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CHAPTER 1
INTRODUCTION

1.1 THE BACKGROUND OF MODERN RING THEORY -

The discovery by Gauss, Bolyal and Lobachevskl of
a consistent non-BEuclidean geometry in the first half of
the nilneteenth century was the first great step 1n the
liberatlion of mathematlics. Since Eucllid, geometry had been
thought to be merely an attempt to give an accurate des-
cription of local two and three dimensional space. The
discovery that there could be more than one conslstent
geometry led to the study of geometry as an abstract struc-
ture and forever destroyed the 1dea that mathematics is the
study of absolute truths. |

In 1843, Willlam Rowan Hamilton took another great
step forward when he created the first non-commutative
algebra, the algebra of quaternions. This dlscovery was
to algebra what non-Euclidean geometry was to traditional
geometry. It was the first step in the study of abstract
algebralc structures. The mathematiclan was now a creator
of new things and not merely an explorer in a realm of
fixed and immutable truths.

The motlivation for the definlition of the structure

known as a ring comes from the familiar properties of the
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system of integers. The deletlon of some of the defining
properties of the ring of integers ylelds new algebraic
structures which are interesting in their own right, Jjust
as the deletion of Euclid's fifth postuiate yYields new
geometries.

The earliest lmportant work on prime 1deals and
the prime radical in commutative rings was by Krull [j]
in 1929. This paper was not published in English, however.
The first extensive treatment of these 1deas in English
was by Jacobson [2] and McCoy [5] in the late 1940's. The
first Rigorous Treatment of prime ideals in general rings
was in a paper by McCoy [E] in 1949. The subject 18 treated
more recently in Jacobson's Structure of Rings [i] and
McCoy's Theory of Rings [6].
1.2 EXAMPLES OF RINGS

The ring of integers wlll be used most often to
illustrate the properties of prime ideals and assoclated
structures in commutative rings with unity. Other useful
examples of such rings are the rings of polynomieals over a
field. These rings, designated by F [x], consist of all
polynomials f(x) = ay + a;x + a2x2 + «o. + 8 x" where a; 1is
an element of the specified fleld F, x 1s an indeterminate
and n 1s the degree of the polynomial. If g(x) = by + byx

+ b2x2 + «os + b x®, addition is defined as : f(x) + g(x) =



k
=5 (a + D )xi where k 1s the maximum of m and n.

1=0 1 1 m+n k I
Multiplication 1s defined as f(x)g(x) = X (Z'aibk)x .

k=0 i=0
The unity of this ring 1s the unity of the field. This

ring 1s an integral domain.
The following eight matrices over the fleld of in-
tegers modulo 2 form an interesting example of a finite

non-commutative ring with a unity:

00 10 01 11 10 01
O= 1= o= 3= 4= 5=
00 01 10 00 10 01
00 1T
6= T=
11 |1 1]

00 1 0
The matricesﬁ:land are the zero and the unity
0 0 1]

of the ring respectively and will be called '0' ana 'l'.

The other elements of the ring have been named 2,3,4,5,6,7

for convenience. Addition and multiplication in this

ring are ordinary matrix addition and multiplication. Each
element 1s 1ts own additive inverse and some, but not all,
elements have multiplicative inverses and there are proper
divisors of zero. This ring illustrates most of the impor-
tant properties of prime 1deals in non-commutative rings

very well. This ring will be referred to as 'M2' and the
addition tables are presented in Tables I and II respectively.

1.3 ORGANIZATION OF THE THESIS
Chapter II of this thesis will include a definition

and discussion of principal and maximal i1deals with examples



TABLE I

ADDITION TABLE FOR THE RING 'M2'

Ml 0 H O i F o O
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Tl O M N O >~ ~ Wn
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TABLE II

MULTIPLICATION TABLE FOR THE RING 'M2'
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o & & O & & o O
Mmflo m © M N>~ O WO I~
Nflo & ~ & O
~llo ~ «@ 3..4 n O~
offlo o o o o o o o
olo - @ ™ « o © ~
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taken from the three rings mentioned above. Ideal products
and residue class rings are discussed in Chapter III. The
main toplc of the thesis, prime 1deals, will be introduced
in Chapter IV. The most important part of this chapter
will be a thorough proof of a theorem by McCoy on the five
equivalent conditions for an ideal in a ring to be prime.
An attempt will be made to 1llustrate all the important
ideas by reference to appropriate examples. Chapter V
will contailn a development of the important theorems
concerning m-systems and the prime radical. In Chapter
VI, the results on prime ideals in arbitrary rings will
be extended to complete matrix rings. Zorn's Lemma, which
i1s tacitly assumed in some of the proofs, will be discussed
in Chapter VII. .
1.4 DEFINITION OF IDEAL

Definition 1.1 A subset of the elements of a ring

is called a right (left) ideal if, and only if, it is

closed under subtraction and closed under multiplication
by elements of the ring from the right (left).

Definition 1.2 A subset of the elements of a ring
i1s called an ideal 1if and only 1if, it 1s closed under sub-
traction and closed under multiplication by elements of

the ring from the right and from the left.



CHAPTER II
PRINCIPAL AND MAXIMAL IDEALS

2.1 PRINCIPAL RIGHT IDEALS

An 1deal in a non-commutatlve ring may be a right
ideal without being a left ideal, i1.e. it may be closed
under multlplication by elements of the ring from the right
and not from the left. Ideals in commutative rings are
necessarily two-sided. In this paper, 'ideal' will mean
two-sided ideal. All the results concerning right 1deals
apply equally to left ideals.

