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CHAPTER I

INTRODUCTION

Historleal introduction %o subject mattex. The
solence of formal logle originated with the Greeks, as they

vere the first to collect and to analyze the prineiples which
govern legical thinking and to formulate these prineciples
into a theory. The leading exponent in the development of
logioal theory by the Greeks was Aristotle, whe formulated
the rules of olass inference. The term "class" is used to
refer to well-defined groups such as thl'cllll.of humen
beings. For Aristotle, the fact that Socrates was a man was
an instance of class membershipe-namely, Socrates was a
member of the class of men.

Aristotle utilized the idea of ¢lass membershlp in
formulating the rules of inference pertaining to the clas-
sieal syllogism, He realized that from the premises "ell
humans are mortal” and "Seerates 1s human” the eonolniton
"Socrates is nort;l" daﬁendod not upon thi content of the
statements but upon the form. With this discovery the devel-
opment of symbolic logle as 1t 1s known today rested for over
two thousand years. Kant became oognizant of thls lack of
develapment in loglice when he observed that logic was the



only sclence that had not made any progress since its
beginnings.,'

The modern loglc of the past twe hundred years grew
not frem philoseophy but from mathematics. The first welle
known mathematician who devoted his energies in this direc-
tion was Loibnin.a His methnds were revelutlonary, and he
originated the usage of a type of notation which is the basis
of the systems of logic and of set theory in exlistence today.
Had Lelbnlz pursued his studles in the field with the dili-
gence that he applied to differential caleulus, he would have
advanced the development of mathematlcal logle by one hundred
fif%y years. However, his work remalned fragmentary and
unknown during hies life; writers of the nineteenth century
had to collect his results from letters and unpublished
manuseripts.

A pudden development of mathematlcal lsgle cceourred
during the middle of the nineteenth century vhen mathemati«
clans like Boole and de Morgan began to set forth the prine
eiples of loglo in symbolic notation similar te that which
had proved beneficlal in mathematics., Thelr work in the

development of axiomatic theorles waz continued by

'Hans Reichenbach | a;;“nﬁ
(Los Angelest Uhivbrlity'o;hailiig a Press, » De 218,

21pid.




3
mathematicliens like Peano, Cantor, Schrdder, FPrege, Russell,
and Whitehead. The results of the efforts of these men are
well=known, and the systems and theories which they developed
represent some of the most profound achlevements by modern
scholars. Thus, symboliec logic and axiomatic set theory
became lmportant, integral mathematical flelds.

In the two areas mentioned above, the antinomies
exlst not only es interesting ldess, but alsec as a crucial
part.

Definitions. Before this paper commences a more
detalled account of the significance of the antinomies, a few
definitions are appropriate. 4 contradiction will be defined
as a statement form which has only false substitution
instances, such as (p .~p). All logical mathematical sym=
bols are defined on page 59 in the Appendix. An antinomy is
a contradiction which results in the irreconeilability of
seeningly necessary inferences or conclusions. If the antil=-
nomy arises in a specific theorye-such ag axiomatic set
theory or mathematical loglce=then 1t appears as the
seemingly wvalid deduction of two contradictory statements
from the axioms of the theory, even though the axioms of the
theory appear to be consistent and the rules of inference

valid.



The term perader 1g often used synonymously with
antinomy. In the opinion of thie wrlter, however, such usage
is migleading in that paradox is often used to denote an
apparent rather than a real contradiection. Also, in the
history of methematies, the term "paradox" has often been
applied to puzzling conelusions fér whioh'thnrt are logical
explanations. Therefore, throughout this paper the term
paresdox wlll he avoided except in those instances in whioch it
appears to have a speclal historicel significance.

Significence of the pntinomies. The significance of
the antinomies in an axiomatic theory reveals itself in

various waye., Obvious, of course, is the fact that any con-
tradiction destreys the usefulness of an axiomatic systems;
for frem 2 oontradiction all theorems can he derivad, and the
gyetem becomes triviel. It is usually the case that apparent
contradictions are the result of inconsistent exioms or
faulty rules of lnference. Such antinomies are trivial due
to the insignificance of the systems from which they were
derived,

The antinomies considered in this paper do not seem to
be of a trivial nature, for they appear at the core of mathe=-
matics and logiec. These eantinomies, which were first dis-
covered at the turn of the century, constitute a third major
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erisis in the history of nathunnticl.3 This erisis occurred
during a pericd when mathematicians were assserting that mathe-
matics had finally approasched a state of portoction.“ In
1900, Henri Poincare', during an address before the Second
International Congrees of Mathematiclians, stated this theme
in the following manners

Today there remain in analysie only integers and

finite or infinite systems of integers....Mathematics
.hll been arithmetized....We may ngy today that
absolute rigor has been obtalned.

Ironieally, at the same time that Poincare' made the
above claim, the discovery was made that the infinlte system
of integers, whioh was but a part of set theory, was resting
upon something other than a totally rigorous foundation. Flve
years previously, Centor had dlscovered an entinomy in his set
theory; but he diéd not publish this discovery. Two yearse

later, Burali-Fortl rediscovered the same antinomy. Though

3The first crisis occurred in the fifth century B.C.
only & short time after the development of geometry as a
rigorous, deductive science. This crisis centered eround two
seemingly paradoxical discoveries: a. the discovery of the
existence of irrational mumbers; and b. the paradoxes of the
Eleatlc schoole=commonly known as Zenon's paradoxes--which
attempted to prove the non-construetibility of finite mag-
nitudes out of infinitely small parts. The second erisls
occurred at the beginning of the nineteenth century when 1t
became inereasingly clear that the basis of the calculus as
2t111:od in the peventeenth and eighteenth centuries was

n-oourc¢

Abrthan A. Fraenkel and Yehoshua EBar-Hillel,
E*Estgsgggg (Amsterdam: North-Holland Pub-
ng mpanv 955), ps 14=15.

SIbide, e 15.



nelther Oantor nor Burali-Fortl were able to offer an
immediate solution to the antinomy, their discovery did not
at first cause too much concern among members of their
School. This antinomy had emerged in a technical reglon of
set theory and was concerned with the idea of well-ordered
sets. It was hoped that a slight revision of the proofs of
the theorems belonging to this region would rectify the
situation, 6
The optimism of Cantor and of his followers regarding
this antinomy was not to be realized, however; for in 1902
Bertrand Russell shocked the philosophical and mathematical
world with the publication of the discovery of an antinomy
which was inherent in the foundations of logic and set
theory. Russell's antinomy could be symbolized and derived
from the calculus of mathematical logic., While Russell's
antinomy was not the first to appear, it was apparently the
first antinomy to be dlscovered at such a baslc level.
ssoniever before had an antinomy arisen at such an
elementary level, involving so ntronﬁly thg most
fundamental notions of the two most "exaet" sciences,
logic and methematics.? . .
Russell's antinomy had a disturbing effect upon
scholars whose particular work was in the fleld of

61pid., pp. 1-2.
TIxdd., ». 2.
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foundations. Dedekind was, at that time, working on an essay
concerning the nature and the purpose of mmbers. In this
work he had based number theory on the membership relation
and had utilized the notion of a set in the Cantorian sense
for the proof of the existence of an infinite set. Upon
learning of Russell's antinomy, he stopped the immediate
publication of his work, the rudiments of which he felt were
d.ltroyod.s

Prege experienced a similar impact from the discovery
of Russell's antinomy, He had spent many years doing
research in the bases of arithmetic and was finishing his
work when Russell wrote to him about his discovery. In the
very first sentence of the appendix in Grundgesetze der
Arithmetik, Frege admitted that one of the foundations of his
work had been badly shaken by Russell's antinomy.

