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CHAPTER |
INTRODUCTION

1.1. Introduction. Geometry was originally concerned with measurement
of line segments, angles, and other figures on a plane. Gradually, the meaning
of the word geometry was extended to include the study of lines and planes in
the ordinary space of solids, and the study of spaces based upon systems of
coordinates, where points are represented by ordered sets of numbers (coordinates)
and lines are represented by sets of points whose coordinates satisfy linear
eqm:ﬂons.l Recently It has been extended to include the study of abstract spaces
in which points, lines, and planes may be represented in many ways. In this thesis
a geometry will be considered as a set of points and lines and a group of trans-
formations under which some property is left invariant. It is a deductive science

using both analytic and synthetic methods of representation.

1.2 Statement of the problem. Any linear geometric transformation can be

represented by a matrix. In this thesis the analytic transformations of parabolic,
Euclidean, hyperbolic and elliptic geometry are derived from defining invariants
showing the conditions placed on the matrix of the transformation. A comparison

is then made of the resulting conditions and implications of these conditions.

1 B, E. Meserve, Fundamental Concepts of Geometry (Cambridge,
Massachusetts: Addison=Vvesley Publishing Compeny, 1955), p. 1.
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1.3. Importance of the problem. The algebraic representation of points, lines,

and transformations of geometry often makes proofs of theorems simpler and the
mathematical concept involved easier to visualize. V hen the analytical methods
become more involved, a second method of expression and the shorter notation has
certaln advantages. With parabolic, Euclidean, elliptic, and hyperbolic geometry
each represented on the same coordinate system, a comparison quickly emphasizes
the similarities and differences of the geometries.

In modern living, with the everyday use of electronic computers and the
advent of space exploration and navigation, the use of non-Euclidean geometrles,
along with Euclidean geometry, and their representation on a coordinate system,

is becoming increasingly important.

1.4 Undefined terms and relations. The undefined terms used in this thesis

are: 1) set,
2) points, denoted by capital letters P, O, R ...,
3) lines, denoted by small lettersp, g, r. ..,
4) planes, dencted by small Greek letters ), m, . . .,
5) Incidence, a symmetric relation between points and lines such that:
i) 1f P is incident with p, then p is incident with P,
i) if p is Incident with P, then P is incident with p,
iii) two distinct points are together incident with exactly one line,

iv) two distinct lines are together incident with exactly one point,



v) there are four distinct points such that no three of them are incident
with the sama line. "On" may be used os o synonym for "incident. "
In this thesis the discussion shall be limited to the study of points and lines

in the space of the projective plane.

1.5. Definition of terms. / Projectiva plane Is the set of points and lines

satisfying the conditions of incidence.

The unique line incident with two points is called the Join of the two points.
The unique point incident with two distinct lines is called the Intersection of the
two lines.

Two or more lines incident with the same point are called Concurrent.

Two or more polints incldent with the same line are called Collinear.

A Figure s a set of points and lines.

A Projective transformation Is a one-to-one correspondance between two figures in

the projective plane such that incidence Is preserved.

A Collineation Is a projective transformation which maps points into points and
lines into lines.

A Corralation is a projective transformation which maps points into lines and lines
Into points.

2 point is Self-Conjugate with respect to a correlation if it is on its own transform.

A Polarity Is a correlation which satisfies the condition that X is on the line
corresponding to Y if and only if Y is on the line corresponding to X, for all X,

Y ¢ K, whare K is the set of all points of the space.
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A Conlc is the non-empty set of self-conjugate points with respect to some polarity.

The |dentity Transformation is a transformation in which each point maps into itself.

An Involution is a projective transformation, not the identity transformation, such
that its square is the Identity transformation.
A Geometry consists of an ordered pair (K,R) of sets such that:

1. K is the set of points and R is the set of lines,

2, Every line is a set of points,

3. Every line contains at least two points,

4, Two distinct points determine a unique line,

and a group of transformations under which certain properties are left invariant.

1.6. Organization of thesis. Chapter li provides a general picture of the

development of geametry from the earliest beginnings to its present state, In
Chapter Il a coordinate system is developed with which to compare the various
geometries. Chapter IV discusses the Conic, and Chapter V shows the derlvation
of the conditions placed on the transformations of each geometry. In Chapter VI
a summary is made of the comparisons, and the results and conclusions of the study

are stated,



CHAPTER Il
A BRIEF HISTORY OF PROJECTIVE GEOMETRY

2.1. Introduction. A better understanding of a subject s obtalned by a
knowledge of the davelopment of the subject. By an over-all view of a subject
and an inspection of the Interesting points In the avolution of the subject, methods
of learning and techniques of problem solving are suggestad. The errors and
successas of previous mathematicians are studied and utilized in further development
of the subject. Projective geomeiry is a fairly recent development of geometry
and results from a ganeralization of the previous geometries. This brief history
is divided into five periods. The first period deals with primitive Egyptian and
Babylonian geometry. The second period presents the early Greek geometry and
the axiomatic approach. The next period shows the discovery of non-Euclidean
geometry. The fourth period presents analytical geometry, and in the fifth period

projective geometry is generallzed from the previous geometries.

