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INTRODUCTIO 

1.1. Introduction. Geometry was origInally conc d with measurement 

of line segments, angles, a-nd other figures on a plane. Gradually, the meaning 

of the word aeometry was extended to Include the study of lines and planes in 

the ordinary space of solidi, and the study of spaces based upon systems of 

coordinates, where points are represented by ordered sets of numbers (coordinates) 

and Hnes are represented by sets of points whose coordinates IGtlsfy linear 

1
equations. Recently It hal been extended to Include the study of abstract spaces 

in which points, IrMS, and planes may be repretented in many ways. In this thesis 

a geometry wi II consider a set of points and line. and a group of trans­

fomotions under which some property is left Invariant. It is a deductive science 

using both analytic and synthetic methods of representation. 

1.2 Statement of the problem. Any linear geometrIc transformation can be 

represented by a matrix. In this thesis the analytic transformations of parabolic, 

Euclidean, hyperbolic and elliptic geometry are derived from defining invariants 

showing the conditions placed on the matrix of the transfonnation. A comparison 

is then made of the resultina conditions and Implications of these conditions. 

1 B. E. 
aSlOchuletts: 
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1.3. Importance of t cilaebralc representation of points, Uno., 

ler to visualize. V.hen analytical method. 

thad of expreuion and the shorter notation has 

certain advantaoel. With parabolic, Euclidean, elliptic, and hyperbolic geometry 

each represent coordinat phasizes 

the limllaritios and dlHerences of the geometries. 

Inm living, with the everyday of electronic computers and th 

advent of xploratlon and navigation, the of non-Eucltdean aeometrles, 

alone with Eucliaean _ ntatton on a coordinate Iyttm.., 

i' becoming increasIngly ImDOrtant. 

fined tenns and relatIons. unaefined terms used In this thelis 

are: ·1) let, 

2) points, y capital I.tte , , R ••• I 

3) linel, denoted by small letters p, q, r ... •:"1 



with the same line. ·On ll may be used as a synonym for "Incident. II 

In this thesis the discuilion shall be limited to the study of polnh and lines 

In the space of the proiective plan.... 

v) there are four distinct oolnh such that no three of them are incident 

3 



A Conic Is the non-empty set of- fugate points with resoect to 

4 

polarity. 

T transfonnatlon" I Ich each point maps into Itself. 

An Involution is a prolecti formation, not tlty transformation, such 

that i ty transformatIon. 

A Geanetrv cOnlilts of an ordered paIr (K,R) of set. such that: 

1. K il the set of poInts and RII the let of II......, 

2. Every line is a let of polntJ, 

3. Every line contaIns at lealt two polnf1, 

TWo distinct points detennine a unique lin..., 

nd a group of transformations under which certain properties are left Invariant. 

a I of the comDarilOnl, and the results and conclusions of the study 

are statod. 



CHAPTER II 

RIEF HISTORY OF PROJECTIVE GEOMETRY 

2. 1. Introduction. A better undentandlng of a lubJect II obtained by a 

knowledae of the davelopment of the subJect. By an over-all view of a subJect 

and an inspection of the Intereltlng pointt In the evolution of the subJect, method. 

of leaming and techniques of problem solving are suga..ted. The erron and 

lucce..es of previoul mathematicians arEll studied and utilized in further development 

of the subJect. Projective geometry II a fairly recent development of geometry 

and results from a generalization of the previous geometrl... This brief history 

is divided Into five period.. The flnt period deals with primitive Egyptian and 

Babylonian geometry. The ..cond period praents the early Greek geometry and 

the axiomatic approach. The next period shOWI the discovery of non-Euclidean 

geometry. The fourth period presents analytical geometry, and in the fifth period 

proJective geometry Is generalized from the previous geometriea. 

2.2. Egyptian and Babylonian geometry (4000 - 600 B. C. ). Early geometry 

developed 01 a result of manls effort to construct a set of logical rules to co..... late 

data obtained from obserwtlon and measurement. Tablets dating back beyond 

2000 B. C. Indicate the Babylonians and Egyptiant were employing some of the 

fundamental geem.trl. concepts. This geometry originally was on empirical method 

used for measuring area of rectangles. Thoy probably hod formulas for finding 

areas of right triangles, trapezolda with a right angle at the ba.., the volume of 



--__: ._..._ ........ _...... 
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ctanaular " and the rioht with traPezoidal ~ circular 

They allO knew the altitud fan ilOlCele. trianale bisects the 

, that corr dina sides of .imllarrlaht trta rtional, that the 

anale Inscribed In a Iclrcle is a rlcht anal"" ral formula for t 

area of a trlanale. 

2.3. Early Greek geanetry (600 B.C. - 300 A.D.). t the 

Greek culture was beeoml important factor in t rid. The early 

Greeks made the first rec:ognizable progreu In the study of geametry al a science 

2independent of It. practical appllc:atlons. The deductive feature, the fun 

characteri.tlc of mathematic., .' Thale. the first known Individual 

to math tical discoveries la II C ited with a number • 

of ntory discoveries in~seometry. 

the ti t 600 8.C.) to the time of Eucl id, a great 

of croareu was made In geometry. Sane of th inent name. ia 

with this early k geanetry : Thales, Theoetetus, Proculul, Hippocrates, 

Pythagoras, HJppias, Eud " Minaochemul, Theodorul, Eucsoxus, a 

Euclid. of their great.st c nt of the axiomatic 

method. Fran th t 

textbook ever n; 01 ich rave tmoerfections 

n Geometry (!\lew York: T 

~ _ •••••• --__ •• _ .... _ ...._ ....... -we ""'1' 1J"' .'IJ¥•• ~tic. ... I __ (New YOrK: 
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Elements c 

lserv al a,mOdeI for scientIfic treatises for over two thcwsand years.<4 T 

ic:h include plane geometry, the theory of 

proportions, t theory of mmben, the theory of Incommensurable., and solid 

emetry. 

nt of geome that of higher geometry, or th Next I 

laht line, and of surfaces other 9 try of curves othe, than the clrel 

Iy due to the discoveries re and plane. Much of thl 

onlc etionl, and the II Mathematicalof Archimedes, and A 

Ilactlon ll of t'CIDOUI. 