The mathematical community in general, however, refused
at first to place 2 great deal of importance upon the emerw
gence of the antinomies in set theory and loglec. It was
believed that the antinomies were but a technical part of a
highly specialized regilon which had little bearing upon the
basis of mathematics proper. IAlterature in the field indicates,

8
¥, P, Ramsey, Ihe m;gnnm of (Wew
Jersey: Iittleflield, Adams and Company, 1960), p. 80.
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however, that such attitudes displayed more wishful thinking
than critical observation. The work of Russell, Frege, Peano,
and Cantor had opened new insights into the foundations of
mathematics where logic and set theory were an indispensable
part. It would seem that 1f contradictions arcse in these
areas and that steps were necessary to alleviate them, it
would be preferable to formulate precautions rather than to
disregard these contradictions. This attitude was not always
the brovulonm one, however, as indicated by Fraenkel's
observations:

The very fact that one continued to speak of
paradoxes, or antinomies, rather than of contradictions
nolern methmmatisians 414 Hoh FAEt %o be $Peiisd. fEem
:ﬁ:‘?gradlso into which Cantor's discoveries had led

The cholice left %o the clagsical mathematliclan was not

a pleapant one. He could peint to the progress made in
analysis, geometry, and algebra; but he was forced elther to
maintain nalve falth in the essential soundness of these
disciplines or o admit that the logic in their foundations
was not free from certeln contradletions. The cholce was
certalnly an exclusive one since each point of view was the

sntithesls of the other. The psychological effect of this

-

I¥reenkel and Bar-Hillel, op. cit., D. 4.



dilemma on the modern mathematician ls expressed by Weyl in

an article in the American Mathematical Monthly.

We are less certaln than ever about the ultimate
foundations of (loglec and) mathematics. Idke evo:zbody
and everything in the world today, we have our "erises."
We have had 1t for nearly fifty years. Outwardly 1%
does not seem to hamper our dally work, and yet I for
one confess that it has had a considerable practical
influence on my mathematical 1life: it directed my
interests to flelds I considered relatively "safe," and
hes been 2 constant drain on the eathusiasm determi~
nation with which I pursued my research work.

The positive, rather than the negative, significance
of the antinomles 1s expressed by the work of loglclans and
nathematiclans in formulating thelr loglcal structure and in
then attempting to take precautions within a theory tc avold
them, The discovery, classification, and analysis of the
various antinomies reveals that they were not merely a
"puzzle pastime," but were a significant problem in the

foundutions of nithanatios.

-

1°Eblnan Weyl, "Mathematics and Logle," American
Mathematical » Vol. 53 (1946), 2-13.



CHAPTER II

HISTORICAL ACCOUNT OF THE DISCOVERY OF ANTINOMIES

Paradox of Epimenides. The history of logiec reveals
that the Megarian school of loglic formulated the first seman-
tical entinomy. The Megarian, or "dlalectical" school, was
founded by Fuclid of Megara, a pupil of Socrutis. around
400 B, C. The Megarians devoted much attention to various
fallacles and paradoxes--some of which were concermed with
the problem of the continuum, while others were probleme in
verbal reasoning. One of these paradoxes, the "Liar," has

considerable logical interest and has been olteﬁsively studied
by logleclans for oenturics.1
Although the antinomy known as the Llar paradox is
classifled as an epistemological antinomy (the subject matter
of Chapter IV of this paper), it is discussed at this time
bscause of 1ts historical significance. The literature con=
cerning this particular antinomy is quite extensive; thus,
only the more important versions of the Liar paradox will be

examined.

1+ v
I. M. Bochenski, A of zg§§§; §g§;§ (Notre
?330,1Ind}agaz University of Notre Dame gs, 1961), pp. 107=
;3 130=-132.
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The Liar paradox is often called the Paradox of
Eplmenides after a Greek scholar living at the beginning of
the sixth century. However, 1t is doubtful that any actual
connectlon between Epimenides and the formulation of the
antinomy exists. The consensus of opinion by historians in
the fleld of loglic seems to be that Eubulides, a member of
the Megarian school, was the first to fo:uulafo the Liar
paradox. Evidence supporting this opinion can be found in
the fact that a form of the Llar paradox appears in Aris-
totle's Sophigtic Refutations, which appeared in 330 B. C. at
the same time that Eubulides was active in his work.

An exaet formulation of the Liar paradox by Eubulides
no longer exists, but the extensive literature in this ares
provides many versions of it. The form of the more anclent
versions appears uninteresting, dbut their basic idea not
only puzzles but also challenges the mind. The ancient
versions can be adequately summarized by the following list,
which divides them into four categories:

I.
If you say that you lie, and in this say true, do you
lie or speak the truth?
If I 1le end say that I lie, do I lie or speak the truth?

il.

If you say that you lle, and say true, you liej but you
say that you lle, and you speak the truth; therefore,
you lle.

If you lie and in that say true, you lie.
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III.

If I pay that I lie, and (in so saying) lie; therefore,
I speak the truth,

Lying, I utter the true speech, that I lie.

Iv.
If it is true, 1% 1s false; L1f 1t 1s false, 1t 18 true.

Whoso says "lie," lies gnd speaks the truth as the
truth at the same time.

These four categories are really possible interpreta~
tions of the problem posed in analyzing the simple proposition
"I em lying." The first group simply states the question:

Is the propoﬁition made by the Iiar, l1.e., "I am lying,"

true or false? Those versions in the secon& category aénalude
that it is true, while those in the third group contend that
it 18 false. The conclusion in the fourth group is that the
proposition is both true and falwme.

A modern version of the Liar paradox 1s stated as
followst Assume that John Doe utters on December 1, 1963, the
following English sentence and then says nothing else all day!
"The only sentence uttered by John Doe on December 1, 1963, 1is
false." Since the sentence uttered by John Doe 18 a declara=
tive pfoposition, one is entitled to inquire whether it is
true or false. Reflection soon leads to the conclusion that
the sentence is true if and only if 1t is false,

2Ipid., pp. 131=132,
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Another modern version of the Iiar paradox is the
following sentence, which was formulated by J. Iukaslewleca!
"The sentence printed on page 13, line 3 of this paper is
not true,” (The above statement will be symbolized by the
letter 5 in the followlng discussion,) At first glance propo-
sitlon 5 appears harmless, and 1t seems proper to ingquire
about 1ts truth value, Now, the statement "A 1s B" is true
if and only 1f A 1s B; therefore, it seems quite apparent
that proposition S 1s true 417 and only if the sentence
printed on page 13, line 7 of this chapter 1s not true.
However, if one counts to line 3 of page 13 of thls paper,
he will find that the sentence printed there is ldentical to
S¢ Thue, one 1s led te the contradiction 3+aﬁus.3

The question which then naturally arises is: What 1s
the source nf these contradictions? In the latter exampls,
the source of the contradictlon lles in the attempt to formu-
late the truth condltions for the statements of a language
within that language 1tself.

3 .
Irving M. Oopi !zahg%ﬂﬁ Logic (New York: The
Macmillan Company, 195‘). Pe .
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After reflection on these two examples, one might
conclude concerning the Liar paradeox that the trouble appears
to lie in the fact that the siatement refers to itself and
that, while it is not the self-reference alone which is the
source of the contradiotion, it is the nature or type of self-
reference involved.

Russell presenteéd & more sophisticated analysie of
the Liar paradox in the following manner: VWhen & man says,
"I am lying," his statement may be interpreted &s being
;quivalent té "There is 2 proposition which I am affirming
end which 1s false.” All statements that "There 1s so-and=
so" may be regnrdod‘al denying that the cpﬁosito is always
trﬁo: thus, “I am lying" becomes: "It 1s not true of all
proposltions that I anm not afflnminé them or they are true."
This is perhaps stated more clearly: "It 1s not trus for '
all propositions ? that 4f I affirm 2, ? 1s trus.” The
paradox results from regarding thls statement as ;rrirmina a
propositlion, which must therefore come within the scope of
the statement.