2.2, Egyptian and Babylonian geometry (4000 - 600 B. C.). Early geometry

developed as a result of man's effort to construct a set of logical rules to correlate
data obtained from observation and measurement. Tablets dating back beyond

2000 B. C. indicate the Babylonlans and Egyptians were employing some of the
fundamental geometrie concepts. This gsometry originally was an empirical method
used for measuring area of rectangles. They probably had formulas for finding

areas of right triangles, trapezoids with a right angle at the base, the volume of



rectangular parallelopipeds, and the right prism with trapezoidal or circular base,
They also knew the altitude from the vertex of an isosceles triangle bisects the
base, that corresponding sides of similar right triangles are proportional, that the
angle inscribed In a semicircle is a right angle, and the general formula for the

area of a triangle.

203. chly Gl‘..k Eaﬂ‘fry @m B‘C. - m A.Do)o Abw' wo B-Cc 'h’

Greek culture was becoming an important factor in the ancient world, The early
Greeks made the first recognizable progress in the study of geometry as a science
independent of its practical ar.\pllcuﬂcms.2 The deductive feature, the fundamental
characteristic of mathematics, was developed, Thales was the first known individual
to whom mathematical discoveries were associated.” He Is credited with @ number
of elementary discoveries in geometry.

From the time of Thales (about 600 B,C.) to the time of Euclid, a great deal
of progress was made in geometry, Some of the more prominent names associated
with this early Greek geometry were: Thales, Theaetetus, Proculus, Hippocrates,
Pythagoras, Hippias, Eudemus, Menaechemus, Hipparchus, Theodorus, Eudoxus, and
Euclid. One of their greatest contributions was the development of the axiomatic
method. From the accumulated material, Euclid compiled his Elements, the most

remarkable textbook ever written; one which despite a number of grave imperfections

2 H, E. Wolfe, Introduction to Non-Euclidean Geometry (New York: The
Dryden Press, Inc., 1945), p. 1.

S Howard Eves, An Introduction to the History of Mathematics (New York:
Rinehart and Company, Inc., 1953), p. 52




has served as a model for scientific treatises for over two thousand yocrs.4 The

Elements contains thirteen books which include plane geometry, the theory of

proportions, the theory of numbers, the theory of incommensurables, and solid
geometry.

Next in the development of geometry was that of higher geometry, or the
geometry of curves other than the circle and straight line, and of surfaces other
than the sphere and plane. Much of this work was largely due to the discoveries
of Archimedes, and Apollonius in works on conic sections, and the "Mathematical

Collection" of Pappus.

2.4, The axiomatic appreach of the early Greeks (300 B.C. - 300 A.D.).

The axiomatic approach to geometry taken by the early Greeks, and which is the
method in use today, consistscof @ minimum of undefined temms and axioms, and a@
maximum of defined terms and theorems. The axioms must be consistent, and should
be complete, independent, categorical, and fertile, A set of axioms is consistent

if no contradictions can be deduced from the set. A set of axloms is complete if of
any two contradictory statements involving terms of the system, at least one statement
can be proved in the system. A set of axioms is said to be independent if no axiom
can be deduced from the others. A set of axioms is categorical if there is essentially
only one system for which its axioms are valid, that Is, any two systems which satisfy
the axioms are Isomorphic. For a set of axioms to be fertile, at least one theorem

can be deduced from them. A definition must: (1) name the concept being defined,

4 Meserve, Op. Cit., p. 221.
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(2) give the distinguishing characteristics of the concept being defined, (3) be concise
(i.e., contains no superfluous information), (4) contain no new elements or relations,

(5) be reversible,

2.5, The discovery of non-Euclidean geometry (19th Century). The attempts

to deduce Euclid's fifth postulate as a result of the other Euclidean postulates led
to the discovery of non-Euclidean geometry. These attempts persisted until the
19th Century when hyperbolic geometry was discovered independently by Gauss,
Bolyai, and Lobachevsky. Gauss, however, did not publish his work, and credit for
the discovery is given to Lobachevsky and Bolyai. Bolyai wrote an appendix for
his father's treatise on geometry, which gave an account of his (the younger Bolyai)
investigations, Later elliptic geometry was discovered by Riemann. Today, many
have the idea that a geometry other than that of Euclid is the best model for our

universe,

2.6. Analytical geometry invented (17th Century). Another appendix to a

book that was of Incomparably greater significance than the book itself was the first

treatise on analytic geometry, which formed an appendix to Discours de la Methode

written by the French philosopher-mathematician, Rene Descartes (15‘75-1650)i3
Descartes visualized all algebra expressions as numbers which were the measures of

geometric objects instead of as the geometric objects, and found equations representing