2.4. The axiomatic approad1 of"th A.O.). 

and which 11 th,The axiomatic ODDf'OCIch to geometry 

f a minimum of fi tennl and axioms, and a 

mum or aeflnea tenns and thecrems. The axioms must be consistent, and should 

be complete, independent, cateQorical. and fertile. A set of axioms is consistent 

if no contradiction. can be deduced from the let. A set of axioms is complete if of 

any two conrradlctory statements Involving tenns of the system, at least one .ta'tement 

can t)e DfOVed in the system. A set of axioms is laid to be rodegendent if no axiom 

deduced from the othen. A set of axiom. i. categorIcal If there is essentially 

m d in u. t 

hlch its axioms are valid, that Is, any two systems which satisfy 

the axioms are lsomorohlc. For a set of ClKtans to be fertile, at least one rheorem 

can be deduced from them. A definition must: (1) name the concept being defined, 

MeNrve, Ope Cit., p. 221. 



(2) give the distinguilhing characteristics of the concept being deftned, (3) concise 

(i.e., contains no superfluous information), (4) contain no new elements or relations, 

(5) be roversible. 

2.5. The discovery of non-Euclidean geometry (19th Century). The attempts 

to deduce Euclid's fifth postulate as a result of the other Euclidean postulates led 

to the discovery of non-Euclidean geometry. T attompts penisted ·unti I the 

19th Century when hyperbol ie 9 try was discovered independently by Gaun, 

Bolyai, and Lobachevsky. Gauls, however, did not publish his work, and credit for 

the discovery is given to Lobachevsky and Bolyoi. Bolyai wrote an appendix for 

his father's treatise on geometry, which gave an account of his (the younger Bolyai) 

investlaations. Loter elliptic geometry was discovered by Riemann. TOday, many 

have the i that a g etry other than that of Eucl id is the t mode I for our 

universe. 

2.6. Analytical geometry invented (17th Century). Another appendix to a 

book that WOI of Ineompnably gntater significance than the book itself was the first 

treatise on analytic geometry, which formed an appendiX to Dilcours de 10 Methode 

written by the French philosopher-mothematiclan, Rene Descartes (1595-1650)? 

Descartes visual ized all 01 iON as numbers which were the measures of 

geometric obJects Instead of OJ t ometric obJects, and found equations repre5enting 

5 Leonard M. Blumenthal, A Modern View of Geometry (San Francisco: 
• H. Freeman and Company, 196l), p. 54. 
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veral CUNei. this union of al possible the establishment 

of a coordinate s}'lt ,y that points of a I On a one-to-on 

corresooncHm f th ber 'Y1tem, and that the space 

Euclidean p rtf Thus the aeometry Is consistent If 

the real nlmber sytterrJ Is consistent• 

...- _._._pm_m _. prol__... _ 9--.._.ry , ..... __ntury). During tne 

Renaissance, medieval to paint realistically, worked to fi 

a mathematIcal method to depict t 'hraa-dlmenllonal world on a two-dImensIonal 

canvas. Since t re also architects, engIneers, and st 

maticians of the 15th Centurv, they were very weceuNI In the task. The key to 

three-dImensional representation 'ound I t is known as the principle of 

6pro(ection and section. this work led to the development 

fa ral g try, prolective geemet. F. DeKirgues and Pascal produced 

theorem. Ich are fundamental in development of projecti geometry. These 

theorem wth significant propertres common to sections of any projection 

of 0 given figure. Desargues and Palcal vi'ualiud the conic sections as projections of 

circles and dllcov other progertie. of conics. 

Klein and Cayley then showed that parabolic, ell iptlc, and hyperbolic geometries 

can be derived as IDecial easel of projective geanetry. Poncelet te the ffrst text 

6 James R. Newman, The World of Nathematici (New York: Simon and Schuster, 
1956), I, p. 623. 
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ometry. He considered i I points (intersections of parallel lines) 

and vel the concept of duality. rucker introduced a new type of coordinate 

system in tho protective plane. 

2.8. Slmmary. Projectiv etry, as now it today, is a result of 

evolution of aeometrv ('Her a ceriocl of aDDroximotely four thouscrnd years from simple 

practical method. of measurement to a highly developed abstract science. Projective 

eometry Incorporate. both the synthetic, deductive methods of the early Greeks and 

the algebraic approach introduced by Descarte. with application of the techniques 

of algebra and calculus and reeent discoverie. of mathematical methods. 



CHAPTER III 

COORDINATE SYSTEM 

3.1. Introduction. A coordinate system is to be developed for the points on 

projective lines and planes. It will be based on the geometric properties of the 

projective plane. The set of point. on the projective line shall isomorphic to 

the extended real nunber system. This isomorphlan makes it possible to use th 

real numbers as coordinates of points of the projective line. The purpose of the 

coordinate ')lltem is: 

J. To identify the points on the Hne. 

2. To establish a coordinate system for the projective plane. 

3. To obtain and describe properties af the geometry. 

3.2. Summation Convention. For brevity of notation the summation convention 

will be used in the following discussion. V.. henever the e letter is used as a 

subscript twice in a term It will be understood to mean the sum of such terms where 

the subscript of IllTlmatlon is the repeated subscript. For excrnple: 

3 

A. i X.,!,j
I I 

= 1, 2, ns ~ Ai I Xl' for i ~ 1, 2, 3. 

j=l 

3.3. of reercsentation. point i: represented by a. 3 X 1 col~n
 

vector (Xj)' j = 1, 2, 3, (e.g., (~~) ) called the hamaaeneau. c-.Jinate. of the
 



point, wnere: 

i) (kX
l
) = (Xi) when k is a real '1umber and k F v, 

ii) there t. no point correspondi (X.) = (0).
I 

Ali nted by a 1 X 3 , k = 1, 2, 3, coiled the homogeneous 

coordinate. of the Iine such thah 

i) rkuk1 = rUk 1 when k is a real ber and k ~ v, 

ill there il no line correspondlng r01. 