A principal right 1deal 1s an 1deal generated by one
element, that 1s 1t consists of all multlples of the element
end all products of multiplications of the element by ele-
ments of the ring from the right. A princilpal ideal always
contains the generating element. The definition of prin-
cipal right 1ideal 1is s;ated formally as follows:

Definition 2.1 (a)r 1s a principal right ideal in

& ring R 1if and only if (a), =fna + at;n€l, t€RJ.
It may be verified from Table II that £0,3 1is a
principal right ldeal generated by the element 3 in the

non-commutative ring M Another right principal ideal in

2.
this ring 1s (6)r ={j0,é}. The left principal ideals are
(4)1 and (5); and the two-slded 1deals are (7)=£b,?z, (3)=



={b,3,6,z} and (4):{6,4,5,1}. The two trivial ideals,
the zero of the ring and the ring itself, are generated
by the zero and the unity of the ring respectively.

If any element of an 1deal (right ideal) has an
inverse (right inverse), the property of being closed under
multiplication with other elements of the ring requires
that the 1deal also contain the unity of the ring and,
hence, the entire ring.

2.2 TWO-SIDED PRINCIPAL IDEALS IN ARBITRARY RINGS

To construct a two-slded principal ideal in an
arbitrary ring, the generating element is multiplied by
all elements of the ring from the right, from the left,
eand from both right and left. The following 1s a formal
definition: -

Definition 2.2 (a) is a principal ideal in a ring

R generated by the element a if and only 1if:
(a)= §na + 5,8 + at, +[siat£
where s; and tJ are elements of the ring and n is an integer.
The summation symbol represents an arbitrary finite sum of
the products siatj.
If the ring R has a unity, this definitlion reduces
The integer 2 generates a principal ideal in the ring

of iIntegers. In fact, every 1deal in this ring has the form
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(n) where n is some integer. Rings in which every ideal is
principal are called 'principal ideal rings'.

In the ring of polynomials over a fileld, the set of
all polynomials which are multiples of one given polynomial
is closed under multiplication by any other polynomial, so
this set 1s an ideal in F[X]. McCoy (]_“5], P. 56) presents
a proof that this ring and the ring of integers are prin-
cipal 1deal rings.

2.3 MAXIMAL IDEALS
Definition 2.3 An ideal (right ideal) is a maximal

ideal (right ideel) in a ring R if and only if it is not

properly contained in any non-trivial ideal (right ideal)
in the ring.

Consider the principal ideal (n) in the ring of
integers where n is a positive integer. If n is not prime,
there exlsts a decomposition into prime factors:

N=p PP+« +Ppe

gvery element of (n) is a multiple of n and, therefore, a
multiple of py, 1=1,2,3,...r. Thus every element of (n)
is an element of every principal ideal (pi). Each ideal
(pi) contains elements which are not elements of (n)
because p, itself is such an element, 8o (n)C:(pi) for each
1 and (n) is not a maximal ideal in I when n is composite.

Suppose the integer n 1s prime and that (n) is pro-

perly contained in another 1deal A in the ring. If m is
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an element of A, hnfxrﬂ) then ean % bm is also an element
of A for every pair of integers a and b. Since m and n are
relatively prime, the unity can be expressed in this manner
and must also be contained in A. If the unity is in 4,
then A =R and (n) 1s not properly contained in any non-
trivial ideal. The following theorem has been established:

Theorem 2.l In the ring of integers, an ideal is
maximal if and only if it generated by a prime integer.

| With little modification of the previous proof, it

can be shown that the principal ideal generated by a poly-
nomial in F[x] is a maximal ideal if and only if the gene-
rating element is an irreducible or prime polynomial over
the field.

In the ring M,, only the ldeals (3) and gu) are
maximal. |

The exlstence of maximal elements in sets ordered by
set Inclusion cannot be proved and must be assumed. The
formal statement of this assumption is known as Zorn's
Lemma. It is loglcally eguivalent to the axiom of choice
(Eﬂ » P. 245) and it will be used as an axiom in this paper.
A more complete discussion of Zorn's Lemma will be given in

Chapter VII.



CHAPTER III
RESIDUE CLASS RINGS AND IDEAL SUMS AND PRODUCTS

3.1 CONGRUENCE AND RESIDUE CLASS RINGS

Congruence modulo n is an equivalence relation de-
fined on the integers and this relation partitions the
integers into n residue classes. The proof that these
residue classes form a ring with the operations of addition
and multiplication suitably defined can be found in McCoy.
([6], P. 41) The zero of this ring is the residue class [ﬁ].
The elements of this resldue class are precisely the same
elements as those contained in the principal ideal generated
by n. It 1s convenlent, therefore, to consider the ring of
integers modulo n to be the ring of integers modulo the
ideal (n), denoted I/(n). This ring contains proper divi-
sors of zero 1f and only if n is composite and it was proved
in Chapter II that thelprincipal ideal generated by an
element n is maximal when n is prime. The following theorem
has been proved:

Theorem 3.1 The principal ideal (n) is maximal if
and only if the ring of integers modulo (n) contains no
proper divisors of zero.

The ring of polynomials over a field modulo a given
polynomial is discussed thoroughly in McCoy ([E], p. 66)
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and the ring of polynomials modulo a principal ideal,
F[i]/(s(x)), can be developed in a manner strictly analo-
gous to the way I/(n) was developed above. It 1s also true
that (s(x)) 1s maximal and F[%]/(s(x)) has no proper divi-
sors of zero if and only if s(x) is irreducible over the
field.

The above results willl be used to prove an important
theorem concerning proper divisors of zero in commutative
rings modulo a prime ideal.

The 1dea of a ring modulo an 1deal 1s not restricted
to rings in which every ideal 1s principal nor even to
commutative rings. If B is a two-slded ideal in an arbi-
trary ring, an element x is sald to be congruent to an
element k modulo B if and only if x - k 1s contained in B.
That 1s, x=k mod B if and only if x=k £ b where b is some
element of B. This relation of congruence is an equivalence
relation which partitions the ring into éisjoint residue
classes. Addition and multiplication are defined as in the
ring of integers modulo an ideal and the residue classes
form a ring.

