e-book. Alice decides to convert $10 into bitcoin using a debit or credit

card, giving her a balance in her wallet of 0.04 BTC. Now, Alice can make her purchase.

Still accessing her new wallet, she chooses the option to send bitcoin. Alice enters either

Bob’s wallet address or his email address into the wallet software and the amount she

wishes to send to him, 0.01 BTC. Bob acknowledges the transaction, which is then

broadcast across the Bitcoin network, and Alice has a 0.03 BTC balance in her wallet. As

4

this transaction is very small, the transaction can be considered confirmed immediately

by Bob and Alice (Antonopoulos 2014), although validation of the transaction will take

approximately 10 minutes and confirmation will take up to an hour. If she is at Bob’s

physical location and has a smart phone, she can instead use a wallet application to scan a

QR code for Bob’s wallet address (“Bitcoin Developer Guide” n.d.).

As an alternative to an online wallet, Bitcoin Core code may be installed on a

user’s computer and used to set up a private wallet. The user will need to have some basic

programming knowledge as this method is not as friendly as the online wallets are made

to be; i.e., no graphical user interface. This wallet acts in much the same way as the

online wallets, allowing the user to request a new wallet address, send and receive

bitcoin, record all bitcoin addresses currently owned by them, and submit transactions to

the Bitcoin network for confirmation and inclusion in the block chain. By using this

method, a user is able to create transactions while offline to be uploaded the next time

they connect to the Internet (“Bitcoin Developer Guide” n.d.).

 Each bitcoin and each wallet has an address. A user may request a new wallet

address, but each bitcoin address is a unique identifier which reflects the history of that

bitcoin and can be used to track that bitcoin back to the genesis block or coinbase

transaction from which it originated. Each bitcoin address can represent any actual

amount of bitcoin down to a single satoshi (the smallest allowed subdivision of a

bitcoin), or 0.00000001 BTC, or as large as the total amount of bitcoin in existence. As

bitcoin are pooled or divided in a transaction, or simply spent as is, their address will

change to reflect their new histories (Antonopoulos 2014).

5

When Alice purchased her bitcoin, she paid in the traditional manner with an

account in a traditional financial institution. Other options exist for acquiring bitcoin that

provide a higher possibility of remaining anonymous, like selling goods or services

online or making a purchase with cash at a local vendor (Antonopoulos 2014). For Alice,

her provider then initiated a transaction. They chose the address of an output of 0.04 BTC

from a previous transaction to be the input for this new transaction with Alice. If such an

output does not exist, they create either an aggregating transaction (Fig. 2.1), combining

smaller outputs into an appropriately sized input, or a distributing transaction (Fig. 2.2),

Figure 2.1 (Antonopoulos 2014)

Figure 2.2 (Antonopoulos 2014)

6

dividing a larger input (Antonopoulos 2014). Her wallet provider’s signature is then

applied to this input, releasing it to a new owner, Alice, as an output in this transaction

assigned to Alice’s wallet address and encumbered with her public key hash or wallet

address. In order for this bitcoin to be spent, the terms of the encumbrance must be met.

In other words, Alice must apply her signature when including this as an input in a new

transaction (Antonopoulos 2014).

Alice still needs to pay Bob. Alice includes the 0.04 BTC output as the input for

her transaction with Bob. Remember, though, that Bob only needs 0.01 BTC. Alice

doesn’t want to pay him more than he’s owed. She needs change back. The key to

receiving change is breaking up the bitcoin into the desired amounts by designating

output amounts and appropriate recipients (Fig. 2.3). In this example, Alice will designate

her first output, #0, as the 0.01 BTC she is transferring to Bob’s wallet. In a bitcoin

transaction, any leftover amount from the input not specifically assigned to an output is

considered a transaction fee, or payment, to the bitcoin miners who first confirm the

transaction is valid (Antonopoulos 2014). So, if Alice stops here and sends the

transaction for confirmation, she pays the remaining 0.03 BTC as a transaction fee. If she

Figure 2.2 (Antonopoulos 2014)

7

doesn’t want to lose this bitcoin, she has to include a second output, #1, in her transaction

with Bob to assign the remaining 0.03 BTC back to her wallet. Most online wallets will

automatically make this adjustment and charge any applicable transaction fees, making it

transparent to the user. Now, Alice’s wallet contains the address of the remaining 0.03

BTC as an unspent output and keeps this output recorded as available to be used as an

input in a future transaction (“Bitcoin Developer Guide n.d.).

The transaction, including a record of all inputs and outputs, is now broadcast

across the Bitcoin network to be added to a transaction block. Each transaction is hashed

using a SHA256 hash function to create its unique transaction identifier to ensure that all

data in the transaction cannot be altered without altering the transaction identifier (Table

2.1) (Antonopoulos 2014).

Transaction

5bc1e89ba2b82f770da019bf147636361f83f2620b8cf2e3e47ce7f0255e4cfc

Inputs

113Uxv3jxJtduRGAAEuVMRpKcPuUKXDTGH

Outputs

1GSTmnp3JSCxaUymWgTF4eUhz7ui6HxhCz 0.07344311 BTC

113Uxv3jxJtduRGAAEuVMRpKcPuUKXDTGH 17.99849813 BTC

Summary

Size 225 (bytes)

Received Time 4/3/2015 17:00

Included In Blocks 350560 (2015-04-03 17:04:11 + 4 minutes)

Confirmations 1607 Confirmations

Inputs and Outputs

Total Input 18.07294124 BTC

Total Output 18.07194124 BTC

Fees 0.001 BTC

Estimated BTC Transacted 0.07344311 BTC

Table 2.1 Transaction Included in Block #350650 ("Block 350650" n.d.)

https://blockchain.info/tx/5bc1e89ba2b82f770da019bf147636361f83f2620b8cf2e3e47ce7f0255e4cfc
https://blockchain.info/address/113Uxv3jxJtduRGAAEuVMRpKcPuUKXDTGH
https://blockchain.info/address/1GSTmnp3JSCxaUymWgTF4eUhz7ui6HxhCz
https://blockchain.info/address/113Uxv3jxJtduRGAAEuVMRpKcPuUKXDTGH
https://blockchain.info/block-index/835225

8

Every node, or cooperative group of bitcoin miners, that receives this broadcast

first confirms the validity of the transaction. Reasons for rejecting a transaction include:

the transaction’s syntax and data structure is incorrect, either the list of inputs or the list

of outputs is blank, transaction size in bytes is too small, for each input the referenced

output doesn’t exist or has already been spent, the sum of the inputs is not greater than or

equal to the sum of the outputs, etc. (Antonopoulos 2014). The node then adds the

transaction to a pool of unverified transactions and rebroadcasts said transaction across

the network to be certain all nodes have received it. Bitcoin miners select transactions

from this transaction pool and, along with a coinbase transaction, build a new

transaction block. Transactions are added to new blocks on a priority basis

(Antonopoulos 2014).