In thil dlscuallon paren s shall be used In the I)""bol nting a point and 

square b ts shall be used in the symbol representing a line. Note thot (Xi) 

(e.g., (1,0,0», rs to a colllnn vector which denotes a point. ru, 1 (e.g., n,O,O]), 

rl to a row voctor which denotes a line. A point I. on a line if and only If thoir 

inner p t is zero, rull (X j) = 0. 

A orojective translonnatlon il fep-esented by a non-singular 3 X 3 matrix 

(AI i)' i, i :: 1, 4 3, lA, fII 0, such that: 

1) a proJective transfonnGtlon of point (XI> to point (Vi) is represented 

(Ai j) (Xi) =r (Vi); 

2) a proJective tranafonnGtion of line rUt 1to line rvi' Is represented 

(AIj)rUi]t (vl)t rV li:3 ::I 

i
3) a proJective transfonnation of point (XI) to lin. ru. 1 I, r,
 

t

(A )(X ) = (u ) = 'U,!;ij l1

4) 0 proJective transfonnotion of line ru 1 to point (XI) is r-.presented 
l 

(A. ,) ru. 1t = (X.).'I I 



1 

The equlvale"nce of these with t finitions in ChaDter I Is shown In many standard 

texts. (e.g., Meserve, B. E., Fu ntal Concepts of Geometry, 0,. 4). 

Two points (X.) and (Y,), i =- 1, 2, 3, 
I I on the line rX2Ya - x3 Y2' xaYl - xl Y3' 

X1Y2-X2Y1J· 

Two lines fUj ~ and fv,l, i = 1,2,3, intenect at the point 

U2v - u'" v 23
 

U v .. U v
a 1 1 

U1v2 - u2v1 

Thr cOllinear If and only If 

X21'2 

X"'Y3%3 

Three lines f Ui 1, fv i J and .1, I = 1, 2, a, are concurrent if and only if 
I 

= o.
 

tion (A, ,) il a polarity if and only jf condItion (I) implies (n)
II 

and eonvenelYi 

t
I) (A, jX

1
) - f",', i, f = 1,2,3, t line which Is t transform of t 

point (X,) contains th int (Y.), i.e., u , Y,
I I 

A., X, Y,
'I I I 

o. 
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)t r . 'h ,.
II) (A i . V. = u. 1, i, i == 1, 2, "3, tel i Whic I the transform of t 

I I I 

Int (V.> contains th, 
Line rUe is call th larlty. int (XI)

I 

Is called tho pole of t ct to t larity. This is true for all 

•points if and only if Ai i =~ i' that is ti atrix of t transfonnation ia symm rIc. 

Theorem: A correlation (AI,) Is a'polarity if and only If AI J == ",'. 

Proof: A point X == (XI) is transformed into the tine rull by the correlation (Ai I); 

(A, i Xl == rUi i, i, i == 1, 2, 3. If V (Vi) is a point on line : u,l tllen::::I 

rUt 1 (Vi) == 0, i ....., 

t
(A. tX.) (V.) = 0, t n (X.>' (A. j)t (V.) == 0, I, i 1, 2, 3. 

I I I , I I 

If a DOlnt Y == (Y ) is t rmed Into the IIno rUk 1 by th orrelati (A );
1 k1 

(A y )t == rU 1, k, 1 = 1, 2, 3. If X = (X~ is a point on line rU 1
k1 1 k k

then ru, 1 (X ) == 0, i.g.,
k


t t t

(A Y, ) (X ) := 0, then (Y ) (A ) (X ) == 0, k, 1 m 1, 2, 3. 

kl k 1 k1 k

In order that the correlation (A~ i) == (A I) be a polarity k

t t t t


(X,) (AIj) (Y ) == 0 ~ (Y ) (A ) (X~ = 0 sinceI 1 k1 

r(Y )t(A {(X )lt :: fOl t ,, k1 k
t t t

(Xi) (At I) (VI) ::z (X ) (A )(Y ) :: 0 henck kl 1
t

(A ) ::z (A 1)' and k == I, and 1 == i theq k


(Aif) = (A•.>. Q.E.D.
 

t tA point, (X.), is self-eonlugate if ( iI Xi) == fU Ii and ul X, == (Alf Xi) Xi == 0,
I 
2 2 2

i.e., All x , + 2A x , x + 2A x, x + 2A 3 + ~x3 == o.12 2 1 3 + A22 x2 23 x2 x



The polarity Is called elliptic w h II the self-eonlugate points with respect
 

to the polarity are not real.
 

The polarity is called hyperbolic when the salf-eonJugate points with r&lDect
 

to the polarity are real.
 

collineatlon a is a projective tran.formation of th inti of a 

rojectlve plane to themselves IOtlsfyin 

1) 9 i. one-to-ona onto, 

2) if points 1-, B, C ore collinear, 10 also are the points g(A), g(8), geC). 

3.4. Coordinatizing the plane. In CI proj.ctive plane 17 arbttrari Iy .alect: 

1) any point of 11 and denote the point (0,0, 1) and r.fer to It as the origin; 

)	 any three lines on (0,0, 1), one line to be labeled [0, 1,0] and called 

the x line, another to be label nd called the y line, the 

third to be label 1, -1, unit line; 

3) any point on the u..ntt line different from (0,0, 1) labe.1 it (1, 1, 1) and 

refer to It as-the unit point; I 

.() a line, distinct from [0, 1,0), (1,0, OJ, and [1, -1, OJ, and not on 

rry point yet chosen and label It [0,0, 1]. 

The line [0,0, 1J .hall be call.d the Ideal line and all poInts of the fonn 

(Xl' X2' 0) shall be called Ideal poInts. Other line. and points are called 

ordinary Itne. and points. . 



y 
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~ 

~' a) 
\.\.'"\ , 

£)0 

(1, 1, 1) /J 

y--: 
[O,l,OJ " x 

Flaure 1
 

The Coordinate ,,",xel
 

Since the points of the plane are ropresented by homage s coordlnatel 

XI' i = 1, 2, 3, and (Xi) = (kX,), k 1 0, any poInt in which the coordinate 

X = a may 1) by multiplying (xl) by ..l.. Thea x3 
coordinate Xl corr, 'nds to the x line, the coordInate x corresponds to the Y2 

li.,e. Any point on the unIt line hoi Xl = x .... 