5 Leonard M. Blumenthal, A Modern View of Geometry (San Francisco:
W. H. Freeman and Company, 1961), p. 54.




several curves. This union of algebra and geometry made possible the establishment
of a coordinate system by assuming that the points of a line are in a one=to-one
correspondence with the numbers of the real number system, and that the space
coordinatized had all the Euclidean properties. Thus the geometry is consistent If

the real number system s consistent.

2.7. The development of projective geometry (19th Century). During the

Renaissance, medieval painters, in their desire to paint realistically, worked to find
a mathematical method to depict the threa=dimensional world on @ two-dimensional
canvas. Since these painters were also architects, engineers, and the best mathe-
maticians of the 15th Century, they were very successful in the task. The key to
three=dimensional representation was found in what is known as the principle of
projection and m:ﬁc:m.6 The theorems which arose from this work led to the development
of a more general geometry, projective geometry. Desargues and Pascal produced
theorems which are fundamental in the development of projective geometry., These
theorems show that there are significant properties common to sections of any projection
of o given figure, Desargues and Pascal visualized the conic sections as projections of
circles and discovered other properties of conics.

Klein and Cayley then showed that parabolic, elliptic, and hyperbolic geometries

can be derived as special cases of projective geometry. Poncelet wrote the first text

6 James R. Newman, The World of Mathematics (New York: Simon and Schuster,
1956), 1, p. 623.
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on projective geometry, He considered ideal points (intersections of parallel lines)
and developed the concept of duality, Plicker introduced o new type of coordinate

system in the projective plane.

2,8. Summary. Projective geometry, as we know it today, is a result of
evolution of geometry over a period of approximately four thousand years from simple
practical methods of measurement to a highly developed abstract science. Projective
geometry incorporates both the synthetic, deductive methods of the early Greeks and
the algebraic approach introduced by Descartes with application of the techniques

of algebra and calculus and recent discoveries of mathematical methods.



CHAPTER 11|

A COORDINATE SYSTEM

3.1. Introduction. A coordinate system is to be developed for the paints on
projective lines and planes. It will be based on the geometric properties of the
projective plane. The set of points on the projective line shall be isomorphic to
the extended real number system. This isomorphism makes it possible to use the
real numbers as coordinates of points of the projective line. The purpose of the
coordinate system is:

1. To identify the points on the line.

2. To establish a coordinate system for the projective plane.

3. To obtain and describe properties of the geometry.

3.2. Summation Convention. For brevity of notation the summation convention

will be used in the following discussion. V.henever the same letter is used as a
subscript twice in a term it will be understood to mean the sum of such terms where

the subscript of summation is the repeated subscript. For example:

A”

3
Xi,i,] = 1, 2, 3 means A‘ixi' fori = 1,2, 3.
i=1

3.3. Method of representation. 2 point is represented by a 3 X 1 column
o

vector (Xi)’ i=1,23, (e.g. | X3 | ) called the homogeneous coordinates of the

A3
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point, where:

i) (kx') = (X') when k is a real numberand k # 0,

ii) there is no point corresponding to (Xi) = (0).
A line Is represented by a 1 X 3 row vector Tuk 1, k=1, 2,3, colled the homogeneous
coordinates of the line such that:

) Tky 1 = fui 1 when k is a real number and k # 0,

i) there is no line corresponding to fu 1= T07,
In this discussion parentheses shall be used in the symbol representing a point and
square brackets shall be used in the symbol representing a line. Note that (Xi)
(e.g., (1,0,0)), refers to @ column vector which denotes a point. Mu;1 (e.g., 11,0,01),
refers to a row vector which denotes a line. A point is on a line if and only if their
inner produet is zero, Mu; 1(X;) = 0.
A projective transformation is represented by a non=singular 3 X 3 matrix
Adl1=123,

1) a projective transformation of point (X') to point (Yi) is represented

(Ai i) (xi) - (Yf);

A,'l # 0, such that:

2) a projective transformation of line "u; 1 to line "v"l is represented
Fye t = t = K .