Many factors are considered when deciding which transactions have a higher

priority than others. These factors include, but are not limited to, the amount of the

transaction fee being offered, how long it’s been since these particular bitcoin have been

spent, and available space in the transaction block. A new block is initiated as soon as the

last block’s proof-of-work is received and verified by the network, approximately every

10 minutes (Antonopoulos 2014).

Transaction block #350560 is shown below (Table 2.2, 2.3). The block number is

the height of the block, or the number of blocks since block 0, the genesis block. Block

number is one way to identify a transaction block, but is not necessarily unique. If there

has been a fork, or alternative path, in the block chain, then the block number could refer

to multiple transaction blocks. In Table 2.2 the block is not part of a fork since the height

of this block is shown to be from the “Main Chain.” (Antonopoulos 2014)

9

Summary

Number Of Transactions 1661

Output Total 11,588.67136749 BTC

Estimated Transaction Volume 2,306.99196516 BTC

Transaction Fees 0.28227533 BTC

Height 350560 (Main Chain)

Timestamp 2015-04-03 17:04:11

Received Time 2015-04-03 17:04:11

Relayed By F2Pool

Difficulty 46,717,549,644.71

Bits 404195570

Size 976.4306640625 KB

Version 2

Nonce 1217706329

Block Reward 25 BTC

Table 2.2 Block #350560 (“Block 350650” n.d.)

Hash

00000000000000000bb68584f973318a292d2ee4958c61b206e3ad73d5b1fc11

Previous Block

00000000000000000a2c1d40b71f295ece78f4100ab634173b5e88c7247cb33a

Next Block(s)

00000000000000001450e1fcca7d74877361c1e154ee0e888c211a212b4f4382

Merkle Root

159ceb3d0acd646b455fd6f0d5f5bc0258bee741c29119efd4aa000940ce6524

Table 2.3 Block #350650 Hashes (“Block 350650” n.d.)

The number of transactions includes the coinbase transaction (Table 2.4), a kind

of reward to the bitcoin miner who first validates a new block. The number of

transactions can be as few as one, just the coinbase transaction, or as many as will fill

250,000 bytes. An average transaction size is approximately 250 bytes (Antonopoulos

2014). The coinbase transaction is the primary method of payment for bitcoin miners and

is the only way new bitcoin is created. Coinbase transactions require 100 confirmations

https://blockchain.info/block-height/350560
https://blockchain.info/blocks/F2Pool
https://blockchain.info/block/00000000000000000bb68584f973318a292d2ee4958c61b206e3ad73d5b1fc11
https://blockchain.info/block/00000000000000000a2c1d40b71f295ece78f4100ab634173b5e88c7247cb33a
https://blockchain.info/block/00000000000000001450e1fcca7d74877361c1e154ee0e888c211a212b4f4382

10

Transaction ID

12bbe05ed70c4664bf88a8294f0c37c9004524b83580bddb91b840341a06133f

2015-04-03 17:04:11

No Inputs (Newly Generated Coins)
1KFHE7w8BhaENAswwryaoccDb6qcT6DbYY

25.28227533 BTC

Table 2.4 Coinbase Transaction (“Block 350650” n.d.)

before the bitcoin created in them is available to be spent, unlike non-coinbase

transactions, which require only six confirmations, or six blocks added to the block chain

after the block in which they are included. Originally, this reward was set to 50 BTC;

currently, the reward is 25 BTC. A transaction fee is included in the block information,

but in most transactions that amount is far less than the amount created in the coinbase

transaction. (“Bitcoin Developer Guide” n.d.). This coinbase transaction amount is set to

reduce by half every 210,000 blocks validated, approximately every four years. Bitcoin

core also has a hard set amount of total bitcoin that will ever be in existence of

21,000,000 BTC, estimated to be reached in the year 2140 (Nielson 2013).

To create a unique identifier for this transaction block, we concatenate six

elements of the information above: the version number, the hash of the previous block,

the Merkle root, the timestamp, the difficulty, and the nonce (Table. 2.2, 2.3) (Shirriff

2014). Together, these six elements are known as the block header. When the hash of a

transaction block is found, it is actually the hash of the block header. This hash is the

unique identifier for this block (Antonopoulos 2014).

 The version number, 2, is the version of Bitcoin core utility used when this block

was created. This lets all users in the Bitcoin network know the rules in place when this

block was created and hashed (Nielson 2013). Using older versions of Bitcoin core can

https://blockchain.info/tx/12bbe05ed70c4664bf88a8294f0c37c9004524b83580bddb91b840341a06133f
https://blockchain.info/address/1KFHE7w8BhaENAswwryaoccDb6qcT6DbYY

11

lead to forks in the block chain (“Bitcoin Developer Guide” n.d.). The hash of the

previous block is the result of hashing the header from the previous transaction block.

 The Merkle root is a special hash of all of the transactions included in this

transaction block and is derived from the ‘leaves’ of the Merkle tree (Fig. 2.4) , with H𝐴

referring to the hash of transaction A. Transactions make up the leaves of this Merkle

tree. To find the root, the transactions to be included in the new block are hashed,

separated into pairs, and each pair is hashed using a double-SHA256 function. The results

from each pair’s hash are then paired and hashed, and so on, until only a single 256 bit

hash remains, the Merkle root.

The purpose of hashing the transactions into a Merkle root is to provide a unique

identifier. Once all of the transactions are double-hashed, any attempt to change any

information included in those transactions will cause the root to completely change,

providing a level of security within the block. A transaction may be confirmed to be

included in a transaction block by showing that it is included in the Merkle tree for that

Figure 2.4 (Antonopoulos 2014)

12

block. To do this, a node would acquire records of the other transactions, or the hashes of

the other transactions, included in this block, hash the transaction under investigation in

with them, and compare the resulting hash with the Merkle root in the block header

(Antonopoulos 2014). For example, to verify transaction J is included in this block,

acquire or recreate the hashes ABCDEFGH, MNOP, KL, and I, from other nodes,

complete the rest of the branches of the Merkle tree, and compare this current hash with

the Merkle root. If they match, the proposed transaction J is confirmed to be included in

this transaction block (“Bitcoin Developer Guide” n.d.).

The timestamp indicates when the block is created. The purpose of the timestamp

is to provide an official time when the transactions in this block first existed. Any

transactions in a later block that include the same bitcoin as inputs as this block includes

as inputs are rejected. This is determined by comparing the transaction identifier to those

in the transaction pool and those included in the block chain. Remember, each bitcoin

input has a unique identifier, which changes when it becomes an output. From the current

block, only the output may be included as an input in a later block (Antonopoulos 2014).

The timestamp is the key that prevents spending of the same bitcoin multiple times. The

timestamp proves when an unspent transaction output is included as an input in a new

transaction and prevents that same bitcoin or that same transaction from being included in

a block that is timestamped later (Nakamoto 2008).

The difficulty, or target difficulty, is a measure of how difficult the current target

makes it to successfully mine a block. A difficulty of 1 would mean that it would be very

easy to successfully mine a block, requiring a minimal number of calculations. The

difficulty at the time block #350650 was mined was 46,717,549,644.71, or 46 billion

13

times more difficult than mining a block would be at a difficulty of 1. Difficulty is also

used in calculating the target, or maximum value of a successfully mined block’s hash

(Antonopoulos 2014). More details on target and difficulty, and how they relate to proof-

of-work, are discussed later.