The intersection of "0,1,01 and fO,v, (1,0,0). 

Tho intersection of '"1,0,01 and rO,D,l' is (0,1,0). 

The intersection of Q,-l,Ol and rO,0,11 I. (1,1,0). 

The join of (1,0,0) and (1,1,1) Is rO,-1,11. 

The join of (0,1,0) and (1,1,1) is I'"l,v,-, '. 



lnce the points of th I Drojective line are isomorphic to the extende 

'7 

I number system, the other points of the proJective plane c tennined by 

the intersection of lines loining point (1,0,0) with points of the unit line and the 

line joining point (0,1,0) with the points of tho unit line? 

Two distinct points a incident w[th exactly one line. Consider X = (X.)
I 

and Y = (Yi) on line ! = uj ' then x, u1 + x2 u2 + x3 u3 = 0 and y, u, + Y2u2 

+ Y3 u., = 0, and hence the general solution of the equation is: 

u1 = k(x2Y3 - )(3)'2)' u3 =: k(x3 Y, - x, Y3)' Us = k(xl Y2 - x2y,)· 

u ' u2 ' u3 not all equal to zero, otherwise X = Y. Therefore there il a unique 1 

line incident with two dIstinct points X and Y. Similarly two distinct lines p and 

incident with one point X = (XI) such that: 

x. = k(P2 q3 - P3q~, x2 = k(P3 q l - P, qj, x3 = k(Pl q2 - P2 Q,)· 

The projective plane can be represented as in Figure 2. 

3.5. Summary. In this Chapter representation. for the points and lines of a 

projective plane are choMn. The algebraic representations of relations such 

transformations, self-con[ugate, collinear, and copuntal are shown along with the 

presentation of point, line, and polarity. 

7 serve, • cit., pp. 86-89. 
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CHAPTER IV 

CONIC 

4.1. Introduction. A conic in geanetry I. Iy defined as a plane section 

of a right circular cone. nondegenerate conIcs, i .c., po la, circle, ellipse 

lYP8rbola, or. studied In analytic geometry. A .ingle point or any two lines 

(coIncident, intersecting, or parallel) may be con.ld rate conics. 

In this study, except for the Ideal Ifne, conic thall mean non rare conic. 

The conic out 350 B.C. and was thorouQhly 

investiget, y Apollonlus t 225 8._. 

.2. ---..__ ..._- -- _......- c-_." ·t' formotion is a polarity, then 

(AI)' 1, i" = 1, 2, 3, is a synvnetric matrix. The condition for a point (X.) being
I I 

If-coni is (AIfXj)T Xi ::: 0, ut (AI i XI)
T 

:::l (Ail Xi)
T
, thus XrA if Xi ::: O.
 

hen Aij = Aii , then (~i XI)T, i, = I, 2, 3, II a line, x is self-e:onluaate if
 

T

(Xi) Is on line (AijX ) . I


The set of all X such that Xi Ail Xi = 0 il conic.
 neral eauation of 

may be written In hanog OUI int coordInates Q lIows: 

2 2 2
1)(2 + Cx2 + Ox1x3 + Ex2x FX o o.1 3 

8 ­
Meserve, Cp. cit., P. 63. 
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o 

ondition 

I line x t til 

ntical to t 

til 

2 

Ints are aelf-conjugato, be nonslngular. 

us coordinates is Axl 
2 

+ 1'X
1
x

2 

The condition that a conic be nondegene 

that the matrix of the polarity, tor 

n rne g~ral equation of a conic In nem 

2 2 
+ Uc2 + Ox) xa + Ex2x3 + Mea = 0, the conT 

in ideal DOInt. (xl' x,."O) whose coordinates uation AX1 + ax')(2 

2+ c-v = O. Thus the number of reol points of Inters&ctlon Is the KWne as th2 

number of rcal	 solutions to the quadratic equation. From the theory of quadratic 

2 2
equations, BX + Cx = 0 will have two diltinct, real roots, 0

l
x1 2 2 

2 "> 9
al root, or no I root according as B . - 4AC = O. 

< 

fined to be a hyperbola, a 

rabOla, or an elll Iyas It contaIns two distinct, one distinct, or no 

real ideol poin••• 

[0,0, 1] 

Hyperbola 

Parabola 

Ellipse 

Figure a 

Ideal Points of the ConIc 

..... ------ ••• --_."-."(" # ••••••·.-9.-.__ ..•. -........~ - ...- -, --- " (New Yo
 



If a line pIs th lar of th 

21 

a oolarity, then p is 

said to 'p5lar of Pwith ct to the conic that cooslsh of the self-eonlugate 

points of the pOlarity. 

4•.4. If D is the polar of a point P with ""pect to a conic, 

then the followlno statomcnh define the $Decial tenns they contain: 

1) If p intenects contc In exactly point, P is tangent to the conIc 

at P. 

2) If p intersects the conic in point., P is an exterior point of the conic. 

3) If p conic, P i. an interior point of the conic. 

4) Int, p I the conic. 

I. ,I ine, P is the __ ...) _ onle. 

conic mat has an ordinary point a. its center ,. call 

Th lvoerbola and alii have ordinary point. as centen sInce they are not ta t 

o idoal line. T TabOla has an I Int al center. 