As Russell emphasizes, one 1g forced to coneclude that
the 1dea of "all propoeltions” ie not a2 legitimate ome, for
if the nq}ioﬁ of "all prnpoliéionl" is accepted, then there
must be propolitibns which are aboﬁt all propositions and yet
cannot, without contradiction, be included among the propo-

slitions about which they are concerned. However, one might



15
dafine a totality of propositions. Once this totality is
spoken of in terms of "all propositions,” other propositions
are generated which must lie outside of iho defined totality,
or a contradiction 1s present. It does not help to enlarge
the defined totality, for the same problem arises; hence,
"all propositions" must be a meaningless phrase.”

Cantor and Buvali-Forti's Discoveries. The end of the

nineteenth century marked the emergence of renewed interest
and study in antinomies. Previous to that time, the Idar
paradox had been the only authenic antinomy to be discovered,
and 1% was disregarded dy many loglclans 28 a plaything of
semantics, Now there appeared a whole series of antinomles,
gome of which were logleal rather than epilstemological,
Between 1895 and 1897 C. Burali-Fortl and G. Cantor
independently stated the first loglecal antinomy, whleh con-
cerned the set of all ordinal mumbers. The Burali-Forti
antinomy 1g a logical antinomy, the basic formulation of
which 18 included at this point to i1llustrate the signifi-
cance to mathematice and logle of thlis type of antinomy.

*Bertrand Russell, "Mathematical Logic as Based on the

’h'g;z of Types," American Jourmal of Mathematics, XXX (1908),
Pe ™ :
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The Burall-Fortl contradiction may be stated as

follows:

The following three theorems can be proven in the
olassical theory of ordinal numbers developed by Cantor:

1. Every well-ordered serles has an ordinal number.
2. The peries of ordinsls up to and including a given
ordinal number, say <X,, has an ordinal numberc,+ 1.
3. The series of all ordinal numbers 1s well-ordered
end hence, by (2) has an ordinal number, N say.

But from (2) the series of all ordinals including N.
has ordinal number N 4 1, which is greater than N .

Hence, v~ cannot be the ordinal number of all ordinal
numbers.

Ramsey Olassgification. In 1925 Ramsey made the funda=
mental classification of antinomies into two distinet typese-
the logico-mathematieal and the eplstemologlcal. In a
paper entitled The Foundations of Mathematlcs, he observed
that while Russell and Whitehead had gone to considerable
effort to analyze and circumvent the antinomles in thelr
monumental work Erinelpis Mathematieca, they had neglected to
distinguish betwesen the two fundamental types of antinomies.
Ramsey classifled tho‘betturuknown entinomies into two
groups, which he simply calls A and B:

A, (1) The class of all classes which are not members
themselves. (Russell's antinomy)

(2) The relation between two relations when one does
not have itself to the other.

——

SMax Black, The 'F (London:
Routledge and Kegan ?aul, 958), p. 99.
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(3) Burali-Forti's contradiction of the greatest
ordinzal,

B, (4g "I am lying." (Liar paradox)

(5) The least integer not nameable in fewser than
nineteen syllables.,

6) The least indefinable ordinal.

7) Richard's Contradiction.

8) Weyl's contradiction about heterological.
(This antlguly was first formulated by Kurt
Gr.llins. )

The principle according to which Ramsey classified the
antinomies into two groups is of fundamental importance,
Group A consists of antinomies that are strictly loglecal or
mathematical in nature--that is, antinomies which would occur
in a mathematical or logical system if no precautions were
taken to avoid them, "They involve only logloal or mathe-
matical terme such as glags and pumber, and show that there
must be something wrong with our loglc or mathematics."!

Those antinomlies in Group B are not striectly loglcal
or mathematical and cannot be stated in logleal terms alone.
Eaoh of the antinomles in this group contains a reference, -
usually a self-reference, to thought, language, or symbolism.
It is for this reason that antinomlies of this type are often

termed eplstemological. If their contradiotory nature im

6p. 2. Ramsey, 1he gt_ugﬁﬁingigel
(Paterson, New Jerse}: Iittlefleld, Adams, Company, 1960),
P. 20,

TInad.
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entirely due to faulty ldeas in language, then, as Ramsey
points out, they would not be relevant te logle or mathematics.
However, such an attitude, while held by such mathematlcians
as Peano and Polneare, is far from satlisfactory; for several
of the antinomiss in this latter group imvolve both mathe=
matical and linguistic 1deas. Several of them, notabdly
Grelling's antinomy, can be formulated and symbolized in
aymbolie loglec and the actual contradietion derived. There-
fore, 1t would seem to be a severs neglect rather than an
irrelevance whiech would lead to the dismissal of type B

antinomies in a study such as this one.

Supmary. This chapter has attempted to present an
kistorical acocount of the development and discovery of anti-
nomies. Included in this account were the Iiar paradox,
Cantor's and Burall-Forti's discoveries, and Ramsey's clas~
sification of antinomies. Chapters III and IV wlll deal with
antinomies aceording %o Ramsey's classification-=logico=-

mathematical and epistemologleal, respectively.



OHAPTER III

LOGICO=MATHEMATICAL PARADOXES

Bussell's Paradox., Russell's antinomy is undoubtably
the best=known and is certainly one of the more important

mathematical antinomies. I%t was discovered by Russell in

1901 during his efforts to prove a particular version of the
axiom of infinity. The axlom of infinity can be stated in
the form of the following assumptiont If Xbe any transfinite
cardinal number, there is at least one set comtaining <X
elements. For example, with reference to natural numbers,

the axiom would state that there exlsis a set contalning O

and contalning the successor of each of 1tz elements. In
other words the axiom of infinity postulates the existence of
sets which contain an infinlte number of elements.

When the axiom of infinity was first formulated,
Fussell supposed that there must exist a proof for 1t. He
based thie suppesition upon the followling line of reasoning!
Agsume that the number of elements in a certaln set 1s 35 2
may even be O. DNow, form a new sget 1u the following manner:
from the set contalining 3y elemenis, form all its subsets; form
a set from these subsets and form all the subsets of this set;
ete. The'final get will contain 2 mumber of terms equivalent
tone 284 22 4 22%° 4 ... ad. 1nf. Therefore, taking sll
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kinds of objects together and not confining attention to any
one kind of object in a particular set, it is possible to
form an infinite class from even a fimite 2 of individuals.
It would thus seem that there is no need for an axiom of
infinity.

The fallecy invelved in the above line of reasoning
is quite subtle and 1s not an easy one of avoid. Russell
labeled the fallacy a "confusion of typee," and it was his
analysis of this fallacy that led to the discovery of his
entinomy. The first form of his contradiction was related to
the theorem that the number of subsets of a glven set is
always greater than the number of elements in the given set,
from which it can be inferred that there is no greatest
cardinal number. However, if a set 1s formed from a set of
all countable objects in 2 manner similar to the one described
in the preceding paragraph=<by combining the elements of the
set, subsets of the set, subsets of the set of subsets, eto.
~«then a et 1s formed of which 1ts own sube-sets would be
elements. With respect to this particular set, which might
be labeled the set of all sets, there would not be more sub-
gets then elements. "The clase comsisting of all objects
than can Po counted, ét whatever sort, must if there be such
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a elass, have a cardinal number which is the greatest
possible."’

Ruisull's most famous antinomy, the one commonly
referred to as Russell's Paradox, resulted from his enalysis
of the contradictory concluslons of the above argument.
Russell statest

When I first came upon this contradiction, in the year

1901, I attempted to discover some flaw in Cantor's proof
that there is no greatest cardinal.... Applying this
F'oas 14 89 4 508 SBlosbroler ssstmetiatisnsecet

A somewhat simple version of Russell's Paradox 1s the
followingt Consider a set A which contains as elemente the
numbers 1, 2, 3, 4, and itself. Of course, an immediate
objection may be raised agalnst such a set as being self-
referent, fictitious, or meaningless. In part, these would
be valid objections; but for the sake of the argument, they
shall temporarily be disregarded, VWhile any set so deflned
tends to arouse some loglcal suspicilon, 1t does not immedle
ately impress upon the untrained mind its contradictory
nature. The contradiction arises durlng the analysis of the

implications of the exlstence of such a set.