 The nonce is a random number included in the block header. Miners will try

different random numbers in the header until they find one which causes the hash of the

header to meet the proof-of-work requirement set out by Bitcoin core. If it takes too long

to find a nonce, miners may change either the timestamp, extending it up to two hours

after the actual time, or the coinbase transaction and begin searching for a nonce once

again (Antonopoulos 2014).

 Before a block is validated, nodes must provide a proof-of-work. That is, the node

is required to provide proof that it has solved a computationally difficult puzzle before

the rest of the network will accept the validation of the transaction. This proof-of-work

makes it so that dishonest nodes which try to falsify previous blocks must work harder

than honest nodes that are trying to extend the block chain, and it throttles the creation of

new bitcoin (“Bitcoin Developer’s Guide” n.d.). All nodes and miners will work on the

same block’s proof-of-work at the same time. This constitutes a race, as each node works

on a solution to the proof-of-work in order to claim the prize: the transaction fee and the

newly created bitcoin. Since nodes are made up of groups of miners, the winnings are

divided among miners in a manner determined by each node. The puzzle is to find a

random number (the nonce) such that, when it is included in the transaction header, the

resulting hash includes a predetermined number of leading zeroes in hexadecimal, thus

falling below the target number. The successful miner will have attempted around 1610

14

or approximately 1012 different nonce values before discovering one that gives the

desired result (Antonopoulos 2014).

The proof-of-work target is determined automatically by each node based on

specifications in Bitcoin core. At the time of this writing, the current target and the

calculated difficulty in reaching it is given in Table 2.5. The target may also be said to be

16 leading zeroes in hexadecimal (Table 2.5). The target is determined by dividing the

maximum hash value by the difficulty. Per Bitcoin core, difficulty is recalculated every

2016 blocks, or approximately every two weeks, based on the average amount of time

Decimal Target

545227566982404669720599751103563308707559049533419683840

Hexadecimal Target

0000000000000000163C7100

Difficulty

49446390688.241

 Table 2.5 Current Target and Difficulty

(“DecimalTarget” n.d., “HexTarget” n.d., “GetDifficulty” n.d.)

between block validations over the previous 2015 blocks. The last 2015 blocks are used

instead of the last 2016 due to an error in Bitcoin core (“Bitcoin Developer Guide” n.d.).

The intended validation time is approximately 10 minutes between blocks. If the previous

average was less than 10 minutes, the difficulty would increase, meaning the number of

leading zeroes would increase so the target would decrease. If the previous average was

greater than 10 minutes per transaction, the difficulty would decrease, so fewer leading

zeroes and a higher target. The new difficulty is calculated by dividing the actual total

time it took to calculate the last 2015 blocks by 20160 minutes, then multiplying this

New Difficulty =
(Total Time for Last 2015 blocks)

(10 ∗ 2016)
∗ Old Difficulty

15

result by the old difficulty. The target difficulty is based on CPU power, not the number

of bitcoin spent (Antonopoulos 2014).

 Once the nonce is found, the block is broadcast across the Bitcoin network and

becomes part of the block chain. Nodes will only accept the new block if all transactions

are valid. As each node receives and validates the block, they stop working on this block

and begin work on the next new block, thus indicating their acceptance of the block. The

hash of this block becomes the previous hash in the next new block’s header (Fig. 2.5)

(Antonopoulos 2014).

 The block chain is Bitcoin’s public ledger. Each new block contains the hash of

the previous block’s header, linking all transaction blocks in turn back to the genesis

block, or block #0. By chaining the blocks together in this manner, changing a transaction

becomes impossible to accomplish without altering every transaction after it in the chain

(“Bitcoin Developer’s Guide n.d.). Each node stores a record of all blocks validated by

that node. Multiple nodes that contain the same record are said to be in consensus

(Antonopoulos 2014).

Figure 2.5 ("Bitcoin Developer Guide” n.d.)

16

The block number indicates the block height, or number of blocks since the

genesis block. When a fork occurs, two blocks or more with the same height will exist

until the main block chain is once again revealed (Fig. 2.6). Forks most often occur when

two nodes broadcast their proof-of-work solution at the same time. Other nodes will

receive the broadcast first from the node closest to them, accept it as valid, and begin

working on the next block based on whichever block they received. Soon, another block

will be validated, confirming the block that its node had previously received, extending

the block chain on one side of the fork. Once this proof-of-work is broadcast, all nodes

drop their work on the second block regardless of which fork it stemmed from and begin

work on a third block (Antonopoulos 2014).

Another way forks occur is when a new version of Bitcoin core is released and

some nodes update before others. New blocks are created, following either the new rules

and violating the old or following the old rules and not implementing new, causing a

fork. Eventually, the fork controlled by the updated nodes should extend further than the

other, causing that side of the fork to be accepted by more nodes, thus becoming the main

block chain. Regardless of what caused the fork, the stale block from the shorter side of

the fork becomes an orphan block and is no longer part of the block chain (Antonopoulos

Figure 2.6 (Bitcoin Developer Guide n.d.)

17

2014). Any non-coinbase transactions that are part of this orphaned block are not lost.

Nodes that were trying to add to the orphaned block will know which transactions have

been included in the main chain’s new block once they receive and validate it. The

coinbase transaction is lost, as the block it was the claimed prize for is now defunct.

Recent updates in Bitcoin core make it improbable that any fork will ever be longer than

a single block, so the coinbase transaction of an orphaned block will never have enough

confirmations to be spent (“Bitcoin Develop Guide” n.d.).

18

3 DIGITAL KEYS

 Public key cryptosystems use a pair of keys, one public and one private, to secure

information. Public keys, or encrypting keys, may be made available to the public.

Without the private key, or decrypting key, discovery of the original message is a very

difficult endeavor, far more difficult than the original encryption was using the public

key. To implement a public key cryptosystem, user A chooses a public key E by

following an agreed upon set of rules and makes this public key available for all to use

while keeping both his private key and how the public key was constructed a secret.

Anyone sending A a message 𝑚 will encrypt the message using A’s public key, with a

result 𝑠 = 𝐸(𝑚). A receives the encrypted message 𝑠 and applies his private key D to it

to open up the original message, 𝐷(𝑠) = 𝐷(𝐸(𝑚)) = 𝑚 (Rosen 2011).

 Public keys are also used in creating digital signatures. Digital signatures are used

to verify the authenticity of a message; that is, digital signatures are used to prove a

message actually came from the correct person and that none of the data in the message

has been altered since the message was created. The private key and a version of the

original message is used to create the signature. Since 𝐷(𝐸(𝑚)) = 𝑚 = 𝐸(𝐷(𝑚)), the

public key may be used to decrypt the signature, verifying the origin of the message

(Rosen 2011).