2+-'4.5. Coordinates of the ideal JX!ints of a conic. The conic 
1 1x2 

2+ Cx :: 0, i.,
2
 

1) 0 hy
 o points on t 01 line, (I.e., S' - 4AC 0) 

2
2) a parabola if it one point on I line, (i.e., n - 4AC = 0) 

2t no point. on th I line, (i.e., 8 - 4AC < 0)) 
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coorcsinatel of the ideal points of each Ie are derived from the pouibl 

conics 01 follows: 

2 2
.X 8x + CX :::: 0,1x

2 2 

Xl 
,= x2 

and 

2x2 -8 %~ 8 ­ C h o.XlXl 2C I 

Hence for: 

Case 1) C "> 0, 

Th o Jd Ic are (-8 ± ~_2 C k, 2Ak,O) and 

(2Ck, C k, 0). 

2ase 2) C :::: "" 

The ideal Doint on the conic Is (-8k, , 0) or (2Ck, -8k, 0). 

Case 3) - 4AC < 0, 

2
Tho idocl poln" on the conic (-8 ±~ 8 - 4AC k, 2Ak, 0) and 

(2Ck, -8 ± ~ 82 
- 4AC k, 0) have imaginary coordinate. and therefor 

no rcol Ideol potnts exist for this COl.... 

Tho center of a conic is th9 Intersection of 

the transforms of two Idl!Q1 points. Taking the polarity of the general conic 



(&o~'" uo... 

t 
and If tnlt canter I. ordinary would ba .&.r,:L. u..... H. 'The 

center of a conic is the orIgin (0,0,1) If and only If D = E = O. 

4.7. The absolute conic. Select a polarity f = (All)' I, i = 1, 2, 3, such 

that f(l,O,O) = q,O,O and f(O,l,O) = rO,l,o which would Imply A =A c
12 13 

'23 :: 0 and All A22 A3'] I 0 and hence the polarity f may be writt, 

rA11 Xl' A x2' A ' ond without loss of generality It can be ossumed All
22 33 x

3 
2 2 2

A O. Therefore the polarIty eon be represented at rA Xl' 8 x2' C eX •
22 3 



-I 0, OJ
2 

= 1). Th In order for a point to b13 on its own transform 

2 2 2 2 2 2
under this polarity, the condition x, + B x2 + C eX :: 0, which can be 

3 
• 2 2 2 10

written x, + x x = 0, = 1, without loss of generality, must exist. 2 3 

Bya change of coordinates the polarity rp'x B2x2' C2 ex ~ may be written
3 

" 
rXl' X-z ex 1 

, (e
2 

:: 1). this polority will be called the absolute polarity. 
3 

2 2 2
The set of points sotisfying the condition x , + x + ex"! = 0, under tho 

2 
2

polarity r' x" x2' eX ~, (e = 1) will be called the absolute conic or is som"­3 

times callod th~ ideal conic. 

4.B. :>ummary. place of a conic In plano geometry 

and the ideo of a c ometry is pressnted. The conditions 

pice a transformation by a conic or the conic Is classified 

occordinQ to Its I Ints or fined and demonstrated. 

particulClr conic is selected coiled I conic. 

TOM rYe, Opt cit., p. 270. 
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CHAPTER V 

ISON GF SE L GEOMETRIE 

• 1. Introduction. In thll chaDfer leV etrl.. wI II be defln 

and the condition. placed on the matrlctll of their tr, onnatloN wI II be 

derived. A comparison of the condition. on the matrlc will be made along 

with the Invariant propertle. of .the.. geometrl_. 

.2. etry In thl. study II 

IUbaeometry of proJectIve geometry and will defined by ita invariant 

properties under projectiv 

proJective plane hal been defined and the DOtnts and 

IInel Identified. Points on the ideal line [0,0, 1] are called Ideal points, all 

othen are called ordinary points. In the proJective geometry; two distinct 

points determIne 0 unique line, every line contaiN at lealt two points and 

two distinct lines determine a unIQue point. The group of tronsformatlons of 

proJective geometry II precl.ely the set of nonslngular transformatION. Each of 

the other "eometrl.. discuned In this .tudy II a IUbgeometry of profectlve 

geometry, and Includes the properties of proJective geometry along with Its 

own DrODertlel. 

The aroup of transformations of parabolic geometry leave 

pairs of oolnts with resDect to the ablolute InvolutIon Invariant. Ideal DOlnh of 

parabolic geometry or. the Ideal points of the Ideal line ~O, 0, 1], all oth 

points are ordinary. 



6
 

m:·try. ruclldcan g~ome a lie metry. 

of transformations of Euclidean geometry the paris of points with 

rosp",ct luta involution inverlan) lute value of the deter­

mlnant of the transformatfon mofTix II uclidean geometry is defined 

on the proi active plane wi 

points, all points and lines are ordinary• 

. .yP_. __ .. _ geom3try. In the group of transfl tions of hyperbolic metry th 

aDSOlu ie, (x
2 + x

2 + ex
3

6- :::s 0, e :: -1) is Invariant. Real ints of th1 2
 
. (2 2 2
obsolut COniC, Xl + x + eX = v, = -1), ore the I I points of hyper­2 3 

2balie ornet')'. Points Inside tho conic (I. ., Xl + x X < VI :: -1)
3 
2. 2 2 are call ordinary po·ints•. 1 Pofn t conic (I. ., xl T x + x ,

2 3 
12 

:: -1) are called ultra-Ideal points. 

ULTRA-IDEAL POINTS 

ORDI NARY POI NTS 

IDEAL POINTS 

222
 
Xl + x2 = x3 

Figura -4 

HYDsmoltc Points 

11 
~rvwI • Clt., p. 270. 

Ibid. 
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rroup of transformations of elliptic geometry leave th 

2 2 2
oDsolute conic (x, + x + ex., = 0, e~~ 1) invorlant. The Ideal points of

2 
2

IIlptlc gsomatry are, the r I points on 'the absolute conic (xl £. + x + ex,./ = 0,2 
2 2 2,; = 1). Ordinary points or points in which (x1 + x + ex ..... 0,0 = 1).

2 3 

Hence in elliptic geometry all real points are ordinary. 

..... "'VI 'YU"..", "" "'V transformations. The prolectlve transformation Is 

restricted or specialized by placing conditions on the elem of the matrix of 

the Droieetfv r to obtai nsfonnatlonsor trans­

formotionsof less general geometrle.. Properties of clal Mometrles which 

remain Invariant under the transformations of that Qe0m8try determIne the conditions 

to be placod on the matrix of the proJoctive transformation. 