3.2 IDEAL PRODUCTS

The definition of prime ideal that will be given in
the next chapter involves the product of two ideals:

Definition 3.2 If A and B are ideals in a ring R,

the 1deal product of A and B 1s defined as follows:
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AB = {Z-aibj ;a€A, beB} .

Since the set of all products {éibj;aEA,béé} may
not be closed under addition, the definitlion includes all
finite sums of these products.

If A and B are two-sided 1deals, they are closed
under multiplicétion by ell elements of the ring from the
right and left and, therefore, ABCA and ABCB. If A and B
are right ldeals, they are closed under multiplication from
the right and ABCA, but it 1s not necessarily true that
ABCB.

Suppose B 1s a right ideal in R. Then B 1s closed
under multiplication by elements of the ring from the
right. It 1s important to show that thefideal product RB
is a two—sided ideal in R. (RB)R=R(BR) because multiplica-
tion of ideals is assocliative and R(BR)=RB because B 1s a
right ideal. RB 1s also a left ideal because R(RB)=(RR)B=
=RB so that RB 1s closed under multiplication by elements
of the ring from the left.

It is also true that for any a in R, RaR 1is a two-
sided i1deal in R and RaR=(a) if R has a unity. McCoy ([5],
P. 31) proves the statements above and also shows that aR
is a right ldeal in R éﬁd Ra 1s a left 1deal 1n R. The

proofs are simple and will not be presented here.
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3.3 THE SUM OF TWO IDEALS
Definition 3.3 If A and B are 1ldeals in a ring R,
the sum A + B 1s defined as follows:
A + B= {é + b; afA, bEB}.
It 1s easy to prove that the sum of two ldeals 1ls an
1deal. 1If a  and a, are elements of A and b; and b

> 2
contained in B, then

o &re
(al + bl) - (a2 + b2)=(al - ae) + (bl-+ b2)
and this 1s contained in the sum A + B so A + B 1s closed
under subtraction. If r 1s any element of R, then
(a + b)r=(ar + br) and r(a + b)=(ra + rb)
and these are contained in the sum A + B so A + B 1s closed
under multiplication by elements of the ring from the right
and left ahd 1s an 1deal in the ring. The fact that the
sum of two right (left) 1deals 1s a right (left) ideal 1is
proved in the same manner.

If M 1s a maximal 1deal in R and A 1s any 1deal not
contalned in M, then M + A must be the entire ring, because
M 1s certalnly contalned in M + A.

The results presented in the first three chapters in
an informal manner have prepared the way for the definitlons

and theorems concerning prime 1deals in the next chapter.



CHAPTER IV
PRIME AND COMPLETELY PRIME IDEALS

4,1 DEFINITION OF COMPLETELY PRIME IDEAL

Krull's results [j] on rings and ideals are the
earliest mention of prime i1deals and the prime radical
in the literature and these results apply only to com-
mutative rings. The first Formal Discussion of prime
ideals in arbitrary rings is in a paper by McCoy in 1949
[4] . McCoy found that the definition of prime ideal given
by Krull was too restrictive to be useful in arbitrary
rings and he proposed a new definition which would apply
to non-commutative rings and which would be equivalent to
Krull's definition in the case of commutative rings.

In this paper, 1deals which satisfy the more re-
strictive definition will be called 'completely prime’.
The purpose of the present chapter 1is to define, gilve
examples of and prove some of the basic theorems concerning
prime and completely prime ideals.

Definition 4.1 An ideal P in a ring R is completely

prime 1f and only if for any a and b in R such that ab 1is
contained in P, then a i1s contained in P or b is contained

in P.



15

The reader can recall the discussion in the previous
chapter about divisors of zero in residue class rings and
verify that Definition 4.1 is equivalent to:

Definition 4.2 An 1deal P in a ring R 1s completely
prime if and only if for any a and b contalned in R such
that ab=0 mod P, then a=0 mod P or b=0 mod P.

4,2 PROPERTIES OF COMPLETELY PRIME IDEALS

If P 1s an 1deal in an arbitrary commutative ring R,
the elements of the zero residue class ring R/P are pre-
clsely those contained in P. The residue class ring
contains proper divisors of zero 1f and only if there exist
a and b in R such that a and b are not contained in P but
ab is contained in P. This fact and Definition 4.1 estab-
lish the fﬁllowing theorem:

Theorem 4.3 In an arbitrary commutative ring R, an
ideal P is completely prime if the residue class ring R/P
has no proper divisors of Zero.

Two corollaries follow directly from Theorem 4.3.

Corollary 4.4 The principel ideal (n) is completely
" prime in I if and only if n 1is prime. r

The reader will recall the result in Chapter III
that I/(n) contains no proper divisors of zero if and only
if n 1s a prime integer.

The analogous result in Chapter III concerning the

polynomial ring establishes the following:
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Corollary 4.5 The principal ideal (s(x)) is com-
pletely prime in the ring of polynomials over a field if
and only if s(x) i1s irreducible over the fileld.

Since ideals in I and F[x] are maximal if and only
if the generating element 18 prime or irreducible, the
following is true:

Theorem 4.6 In the ring of Integers and the ring of
polynomials over a field, an 1deal 1s completely prime if
and only if it 1is maximal or the entire ring.

Theorem 4.7 In any ring R, the ring itself 1is
always completely prime and the principal ideal generated
by the zero element 1s completely prime if and only if the
ring has no proper divisors of zero,

The first part of this theorem is immediate from
the definition of completely prime ideal. The zero ideal,
denoted (0), consists of the zero of the ring alone. The
ring falls to have proper divisors of zero if and only if
ab=0 implies a=0 or b=0.