 Bitcoin uses digital keys to prove ownership of bitcoin and digital signatures to

reliably transfer bitcoin from one wallet to another within the Bitcoin network. When a

user sets up a new wallet, the wallet software creates a private key. While this private key

is kept secret, any public keys are calculated based on this key. In Bitcoin, the public key

hash is the user’s wallet address (Antonopoulos 2014). When a user spends his or her

19

bitcoin, s/he applies his/her digital signature to the previously unspent bitcoin. This

signature both confirms that no transaction data has been altered since the bitcoin was

received and verifies that the user is authorized to spend this bitcoin (Antonopoulos

2014). The creators of Bitcoin needed to choose which public key cryptographic system

to implement.

 Public key cryptography was introduced in the late 1970s in two main formats:

the Diffie-Hellman key exchange algorithm in 1976 and the more popular RSA algorithm

in 1977 (Rosen 2011).

Simple RSA Example:

1. Choose two distinct prime numbers 𝑝 = 7 and 𝑞 = 19

2. Compute n = pq 𝑛 = 7 × 19 = 133

3. Compute the totient of the product 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1) = 108

4. Choose any number 1 < e < 108 that is coprime to 108. 𝑒 = 17

5. Compute the modular multiplicative inverse 𝑑 of 𝑒

 17𝑑 ≡ 1 (𝑚𝑜𝑑 108) 𝑑 = 89

public key (𝑛, 𝑒) = (133,17) private key 𝑑 = 89

encryption function 𝑐(𝑚) = 𝑚𝑒 mod 𝑛 = 𝑚17mod 133

decryption function 𝑐−1(𝑐(𝑚)) = (𝑐(𝑚))
𝑑

 mod 𝑛 = (𝑐(𝑚))
89

 mod 133

where m is the message to be encrypted.

Simple Diffie-Hellman Example:

 1. Choose a prime number 𝑝 = 103

 2. Find a primitive root of 𝑝 𝑟 = 5

 3. Choose two private keys 𝑘1 = 27 and 𝑘2 = 31

20

 4. Compute the common key 𝐾 ≡ 𝑟𝑘1𝑘2 (mod 𝑝) ≡ 90, 0 < 𝐾 < 𝑝

 5. Compute the public keys 94 = 𝑦1 ≡ 𝑟𝑘1(mod 𝑝), 0 < 𝑦1 < 𝑝

 40 = 𝑦2 ≡ 𝑟𝑘2(mod 𝑝), 0 < 𝑦2 < 𝑝

The decryption function for RSA, 𝑐−1(𝑐(𝑚)) = (𝑐(𝑚))
𝑑

 mod 𝑛 = (𝑐(𝑚))
89

 mod 133

works because of Euler’s theorem. That is,

 From above, 𝑐−1(𝑐(𝑚)) = (𝑐(𝑚))
𝑑

= (𝑚𝑒)𝑑 = 𝑚𝑒𝑑

 Since 𝑒𝑑 ≡ 1 (𝑚𝑜𝑑 𝜑(𝑛)), 𝑒𝑑 = 𝑘𝜑(𝑛) + 1 for some integer k.

 So 𝑚𝑒𝑑 = 𝑚𝑘𝜑(𝑛)+1 = 𝑚(𝑚𝜑(𝑛))
𝑘
.

 By Euler, if gcd(𝑚, 𝑛) = 1, 𝑚𝜑(𝑛) ≡ 1(𝑚𝑜𝑑 𝑛),

then 𝑐−1(𝑐(𝑚)) = 𝑚𝑒𝑑 ≡ 𝑚 (𝑚𝑜𝑑 𝑛).

And, by Chinese Remainder Theorem, since 𝑝𝑞 = 𝑛, if 𝑝|𝑚,

Then 𝑐−1(𝑐(𝑚)) = 𝑚𝑒𝑑 ≡ 𝑚 (𝑚𝑜𝑑 𝑝).

(Works similarly for 𝑞.)

Both of these algorithms rely upon the difficulty of the mathematics involved to undo

them (Rosen 2011).

 As computers become more powerful, the ability to break encryption using large

primes becomes easier, requiring the use of larger primes. As the primes become larger,

the limited computing power of common electronics, such as cell phones and tablets,

requires an algorithm for digital signatures which uses very little computing power to

encrypt and still requires a massive amount of computing power to decrypt when the

private key is unknown. In 1985, the use of elliptic curves was proposed as an alternative

to the use of large primes, factoring, and logarithms (Sullivan 2013).

21

 Elliptic curve cryptography allows for low computing power for implementing

security but requires massive amounts of computing power in a brute force attempt to

break (Sullivan 2013). According to Rosen, “An elliptic curve is the set of points (𝑥, 𝑦)

that satisfy 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 where 𝑎 and 𝑏 are real numbers.”(2011) For the following

example, 𝑥 and 𝑦 are real numbers. New points on the curve can be constructed using

known points. Given two points on the curve, 𝑃 and 𝑄, a third point, 𝑅, may be found on

the curve by addition, 𝑃 + 𝑄 = 𝑅. Two primary methods can be used to accomplish this

(Rosen 2011).

For the first method, point addition, let 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2), with 𝑃 ≠

±𝑄. The point 𝑅 can be seen by first drawing a line 𝑙 through 𝑃 and 𝑄 which will

intersect the curve at a third point, 𝑅′. 𝑅 is the reflection of 𝑅′ across the x-axis and the

result of adding the points 𝑃 and 𝑄, so 𝑅′ = (𝑥3, −𝑦3) and 𝑅 = (𝑥3, 𝑦3) (Fig. 3.1). This

result may also be found algebraically (Rosen 2011).

Figure 3.1 Point Addition (Johnson, et al 2001)

22

 To find 𝑅, first find the slope of line 𝑙 given by 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
, and the equation of

the line given by 𝑦 = 𝑚(𝑥 − 𝑥1) + 𝑦1. Hence, by substitution:

 (𝑚(𝑥 − 𝑥1) + 𝑦1)2 = 𝑥3 + 𝑎𝑥 + 𝑏

 𝑦1
2 + 2𝑚𝑦1(𝑥 − 𝑥1) = 𝑥3 − 𝑚2(𝑥 − 𝑥1)2 + 𝑎𝑥 + 𝑏

 Since the sum of the roots of a cubic function equals the negative of the coefficient of the

squared term, we know 𝑥1 + 𝑥2 + 𝑥3 = 𝑚2, then 𝑥3 = 𝑚2 − 𝑥1 − 𝑥2. To find the value

of 𝑦3, we solve −𝑦3 = 𝑚(𝑥3 − 𝑥1) + 𝑦1 so 𝑅′ = (𝑥3, −𝑦3), which is reflected across the

x-axis to find 𝑅 (Johnson, Menezes, Vanstone 2001).