! Sertrand Russell, jg.ggj%!§&§lggl
Fhilosophy (New York: The Macm n Company, 1938), p. 136.
2Inad.
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All sets can be divided into two general but
exhaustive classifications--those which contain themselves
as members and those which do not. These two classifications
also define two specific setst (1) a set which shall bde
designated C, which is the set containing all sets containing
themselves as members; and (2) a set which shall be designated
D, which is the set contalning all sets which do not contain
themselves as members. Since this classification 1s exhause
tive, it must apply to sets C and D. The question arises as
to the classification of set D.

Asgsunme that D is a2 member of C. Since C contalns only
those sets which contain themselves as members, 1t follows
that D must contain 1tself as a member. However, D was
defined as a set containing only sets which do not contaln
themselves as members. Therefore, it follows that D does not
contain itself as a member and must be a member of D, not C.
However, 1f D 1z a member of D, then D contains 1tself as a

member, which implies that D must be a member of C, not D.

Structure of Russell's Paradox in gymbolioc loglc. The

structure of the above contradiction can be symbolized in the
following mannert If sets C and D are defined as previously
stated, then the following implications are derlved:

(1) ¢ = {x: x 18 a set, x € x} Def.

(2) D= {ya y 1s a set, y¢y}  Def.
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(3) (DED) v (DeQ) Def.
(4) (pec) — (De D) from Def. 1

(5) (DED) — (D¢ D) — (DeC) Def, 2,3. Disjunctive
Syllogism

The definition of the classlification leads to the

statement!
(6) (DeC) ¢ ~(DED)
(7) (peDp)— ~(DED) 5,6 Hypothetleal Syllogiem
(8) ~(DeD)—(DeD) 6,4 Hypothetical Syllogism

Statements 7 and 8 together imply that —~ (DeD)<>
(De D), which is indeed a devastating contradiction.

The fallacy in Russell's antinomy llies in the supposi-
tion that there exist sets which contain themselves as mame
bers. This supposition results 1in what Russell labels
"impure" classes and will leter be seen to violate the
theory of types.

essytlagses are logicel fletions, and a statement

vhich appears to be about a c¢lass will only be signifi-
cant 1f 1t is capable of translation into a form in
which no mention is made of the class. This places a
limitation upon the ways in which what are nominally,
though not really, names for classes can occur signifi-
cantlyt a sentence or set of symbols in which such
peeudo=names occur in wrong ways 1ls not false, but
strictly devold of meening. The supposition that a

class 1s, or that 1t 1s not, g member of 1tself 1is
meaningless in Just thies way.

3Ibsd., . 137.
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In simple axiomatic set theory, the same type of
conolusion is reached--namely, that sets cannot be produced
by simply uttering wordsi: there are certain inherent
restrictions which must be carefully obhserved. For example,
conslder the axiom of speciflcationt To every set A and to
every condlslon S(x), there corresponds & set B, whose ele~
ments are exactly those elements x of A for which S(x) nolds.*
It is customary to indicate set B = {xlxeh and s(x{}. Let
the conditionS(x) be in particular the statement x ¢ x. Thus,
whatever set A consists of, B =fx|xcA and x¢ x}and (1) (y¢B)
<« (yeA) » (yé¢y)e Now, 18 B €A? Assume that 1% is. It is
certainly true that (BE€B)Vv (B¢B)., If BeB, then (1) ylelds
that B¢ B, which is a contradiction. If B¢B, then (1) and
the assumption BC€ A ylelds B€ B, which agaln 1s a contradice
tion. The conclusion is that B€A is impossible since its
assumption leade to 2 contradiction. It is significant that
nothing whatsoever was specified about the elements of set A,
but in spite of this it was proven that there exists something,
set B, which is not in A. In other words, nothing contains
everything, which would certainly prohiblt the concept of

set of all sets.

4paul R. Halmos, Sgt ?m (New Yorkt: D. Van
Nostrand Company, Inc., s Do 6,
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Impredicable Paradox. Another interesting logico=-
mathematical antinomy, also constructed by Russell, is the
Impredicable Paradox., In the logic of relations, it is seen
that properties can be attributed to relations and other pro-
perties as well as to individuals. PFor example, the property
of sincere might itself be sald to have the property of being
desirable. The question naturally arisest Does there exist
a property P which itself has the property P? The property
of being abstract seems 1tself to be abstract, while the pro-
perty "green" i1s certainly not green. The property "old" is
certainly old. as there have been old things since pfahiitoric
times, while the property "new" is certalnly not new.

By definition any propofty w¥hioh can be predicated of
itself will be said to be a predicable property. In other
words predicable is a property which belongs to 211 those and
only those properties which can be truly predicated of theme
gselves., In contrast, any property which cannot be predicated
of itself will be sald to be impredicable. Belng impredicadle
then 18 a property which belongs to all those and only those
properties vhich cannot be truly predicated of themselves.

As wae the case with Russell's paradox, the classification
made is exhaustivet every property must be elther predicable
or impredicable.

How shall the property impredlcable be classified? If
it 12 assumed that impredicable is predicable, which means
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the property it has applies to itself, them 1t follows that
impredicable must be lmpredicable. However, if the property
impredicable 1s itself impredicable, then by definition 1t
has the property it represents, which means that it is predi-
cable, Thus, the rather startling conclusion is reached that
1f impredicable is predicable, then impredicable is impredie-
cable; and that 1f impredicable is impredicable, then impredi-
cable is predicable.

Structure of Impredicable Paradox 1ln gymbollc logie.
If impredicable is abbreviated "ipr" and predicable "pr,"

and 1f by A(f) 1t is meant that A has property f, thén the
contradiction can be derived from the two statements:

(1) 1pr (pr)— ipr (ipr)

(2) 1pr (ipr)— ipr (pr)
Because of the definition of the classification, statement 1
is equivalent to!

(3) (1pr (pr) )—>~(ipr (pr) )
and statement 2 1s equivalent tot

(4) (ipr (ipr) )—>~Aipr (ipr) )
By the use of the definition of meaterial implication, state
ments 3 and 4 are equlvalent tot

(5) »~ (ipr (pr) )

(6) ~ (1pr (ipr) )
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Statements 5 and 6 form a2 definite contradiction since they
state that impredicable is nelther predicable nor
impredicable.

The contradictlion can be derived even more clearly by
symbolizing the property of being impredicabdble as "I" and by
defining 1t formally as? -

(7) IF = Af—¥P (P is a proparty varlable)
The following statement 1= a loglecal consequence of state~
ment T.

(8) () (IFP = —FF)
If statement 8 i1s instantiated with respect to "I" itself
according to the prineiple of Universal Instantiation, then
it ylelds:

(9) II=-—1II
Statement 9 1s again an explieclt contradletion.

The source of this contradliction lles in the formation
of two exhaustive categories, predicable and impredicable, and
in the allowance of the possibility that a property can be
predicated of itself. The latter is again a vliclation of the
theory of types, which would say that it does not make sense
either to affirm or to deny of any property that it belongs
to itself, Such expressions as ipr(ipr) and - ipr(ipr) must
be dismissed as meaningless.