Theorem 4.6 does not apply to commutative rings
which do not have a unity. For example,,the principal
ideal (4) 1s a maximal i1deal in the ring of even integers,
but it 1s not completely prime because the product of any
two elements of this ring is a multiple of 4 and, hence,

an element of (4).
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The following theorem concerns the relationship
between completely prime 1deals and other 1ideals 1in the
ring:

Theorem 4.8 If A is an 1deal in a ring R and P a
completely prime ideal in R, A/NP is a completely prime
ideal in the ring A.

Proof: Let ANP=P'. If ab=0 mod P' for a,bf A,
then ab=0 mod P and either a=0 mod P or b=0 mod P. Since
a and b are contained in A, it follows that elther a or b
is contained in ANP=P', so a=0 mod P' or b=0 mod P'
and P' 1s a completely prime ideal in the ring A.

As a simple 1llustration of the above theoren,
consider the 1deal E of even integers and the completely
prime ideal (3) in the ring of integers. E/N(3)=(6) and
the integer 6 is prime in the ring of even integers, so
(6) is a completely prime ideal.in E.

4.3 DEFINITION OF PRIME IDEAL

The following definition of prime ideal 1s less
restrictive than Definition 4.1 and more useful in the
study of non-commutative rings.

Definition 4.9 An ideal P in & ring R is said to

be a prime ideal if and only if it has the following pro-

perty: If A and B are ideals in R such that AB&P, then

ACP or BEP, where AB is the ideal product of A and B.
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The reader should keep in mind that prime i1deals are always
two-sided, even in non-commutative rings.

The following theorem, McCoy's five equivalent pro-
perties of prime 1deals, is the principal result of this
chapter.

Theorem 4.10 If P 1s an ideal in the ring R, all of
the following definitions are equivalent:

1. P is a prime ideal according to definition 4.9.

i1. If a,b are elements of R such that aRb& P, then
a 1s contalned in P or b 1ls contalned 1n P.

1ii. If (a) and (b) are principal ideals in R such

that (a)(b)<P, then a is contalned in P or b
is contalned in P.

ive If U and V are right ideals in R such that UV&P,
then USSP or V&P,

ve If U and V are left 1deals in R such that UVEP,
the USP or V<P. ([6], p. 62).

Proof: The first step in the proof of this theorem
is to assume that the first property holds and prove the
second. Suppose a and b\are elements of R such that aRb=P
and P 1s a prime .1deal. The set aRb 1s the set of all
ordered triples {éxb; xéﬁ}. It follows that R(aRb)REP
because P 18 a two-sided 1deal, closed under multiplication
by elements of the ring from the right and left. Then

(Ra)R(bR)<=P because multiplication 1s assoclative and
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(RaR) (RbR) € P because RRER. It was proved in Chapter III
that RaR and RbR are ideals in R. Since P is a prime ideal,
either RaRC P or RbREP. Suppose RaRSP. Let A=(a). Now
A3=,(a3)§RaR§P. Since A’S P, AAQ_C_P end ACP because P is
a prime ideal. Since a is contained in A, then a is contained
in P and the second property is proved. If RbRE P, the proof
is the same.

The third property follows directly from the defin-
ition, but it can also be proved from the second. It is
first necessary to show that aRb<=(a)(b) where (a)(b) is
the ideal product of the principal ideals generated by a
end b. Every element of aRb has 'a' as a left hand factor
and 'p' as a right hand factor. It follows from the defin-
ition of principal ideal and the definition of ideal
product that every such element is contained in (a)(b).
Since aRb&P implies aCP or b&P, the third property is
proved.

To illustrate the definition and the equivalent
properties 11 and 1ii, let E be the prime ideal of even
integers in the ring of integers I. If A and B are ideals
such that ABC<E, it follows that ACE or BEE, because if
A and B each contained an odd integer, their product would
contain an odd integer and the condition in the definition

would not hold, so E satisfies the definition of prime idezl.
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If a and b are integers such that aIlbCE, it is
immediately evident that elther a or b 1s an even integer
so property 11 1s satisfied.

If (a)(b)C E, then ab is contained in E and either
a or b 1s an even integer, so property 1ii holéds.

The next step in the proof of the filve equivalent
properties 1s to prove 1iv from 11ii.

Suppose the condition holds in 1v and that U is
not contained in P. Let u and v be arbltrary elements of
U and V respectively with u not an element of P. Since

(W)= {(w)_ + su+Zs,uty; s,t€R],

(u) (v)=§UV + RUV} CP
and property 1ii implies that v 1s contained in P. Since
v was an arbiltrary element of V, then V& P so property
iv 1s established. The last property is proved in the
same manner. The last two properties 1lmply the definition
directly, so the equivalence of the five properties of
prime ideals is established.
4.4 EXAMPLES OF PRIME IDEALS IN A NON-COMMUTATIVE RING

Propertlies 1v and.v are illustrated in the multi-
plication table of the ideals in M2 (Table III). Of the
three two-sided ideals, only (7) 1s not prime, because
(4)1(3)95(7) and nelther of the factors is contained in
(7). The other two-sided ideals, (4) and (3) satisfy the

five parts of the definition. Table IV shows how the 1deals



TABLE III

MULTIPLICATION OF IDEALS IN THE RING'MQ'

2l

(0) (3)g  (6)g (4 (G)L (3) (4) (7)
(0) | (o) (0) (0) (0) (0) (0) (0) (0)
(B)R (0) (3)g (B)R X X (3)g (0) (0)
(6),](0) (6), (&) X X (68 (0 (0)
(4)L (0) X X (4);, (5 (7) (&) (7)
(5); (0) X X (4);,  (53)g (7) (&) (7)
(3) | (0) (3) (3) (0) (0) (3) (0) (0)
(4) | (0) (7) (7) (4)L (S)L (7) (4) (0)
(7) | (0) (7) (7) (0) (0) (7) (0) (0)
TABLE IV
LATTICE OF IDEALS IN THE RING ‘M,
R
0’1’2’3’4,5’6’7

0’7’5,7\ /y’6\<

(5) (4)\ 7) 6

0,5~ 0, 4™ c(>,7 é,%R {é?%R
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in Mg are partially ordered by set inclusion. This table
i8 useful in verifying that all the propertles of prime
ideals apply to the prime i1deals 1n this ring. An array
like Table IV is called a 'lattice’' and will be discussed
further in Chapter VII.