For the second method, point doubling, 𝑃 = 𝑄, 𝑃 ≠ −𝑄. To find the line 𝑙, note

that as 𝑄 gets closer to 𝑃, the slope of the line through 𝑃 and 𝑄 gets closer to the slope of

the tangent line to 𝑃. Once 𝑃 = 𝑄, 2𝑃 = 𝑅, and 𝑅 = (𝑥3, 𝑦3) is the reflection of 𝑅′

across the 𝑥-axis (Fig. 3.2). The slope of line 𝑙, found by implicit differentiation of the

curve at 𝑃, is given by 𝑚 =
(3𝑥1

2+𝑎)

2𝑦1
. The coordinates of 𝑅 are found in a similar manner

Figure 3.2 Point Doubling (Johnson 2001)

23

to those in point addition: 𝑥3 = 𝑚2 − 2𝑥1 and 𝑦3 = 𝑚(𝑥1 − 𝑥3) − 𝑦1 (Rosen 2011).

 As an example, consider the elliptic curve 𝑦2 = 𝑥3 + 𝑥 + 4 over the finite field

Ϝ23, with 𝑃 = (7, 3) and 𝑄 = (15, 17) points on the curve (Johnson 2001). First, an

example of point addition, followed by point doubling:

Point Addition: 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
=

17−3

15−7
=

7

4
 𝑃 = (𝑥1, 𝑦1), 𝑄 = (𝑥2, 𝑦2)

To find 𝑚 mod 23:

4𝑚 ≡ 7 mod 23 (has a unique solution since gcd(4, 23) = 1)

 6 ∙ 4 ≡ 6 ∙ 7 mod 23 (since 24 ≡ 1 mod 23)

 24𝑚 ≡ 42 ≡ 19 mod 23

So 𝑚 = 19.

To find 𝑅: 𝑥3 = 𝑚2 − 𝑥1 − 𝑥2

 = (19)2 − 7 − 15 = 339 ≡ 17 mod 23

 𝑦3 = 𝑚(𝑥1 − 𝑥3) − 𝑦1

 19(7 − 17) − 3 = −193 ≡ 14 mod 23

 So 𝑅 = (𝑥3, 𝑦3) = (17, 14)

Point Doubling: 𝑚 = (
3𝑥1

2+𝑎

2𝑦1
) =

3(7)2+1

2(3)
=

74

3
 𝑃 = (𝑥1, 𝑦1)

 To find 𝑚 mod 23:

 3𝑚 ≡ 74 ≡ 5 mod 23

 8 ∙ 3𝑚 ≡ 8 ∙ 5 mod 23

 24𝑚 ≡ 40 ≡ 17 mod 23

 So 𝑚 = 17.

 To find 𝑅: 𝑥3 = 𝑚2 − 2𝑥1

24

 = (17)2 − 2(7) = 275 ≡ 22 mod 23

 𝑦3 = 𝑚(𝑥1 − 𝑥3) − 𝑦1

 = 17(7 − 22) − 3 = −258 ≡ 18 mod 23

 So 𝑅 = (𝑥3, 𝑦3) = (22, 18)

Multiplication on the elliptic curve works like repeated point doubling (Antonopoulos

2014).

Point addition and doubling of the elliptic curve defined in the secp256k1

standard as 𝑦2 = 𝑥3 + 7 over the prime field Ϝ𝑝 where 𝑝 = 2256 − 232 − 29 − 28 −

27 − 26 − 24 − 1 is the method used by Bitcoin to create Bitcoin wallet addresses, or

public key hashes (Antonopoulos 2014) (Fig. 3.3). To generate a Bitcoin address, or a

wallet address, a user chooses a random number, typically generated by a good random

number generator, as their private key, 𝑘. To generate a public key, first multiply the

private key, 𝑘, by a predetermined generator point, 𝐺, defined by the secp256k1 standard,

which lies on the curve 𝑦2mod 𝑝 = (𝑥3 + 7)mod 𝑝. The result is another point on the

curve, or the public key, 𝐾 (Antonopoulos 2014) (Fig 3.4).

This public key is still not in the form of a wallet address. To find the wallet

address, the coordinates of the public key 𝐾 are concatenated, their SHA256 hash is

computed, then the RACE Integrity Primitives Evaluation Message Digest (RIPEMD)

hash is computed from the SHA256 hash, or 𝐴 = 𝑅𝐼𝑃𝐸𝑀𝐷160(𝑆𝐻𝐴256(𝐾)). This

produces a 160-bit number, 𝐴 (Antonopoulos 2014).

25

Figure 3.3 Elliptic Curve: 𝑦2 = 𝑥3 + 7

 Alice requires Bob’s public key hash, or wallet address, to send him the bitcoin

she owes him for the e-book (Fig. 3.5). Once she receives it, Alice includes Bob’s public

key hash as part of an encumbrance she places on the transaction. This encumbrance is a

set of instructions that will only allow this output, this bitcoin from Alice, to be spent if

the spender, Bob, proves that he controls the private key that produces Bob’s public key

hash. Bob’s wallet now includes this payment from Alice as a spendable output (“Bitcoin

Developer Guide” n.d.).

Figure 3.5 Creating a Public Key Hash to Receive a Payment ("Bitcoin" n.d.)

Figure 3.4 𝐾 = 𝑘𝐺 (Antonopoulos 2014)

26

Bob decides to spend this bitcoin when making a purchase from Carl. Bob

includes the bitcoin from Alice as an input in a transaction. To satisfy the encumbrance

placed by Alice, Bob must prove that he controls the private key that produces the public

key hash that Alice included in the encumbrance. So, before he broadcasts the

transaction, Bob signs it. By signing the transaction, Bob locks the transaction contents,

creating a layer of security in the transaction (“Bitcoin Developer Guide” n.d.). When he

signs, he includes his full unhashed public key, K, and his digital signature. His digital

signature is created using his private key, k, by encrypting a hash of the transaction

contents. Bitcoin uses Bob’s public key to decrypt his digital signature, verifying that the

hash of the transaction contents remains unaltered and that Bob controls the private key

associated with his public key (Johnson, et al 2001). If either of the keys used aren’t

Bob’s, or the hashes of the transaction contents don’t match, the signature is rejected and

the bitcoin remains in Bob’s wallet (Fig. 3.6) (“Bitcoin Developer Guide” n.d.).

Figure 3.6 Bitcoin Transaction Signature Chain (Shirriff "Bitcoins" 2014)

27

4 SECURE HASH ALGORITHM 256

 Secure hash algorithms are “iterative, one-way hash functions that can process a

message to produce a condensed representation called a message digest” (“FIPS” 2012,

p. 3), or hash. Once processed through the hash function, any change in a message or

download results in a different digest or hash. Hence, these algorithms may be used to

validate the integrity of a message or download. Digital signatures, message

authentication codes, and random numbers may be generated and authenticated in this

manner (“FIPS” 2012).

 Each algorithm following the secure hash standard includes a preprocessing stage

and a hashing stage. During the preprocessing stage, the data is padded to an appropriate

size, divided into blocks, and each block is divided into words. SHA256 can handle

messages of size 264 or less. Its block size is 512 bits, so the data to be hashed is padded

to a bit size divisible by 512. Each block consists of 16 32-bit words (“FIPS” 2012). The

hashing stage is described in detail below. The resulting hash has eight 32-bit words, for

a total of 256 bits. To illustrate the process, I’ve run the word ‘cryptography3’ through

the SHA256 hash function by hand, verified by an Excel worksheet created by David

Rabahy (2014).