CHAPTER IV
EPISTEMOLOGICAL PARADOXES

The erlstemologieal antinomlies constitute a group of
antinomies in which the self-references appear in different
forms than did the self-references of the logiecal antinomies.
In the eplistemologleal antinomies the self-reference is
stated with respeect to lingulstic expresslons--that is, these
antinomies are dependent upon some important reference to
words. DBecause these antinomies are involved with terms
other than those which are strietly loglcal or mathematical,
several mathematicians have sought to dismiss them. These
mathematicians take the view that the fault lles not with
logie or mathematies but with a faulty language. For
example, Peano dlsmissed Richarde' antinomy because he felt
that 1t was not pertineant to mathematics, but was striectly a
problem in 1inguiltiel.‘

However, such a view disregards the simllarity between
the two types of antinomles. They both invelve the 1dea of
self-reference and the formation of classes which contaln
themselves as members. Several of the antinomies involve

both logical and semantical terms, and the distinetion

‘s, 2. Ramsey, of (Paterson,
New Jersey: Littlefleld, Adams, ompany, s Do 21,
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between eplostemological end logicel entinomies will be geen
to hinge not so much on thelr content; but in the method of
their resolution.
The only solution which hees ever been given, that in
§§1¥§LRL._5.§E!|!11§;. definitely attributed the contra=-

ctionse to oglec, and 1% 1s up te opponents of this
view to show clearly the fault in what Peano called
linguistice, but what I sghould prefer 30 cell eplstemology,
to which these contradictions are due.

The Liar paradox, which has already been examined in
Chapter II, 1s probably the least complex of the epistemologi«~
cal antinomies. However, it does exemplify the dependence of
these antinomies upon a certaln phrase or lingulstic expres-
slon. MNore involved versions of semantical antinomles are

presented in this chapter.

E. Grelling Antinomy. In Ohapter III the antinomy
termed the impredicable paradox was discussed, It should be

recalled that the erux of that antinomy was the division of
all propertles into two exhaustive classes--namely, those
properties which apply to themselves and those which do not.
Instead of asking whether a property applies to itself, one
might ask whether the name of a property has the property
under conslderation. BSuch a question 1s the starting point
for an epistemological antinomy which is credited to Eurt
GralllngA;nd which 1s usually known as the Grelling Paradox.

“Ipid.
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In most instances the name of a2 property will not have

the property which it denotes. For instance, the name ”hcavy
ie not heavy; '1ong is not a long word; and "FPrench" 13 not
e French word. Bu-o words, however, do doltgaat. tho pro=
perty exemplified by the word: 'Engliuh” is an English word;

and 'nhort” is certainly a short word. ALl properties whose
names have the property they denote will be designated "autoe
logieal.” The term "heterologiecal” will be used to d--ignate
the propirty rossessed by wordse vhioh designate properties
not exemplified by themselves. Thus, the words 'hnuvy.'
“long," and "French" are heterological, while 'lnslllh“ ann
':hort” are uutologieal.

‘The Grelling Paradox is a result of the word “heterolo-
gleal."” How should 1% be classified-<heterslogleal or autoe
1ogical? If 1t is aspumed that 'hstorologloal" is heterolo-
gleal, 1t is obvious that this 11 similar to -naing that
“short" is short and that "heterological” has the proverty it
denotes and 1s, therefore, sutologleal. On the other hand, 1f
"heternloglioal" is assumed 4o be mutologlcoal, this 1z equivae
lent ta saying that 1t has the property designated by "hetero-
logileal”==that 1s, “hatornlogloal” 18 heternlogical, The con=
tradiotlon 15 quite apparentt Aif 'hetorologioul“ is heterclo=
gleal, than i1t is not; and Aif ”hatorologiosl“ 18 not heterolo=
glcal, then 1% 1s.
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Grelling's antinomy can be derived in a more formal

vey 28 follows: Let "Des" designate the name relation-~that
is, "® Des F" is oquiﬁalont to "s designates the property P,"
where F is a property variable Qnd 8 is a name variable. .
Thus, & heterologleal word is defined symbolically ast

Het (8) ¢ (I F) (s Des F=Fe~vF(s) )
A literal translation of the previous statement would be as
followst A word s 1s heterologlesl if and only if there
exists a property P such that s deslignating F is equivalent
to P and s does not have property F. In the case where
heterological is assumed to be heterological, we have!

(1) Het("Het") = (3 P) ("Het" Des P=F°~PF("Het") )
This follows rroi the dotlnition 5y replacing tﬁe u&rd
variable 8 by the word “Ketorologlcul.“

(2) Het ("Eot")H("Hot" Des Het= Het*~Het ("Het") )
This follows trom (1) by thz existential 1nltantiat1on of the
property variable F by the property Heterological.

(3) Het ("Het") The assumption originally made.

(4) Het*~Het ("Het") This follows from (3) emd (2) by
Modus Ponens, cqulv;lonéo, and simplification,

(5) ~ Het("Het") This follows from (4) by simplification.
The 1dentical oontridietien can be derived in a similar manner
by essuming ~ Het ("Het"). Thus the contradiction Het("Het")
¢ ~ Het ("Het") is lhﬁin to follow from the mature of the
definition of the property heterological.
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Richard's Antinomy. Richard's Antinomy is a classical
example of an eplstemologleal antinomy. The contradiction
arises from the apparent definlition of a denumerable set
vwhich is not denumerable. This definition is accomplished in
the following manner: The first task is to wrlte all possidle
arrangements of the English alphabet, first two letters at a
time, then three at a time, ete,, arranging each group in
alphabetical order., These arrangements may contain the same
letter repeated several times; thus, they are arrangements
with repetition.

Whatever whole number "n" may be, every arrangement
of the twenty-six letters of ﬁh‘ English alphabet n at a time
will be found in the constructed arrangement. Since every-
thing that can be written with a finite number of words is an
arrangement of letters, everything that can be written will
be found in the arrangement.

Some of these arrangements will be definitions of
numbers, since numbers are defined by means of words. The
next step 1s to eliminate from the arrangements all combinae
tlons which do not define numbers. Let u, be the first
number defined by an arrangement, u, the second, etc., Thus,
all the aunbers defined by a finite number of words have been
arranged in a determined order. Call this set "D."

The contradiction arises when we define fhe-tollawing

number, "N," by use of a finite mmber of words, If "a'® is
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the n-th decimal of the n-th number in the set D, then the

nunber N is formed by having zero for its integral part and
a+ 1 (or 0 Af a=9) for its neth decimal part. For exampls,
if set D consisted of the arrangement of words defining the

numberst
u, ¢ 0‘11 312 ‘,3 ses .ln

» 6 & & & 2 e @ & & @ @ * @

un H oan’ .na ..n} ses lm

e & o6 ¢ ® P o B 8 9 & * s =

then the number N would be constructed by beginning in the
upper left-hand cormer. Its first decimal place would be

8y = 84¢ 4+ 1} the second declmal place would be a, = a5 + 1,
sery By = By, 4 1, sesy eto,

The number N does not belong to the set D. If 1t were
the n-th number of the set D, 1ts n-th figure would be the
n-th decimal figure of that number, which it is not. However,
the number N was defined by a finite number of words and
ought therefore to belong to the set D.

Berry's Barsdox. Whole mumbers can be divided in
various ways to form two mutually exclusive classes according
to whether the number of syllables in which they are expressed
in a given language 1is < n or>n, vhere n is a natural number.

If, for instance, n=19, then there nust exist a natural number
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which is the smallest number not expressable in fewer than 19

syllables. If the language i1s English, then the nmumber will
be 111,777, which 1s seen by the followlng!t

“onie Iun dred and el ev en Lhou sand sev en mun (red and Sev en ty sev en
1 2 3 4§ 56 7 8 9 1011 12 13 14 151617 18 19

However, the number 111,777 can elso be defined as

follows?

the least in teg er not name & bLe 11 feW er than nine teen syl la bies
1t 2 3 4 5 6 7 89 10 11 12 13 14 15 16 17 18

The contradiction is reached that the smallest natural
number not namesble in fewer than 19 syllables is found to be
nameable in 18 syllables.