(A‘ i) UI] (vl) ‘vi.‘l
3) a projective transformation of point (XI) to line fu,7 Is represented

(A D) = ' = ru;

1
4) a projective transformation of line "u"! to point (X') is represented

(Ai [) rui 1 ' - (Xi)'
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The equivalence of these with the definitions in Chapter | is shown In many standard

texts. (e.g., Meserve, B. E., Fundamental Concepts of Geometry, Ch. 4),

Two points (X;) and (Y‘), i =1, 2,3 are on the line "™Xgya = Xayy, Xy} = X1 Y3
)Yy =W
Two lines "ui'? and rv"l,, i =1, 2,3, intersect at the point

UpVg = UaV,

UgVy = UpVa

. R .
Three points (Xi), (Yt) and (Z'), i =1, 2,3, are collinear if and only If

%eX1 %

Xo¥a¥s = 0.

*3Ya%3
Three lines "ui'l, !'vi'J and "wiW, i =1, 2 3, are concurrent if and only if
Y1Y2"%

Y1Ye2"s

W1¥a¥3
A correlation (Ai i) is a polarity if and only if condition (i) implies (ii)

and conversely;

D (A X ) = "u, T, iy 1 = 1, 2, 3, the line which is the transform of the

) contains the point (Yi), i.e., uiYi = A‘ X Yi = 0,

int (X
P i

i



14

i) (A Yi)' = Tu,1, 1, | = 1, 2, 3, the line which is the transform of the

i

point (Yi) contains the point (Xi), 1e@ey u, X, = A‘ i Y‘ X‘ =0,

Line rui 1 is called the polar of the point (XI) with respect to the polarity. Point (X‘)
is called the pole of the line ™ v, 1 with respect to the polarity. This is true for all
points if and only if AI i = A,' 0 that is the matrix of the transformation is symmetric,

Theorem: A comelation (A, ) is a polarity if and only iIf A, , = AI P

i i
Proof: A point X = (Xi) is transformed into the line TUIW by the correlation (Ai I);
(A”Xi)’ = Tu., 0, 1= 1,28 IFY = (Y,) Is a point on line T, then

I'uiT(Yi) = 0, i.e.,

(A X)'0Y) = 0, then G (A D' (Y) = 0,1, 1 =1,2,3.

i
If a point Y = (Y]) is transformed into the line "l.;k1 by the correlation (Ald);
(A, v = fu dr ke 1 =1,2, 3, 1FX = (X,) is @ point on line Ty, ]

then "uk"(Xk) = 0, i.e.,

(A, Y])’(Xk) = 0, then (Yl)'(Akl)'(Xk) =0,k1=123.
In order that the correlation (Ai i) = (Akl) be a polarity

0 A DY) = 0 (v A ) = 0 since
trpta '’ = ror',
0 A D' (V) = X)MAL(Y) = 0 hence
(A i)’ = (A hrandk = j,and 1 = i therefore

(Ail) = (A“). Q.E.D,

A point, (Xl)' is self-conjugate if(A”xi)' = ru‘* and t‘,;)(i = (A”xi)' )(i = 0,
. 2 2 2
oy Apy Xy + 2A10% X9 + 2A 0% xg + Agyxy + 2A0ax %0 + Agaxg” = 0,
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The polerity is called elliptic when all the self-conjugate points with respect
to the polority are not real.
The polarity is called hyperbolic when the salf~conjugate points with respact
to the polarity are real.

A collineation g is o projective transformation of the points of a
projective plane to themselves satisfying:

1) g is one-to-one onto,

2) if points A, B, C ara collinear, so also are the points g(4), g(B), g(<C).

3.4, Coordinatizing the plane. In o projective plane 7 arbitrarily salect:

1) any point of 7 and denote the point (0,0, 1) and refer to it as the origin;
2) any three lines on (0,0, 1), one lina to be labeled [0, 1,0] and called
the x line, another to be labaled [1,0,0. and called the y line, the
third to be labeled (1, -1,0 ] and called the unit line;
3) any point on the unit line different from (0,0, 1) label it (1,1, 1) and
refar to it as the unit point;
4) a llne, distinct from (0,1,01, (1,0,0, and [1,=1,0], and not on
any point yet chosen and label 1t [0,0,1].
The line [0, 0,1 shall be called the ideal line and all points of the form
()(l " X2, 0) shall ba called ideal points. Other lines and points are called

ordinary lines and points.
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4(0,0,1) [0,1,0] X1

Figure 1
The Coordinate Axes

Since the points of the plane are represented by the homogeneous coordinates
x, 1 =1 2, 3, and (Xi) = (kXi), k # 0, any point in which the coordinate
x5 = 0 may be represented by (xl X0 1) by multiplying (x‘) by ;]; . The
coordinate X, corresponds to the x line, the coordinate X, corresponds to the y
line. Any point on the unit line has Xy = Ko

The intersection of "0,1,07 and 0,0,1 is (1,0,0).