 Preprocessing of the data takes place in which the original data is converted, using

the ASCII table, into binary, then to hexadecimal and concatenated. The bit ‘1’ is then

appended to the original message. Then append the number of ‘0’ bits required to bring

the message length, modulo 512, to 448 bits. Finally, append the length of the original

message, without the padding, as 64 bit integer, making the entire length of the message,

in bits, a multiple of 512 (“FIPS” 2001).

28

 For a Bitcoin transaction, this gives 1024 bits of information to be hashed. Each

SHA256 run will take 16 32-bit chunks, or words, denoted 𝑤𝑖 where 𝑖 = 0, … , 63, for a

total of 512 bits each run (Table 4.1).

𝑤0 cryp 6 3 7 2 7 9 7 0

 0110 0011 0111 0010 0111 1001 0111 0000

𝑤1 togr 7 4 6 f 6 7 7 2

 0111 0100 0110 1111 0110 0111 0111 0010

𝑤2 aphy 6 1 7 0 6 8 7 9

 0110 0001 0111 0000 0110 1000 0111 1001

𝑤3 3 3 3 8 0 0 0 0 0

 0011 0011 1000 0000 0000 0000 0000 0000

𝑤4 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤5 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤6 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤7 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤8 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤9 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤10 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤11 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤12 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤13 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤14 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

𝑤15 0 0 0 0 0 0 6 8

 0000 0000 0000 0000 0000 0000 0110 1000

Table 4.1 Words 0 - 15 in Hex and Binary

29

To continue preparing the data, the first 16 words are used to determine the remaining 48

words, for a total of 64 words. For words 𝑤𝑖, 𝑖 ≥ 16,

𝑤𝑖 = (𝑤𝑖−16) + (𝑤𝑖−7) + [(𝑤𝑖−15)(7) + (𝑤𝑖−15)(18) + (𝑤𝑖−15)(3)] + [(𝑤𝑖−2)(17)

+ (𝑤𝑖−2)(19) + (𝑤𝑖−2)(10)]

where each subscript (j) is the number of binary digits the given word is shifted to the

right, the first two shifts wrap back to the beginning, the third is truncated (“FIPS” 2001).

Table 4.2 illustrates how to find word 𝑤16 (Table 4.2).

[(𝑤1)(7) + (𝑤1)(18) + (𝑤1)(3)]

𝑤1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0

 e 4 e 8 d e c e

7 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0

 d 9 d c 9 d 1 b

18 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1

 0 e 8 d e c e e

3 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0

 3 3 b 9 a f 3 b

[(𝑤14)(17) + (𝑤14)(19) + (𝑤14)(10)]
𝑤14 0 0 0 0 0 0 0 0

 0000 0000 0000 0000 0000 0000 0000 0000

 𝑤0 6 3 7 2 7 9 7 0

 𝑤9 0 0 0 0 0 0 0 0

 [(𝑤1)(7) + (𝑤1)(18) + (𝑤1)(3)] 3 3 b 9 a f 3 b

[(𝑤14)(17) + (𝑤14)(19) + (𝑤14)(10)] 0 0 0 0 0 0 0 0

𝑤16 9 7 2 c 2 8 a b

Table 4.2 Finding Word 16

Words 17 through 63 are found similarly.

Now the hash function begins.

For the first round, begin with eight constants, ℎ0 through ℎ7, determined by the

NSA, the creators of SHA256. These constants are derived from the square roots of the

first eight prime numbers as follows (Table 4.3).

30

Primes (p) √𝑝 𝑚𝑜𝑑 1 𝑖𝑛𝑡((√𝑝 𝑚𝑜𝑑 1) ∗ 168) Hexadecimal

2 1.414213562 0.414213562 1779033703 6a09e667

3 1.732050808 0.732050808 3144134277 bb67ae85

5 2.236067977 0.236067977 1013904242 3c6ef372

7 2.645751311 0.645751311 2773480762 a54ff53a

11 3.316624790 0.316624790 1359893119 510e527f

13 3.605551275 0.605551275 2600822924 9b05688c

17 4.123105626 0.123105626 528734635 1f83d9ab

19 4.358898944 0.358898944 1541459225 5be0cd19

Table 4.3 Beginning Constants

Each of these constants is A through H of our initial run through. Next, each of the initial

values is translated into binary (Table 4.4).

A 6 A 0 9 E 6 6 7

0110 1010 0000 1001 1110 0110 0110 0111

B B B 6 7 A E 8 5

1011 1011 0110 0111 1010 1110 1000 0101

C 3 C 6 E F 3 7 2

0011 1100 0110 1110 1111 0011 0111 0010

D A 5 4 F F 5 3 A

1010 0101 0100 1111 1111 0101 0011 1010

E 5 1 0 E 5 2 7 F

0101 0001 0000 1110 0101 0010 0111 1111

F 9 B 0 5 6 8 8 C

1001 1011 0000 0101 0110 1000 1000 1100

G 1 F 8 3 D 9 A B

0001 1111 1000 0011 1101 1001 1010 1011

H 5 B E 0 C D 1 9

0101 1011 1110 0000 1100 1101 0001 1001

Table 4.4 Constants to Binary

31

By looking at the bits of A, B, and C, find the Majority value, Ma. To do this, for each bit

position, if more of the bits are 0 the output is 0, and if more are 1 the output is 1. Then,

translate the majority value into hexadecimal (Table 4.5).

A 6

a

0

9

e

6

6

7

0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1

B b

b

6

7

a

e

8

5

1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1

C 3

c

6

e

f

3

7

2

0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0

Ma 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1

3

a

6

f

e

6

6

7

 Table 4.5 Majority Value

To find Σ0 from A, first shift the bits of A two bits to the right. Then shift the bits of A 13

bits to the right. Then shift the bits of A 22 bits to the right. Now sum the bits in each

position. If the sum is even, enter a 0, and if the sum is odd, enter a 1. Then translate Σ0

from binary to hexadecimal. The first bit from A is highlighted in each row (Table 4.6).

A 6

a

0

9

e

6

6

7

0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1

>

2 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1

1

3

0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1

2

2

0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0

Σ0 c

e

2

0

b

4

7

e

1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0

Table 4.6 𝛴0

Next, compute the Choosing value, Ch, on E, F, and G, by looking at the bits in E. If the

bit in E is 0, choose the bit of the same position in G. If the bit in E is 1, choose the bit of

the same position in F. Convert the choosing to hex. The appropriate bits based on the

position in E are highlighted (Table 4.7).

32

E 5

1

0

e

5

2

7

f

0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1

F 9

b

0

5

6

8

8

c

1 0 0 1 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0

G 1

f

8

3

d

9

a

b

0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1

Ch 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0

1

f

8

5

c

9

8

c

 Table 4.7 Choosing Value

To find Σ1 from E, first shift the bits of E six bits to the right. Then shift the bits of E 11

bits to the right. Then shift the bits of E 25 bits to the right. Now sum the bits in each

position. If the sum is even, enter a 0, and if the sum is odd, enter a 1. Then translate Σ1

from binary to hexadecimal. The first bit from E is highlighted in each row (Table 4.8).