4.5 A THEOREM ON PRIME IDEALS

The following theorem is an example of the relation-
ship between prime and maximal ideals in arbitrary rings
with a unity:

Theorem 4,11 If a ring R has a unity, every maximal
ideal is prime.

Proof: Suppose M is a maximal ideal in a ring R
which has a unity and that AB&M where A and B are ldeals
in R, but neither A nor B 1s contalned in M. Since M 1is
maximal, M + A=R and M + B=R. Since in a ring with unity
R2=R, (M + A)(M + B)=R. Then

(M2 + AM + MB + AB)=(M + AB)=R.

Since AB 1is contained in M, M=R eand M 1s not

maximal, contrary to hypothesis. Therefore, elther ACM

or BEM and M 1s a prime ideal.



CHAPTER V
M-SYSTEMS AND THE PRIME RADICAL

5.1 DEFINITION OF MULTIPLICATIVE SYSTEM

Now that the important theorems on prime and con-
pletely prime ideals have been discussed, 1t seems natural
to iInvestigate the characteristics of the elements of a
ring which are not contained in a prime ideal in the ring,
that 1s, the complement of a prime ideal in a ring. Just
as the definition of completely prime ideal 1s too restric-
tive to be useful in non-commutative rings, the definition
assocliated with the complement of a completely prime 1deal
. in a ring are too restrictive and must be modified to be
useful in non-commutative rings.

Definition 5.1 A set M of elements of a ring R 1s

sald to be a multiplicative gystem 1f and only if M 1is

closed under multiplication.
5.2 MULTIPLICATIVE SYSTEMS AND COMPLETELY PRIME IDEALS

In the ring of integers, the following subsets are
multiplicative systems: the positive integers, odd integers,
i1deals and the complements of maximal ideals. The first
three are obviously closed under multiplication and are,
therefore, multiplicative systems. The fact that the
complement of every maximal ideal in the ring of integers

i1s a multiplicative system 1s easlly proved. Every maximal
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ideal in the ring heas the form (p) where p 1s a prime
integer. The complement of (p) is denoted C((p)) and con-
tains all and only elements whilch are not multiples of p.
If a and b are elements of C((p)), then p 1s not a factor
of a or b and, since p 1s prime, p is not a factor of
thelr product ab. Therefore, ab 1s an element of C((p))
and C((p)) 18 closed under multiplication and is a multi-
plicativé system. Since 1t was proféd earller that an
ideal in the ring of integers 1s maximal 1f and only if it
is completely prime, 1t 1s also true that the complement
of every prime 1deal In I is a multiplicative system.

The next theorem generallzes the preceding result
to arbitrary commutative rings. |

Theorem 5.2 An ideal P in a commutative ring R 1is
completely prime if and only if C(P) is a multiplicative
system.

Proof: The proof follows from the definltlons of
ideal, completely prime 1d§al and multiplicative system.
If P 1s an 1ideal in & commutative ring R and a and b are
elements of R and elther a or b 1s an element of P, then
the product ab 1s contalned in P because P 1s an ideal.
Now suppose there exist a and b in R such that a and b are
contained in C(P) and such that ab 1s an element of P.
Then C(P) i1s not a multiplicative system and P 1s not a

prime i1deal. If, on the other hand, for every a and b in
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R such that a and b are contained in C(P), ab is contained
in C(P), then C(P) is a multiplicatiﬁe system and P is
completely prime by Definition 4.1.
5.3 M-SYSTEMS AND PRIME IDEALS

One more definition is required before proceeding
to the main toplic of this chapter.

Definition 5.3 A set M of elements in a ring R is
an m~-system i1f and only 1f 1t has the following property:

If a and b are elements of M, there exlists an x in
R such that the product axb 1s contalned in M.

It 1s immediate that every multiplicative system 1is
also an m-system, because 1f M is a multiplicative system
and a and b are elements of M, then x=a or x=b satisfles
the requirement that axb i1s contained in M.

Suppose M 1s an m-system in a commutative ring R
and M=C(A) where A is an ideal in R. It would be useful
to know whether M is also a multiplicative system. For
every a and b in M, Definition 5.3 requires that there
exlet an x in the ring such that axb is also contained in
M. Since multiplication is commutative, (ab)x is also
contained in M. Now ab cannot be an element of A because
A is en ideal and (ab)x is not an element of A. It follows
that ab 1s contained in C(A)=M. Since a and b were arbitrary
elements of M, then M 1s closed under multiplication and is

a multiplicative system.
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Since there can be no distinction between m-systems
and multiplicative systems when they are the complements of
ideals in commutative rings and since m-systems are so use-
ful in non-commutative rings, multiplicative systems will
not be mentioned again in this paper.

If 4 1s a two-sided ideal in a non-commutative ring
and if a and b are elements of A, then axb 1s an element of
A for any x in the ring, so every such 1ldeal 1s an m-system.

Theorem 5., An ideal P in a ring R is a prime ideal
if and only if C(P) is an m-systemn.

Proof: The proof of this theorem follows from the
first two parts of theorem l;.10. Suppose P is a prime ideal
and a and b are elements of C(P). Then axb is an element of
C(P) for some x in R by theorem L.10ii, so C(P) is an
m-system. Suppose, on the other hand, that P is an ideal
in R but not a prime ideal. Then for some a and b in C(P),
aRb<P (theorem [;.10ii) so axb ¢ C(P) has no solution for x
and C(P) is not an m-system,

5.4 DEFINITION OF PRIME RADICAL

Definition 5.5 The radical of an ideal 4 in a
commutative ring R consists of all elements r of R such
that r? is contained in A for some positive integer n.