The intersection of "1,0,07 end 0,0,17 is (0,1,0).

The intersection of "1,=1,07 and 0,0,17 is (1,1,0).

The join of (1,0,0) and (1,1,1) is 70,-1,17,

The join of (0,1,0) and (1,1,1) is 71,0,-17,
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Since the points of the real projective line are isomorphic to the extended
real number system, the other points of the projective plane can be determined by
the intersection of lines joining point (1,0,0) with points of the unit line and the
line joining point (0,1,0) with the points of the unit Iims.7

Two distinct points are incident with exactly one line, Consider X = (Xi)
and Y = (Yi) on line + = v, , then Xy Uy F %oUy + Xaus = Oand y vy + y,u,
* yqua = 0, and hence the general solution of the equation is:

Uy = kbxgyg = xgyd vz = klkgyy = xpygh ug = kigyy = x57y).
UprUye Ug not all equal to zero, otherwise X = Y. Therefore there is a unique
line incident with two distinct points X and Y. Similarly two distinct lines p and
q are incident with one point X = (X') such that:

x, = klpyay = Paads x, = klpyq, = pyaq)s x4 = kip,q, - pyqy)

The projective plane can be represented as in Figure 2,

3.5, Summary, In this Chapter representations for the points and lines of @
projective plane are chosen. The algebraic representations of relations such as
transformations, self-conjugate, collinear, and copuntal are shown along with the

representation of point, line, and polarity.

7 Meserve, Op. cit., pp. 86=89.



(1,0,0)
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Figure 2

The Projective Plane




CHAPTER IV
CONICS

4.1. Introduction. A conic in geometry is usually defined as a plane section
of a right circular cone. The nondegenerate conics, i.e., parabola, circle, ellipss
and hyperbola, are studied in analytic geometry. A single point or any two lines
(coincident, intersecting, or parallel) may be considered as degenerate conics.

In this study, except for the ideal line, conic shall mean non degenerate conic.8
The conic section was invented by Menaechemus about 350 B.C, and was thoroughly

investigated by Apollonius about 225 B,C,

4.2, Conditions on the polarity. If a transformation is a polarity, then

(Ai[)' L,1=1,2 3, isasymmetric matrix. The condition for a point (Xi) being

self-conjugate s (Anxi)Txi = 0, but (A X W = (Anxi)T, thus X, A X, = 0,

i i
Vhen A = A, then (A”XI)T, iy 1=1, 2 3, isa line, x Is selfconjugate if
(Xi) is on line (Aiixl)r'

The set of all X such that XiAil X' = 0 is a conic. This general equation of

a nondegenerate conic may be written in homogeneous point coordinates as follows:

2 2 P 2AB D
Ax.” + Bx,x, + Cx,” + Dx,x, + Ex.x, + Fx,” = 0 where [B 2C E
1 172 2 8 o 3 D E 2F

. Meserve, Op. cit., p. 63.

# 0.
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The condition that a conic be nondegenerate is identical to the condition
that the matrix of the polarity, for which the points are self-conjugate, be nonsingular.

When the general equation of a conic in homogeneous coordinates is Ax]2 + Bac,x2

5 2
9 * Dxyxg+ Bxyxg + Fxg

in ideal points (xl, x2,0) whose coordinates satisfy the equation A‘xl2 + Bx‘ X,

+ Cx22 = 0, Thus the number of real points of Intersection is the same as the

+ Cx = 0, the conic will meet the ideal line x

g =0

number of real solutions to the quadratic equation, From the theory of quadratic
equations, Au]2 4 Bx] x, + Cx22 = 0 will have two distinct, real roots, one

real root, or no real root according as 82 - 4AC = 0.9
<

4.,3. Classification of conics. A conic is defined to be a hyperbola, a

parabola, or an ellipse accordingly as it contains two distinct, one distinct, or no

real ideal points,

e 501
Hyperbola Q
Parabola
Ellipse
Figure 3

ldeal Points of the Conic

? C. F. Adler, Modem Geomstey, An nbogated Frst Coure (New Yorks
McGraw=Hill Book Company, Inc., 1958), p. 173.
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If a line p is the polar of the point P with respect to a polarity, then p is
said to be the polar of P with respect to the conic that consists of the self-conjugate

points of the polarity.

4.4, Special points. If p is the polar of a point P with respect to a conie,

then the following statements define the special terms which they contain:
1) If p intersects the conic in exactly one point, p is tangent to the conlc
at P,
2) If p intersects the conic in two points, P is an exterior point of the conic.
3) If p does not Intersect the conic, P is an interior point of the conic.
4) If P isan ideal point, p isa diameter of the conic.
5) If p is the ideal line, P is the center of the conic.
A conic that has an ordinary point as its center is called a central conic.
The hyperbola and ellipse have ordinary points as centers since they are not tangent

to the ideal line. The parabola has an ideal point as center.