The semantlical verslions of the antinomles appear even
more convincing to the mind than do the loglecal antinomles.
For instance, an intultive objection might be made agalust
Russell's antinemy on the grounds that it is meaningless to
talk about setes that contain themselves as members; but with
regard to Grelling's paradox, 1t certainly seems plausible to
designate the word "short" as short and the word "long" ae
not long. . . 5 '

However, the important distinction between the two
types of antinomies lies not in their respective plausibility,
but in two major distinetions. The flrst, which has already
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been mentloned, is in thelr formulation, The loglecal anti-

nomies involve only loglesl or mathematical terms such zs
"set," "class," or "mmber" and would occur in 2 logleal or
iathuﬁafio:l -fltll. The ipiltcnological entinemies, however,
are not purely logleal, for they are dependent upon a refer=
ence to linguistic expressions, The second important dis-
tinetion between the twe groups of entinomies 1s that the
gsolution or resolution of the twe categories must be sought
along different lines.

In the next chapter it will bde shown that the logleal
antinomies may be avolded by a theory of types, but that
stronger or more complex methods are needed to avold the
eplistemological antinemies.



CHAPTER V
METHODS OF AVOIDING ANTINOMIES

In the preceding two chapters, it was seen that the
entinomies fall into two classifications: the loglcal anti-
nomles, which involve only logical or mathematical terms as

"elass" and "number"; and the epistemologlcal antinomies,
which ocntain an 1nportunt reference to thought, language,
or symbolism. Commen to all of the antinomlies thus far con-
gldered 1s the fact that something was asserted about a col=-
lection of objects and then additional objects were intro=-
duced which appeared to belong and a2t the same time not to
belong to the collectlon under consideration.

It would appear to be a slmple concluslon that 1f the
antinomies are to be avelded, the collections which lead %o
the contradictions must be regarded as lllegltimate totali-
ties. One method of avoiding antinomles would be to prohibit
the formation of such totalities. However, if this prohibi-
tion is to be employed with every imdividual collection as
each one 1s found %o lead to a contradiction, 1t would be an
endless task, as new antinomies would always arise., The same
argument applies to any attempt to refute the antinomies one
by one. ’Hhat 1s obviously needed is 2 method which will
serve to prohibit, or at least to circumvent, all of the

antinomies. This ecircumvention can be done, provided that
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the illegltimate totalities cen be shown to have some
peculiarity in common.

According to Russell and Whitehead such e common
pecullarity exliste; they maintain that the sntinomies arise
from the assumption that a set of objects can contain as mem=
bers objects which ecan only be defined by the set as a whols,
The restriction egainst such sets could be formulated in the
following mamner: Whatever 1ls defined by gll of a particular
set must not be a member of that set. This restriction can
be stated in a slightly different manner known as Russell and
Whitehead's "vielous ecircle prineiple," which is "If, provided
& certain eollection had a total, it would heve a member only
definable in terms of that total, then the sald collection
has no total,"

However, in empbying such a prineiple, care should be
taken not to make it too prohibitive. In certaln lnstances
it 1s extremely convenlient or even necessary to be able to
gpeak of "ell propositions," "all relations," "all classes,"
ete. What is needed is a method of limiting the totalities
so that what remains will not lead to a contradictlon but
will still provide the necessary concepts for a logleal sys~
tem. These considerations led Russell and Whltehead to the
oonutruofion of the Simple Theory of Loglcal Types.
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Simple Theory of Logicel ITyves. The main features of
the Simple Theory of Logleal Types are the following:
According te Russell and Whitehead, entities are divided into
a hierarchy of different loglcal types, the lowest of which
consists of all individuals, the next of all properties of
individuals, the next of all properties of properties of
individuals, oto.‘ Relatione and thelr properties are also
assigned different hierarchies in a similar manner,

The essential feature of the Theory of Types is not
only the diviesion of all entlties inte different logical
types, but elso the prineiple that any property which may
glgnificantly be predicated of an entity of one logical type
cannot significantly be predicated of any entity of another
loglecal typve. In many instances the Theory of Types appears
intultively obvious. Tor example, an individual object may
be green in color, dbut 1% 1s certalnly nonsensiocal to assert
that a preperty is green in color. Also, a property may
have many instances, but %o claim thet an individual object
has many instances 1s agaln nonsensical.

The Simple Theory of Types is seen %o rule out the
ocourance of the logleal antinomies in the following manner:
The Theory of Types classifies certaln expresslons as meaning-
less-=for example, according to the Theory of Types, 1t is
meaningless to affirm that a set contalns itself as & member.
A set must be regarded as being of a higher type than its
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members; therefore, 2 set cannot be said to contaln itself as
a member. It should be emphasized that an expression like "a
set which contains i1tself as a member” 1s mot false but is
neaningless, for if such statements vir- false, then their
negations would be true, and the logical antinomies would
stlll be derivable.

For example, reconsider the Impredicable Paradox,
vwhich was presented in Chapter III as an example of a logleal
antinomy. Briefly, i1t should be remembered that "predicable”
is a property which belongs to all those propertiol which c;n
be predicated of themselves and ”1nprodicahln' is a property
which belongs to all properties uhioh cannot bo predicated
of themselves. The contradiction was derived by three state=-
ments symbolizing the argument!

(1) IF = 4£—FF (I = impredicable, and F is a property
variable)

(2) (F) (1P =-—7F)
(3) IT =11
Even 1f «FF is consldered a false statement, the

contradiction would stlll arise in the form of the statement
II =—-1Il. Consequently, such expressions ac FF apd —FF nust
be regarded 25 meaningless. It follows that no such property
as "imprediceble” can be defined, snd the antinemy no longer
exists, A similar situstion prevails with Russell's Paradox.

Such expressions as "sets which contain themselves as members"
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and "sets which do not contain themselves as members" are seen
to violate the Simple Theory of Tyres ead must be dlémissad as
meaningless.

The Simple Theory of Types, however, does not suffilce
to eliminate the eplstemological antinomles, VWorde, or sen=-
tences, are physical things and cammot be sz2id to be of a
higher type; thus, in the Grelling antinomy--where o predicate
19 sald to pertain to the name expressing it, i.e., "short" 1is
a short word--such a conception does not violate the Simple
Theory of Types. However, 1t was seen that such a conception
does lead to a contradictlon; so addltional methods must be
formulated to aveld the epistemologlcal antinomies. Two
methods present themselves for conslderation: the Ramified
Theory of Types and Levels of ILanguage Theory.

Bamified Theory of Types. As stated previously in the
Simple Theory of Types,; all entlties are divided inte dif-

ferent logical types, the first type contelning all individuals,
the second containing all properties of individusls (desige
nated by functions of individuals), the third type containing
all properties of preperties of individuals (designated by
functions of functions of individuals), ete. If small letters
of the alphabet are used to designate individuals and capital
letters are used to designate properties, the Simple Theory

of Types can be represented as follows:
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Type 11 a, b, G4 ese

Tyve 2@ Fo, Gg, Hoy ees

Type 3t FB' GB' Hz. ess

Iype 4t Ty, Gyy Hyp oo
Acocording to the Theory of Types, only a funetlon of Type 2
can be applied t» an individual; and only 2 funetion of Type
3 can be applied to a function of Type 2, ete.

The Ramifled Theory of Types divides each of the types
above level 1 into a further hlerarchy, resulting in all the
functions of Type 2 belng classified into what are called dif-
ferent orders. This classlfication is accomplished in the fole
lowing mannert: Propositional functions of Type 2 which elther
contain no quantifiers or contaln quantifiers on only individ-
ual variables are clasglified as first ovder functlions in Type
2, Tor exsmple, ¥, (x)v(:}2 (y) and (x) [H; (x)— p] are
classified as first order funections, which are deslgnated
75, ey, ‘Ha, ssss Becond order functions of Type 2 are
those which contain quantifiers on only first order functions
-=for example, ('Hy) ['Hy(y)— 'H,(b)]. Similarly second
order functions are designated by °Fy, 2G, 2Hy, sess In
general an n®® order funmetion of Type 2 will contain quanti-
fiers onJ;unotlon- of order n-1, but no quantifiers on
functions of order m, where m2n.