Every element of the radical of an ideal is, in a

sense, the nth root of an element of the ideal. In
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non-commutative rings, this definition is too restrictive
to be useful and the following is used 1nstead:

Definition 5.6 The prime radical(R(A) of the ideal

A in the ring R is the set consisting of those elements
r of R with the property that every m-system in R which
contains r has a non-empty intersection with A.
5.5 THE PRIME RADICAL IN CCMMUTATIVE RINGS

Theorem 5.7 In a commutative ring R, the prime
radical of an 1deal A coincides with the radical of A.

Proof: If r 1s an element of the prime radical of
an 1deal A in the commutative ring R, then by definition,
every m-system contalning r has non-empty intersection with
A. The set {rn;n is a positive 1ntegeﬁ} is certainly an
m~-system containing r, so there must exist some n such
that r® 1s contained in A and r i1s an element of the radical
of A. Since r is any element of the prime radical of A,
the prime radical 1s contained in the radical. It remains
to be proved that the radical of A 1s contalned in the
prime radical of A in the commutative ring R.

Suppose r 1s an element of the radical of A and that
r is contained in any m-system M. This is not an unreasonable
assumption becauser 1s contained in at least one m-system
by Definition 5.5. By definition of m~system, there exists
an x in R such that rxr=r®x 1s contained in M. There also

exists a y in R such that (r2x)y(r):r3xy is contained in M.
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By induction, it follows that for each positive integer n,
there exists a t in R such that r®t is contained in M.
Since r is an element of the radical of A, there exlsts an
integer n such that r® is contained in A. If r® is contained
in A, then ri*t is contailned in A because A is an ideal, and
M has non-empty intersection with A. Since M 1s any m-system
in R containing r, and r is any element of the radical of
A, then every m-system containing r has non-empty 1lnter-
section with A and the radical of A 1s contained in the
prime radical of A.

Since the prime radical of an 1deal 1s so useful in
non-commutative rings, and since the two ideas coincide in
commutative rings, prime radicals will be used lnstead of
radicals throughout the remalnder of this paper.

5.6 THE PRIME RADICAL IN GENERAL RINGS

In the ring Mg, the sets Zi,Q,B,é}, é?,2,4,§} and
{b,f} are m-systems as the reader can quickly verify from
Table II. The two-sided ideals §0,4,5,7} andf0,3,6,7} are
also m-systems. In general, any subset of a ring which
contains the zero of the ring is an m-system and the comp-
lement of every prime ideal in M2 i1s an m-system. What,
then, 1s the prime radical of the ideal (3)= §0,3,6,7} ?
Clearly, any m-system which contains 0,3,6, or 7 has non-
gmpty intersection with (3), so these elements are con-

tained xnﬁ?((B)). Consider the elements 1,2,4 and 5.
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These are contained in the m~system 51,2,4,52 which is
disjoint from (3), so none of these elements are contained
in 02(3). The prime ideal (3), then, coincides with its
prime radical in the ring M2.

The following theorems extend these results to
arbitrary rings:

Theorem 5.8 Every ideal 1s contained in its prime
radical.

Proof: If A 1s an 1deal in the ring R and r is any
element of A, then every m-system contalning r certainly
has non-empty intersection with A, so r is contalned in

(K (&) by Definition 5.6.

Theorem 5.9 If A is an ideal in the ring R, then
the prime radical of A coincides with the intersection of
all the prime ideals in R which contain A.

Proof: By theorem 5.8, Ag;(?(A), 50 if any prime
ideal contains CR(A), it must contain A.

Suppose P 18 a prime ideal in R which contains A
and a 1is any element of‘C?(A). The complement of P 1s an
m-system which does not intersect P and hence, C(P)/)A=g,
so a cennot be contained in C(P). It follows that a is
contained in P and 0Q(A)§;P. Since any prime ideal con-
taining A must also contain OQ(A), A and its prime radical

are contained in exactly the same prime 1deals.
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It remains to be proved that 1f some element r is
not contained in 6?(A), then there exists a prime ideal P
containing A such that r is not contained in P.

If r is not an element of CQ(A), then there exists
an m-system M containing r which is disjoint from A.
Define a set of 1deals in R as follows:

SK;X is an ideal in R, ACK, K/NM=g

where M 1s the m-system disjoint from A. This set 1is not
empty because A 1s in the set. It 1s necessary to use
Zorn's Lemma to establish that there is a maximal ideal
P in this set. If the ideal P is prime, the proof of this
theorem 1s complete. The proof that this ideal must be
brime follows:

Suppose P is not a prime ideal and (a)(b)<C P, but
a and b are not elements of P (contrary to Theorem 4.10i1).
Then P 1s properly contained in the ideal P + (a). Since
P is maximal in C(M), then P + (a) contains an element mq
which 1s also an element of M. Similarly, P + (b) contains
an element m, which 1s also contained in M. Now M is an
m-system so there exists an x in M such that W) X, is con-

tained in M, but myxm, is also in the ideal (P + (a))(P + (b).

2
If (a)(b)< P as the hypothesis states, then

(P + (2))(P + (b))CP
gnd mlxm2 ls contalned in P, but this 1s impossible because
M/NP=@g. It follows that P 1s a prime ideal and the theorem

is proved.
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An immediate consequence of this theorem is that

a prime ideal coincides with its prime radical since a
prime 1deal 1s clearly the intersection of all the ideals

which contain it.