A proJective transformation Is dbya3X3 

matrix if and only if th trlx Is nonsinau lor. 

(A,,), i, i = 1, 2, 3, III ij 1-1 O. 

__ ~ -{ - P ... The identity proJective transformoti all poInts 

d by the matrIx 

k0 0)
kl = 0 k 0(

o 0 k 

The identity tronsformatlon Is derived from th neral proiectlve transfonnati 

by setting the product of neral protective transformation and a general point 

ual to a multiple of the general point and solving the resulting eQuations for th 



leme"...- of the tTonsformotlon matrIx. Th~ product of ral croiectlv 

transformatIon and ct aenorol poInt I follows: 

11 °1 

= where (Xi) = (kxl" 21 °22 

31 °32 

and k 1 o. 

The corrOIDondlnQ system of eQuatIons In homogeneous coordinates Is:
 

(all - k)x 1 + 0 12 )(2 + 013)(3 = ....,
 

°"'1 xl (o~~ - k)x~ + 023 x3 = 0,
 

+ 0 )(2 + (033 - k)x	 = 0, which If true for all xl' men0 31 xl 32 3
 

all = k,
 

0 = k,
22 

= ." and
 

0 = o.
= "'21 = = °310 23 32
 

relultln trJx may be wrItten:
 

k0 0)
(o k 0 = kl. 

o 0 k 

Inverse transfonnation. The Inversa of 0 sformation A Is the transformati 

-1 -1-1
A If and only If AA	 t:: I = A A. No tranlformatlon has more thon one 

-1
inverse. If A Inverst) II A and If B is another transformation such that AB = I, 

-1 -1 -1 -1
then = 18 = (A A)8 = A (AB) = A I = A • 

= 



n arbitrary Involution on 
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ideo I line, undor which 

poInts of the ideal line form pairs Is select, d called tho absolute involutIon. 

his particular involution will be denoted ,CD and defined on the homogeneous 

InateJ of an id Int as follows: 

~kX2)1) -kX2 ::I 1 
o 0 

ntation of tha<transfonnotlon for this involutJon I from 

tho roloctlve transformatfon by salvin m of eQuotlons resulting 

from placin Invariant properties of the absolute involutio the product of 

nerarproi~ctlve transformatfon arlo neroI Ideal point 01 follows: 

== , wner , i == 1, 2, 3, Xi = kx, and k F O. 

The corrospondlng system of eQuation is: 

° 11 Xl + (012 - k)x2 0,::I 

(021 + k)x 1 + 022 x2 = 0,
 

0 31 Xl + 032 x2 == 0, for all xi.
 

, '"'1'" - k,
 

0 = -1<,

21 

031 = 0 = 0, and the Involution is reprasented by the matrIx 32 
,
 

0 k 0
 

-k 0 0
 

0 0
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here by multiplying by 1/0 ,,, a .... can be mad ual to 1. The poInts
3

and (~~) 
are (2 pair under the absolute involution. 

he parabolic transformatIon Is derIved from th 

ral orojective tronsformatlon (Aii)' It = 1, 2, 3, IAql1 0, by restrIcting 

the matrix 50 that the points that correspond to each other wTth rGspect to th 

aosolute involution wIll be corresoonding poInts with r, ct to the transformation. 

Cince the! ablOluto involution preserves Pairs of ideal points the matrix must have 

the condition that whenever an ideal point (X) fs also an ideal point. 

Xl) (all "1 

1\) (:2 = :~1 ~1 

Therefore 0"'1 Xl t == 0, for all xl' x2' hence 0 31 = 0 = O. Thea 32 x2 32 

rosulting tronsformatton matrix would bo of the form 

°12 13 
00 )(11

°21 °22 23
 
0 0
 

°33 ' 

where 0 can be made equal to 1 by multiplying by 1,/4
23 

If the points 

and(:~) 



Ir under the absolute involution then under the parobollc transformation 

(all xl +	 Xa 12X 2\ ll x2	 - 012 )
 

- °22 x,
~21Xl : 022X~ on 021 x2 
ot

ore a pair under the absolute involution.
 

These points fonn 0 patr of the obsolute Involution If and only if there exisft a
 

number k 'I 0 such that for all Xl and x_:
 

all Xl + °12 x2 = k(021 x2 - °22 x ,)
 

0 21 Xl -to 022 x2 = -k(oll x2 - 012 x l)
 

that is
 

(all + ko~xl + (012 - k021 )x2 = 0
 

(0"1 - kal~x1 + (022 + ka ll )x2 = 0
 

'hich If true for olf x. ond )(2 th
 

Q., + ko 'l = 0 and a kat. :::: 0, which ImpH
2 22 +­

2 2 2 
0'1 = 0 ond k = 1, slmllorly22
 

2 2
 
°12 = °21 and a,l °12 + 021 02~ = O.
 

Tho square of an InvolutTonis the Identity, ther,
 

2~ 
°11 . °12°21 °11 °12 + "'12'"'22 °11°13 + °12°23 + °13

(011012.013~ _ 
°21°22°33 - °21 °11 + °220 21 °21 °12 + °2'J! 21 °13 + °220 23 + 0 23 
001 o	 o 
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1 0 0)
= 0 1 0 = 

( 
001 

Henc~, 

2
 
011 + 012021 = 1,
 

2 = 1,°21012+0~~ 

0 ....1° 11 + 0"1')0~1 = 0, 

and 011012 + 01202'" = O. 

If °11°12021°22 ~ 0, 

2 2
Then, 0 11 + 0 12°21 = 0 + , and a'l = °2.... • 

.-.110, 0~1 all + °22°21 = all °12 + °12°22' 

or 021 (all + ° 2'; = 0 = 012(0" + 01')1)/' 

hence, 0'1-+ a"" = 0, 

or all = ""0 22 , 

an 0 = 0
21 12 , 

Ther0for~, tho parabolic matrix is: 

011 a 12 a13~
""0 11 a ....°1 3( o 1 

n transformation. Euclf s are derived as a spoc ta I co 

of parabolic try In which the detennlnant of the transfonnation matrix, 
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lAid = ±1; i, 1 = 1, 2, ..... Henco from the g~neral parabolic transformation 

°12 13 
0 0C )(11 -01112 23
 

0 0 1 ,
 

the Euc Iideon transformati rlv y the condition: all 
2 

+ a 12
2 = ± 1. 