A simplified verslion of the Ramified Theory of Types

can be represented as follows!
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2ype 2 'Pa, 165, VHpseeo 2p, 265, 2Hpyees Py 3Gy, SHppees
type 3 'F3, 63, 'Hgyeso 2F3, 263, 2Hz,... P53 365, SHzse..
Type 4 1Py, Y640 VHypeoo 2Py, 26y, 2Hypeee 3Py, 364, JHipe..

Just as the Simple Theory of Types prohiblits exprese
slons pertaining to the totality of all properties or func-
tions and makes it necessary to distingulsh carefully the type
of the funetion that 1s predicaied of an individual or funce
tion, mo th§ Ramified Theory of Iypes prohibits the use of
expression involving the totality of all functions or proper-
ties of a given type. Thus, in the Ramified Theory of Types,
it is not permissible to state that an orange hes 2ll the good
qualities of an apple. The correct statement would be that
an orange has all the good first order qualities of an apple.
The difference in the symbolic structure of the two state=
ments is as follows:

() { (e (Pg) ¢ Py ()] — By (0) 3
("'Bp)  {['ey ('my) * '¥y (21— 'By (o) §

The Ramified Theory of Types prevents the occurance of
the contradiction in the Grelling antinemy. In the derivation
of the contradictlon of the Grelling antinomy presented in
Chapter IV, the step frem (1) to (2) 1s not allowed since the
function Het 18 of & higher srder than the functlion variable
"P" and may net be instantiated in iis place.
| The Ramified Theory of Types 1s quite complex in all
of its ramifications, and 1t entalls certaln difficulties
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which should be mentioned. One of these dlfflcultles concerns
the definitlion of the identity of individuals, which is
usually given ast (x = y) = &f (Fy) [Fo(xz)<>Py(y)]l. This
definition is fundeamental to the logle of relatlions and forms
the basis for all of the properties of the lcdentity relation.
However, 1in 1t%s usual form, this definition vielates the
Ramified Theory of Types. If its form 1s changed so that it
does not violate the Ramified Theory of Types--that 1s,

(z = y) = ag ('ry) ['P5(x) <> 'Py(y)l==then 1t is seen that x
and y are identical 1f they bhave all of thelr first order
properties in common, but there i1s the troubling possibility
that they might have different higher order properties.

In specific areas of mathematics, the Ramified Theoxry
of Types ralses several difficulties which are nearly insur-
mountable. For example, certain existence theorems in analy=-
8is, such as that of the Least Upper Bound, cannot be proven
1f the restrictions of the Ramified Type Theory are imposed.
Also the theory of the continuum camnnot be adequately estabe
lished within the framework of the Ramified Theoxry of Iypes.
A similar difficulty 1s encountered in the principle of mathe-

matical igduction.

Axion of Reducibility. To svercome these and other
difficulties encoruntered with the Ramified Theory of Iypes,

Russell and Whitehead intreduced what they termed the Axiom
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of Reducibllity. This axlom states that to any function of
any order and any type, there corresponds a formally equiva~
lent first order functlion of the same type. With the use of
this axlom, the identity relation can be defined in terms of
first order functions; and many of the difficuities mentioned
in the preceding paragraph are sald to be overcome. Russell's
own argument for the acceptance of the Axlom of Reducibility
is a pragmatlc one caused by the diffioultlies encountered
wlth the Theory of Types.

The reason for accepting any axiom, as for accepting
any other proposition, is always largely inductive,
namely that many other propositions which are nearly
indubitable can be deduced from it, and that no equally
plausible way is known by which these propositions could
be true if the axiom were false, and nothing which is
probably false can be deduced from 1t.

The axlom of reducibllity 1s introduced in order to
legitamize a great mass of reasoning in which prima
facie, we are concerned with such notions as "all
properties of tf or "all p-funotions" and in whieh,
nevertheless, it seems_ scarcely possible to suspect
any substential error.!

The quesiion arises as to whether there are less pro=-
hibitlive methods of avelding the antinomies than the Theory
of Types. It should be made clear that the fundamental
reagson for the introduction of the rules given by the Theory

of Types 1s that they exclude contradietlions. It would, of

-

!Bertrand Russell, | (first
*dition; Oembrides, 0:-th;. Yersity Press, 1910), I,
PP. 55«56,
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course, be more convenient 1f a methed or theory could be
found which was less complex 2nd less prohibitive than the
variocus theories of types which have been formulated to date.

The construction of such weaker rules which would
8till avold the antinomies 1s still an open problem. Russell
himself readily states a similar opinion:

esoethe theory of types emphatiocally does not belong

to the finished and certain part of our subject; much
of the theory is stlll inchoate, confused and obscure.

But the need of some doctrine of types is less doubtful
than the preclse form the doctrine should take.

2Bertrand Russell, M%Lgn to
Philosophy (New York: The Macm ompany, 1938), p. 135.



CHAPTER VI
SUMMARY OF THE STUDY

The existence of the antinomlies indicates that logle,
at least as 1t was taken intultively in the nineteenth cen=
tury, 1s inadequate as a final criterion of mathematical
proof. Thus, the absolute consistency of classical mathe-
matics, which was thought to have been obtained by the arith-
metization of analysis, turns into a false optimism. However,
the existence of antinomles does not imply that mathematlcs
is in great danger of e¢nllapse. As was mentioned in Chapter
I, there have been mathematical crises before, 1.e. the dis-
covery of irrational numbers and the paradoxes of the Eleatic
gchool and the realization that the basis of the calculus used
in the seventeenth and eighteenth centuries was insecure. In
each instance mathematics has withstood the challenge and has
actually become a more profound seclence because of the experi-
ence. The third eriesis, the perioed from the discovery of the
first logical antinemy teo the present time, has had a dis-
turbing influence on a few prominent mathematiclans; yet,
most mathematicians have not concerned themselves wlth the
problem of the antinemies or with problems in the foundations
of nnthl;aticl. Perhaps this situation 1is as it should be,
for the frultful results of the working mathematiclans might
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cease 1f all competent mathematliclans concerned themselves
mainly with foundational problems,

However, the problem of the antinomles is still en
important one and 1s still unresolved. Although a great
amount of literature is devoted to the exposition of the
various antinemlies and although & number of methods of aveld-
ing them have been offered, there is at present no one
explanation which is universally accepted. The majority of
the mathematical loglcians concur that the present practice
of attaching some form of type theory onts a loglstic system
is painfully inadequate for the following reasons. First,
the attachment of a theory of types complicates the system
because all the versions of the theory of types, simple or
ramified, are themselves quite complex. Second, in many
instances the restrictions of type theory prove too prohibi-
tive in that they destroy the framework of essentlal
mathematics.

There are essentially three major approaches to the
problem of the antinomies: the Logistic, the Intultionistic,
and the Formalistic. In all three approaches, the position
taken with regard to the significance or solution of the anti-
nomies is a direct application of a philesophlical viewpolnt
eonccrnigg the nature of the foundations of mathematics.
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Logigtic spproachs The Logistlc approach to the
problem of the antinemlies is simply a necessary byproduct of
the Loglstic epproach te the foundations of mathematics.

The Logistic approach stems from a fundamental distinetion
made by adhereunts of a philosophy known as ILoglcal Posltivism,
This distinctlion divides all true preopositions into two cate-
gories: (1) synthetic statemente, which are empirical
truths; and (2) analytic statements, which are loglcal and
mathematical truths. In the category of analytic statements,
there are theoretically five possible beliefs concerning the
relatlonship between the set of logieal truths and the set
of mathematical truths., These bellefs aret <the two sets are
identical, the set of mathematical truths is 2 proper subset
of the set of loglecal truths, the set of loglcal truths is a
proper subset of the set of mathematical truths, the two sets
are disjoint, or the two sets intersect.