E 5

1

0

e

5

2

7

f

0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1

 >6 1 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1

11 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0

25 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0

Σ1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1

Table 4.8 𝛴1

Now compute the First Sum by adding the hexadecimal numbers for Σ0, the Choosing,

H, our first 32 bit chunk of input denoted 𝑊𝑡, and the NSA defined constant for each

round 𝐾𝑡, where 𝑡 = 0 thru 63 is the round we are working on (Table 4.9). These

constants 𝐾𝑡 are derived using the equation int((√𝑝𝑡
3 mod 1) ∗ 168) where 𝑝𝑡 is one of

the first 64 prime numbers.

33

𝑊0 6 3 7 2 7 9 7 0

𝐾0 4 2 8 a 2 f 9 8

H 5 b e 0 c d 1 9

Ch 1 f 8 5 c 9 8 c

Σ1 3 5 8 7 2 7 2 b

First

Sum 5 6 e a 6 6 d 8

Table 4.9 First Sum

Define new values A through H. For our new A, add Σ0, the Majority, and the First Sum

(Table 4.10).

Σ0 c e 2 0 b 4 7 e

Ma 3 a 6 f e 6 6 7

First Sum 5 6 e a 6 6 d 8

 New A 5 f 7 b 0 1 b d

Table 4.10 New A

For our new E, add the old D and the First Sum (Table 4.11).

Old D a 5 4 f f 5 3 a

First Sum 5 6 e a 6 6 d 8

New E f c 3 a 5 c 1 2

Table 4.11 New E

For the rest, each letter moves down one in line. So Old A becomes New B, Old B

becomes New C, and so on until Old G becomes New H, and Old H just drops off.

 This process continues through a total of 64 rounds. The final step to produce the

hash is to add the original constants, ℎ0 through ℎ7, to the final values for A though H,

producing 8 32-bit words in hexadecimal (Table 4.12).

34

ℎ0
′ c 2 6 6 a 5 3 8

ℎ1
′ 6 f d 9 e b 9 3

ℎ2
′ 3 0 c f e 0 b c

ℎ3
′ e a 3 2 c 3 1 6

ℎ4
′ 1 1 5 7 8 e b 1

ℎ5
′ d b 9 f a 5 7 2

ℎ6
′ 4 6 0 0 6 c 1 f

ℎ7
′ b 6 6 2 6 3 9 6

Table 4.12 Final Words

These words are concatenated to get the result of our hash in hexadecimal (Table 4.13).

c266a5386fd9eb9330cfe0bcea32c31611578eb1db9fa57246006c1fb6626396

Table 4.13 ‘cryptography3’ Hash

However, since Bitcoin transaction blocks include more than 512 bits, but less

than 1024, the process begins again for the remaining 16 blocks of information, using the

final ℎ0
′ through ℎ7

′ in place of the constants originally used (Table 4.11). After all of the

information has been included, we end with 8 32-bit blocks, completing one SHA256

hash. After 128 rounds, we’ve successfully compressed 1024 bits of information to 256

bits. Remember, for Bitcoin, each transaction block is put through a double hash for a

total of 192 rounds.

 Above, the word ‘cryptography3’ was hashed once by the SHA256 algorithm.

Now, ‘cryptography2’ is hashed once to compare (Table 4.14). This entry changes the

24dabb19cd16be8dce985ec10847cc2e7e38634fb50c263593d865d134e9077

Table 4.14 'cryptography2' Hash

input by a single binary digit, but the resulting hash is entirely different. Thus, if any of

the transaction data is altered by even a single bit, the entire hash result is altered. This

demonstrates the high level of security built into Bitcoin to ensure the trust network

remains intact.

35

5 SUMMARY

 Bitcoin employs the SHA256 hash function and elliptic curve cryptography to

ensure security and reinforce trust. This trust is critical to bitcoin survival because of the

decentralized nature of a digital currency. Traditional currencies rely upon banking

systems and governments for mediation, requiring only trust in the financial institutions

and government regulation. Bitcoin, on the other hand, relies upon the consensus of its

users. Use of cryptographic security prevents tampering in every level of a transaction,

from inception through fulfillment. To fully understand the basis of this trust requires an

investigation of the mathematics used to secure bitcoin transactions and the block chain.

Additional topics for exploration of the mathematics of bitcoin would include alternative

signing protocols to the more commonly used one described here and statistical modeling

of the probability of successfully altering transaction data.

36

GLOSSARY

bit - binary digit, either ‘0’ or ‘1’

bitcoin (BTC) – the name of the cryptocurrency

bitcoin – the network and the software

block – a group of transactions, marked with a timestamp and a hash of the previous

block

block chain – a list of validated blocks, each linked to the previous block, all the way to

the genesis block

block header – the six elements of a block that are hashed to compute the proof-of-work;

they include the version of bitcoin being used at the time the block is created and

for all transactions in the block, the hash of the previous block, the Merkle root,

the timestamp, the number of bits in the block, and the nonce.

coinbase transaction – constructed by a miner or node, this is the reward for successfully

mining the block

concatenate – attach a data string to another data string end to beginning with no spaces

confirmations – including a transaction in a block is one transaction; once another block

is mined on the same block chain, the transaction has two confirmations, etc.

difficulty – a network wide setting that controls how much computation is required to

produce a proof-of-work

genesis block – the first block in the block chain, used to initialize the cryptocurrency

hash – values returned by a hash function, such as SHA256

miner – a Bitcoin user who uses special software to find valid proof-of-work for new

blocks and is issued a certain number of bitcoins in exchange

37

node – a cooperative collection of bitcoin miners which form a full client that owns the

block chain and is sharing blocks and transactions across the network

proof-of-work – solution to a computationally difficult puzzle that is very difficult to

solve but easy to confirm; in Bitcoin, miners find a numeric solution to the

SHA256 algorithm that meets the difficulty target

satoshi – the smallest allowed subdivision of a bitcoin, or 0.00000001 BTC

target – difficulty target; the difficulty at which all the computation in the network will

find blocks approximately every 10 minutes

transaction – a public entry in the block chain which records a signed data structure

expressing a transfer of value

wallet – an electronic record of all private and public keys which are used to sign

transactions, proving ownership of specific bitcoin

38

REFERENCES

Antonopoulos, Andreas M. Mastering Bitcoin: Unlocking Digital Cryptocurrencies.

O'Reilly Media, 2014. Accessed February 20, 2015.

http://chimera.labs.oreilly.com/books/1234000001802/index.html

"Bitcoin Developer Guide." Bitcoin. n.d. Accessed October 6, 2014.

https://bitcoin.org/en/developer-guide.

“Block #350650.” Blockchain Info. n.d. Accessed April 3, 2015.

https://blockchain.info/block/00000000000000001450e1fcca7d74877361c1e154e

e0e888c211a212b4f4382.

Bryans, Danton. "Bitcoin and Money Laundering: Mining for an Effective Solution."