·uclideon I'notrlx is: 

all 12 IAid ±1.ca 12 11( ,o o 

HyPerbolic and elliptic t tions. Th neral proiective transformation 

(Aii) i, i = 1, 2, 3; fAil1 # 0 is clalized to obtain the transformatIons of 

hyperbolic and elliptic geometries in whi the absolute conic is Invariant. If 

d• • 2 - + ­thC con ItlOO Xl + x2 ex = is invariant, t geometry is: 

1) elliptic if e = "'1, or 

2) hwerbollc If e = -1. 

Given the general transformation A II) I, I = 1, 2, and th 

x = (x.), 1 = 1, 2, ;$; 
I 

3 

~ x.(AIt)(xi) ~ (xi)' or L.Ail x. 
I 

Ii = 1
 

must be rostrictod so that
 

2 2 2 _2 2 _2

Xl + x + eX = f) ~ Xl + x + ax = 2 3 2 



N 

_2 2
 
x,
 I ii "I) 

i,i 

3 3
 

All x, I An xl A 13 )(3
 

.:: 1
i = 1 1=1 

L
:: I:.-6 i1 xl Ail xl 12x ++
 

3

LAI2x2Al2x2
 

1=1 1=1 1:: 1
 

3 3 3


3
3


LA12)(2An x,
 I "'12 X 2A i3)(3+
 +
 

2
2 2 :: o.
LAt2AI3x2x3 I. AI3L
\
 

= 1=1 1=1
 

2 2 2

For the hyperbolic cas~ wher = -1, s tltutlng x x, + x2 ' th3
 

followina conditions resu It
 

A
+
 + 2
12)(2
 x3+
 



22 2 2 2 2 2 
xl (°13 + °23 + gl1 + °21 - C?33 - °31 ) 
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222 
+ x2 (o13 + °23 + °12 + °22 - °33 - 2 

2 
) 

± 
d 2 2 
1~xl +x2 (°11°13+"21"'2 - OAl ) 

± 2x2~x1 2 
+ 11 2 (°12°13 + °22°23 - °3~o'Y.) 

+ 

Therefore: 

1x2 (oll'0,2 + °21 °22 - 1°3 = O. 

22222 2 
° 13 + °23 + °11 -+ °21 - °33 - °31 = 0 

222 2 2 2 
13 + °23 + °12 + °22 - °33 - °32 = 0 

13°11 + °23°21 - °33 0 31 :: 0 

013012 T 023022 - 033032 = 0 

all 0 12 + °21 °22 - 0 31 ° 32 = 0 

ond hence: 

(°33 + 1)~ = (°11 + 0 13)2 + (021 + 0~2 

222 
(°32 + °33) = (°12 + °13) + (°22 + Q23) 

222 
(°31 + °3'; = (all + °1~ + (021 + o~ 
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For the elliptic case who;' = 1, to x. 
2 2+ x 

2 
+ oX

3 
= 0 at least one 

coordinate of tho point must be complex. 'I'ith suitable change of coordinates It 

2eon be made to be x_ • Then x < 0 ana -x
3 

2 2 2
Substituting x~ = - (X, + x ) the following conditions result:2 

2{ 2 2 2. 22 4)x, \0 11 - ­013 ­+ 0 21 + 0 31 0 23 0 33 

22222 2 2 
+ (°12 - - °23x2 + 0 22 + 0 32 0 13 3" ) 

2 2 
ix. , \\X1l + x21 (011 a ,3 + 021 023 + °31 Q 33) 

x ~xl,2 + x21
2 

(a 0 + 0 )2 '2 '3 220 23 + 0 320 33

+ ~, x2 (ol1 a ,2 + ° 21 0 22 + o3103t = o. 

Therefore: 

222 2 2 2 
all -,+ °21 - °13 - °23 - 033 = 0+ 0 31 

222 2 ... 
0 + °22 - - - ° = 012 + 0 32 0 13 0 23 33 

all a ,3 + ° 21 0 23 + 0 31 ° 33 = 0 

012013 + Q22023 + 0 32°33 = 0 

0 11 °12 + 021022 + 031 a32 = 0 

and hone!): 

222
(a" - - (0 ) = (0 )Jo ,3) + (021 23 33 + 1031 
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(0'2 - iQ'3)2 + (022'~	 10~2,= (033''+la3~2 

• 2	 2 '2 
(0 11 - 10,-) + (021 - 102t = (°32 + 1°31) 

w if 0 0_ = a.... :: 0 ....1 = 0; t, m transformation will apply1 

to both hvoerbollc and clllptJc,g~etry. A .formatlon satlsfyino th 

condItIon is: 

1-
~ 

0 

{2
 

1
-
-~ JAIl I rI o.:).0 

5.4.	 A comoorlJon. Parabolic, Euclidean, hyperbolic, and dliDtic 

d with reso8ct to cortain figures of th 

proj 

TrIangle. 'A trIangle is noncolllneor ooints. The DOlnl'l 

(Xl' x2 ' )(3)' (Yl' Y2' Y3)' (%1' %2' %3) are noncolllnear If and only If: 

x, x
2 )(3 

m(xyz) = /Yl	 Y2 Y3 1 ~ 0 

%2 %3 

Inant m (xvz) is ~denned as th8 measure of the trlanal.... 

positive or n~gotfve dopendlng on t:he order in whIch the vertices 



a named. area of a trtan~le is eQual to 1/2 I of 

other Agu II bo dote figure into trional.... 

transformation pl'c>eA~ rmtnant of the tran·­

formation = *1. A comparison of transformat of parabolic, Euclidean, 

hvoerbolic and elllptic aGometrles: 