CHAPTER VI
COMPLETE MATRIX RINGS

6.1 DEFINITION OF COMPLETE MATRIX RING

For simplicity, the only example of non-commutative
rings used in this paper has been our rilng M2 which 1s a
subset of the complete matrix ring of two by two matrices

with elements taken from the ring of integers modulo two.

Definitioﬁ 6.1 A complete matrix ring R, 1s the
set of all n by n matrices with elements taken from a ring R.

These matrices are designated [aijj where the aij's
are the scalar elements taken from the ring R. It is easlly
verifled that these elements form a ring wlth addlitlon and
multiplication defined as ordinary métrix addition and
multiplicatlion. The purpose of this chapter isvto present
some results about prime 1deals 1n complete matrix rings.
6.2 IDEALS IN COMPLETE MATRIX RINGS

Consider the set of n by n matrices with elements
ltaken from an ideal A in a ring R. These matrices are
certainly closed under subtraction and under multiplication
by the other matrices in the complete matrix ring R, from
the right and left. They form an ideal in the ring Rn'

McCoy proves that if the ring R has a unity, these are the
only ideals in R, ( [6], p. 37).
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6.2 PRIME IDEALS IN COMPLETE MATRIX RINGS

Results analogous to McCoy's iheorems on ideals in
complete matrix rings can be stated for prime ldeals in
these rings.

Theorem 6.2 If P 1s a prime 1deal in a ring R,
which has a unity, the complete matrix ring Pn is a prime
ideal in the complete matrix ring Rn.

Proof: Let P be a prime 1deal in the ring R. The
complete matrix ring Pn is an 1ideal in the complete matrilx
ring R . Let A, and B, be ldeals in R, such that

AB CP,.
Pn 1s a prime 1deal 1f and only if A, CP, or BJ& P, by
Definition 4.9 of prime ideal.

Every matrix in the complete matrix ring An has the
form [éij] where the aij's are elements of an ideal A in R.
Similarly, every matrix in Bn has the form [bij where the
bij's come from an ideal B ig R. Every matrix in the ideal
product A B, has the form [jzlaijbjg. Since A B CP,,
ell matrices with elements from the seté}?ab;a,€A, bfiB}
are contained in Pn, but these elements are preclisely those
of the 1deal product AB. Then ABC.P and ACP or BCP
because P 1s a prime ideal in R. It follows from Definition
6.1 that A CP, oOr Bng—_Pn.'
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Theorem 6.3 If the ring R has a unity, every prime
ideal in the complete matrix ring R 1s of the form P
where P is a prime ideal in R.

Proof: DSuppose P, 1s a prime ideal in R . ©Since
Pn is an ideal in Rn’ P is an ideal in R. It must be proved
that P is a prime ideal in R. BSuppose A and B are ideals
in R such that ABCP. It was shown in the proof of the
previous theorem that this is equivalent to the condition
that Aangan. Since Pn i1s a prime ideal in R/, A CP, or
B,&Pp. It follows from the definition of complete matrix
ring that ASP or BCP so P is a prime ideal in R and the
theorem is proved.

Complete matrix rings are good examples of rings
which have prime ideals but no completely prime ideals.

Theorem 6.4 The complete matrix ring R, has no
non-trivial completely prime ideals if the ring R has a
unity.

Proof: ©Since every ideal in R, has the form Mn
where M 1s an ideal in R, it 1s sufficient for the proof
of thls theorem to show that in every such ideal Mn there
exists at least one matrix that can be factored into two
matrices, neilther of which_could possibly be contained in

Mn' The following is such an example:
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80,5 oINS ;.. 0 20....0
O . O L ] O L ]
3 o . 0 . 0
O" ..OI QI. ..O—a 'O. L N .Oa

In the above product, a 1s any element of an ideal M in R,
and I is the unity of the ring R. The product 1s contained
in the ideal Mh in Rn’ but neither of the factors could be
contained in any non-trivial i1deal whatsoever because the
unity of R is in each one. Since Mn is any ideal in Rn

and a is any element in M, every ideal in Rn has at least
one element which can be factored in this way, so there

are no completely prime ideals in Rj.



CHAPTER VII
ZORN'S LEMMA

7.1 PARTIALLY ORDERED SETS

Zorn's Lemma, or the maximum principle, was used
to prove the exlstence of a maximal ideal in the discussion
of Theorem 5.9. The purpose of this chapter is to explain
and Justify 1ts use. ©Some preliminary definitions are
required.

Definition 7.1 A set S 1s partially ordered by the

binary relation F if and only 1if:
i. For any x in S, xFx.
11. For any x and y in 8, if xFy and yFx, then x=y.
iii. For any x,y and z in S, if xFy and yFz, then
xFz.
The relation < 1s an example of an order relation defined
on the integers.

Note that the two elements x and y need not be
related at all. An important example of a partial order
relation 1s the relatlon & deflned on subsets of a given
set. If Li’ i=1,2,3..., are subsets of a given set, then

1s Lig;Li
ii. " If L1~C—LJ and ngLi’ then L1=LJ.
11, If 4= Ly and LySL,, then L,CL,.
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It is not necessarily true that LigzI_.J or nggLi for every
1 and J.
7.2 CHAINS IN PARTIALLY ORDERED SETS

Definition 7.2 A chaln or linear system 1is a

L

system M of subsets of a set S such that for any Li’ 3

in M, either LiggLJ g Lo S L

J=71

The union of such a chain is simply the union of all
the Li in M. If the chaln has a finite number of links,
then there exlists a maximal element Ln not properly contained

in any Li' The least upper bound of a chain M is the union

of all the Li in M. McCoy presents three instructive

examples of these 1ldeas in Rings and Ideals ([5], p. 101).
All three examples make use of a certain class of subsets
of the set N of natural numbers.