The Loglistic thesls 1s that the set of mathematical
truthe 1s a2 proper subset of the set of loglecal truths. This
idea can be expressed by the following formulation: All
specific mathematical terms are capable of belng defined in
terms of a loglcal vocabulary, and the proof of a mathemati-
cal theorem can be glven using only the axloms and rules of
1n.tar.nﬁ; of logle.

The first attempt to reduce the propositlions of
mathematics to propositions of logle was undertaken by Frege.
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He was able to formulate the concepts assocliated with the sys-
tem of natural numbers in propositions invelving loglical terms.
Frege provided the stimulus for the monumental undertaking of
Russell and Whitehead in writing the Prinoipis Mathematics,
in which they attempted to show that the whole of classlcal
mathematice could be derlved from the firat and second order
propositional caleulus. However, as has been previously dise
cusped in this paper, Russell become acutely aware that anti-
nomlies could be derived from the axioms of loglc unless pre-
cautions were taken. The approach of the Logicists was to
develop seme form of & theory of types to avold the derlvation
of the antinomies. However, the attachment of a type theory
to 2 system of logle, along with such axioms as the axiom of
infinity and the axiom of reducidbility; made i1t apparent that
the approach of the Logleists was not as "loglcal" as they
hed originelly intended 1% %o bes The Logleists were finmally
left with the necessity of reformulating the foundations of
logic g0 that the antinomies would not be derivable, while at
the same time eliminating the need for questionable axloms
and a theory of types. Such a reformulation is still an
unresolved problem for this school.

Intultionist epprosch. As was memtioned in the
preceding discussion, Logicism views the antinomies as evidence

that something is wrong with certain mathematical methods;
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more speclfically, the Logicists hold the view that if mathe~
matics is ultimately based upon loglc, then the logle itself
nust be reformed te provide an antinemy-free basls for mathe-
maties. The attlitude of the Intulitionists 1s far more radicel
than that of any other sochool. The Intultionists maintain
that the concept of infinity and its implications have not
received the correct "treatment" in modern mathematics. The
view taken by the Iliﬁitioﬂlltl'iﬂ not, as is scmetimes
erroneously believed, that a concept of Ainfinity has no
Place in mathematics, but rather that mathematiclians have
tended to treat infinity with methods ereated for finite
domains,

According to the Intuitionists the emergence of antl-
nomies is but o secondary symptem, caused by the unstableness
of more important branches of mathematics. For example, the
Intultionists explain the emergence of the antinomles in set
theory by pointing out that set theory makes sbundant and
unlimited use of the concept of Infinity. Thus, acoording
to the Imtuitienists, the challenge of the antinomies can be
met only by reforming mathematics as a whole; this reform
would autematically exclude not only the antinemies actually
found to be present but alse any other concelvable antinomy.
The rcuﬁits of the Intultlonists and Neo-Intuitlionlsts in
reformulating the foundations of mathematlcs are quite meta-
physical and bear a great similarity to the 1deas advanced by
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the French philosopher, Henri Bergson--namely, that the real
world 1s known only through primordial intultion. The Intule
tionists offer no "solutlon a8 such" to the antinomies. They
elther disregard thn antinenles as é meaningless group of
words wilithout any comstruetive validity; or they ignore the
Problem entirely, stating slmply that in the cerrect inter-
pretation of mathematics, the sntinemies will unot arise.
Zither view 18, of course, quite unsatisfectory te anyone who
takes a more positivistlic appreach to the problam of the

antinemies.

Formpligt approasch. The proponenta of the Loglstioc
approach to the foundations »f mathematics found themselves

in need of a proof of the consistency of their systems,
especially with the various theories of types attached. The
classical method of providing such a proof--that is, the
exhibition of a model taken from a theory whose conslstency
was not in doubt-=would not suffice. It was not that the
clapeical methods of displaying such a model were not valid,
for Beltrami in 1868 had proven that certaln non-Euclidean
geometries were conslstent, relative to Buclidean geometry,

by constructing a model for them within Euclidean geometry.
Also by T899 Hilbert had shown that Euclldean geometry was
conslstent, relative to the real number system, by construeting
& model of Euclidean geometry within real number theory. How=-

evﬁr, in view of the antinomies, none of the classical
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models appeared satisfactory; a different approach was
needed.

It was Hilbert who formulated the desired approach,
which was that it must be shown that the classical mathematiw
ezl proof procedures are strong enough to derive the whole of
clagsical mathematics from a "suitable" set of axioms, bdut
that the antinemies will not at the same time be derivable.
Hilbert'e fundamental assumption was that classical mathe=
matics was baslecally sound. Hilbert proposed to establish
the consistency of classical mathematics by examining the
language in which it was expressed.

This language was to be formulated so completely and
so precisely that 1ts reasoningscould be regarded as
derivations acecor to precisely stated rules--rules
which were mechani in the sense that the correctness
of their application could be seen by inspeotion of the
symbols themselves as ooncrete physical objects, wilth=
g:t r'gard to any meaning which they might or might not

Ve

Hilvert's approach, labeled Formaliesm, was to make
these formalized reasonings the subject of a new method of
mathematical investigation which he called metamathematics.
In examining the language of mathematics in a2 metalanguage,
Hilvert sought to allow only those methods which he felt were

absolutely certain in the metalanguags He hoped to establish

-

1
Hagkell B. Curry of %M %gng
(Vew York: MoGraw-Hill l;o ompany, Inc., s Do 11,
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the conslstency of classical mathematics by such means., Hile

bert's dream was dealt a2 shattering blow in 1931, when Kurt
(ddel published a proof alluding %o the fact that the cone
sistency of e system powerful enough to comstruct classical
mathematics could not be established by means which could be
formalized in the theory itself--that is, elther the theory
is inconsistent, or it is inadequate to formalize any proof
of 1ts owvn consistency.

Conclugiong. In the final enalysis, the problem of
the antinomies must be directly related to some philosophical
view concerning the foundations of mathematlcs and logic.

The problem of the antinemies 1s directly related to some of
the "unresolved questions" in mathematics., For instance, the
quelﬁlon whe ther nathllatiegl proposlitions are a2ll analytic
statements or whether there exlstis a synthetlec apriori is a
constantly recurring problem in the philesophy of mathematles.
The demonstration that there exlst nen-Euclidean geometries
vwhich could be constructed with a relative consistency to
Euclidean geometry at first appeared to swing the evidence in
faver of a Loglietle, enalytic view of mathematles, Then the
emergence of GWiel's Proof, which showed that any system
strong ensugh to derive theorems of classical mathematics
must contain certain propositions which are undecidable in
the gyetem, seemed to add support to the viewpoint that there



can and do exlist mathematical propositisns which are
synthetiec aprisri.

However, in elther instance one is left with a rather
unsatisfactory cholee. The Logistic or Formallist approaches,
while eliminating disturbing metaphysics frem mathematics,
suffer from thelr insistence on "ahsolute consistency," per=
haps an admirable geal, but one ﬁhieh has so far been ﬁnob-
tainable, The Intultionist attitude is extremely unpalatable
to those who are not of 1ts "bellef," for 1ts reliance upon
primordial intuition makes eénnunicafion in sny written or
oral language difficult. Also, in the opinion »f the writer,
the Intultionist viewpoint introduces intn mathematlics meta=-
physical obscurities which are 2 detriment to 2 logical
system.

Perhaps there 18 no one “ecorrect® view of mathematiloes,
and, in turn, of the antinemles, It may be that absolute
rigor is a delusion and that the best that can be hoped for
is a pragmatic approach that recognizes that in mathematios
we have only relative truth. In any case 1t certainly does
not detract from the beauty, the usefulness, and the intelw
lectual appeal of mathematics to recognlze that there remain
unresolved problems wlthin its strueture.
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APPENDIX



(x)

3 (x)

LOGICAL SYMBOLS USED IN PAPER

and

or, inclusive

negation

identity

material implication

material equivalence (1f and only if)
universal quantification

property varlable

existential quantification