Parabolic Euclidean Hyperbolic and Elliptic 
, 

1 
0°12 °13 \ ;011 0 12 a 13\ ~ 

-0 11 -all 

I ~r: 

- 0

O~) \0:2 
O~J ~ 

0 Q 0\~ 

Iy I 

I 2 2It = all + a 12 # 0 IA
tl 
r:' 1 IA111 ~ a 

show rmlnants of formatIon. to be 1, hence they 

,d to as r't1ld motlool. The parabolic transforma­prl 

tions are coiled slmllorltl"•• 

UncI. -0,0, 1~ is tn d130l lino of parabolic ~ometry. Euclidean geometry 

2 2 2 
no Ideo I hne. deal conic (Xl +)(2 + eX = 0) Is the Ideal lin 

3 

of hyperbolic the Ideal line of elltptlc when 

e = 1. A point on the Ideal Ifn not separate the ideal line Into two 

gmonts. A point on on ordinary line in Euclidean or hyperbolic geometry 

seporatel th'! IIno into two segmenb, in parabolic or elliptic It doe. not. 

poInt mayor may not separate an ultra-Ideol lIne Into two 109111 
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Porallel. Two lines are said lIel If they ideol Dotnt In
 

om
 

In .. . not hav
 

ordinary point or
 I point In cOmmon, or If they have an ultra-ideal
 

potnt In common.
 

Intonacting. Two Ihies oro in.
 "_j! an ordInary point In com
 

Lines In IXlrabolic geometry aM either Intorsectlng or parallel. In EuclIdean
 

Ithor In cting or nonIn ctlng. Euclidean nonlnter­


sectina lines II ralbl. In hyperbolic geometry lines ean be Intersectln",
 

nontnt"rsactlng or parallel. In elliptic geomotry all lines ore Int
 

In parabolic geometry th
 

!lTl 

ach lIn
 

ugh a DOtnt not
 . rallel to an 

ordInary given line. This is also truo In etry, however in hypor­

lie aeomatry with two tdcal points 0 xactly 

two lines through a point not on that line parollel to the £liven lin.... 

In"'.-ctlng one of two parallel lines tn parabolic geomotry or Euclid 

nterseet the other. In hyp t may or may not 

intersect the other. 

Perpendicular lines. Two ordinary IInos 11 and 1 are R~rpe!,di~~ If and only 
2 

If the Idool potnt of 1 and th~ Ideal poti'!t of 1 fonn a oalr unciar the absolute
1 2 

tnvolu tlo... 



o 

Iyone line 

cUdeen 

rbollc 

y ectinw.geomotry they ore noninteiiectin 

lor to a given line In hyp ic memo"'1 ho n ultro­

ideciLDolnt in com 

botie geometry poi 

omotry ond elliptic geometry all points are ordinary. In hyperbolic geometry 

points ore ordinary, Ideal or ultra-Idoal. 

finsDection of th 

oW'S 0 31 =0 
32 

=0, 

0 __ = 1, and thereto II four leav If th~ proJoctive Dian 

Invariant. 

T involution. four formatiOlu 01 ints that 

parabOlic, fueli 

lute Involution invariant. ach 'othnr wIth 

.-.1. Summary. In thl. chapter four subgeomotrles of protective geometry; 

parabOlic geometry, Euclidean gaometry, hyperbolic geometry, and elliptic 

geomotry arc doflned and the condltionl on their transfonnotlons are deri 

The goomotrles aro thon compared according to Ideal and ordinary points, td 

ana ordinary Iinos, parallol Iinel, porpondlcular lines, IntersectIng and nonlnrer­

ria.nco of orl f line rO,o,11, and th 

absolute involutl"" .. 
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CONCLUSION 

. • Thl. thalls Is a ;Itudy of paroboltc geometry, Euclidean 

geometry, h , arte;t'clHptic;: g3Of1leh'y Ibgoometrlcs of pro-

CtiVIl ~omotry. Identified by their algebraic rti 

tf· .. . 

In r I the problcm Is outlined and terms deftned. Chapter II pr ts 

a brief history of tn. .. Iopment of goomotry. The hiltory Is divided into fevr 

rol porieds. The first period IncllJd~ 'tho time from nearly 4000 B.C. to 

" early usc of rlnQ. The second I. 

one In which Qoometry is moos into a rigorous deductive scionco: rules ar~ s.:Jt 

up and goometry Is placad on a sound logical basis. The third poriod from about 

the fourth century f .D. to th c ry is charocterlzod by {Ittompts 

Iscovary of non-Euclidto provo Euclid's fifth 10 

metry is also dilcovered. Th 

discoveries load to a r~nowcd interest In geometry and in recent yean geometry 

has bocome oraonized and Classified under the more gonoral geometry, proiectl 

geometry. In Chapter III tho projective plane Is coordlnatlzed ond the pain 

and flnes of tho plano oro icUlnttf1ed. Chaptor IV Is a description of 

The Qtmeral conic Is derivod, and special points are defined. In Chapter V 

gcomotrlC$ are dofined and tnclr transformations derIved. The oeometries Clfl 

then comPared and their Ilmilcrities end oifferences no 

om13try. 
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.2. Results. nlS transformations of parabolic geometry, Euclid 

rbollc aeomotry, and elliptic naomotrY all leave the Idcal Itn 

ral~ctive plano invariant, which Is not Invariant in th 

Yspoclallzing the transformations so that pal 

aell othor wi etta involution 

co 

for each 

roioctlve plane IS 

deflned for reol points. Sfnce the Id~1 conic of elliptic geometry involv 

imaginary numbers, further research into tho ideo of complex eoordina 

projQctiw plane and tronsfonnotlons involving complex points fa indlcotad. 1M 

thesis comDOfOS the cu,"oral transformations of four particular subaeomctriol of 

proJective geometry. There are sevoral other subgroups of projective tran5­

fonnotlons which could be given closer Investigation. A metric comparison of 

these goometries could olsa be mode by daftning tho dlstanco concept. 
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