Indiana Law Journal 89, no. 1 (2014): 441-72. Accessed October 14, 2014.

http://web.ebscohost.com.emporiastate.idm.oclc.org/ehost/detail/detail?sid=6e53e

4ae-22e9-4cd1-a83a-

9ec5dc1e4654@sessionmgr4005&vid=0&hid=4104&bdata=JnNpdGU9ZWhvc3

QtbGl2ZQ==#db=lgh&AN=93745150.

"DecimalTarget." Bitcoin Block Explorer. n.d. Accessed April 3, 2015.

http://blockexplorer.com/q/decimaltarget.

"FIPS 180-4: Secure Hash Standard (SHS)." NIST: Computer Security Division. March,

2012. Accessed March 6, 2015. http://csrc.nist.gov/publications/fips/fips180-

4/fips-180-4.pdf.

"GetDifficulty." Bitcoin Block Explorer. n.d. Accessed April 3, 2015.

http://blockexplorer.com/q/getdifficulty.

http://chimera.labs.oreilly.com/books/1234000001802/index.html
https://bitcoin.org/en/developer-guide
https://blockchain.info/block/00000000000000001450e1fcca7d74877361c1e154ee0e888c211a212b4f4382
https://blockchain.info/block/00000000000000001450e1fcca7d74877361c1e154ee0e888c211a212b4f4382
http://web.ebscohost.com.emporiastate.idm.oclc.org/ehost/detail/detail?sid=6e53e4ae-22e9-4cd1-a83a-9ec5dc1e4654@sessionmgr4005&vid=0&hid=4104&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ==#db=lgh&AN=93745150
http://web.ebscohost.com.emporiastate.idm.oclc.org/ehost/detail/detail?sid=6e53e4ae-22e9-4cd1-a83a-9ec5dc1e4654@sessionmgr4005&vid=0&hid=4104&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ==#db=lgh&AN=93745150
http://web.ebscohost.com.emporiastate.idm.oclc.org/ehost/detail/detail?sid=6e53e4ae-22e9-4cd1-a83a-9ec5dc1e4654@sessionmgr4005&vid=0&hid=4104&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ==#db=lgh&AN=93745150
http://web.ebscohost.com.emporiastate.idm.oclc.org/ehost/detail/detail?sid=6e53e4ae-22e9-4cd1-a83a-9ec5dc1e4654@sessionmgr4005&vid=0&hid=4104&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ==#db=lgh&AN=93745150
http://blockexplorer.com/q/decimaltarget
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://blockexplorer.com/q/getdifficulty

39

Greenberg, Andy. "Crypto Currency." Forbes. April 20, 2011. Accessed February 6,

2015. http://www.forbes.com/forbes/2011/0509/technology-psilocybin-bitcoins-

gavin-andresen-crypto-currency.html.

"HexTarget." Bitcoin Block Explorer. n.d. Accessed April 3, 2015.

http://blockexplorer.com/q/hextarget.

Johnson, Don, Alfed Menezes, and Scott Vanstone. "The Elliptic Curve Digital Signature

Algorithm (ECDSA)." Certicom. January 1, 2001. Accessed February 16, 2015.

http://cs.ucsb.edu/~koc/ccs130h/notes/ecdsa-cert.pdf.

Nakamoto, Satoshi. "Bitcoin: A Peer-to-Peer Electronic Cash System." Satoshi Nakamoto

Institute. October 31, 2008. Accessed October 20, 2014.

http://nakamotoinstitute.org/bitcoin/.

Nielsen, Michael. "How the Bitcoin Protocol Actually Works." DDI: Data-driven

Intelligence. December 6, 2013. Accessed February 6, 2015.

http://www.michaelnielsen.org/ddi/how-the-bitcoin-protocol-actually-works/.

Rosen, Kenneth H. "Cryptology." In Elementary Number Theory and Its Applications.

6th ed. Reading, Massachusetts: Addison-Wesley Pub., 2011.

Rabahy, David. SHA-256. October 9, 2014. Accessed March 6, 2015.

https://docs.google.com/a/g.emporia.edu/spreadsheets/d/1mOTrqckdetCoRxY5Q

kVcyQ7Z0gcYIH-Dc0tu7t9f7tw/edit#gid=1194752368

Shirriff, Ken. "Mining Bitcoin with Pencil and Paper: 0.67 Hashes per Day." Ken

Shirriff's Blog. September 2014. Accessed March 6, 2015.

http://www.righto.com/2014/09/mining-bitcoin-with-pencil-and-paper.html?m=1.

http://www.forbes.com/forbes/2011/0509/technology-psilocybin-bitcoins-gavin-andresen-crypto-currency.html
http://www.forbes.com/forbes/2011/0509/technology-psilocybin-bitcoins-gavin-andresen-crypto-currency.html
http://blockexplorer.com/q/hextarget
http://cs.ucsb.edu/~koc/ccs130h/notes/ecdsa-cert.pdf
http://nakamotoinstitute.org/bitcoin/
http://www.michaelnielsen.org/ddi/how-the-bitcoin-protocol-actually-works/
https://docs.google.com/a/g.emporia.edu/spreadsheets/d/1mOTrqckdetCoRxY5QkVcyQ7Z0gcYIH-Dc0tu7t9f7tw/edit#gid=1194752368
https://docs.google.com/a/g.emporia.edu/spreadsheets/d/1mOTrqckdetCoRxY5QkVcyQ7Z0gcYIH-Dc0tu7t9f7tw/edit#gid=1194752368
http://www.righto.com/2014/09/mining-bitcoin-with-pencil-and-paper.html?m=1

40

Shirriff, Ken. "Bitcoins the Hard Way: Using the Raw Bitcoin Protocol." Ken Shirriff's

Blog. February 2014. Accessed March 6, 2015.

http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html

Sullivan, Nick. "A (Relatively Easy to Understand) Primer on Elliptic Curve

Cryptography." ARS Technica. October 24, 2013. Accessed February 6, 2015.

http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-

on-elliptic-curve-cryptography/.

Velde, Francois. "Bitcoin: A Primer." Chicago Fed Letter, no. 317 (2013). Accessed

October 17, 2014. https://www.chicagofed.org/publications/chicago-fed-

letter/2013/december-317.

Wei, Dai. "Bmoney." Wei Dai. 1998. Accessed February 5, 2015.

http://www.weidai.com/bmoney.txt.

http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://www.chicagofed.org/publications/chicago-fed-letter/2013/december-317
https://www.chicagofed.org/publications/chicago-fed-letter/2013/december-317
http://www.weidai.com/bmoney.txt

41

I, Sophia Crossen, hereby submit this thesis/report to Emporia State University as partial

fulfillment of the requirements for an advanced degree. I agree that the Library of the

University may make it available to use in accordance with its regulations governing

materials of this type. I further agree that quoting, photocopying, digitizing or other

reproduction of this document is allowed for private study, scholarship (including

teaching) and research purposes of a nonprofit nature. No copying which involves

potential financial gain will be allowed without written permission of the author. I also

agree to permit the Graduate School at Emporia State University to digitize and place this

thesis in the ESU institutional repository.

Signature of Author

Date

Title of Thesis

Signature of Graduate School Staff

Date Received