4.5. Coordinates of the ideal points of a conic. The conic Ax 2. Bo(]x2

1
2 ]
+ sz = 0, is,

1) a hyperbola if it has two points on the ideal line, (l.e., 82 - 4AC - 0)
2) a parabola if it has one point on the ideal line, (i.e., 82 - 4AC = 0)

3) an ellipse if it has no points on the ideal line, (i.e., 82 - 4AC < 0)
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The coordinates of the Ideal points of each conic are derived from the possible
conics as follows:

+Cx2

2
Ax‘ + Bxlx 2 0,

2

and

Hence for:
Case 1) BZ - 4AC > 0,
W0 1ol potie o6 e aunte v (8 # 0% ~4AC &, 2k,0) and
(2ck, 8 +\82 - 4ac &, 0).
Case 2) B2 - 4AC = 0,
The ideal point on the conic Is (~Bk, 24k, 0) or (2Ck, =Bk, 0).
Cose 3) B2 - 4AC < 0,
The ideal points on the conic (~B :kI\J 82 - 4AC k, 2Ak, 0) and
(2Ck, -B il\jbz - 4AC k, 0) have imaginary coordinates and therefore

no real ideal poinfs exist for this case.

4.6. The center of a conle. The center of a conic Is the intersection of

the transforms of two ideal points. Toking the polarity of the general conic
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2 2 2
Ax] + Bx‘x2 + sz + Dx1 Xq + Ex2z3 + Fx3 = 0, to be
20 B ©
M) =1|B e £
D E 2F

and applying this transformation to two ideal points, (1,0,0) and (2,1,0), we

haova as follows:

1 f 0 |
M) 0 = M24,8,D7and (M) 1 = 'B], 2C], E’
0 0

The center of the conic then would be the intersection of 24, B, D7 and

rB, 2C, E1, which Is

2CD - BF
24F - BD
B2 - 4AC

t
2CC - BE 2AE - BD
2 ’ 2 7 l)o 11'\0

ond if the center is ordinary would be ’\ -
B” - 4AC B - 4AC

center of o conic is the origin (0,0,1) ifand only If D = E = 0,

4.7. The obsolute conic. Select a polarity f = (An), L,ji=1,2 3, such

that £(1,0,0) = "1,0,0 ' and £(0,1,0) = 70,1,0  which would imply A, = A, =

12° M3

Apn = 0and A A , Ang # 0 and hence the polarity f may be written

"An X A22x2, A33x3" and without loss of generality it can be assumed A”

and A22 0. Therefore the polarity can be represented as "Ale, Bzx? C2ex31.
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2

(/5.282':2 # 0,2° = 1), Then in order for a point to be on its own transform

under this polarity, the condition Azxﬁ + Bzxg + C2ex32 = 0, which can be

written x‘2 + x22 + ex32 = 0, 92 = 1, without loss of generality, must exlst.‘
By a change of coordinates the polarity "A2x], B2x2, Czexs“ may be written
rx], X axa", (02 = 1). This polority will be called the absolute polarity.
The set of points satisfying the condition x]2 + )(22 + ex32 = (), under the
polarity "x], X o0 exa“, (02 = 1) will be called the absolute conic or is some=

timas called tha ideal conle.

4.8, Summary. In this chopter the place of a conic in plane geomatry
anc the idec of a conic in projective geometry is presented. The conditions
placed on a transformation by a conic are developed and the conic is classified
according fo its Ideal points. Other speclal points are defined ond demonstrated.

A particular conic is selected and called the ideal conic.

0 Meservs, Op. cit., p. 270.



CHAPTER V
A COMPARISON CF SEVERAL GEOMETRIES

5.1. Introduction. In this chapter several geometries will be defined
and the conditions placed on the matrices of their transformations will be
derived. A comparison of the conditions on the matrices will be made along

with the invariant properties of these geometries.

5.2, Definition of geometries, Each geometry in this study is a

subgsomatry of projective geometry and will be defined by its invariant
properties under projective transformations.

Projective geometry. The projective plane has been defined and the points and

lines identified. Points on the ideal line (0,0, 1 are called ideal points, all
others are called ordinary points. In the projective geometry; two distinct
points determine a unique line, every line contains at least two points and

two distinct lines determine a unique point. The group of transformations of
projective geometry is precisely the set of nonsingular transformations. Each of
the other geometries discussed In this study s @ subgeometry of projective
geometry, and includes the properties of projective geometry along with its

own properties.