In the first example, let M, be the set of all non-
empty subsets of N which contain at most three elements.
In this case, every set containing three’elements is
maximal in Ma' Chains in Ma can contain no more than
three distinct elements, for example {i}, Zi,i}, {i,J,E}
where 1, ),k are three distinct natural numbers. The union
of the elements of this chain is the maximal element §1,J,k}
and this element ;s contained in Ma'

In the second example; let Mb be the set of all
finite subsets of N. There 1s no maximal element in M.

Consider a chain in Mb consisting of all sets Zi,2,3...£}
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where 1 1s a natural number. The union of all the'elements
of the chain is not a finite set and the chain has no least
upper bound. Mb has no maximel element and, most important,
the union of the elements of the chaln is not an element of
the chain.

In the third example, MC 1s the set of all subsets
Li of N such that if k contained 1in Li’ then every lnteger
less than K 1s also contalned in Li' The set N itself 1is
certainly an element of Mc and 1t 1s necessarily the maximal
element. Moreover, the union of each chain in Mc is an
element of Mc.
7.3 ZORN'S LEMMA

IQ each of the above cases, the set under conslderation
contained e maximal element only when the union of each
chain in the set was also contained in the set. This con-
dition can be stated formally as follows:

Zorn's Lemma: If a partially ordered set S has the
property that every chain in S has an upper bound in S,
then S contains one or more maximal elements.

If the partial order relation is set inclusion,
Zorn's Lemma can be stated as follows:

Zorn's Lemma: Let M be a non-empty collection of
subsets of a given set 5. If the union of each chain in
M is an element of M, then M contains one or more maximal

elements.
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7.4 APPLICATIONS OF ZORN' LEMMA

Now consider the set M consisting of all the ideals
in eny ring R. Let U be the union of the ideals in a chain

in M and let a and b be any elements of U. ©Suppose a 1is

contained in Ll and b in L2 where L1 and L2 are ldeals in

. C
the chain Then elther Ll__L2 or L2§;Ll,

both contained in at least one ideal Ln' By the definition

so0 a and b are

of ideal, a - b 1s an element of Ln and aR, Ra, bR and rB

are contalned in Ln. Since Lng;U and a and b were arbltr-
ary elements of U, then the set U is closed under subtrac-
tion and under multiplication by the other elements of the
ring and U 1s an ideal. ©Since the union of each chain of

ldeals In M 1s also an ideal, then M contalns one or more

maximal ideals by Zorn's Lemma.

In the ring of integers, the following 1s an
exemple of a chaln of ideals: (24) C (12) C(6) < (3).
The union of the chaln 1s the maxlimal element or least
upper bound (3). Since every composite integer has a
prime factor and the principal ideal generated by a prime
integer is maximal in the ring, every such chain in I has
a maximal element as Zorn's Lemma requires.

Zorn's Lemma is logically equivalent to the axiom
of choice, but thé proof of fhat equivalence 1s beyond the

scope of this paper. ([ﬁ], D. 245).



CHAPTER VIII
CONCLUSION

8.1 SUMMARY

The first three chapters of this thesls include an
informal survey of the basic facts concerning integral
domains, principal and maximal 1deals, residue class rings,
the ring of integers, the ring of polynomlals over a field
and a speclal example of a finlte non-commutative ring.

Chapter IV is an Introduction to completely prime
and priﬁe ideals with proofs of the important theorems
and 1lllustrations taken from the rings mentioned above.

Chepter V includes a discussion of multiplicative
systems, m~-systems, the radical and the prime radical of
an ideal.

The conditions for prime and completely prime ideals
to exlst in complete matrix rings were discussed in Chapter
VI and three new theorems were presented.

Chapter VII contained an explanation of how Zorn's
Lemma 1s used 1in certain proofs in the theory of rings.

8.2 SUGGESTIONS FOR FURTHER STUDY

Professor McCoy's new book contains a great many

toples which woulé make exceilent theses [B:} Some pos-

sibllities are the following:
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l. What 1s the relationship between the prime rad-
ical of an ideal, the radical of an ideal, the radical of
a ring and the Baer, Jacobson and lower radicals of a ring?

2. An ideal Q in a ring R 1s semi-prime if and only
if it has the property that for any ideal A in R, A£LQ 1if
A2§;Q. A set N of elements of a Ring R 1s sald to be an
n-system if and only if it has the property that for any
a in N, there exists an x in R such that axa 1s contalned
in N.

Semi-prime ideals eand n-systems parallel prime
ideals and m-systems very closely and a comparison of
completely prime, prime and semi-prime ideals and multi-~
plicative, m~ and m-systems would make an interesting thesls.

3. VWhat kind of structure is formed by congruence
modulo a two-sided ideél in complete matrix rings and in
other non-commutative rings?

4, Do there exlst right ideals which otherwise
satisfy the definition of prime ideal?

The theory of rings 1s a lively area of mathematical
research and there are enough unanswered questions to

provide fertile ground for thesis material.



-

BIBLIOGRAPHY



BIBLIOGRAPHY

Jacobson, Nathan. Structure of Rings. Providence:
American Mathematical Society, 1956.

Jacobson, Nathan. Theory of Rings. New York:
American Mathematical Society, 1943.

Krull, Wolfgang. '"Idealtheorie in Ringen ohne
Mdlichkeitsbedingung," Mathematische Annalen,
101:729-T44, 1929.

McCoy, Neal H. "Prime Ideals in General Rings,"
American Journal of Mathematics, 71:823-833, 1949.

McCoy, Neal H. Rings and Ideals. Buffalo: Mathe-
matical Association of America, 1948.

McCoy, Neal H. The Theory of Rings. New York: The
MacMillan Company, 1964. -

Samuel, Pierre and Oscar Zariski. Commutative Algebra.
Vol. 1. Princeton: D. Van Nostrand Company, 1958.

Suppes, Patrick C. Axiomatic Set Theory. Princeton:
D. Van Nostrand Compeany, 1960.