Porabolic geometry. The group of transformations of parabolic geometry leave

pairs of points with respect to the absolute involution invarlant. Ideal points of
parabolic geometry are the ideal points of the Ideal line (0,0, 1], all other

points are ordinary.
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Fuclideon geometry. Fuclidean geometry is a subgeometry of parcbolic geometry.
The group of transformations of Fuclidean geometry leave the paris of points with
raspect to the absolute involution inveriont and the absolute value of the deter-
minant of the transformation matrix is equel to one. Fuclidean geometry is defined
on the projactive plane with the ideal line removed. Hence there are no ideal
points, all points and lines are ordinary.
Hyperbolic geometry. In the group of transformations of hyperbolic geometry the

32 = 0, e = =1) is invariant. Real points of the

obsolute conic, (x.|2 + + ex

X

2

absolute conic, (x 2, X 2 + ex . 0, e = =1), are the ideal polnts of hyper=-
1 2 3 44

2 + x22 + ex3

v
; < 0,e ==1)

2

bolic geometry. Points inside the conic (i.e., x

are called ordinary polnh.” Points outside the conic (l.e., x‘2 + x22 + exg" - 0,
12

e = =1) are called ultra~ideal points.

ULTRA-IDEAL POINTS

ORDINARY POINTS

IDEAL POINTS

Figure 4

Hyperbelic Points

" Mesarve, Op. Cit., p. 270.
12 1b1d.
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Elliptic geometry. The group of transformations of elliptic geometry leave the

absolute conie (x]2 + x22 + ex32 = 0, e = 1) invariant. The ideal points of

elliptic geometry are the real points on the absolute conic (x]2 + x22 + ex.:2

2>O,e=l).

= 0'

: 2 2
e = 1). Ordinary points are points in which (;(1 * Xy *oexg
Hence in elliptic gsometry all real points are ordinary.

5.3. Derivation of the transformations. The projective transformation s

restricted or specialized by placing conditions on the elements of the matrix of

the projective transformation in order to obtain special transformationsor trans=-
formationsof less general geometries. Properties of the special geometries which
remain invarlont under the transformations of thaot geometry determine the conditions
to be placed on the matrix of the projective transformation.

Projective transformation. A projective transformation is represented by a 3 X 3

matrix if and only if the matrix Is nonsingular.
(A"), Li=1,273, IAii | £ 0.

Identity tronsformation. The identity projective transformation leaves all points

fixed ond is represented by the matrix

kl =

Q O X
o O
= O O

The identity transformation is derived from the general projective transformation
by setting the product of the general projective transformation and a general point

equal to a multiple of the general point and solving the resulting equations for the
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elements of the transformotion matrix. The product of the general projective

transformation and a general point Is represented as follows:

a5 9z O3 X) kx
Gy G99 O9s Xy | = kx2 where (xi) = (kx‘),
31 933 %33 Xs kxy

and k # 0,

The corresponding system of equations In homogeneous coordinates Is:
@) Lo Bimiti2%2 *. Taaa

g1 X, + (022 - k)x2 + Opa Xy = 0,

G %) + Ggo%, + (033 - k)x3 = 0, which if true for all Xq then

o = k,

92 = ke
Ggn = k, and

Sy " Gy Wy % Ugy Vg = dgy = 0
Therefore the resulting matrix may be written:

= kl.

o O %
o X O
=~ o O

Inverse transformation. The Inverse of a transformation A is the tronsformation

A" if and only if AA-] = | = A-]A. No transformation has more than one

inverse. If A Inversa Is A-‘ and if B is another transformation such that AB = |,

thenB = 1B = (A~'A) = A”'aB) = A”Y) = A7,
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The absolute involution. An arbitrary involution on the ideal line, under which

points of the ideal line form pairs Is selected and called the absolute involution.
This particular involution will be denoted I™® and defined on the homogeneous

coordinates of an ideal point as follows:

/
m{, X, ( kX,
| | Xo | = l-k)(l
\0 \ 0 .
The matrix representation of tha transformation for this involution Is derived from
the general projective transformation by solving the system of equations resulting

from placing the invarlant properties of the absolute involution on the product of

the general projective transformation and a general ideal point as follows:

) kg
(A") Xy | = -kxl ,whorel,i=l,2,3,xi=kxlundl<7‘0.
0 0

The corresponding system of equation is:
ap Xy *logy = kixy =0,
(02‘ + k)x, + AppXy = 0,

Gy Xy * GgpX, = 0, for all X,

Therefore, Gp = k,
o =
G3) = Gap = 0, and the involution is reprasented by the matrix
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VWhere by multiplying by l/c|33, a,, can be made aquel to 1. The points

X] sz
)(2 and -le
0 0

are o pair under the absolute involution.

Parabolic transformation. The parabolic transformation Is derived from the

genaral projective transformation (A..), 1] = 1,2, 3, |A,,| # 0, by restricting
i i

the mairix so that the polnts that correspond to sach other with respect to the
absolute involution will be corresponding points with respect to the transformation.
Since the absolute involution preserves pairs of ideal points the matrix must have

the condition that whenever X is on ideal point f(X) Is also an ideal point.

%y a1 %1 *.912%
B [ %2 | = | o9g1%) * e9%y
0

Ag1 %) * Qg9X,

Therefore An Xy Faga%, = 0, for all Xy 0 Xor hence aq = = 0, The

%32

resulting fronsformation matrix would be of tha form

11 =%12.“ %
P - O
0 0 Oaq/ 4

where Gy Can be made equal to |1 by multiplying by 1/033.
If the points

% X2
x2 and -x]

0 0
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are ¢ pair under the absolute involution then under the parabollc transformation

ag1% ¥ 919% S11% "~ 9%
Gg1X; * GgpXy | and {a, Xy = apnX)
0 0

are a pair under the absolute involution.
These points form a pair of the absolute involution If and only if there exists a

number k # 0 such that for all Xy and Xt
ap Xyt eyaxg = klag xy = ay,x))

Agy Xy * Ayxy = klay,x, = a,,%))

that is
() + kagglx; + fa), = kag )y =10
(0g) = kayxy + (agy *kaydxy = 0
Vhich if true for all *y and ) then
a;t kcz.Z = 0 ond o *+ ko]- = 0, which Implies

5”2 = 0222 and k2 = 1, similarly

= a2 -
®p “9gr ey o)y g0y = 0.

The square of an Involution is the identity, therefore:

2 2,
91191293 o1 T 92%1 M1%2 T 9292 91913 t 919993 * 94

\

91922%3| = |921911 * 9999  9919p T Gpp2 851015+ Ay080q + g

0 0 1 0 0 1

/
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11

[ IR =
1]

]

o — O

0
0
Hence,

2
o) *eap0y =1,

2
an0p YAy =1
95191 %8909 = O
and a,,0,, * 858, = 0.

¥ 0349999890 # O

2 g 2 .
Then, ;" + @158y = 9y,0,, + 0507, and o, = a,,%
Also, apy ey + ayp0,, = a0, + a0,

or  a, (a” + 022) =0 = 012(0” + 022):
hence, o) + Gpy = 0,

€ iy poric ¥ 2pe

andc Gy = Gyp-

Therefore, the parebolic matrix is:

T %12 %3
%2 ™1 °xa
0 0 ]

Fuclideon transformation. Fuclideon tronsformations are derlved as o special case

of parabolic geometry In which the determinant of the transformation matrix,



lAIil = +1;1,] =1, 2, 3. Hence from the general parabolic transformation

‘n Te s
%12 Wi W
0 0 S/ .
the Fuclideon transformation is derived by the condition: 0”2 + 0122 = +1,

Therafore, the Fuclidean matrix is:

11 "R %3
Y12 n 2
0 0 1 '

Il\ i]c

il

Hyperbolic and elliptic transformations. The general projective transformation

(Ai YLi=123 |A“I # 0 is specialized to obtain the transformations of

i
hyperbolic and elliptic geometries in which the absolute conic is invarient. If

the condition x]2 + x22 + ex32 = 0 is invariont, the geometry is:
1) ellipticife = +1, or
2) hyperbolic ife = -1,
Given the general transformation A = (An) I,1 =1, 2, 3 and the general point
X = Ge)1=123AX =X
3
APl = boor ) Aux = X,
=1
A must be restricted so that

x]2+x22+ax32=’)%i1 + X, + @



3
-2 _ 2
=) M

=1

3

3 3
L Z"n"l“n"l * ZAIIXIAIZX2 ’ zAn"lAla"a
i=1 i=1 i=1

3

3 3
’ Z"lz"z"n"u ' Z"‘n"z’&*iz"z ") Aig*oAiats
i=1 i=1 =1

3 3

3
' Z"ra"s“n"! ¥ zAia"aAtz"z * z Ara*aAia%y
I=1 i=1 i=1

Then -;12 + ':'('22 + a§32 = 0, implies

3 3

3
A 2x 2 + 2 Ay AKXy Xa + 22 ALy A . X, X
A nrizT1m2 3 I < R
i=1 i=1 i=1

3

3 3
g 2 2 2
- ZAW Xo + 2e ZAquxzxa + 2 2;&13 Xo Q.
=1 {=] I=1

For the hyperbolic case where e = -1, substituting x32 = x12 + x22, the

following conditions result



2, 2. 2 2 2 2 2
x) layg * oy tay T tay T magy - ay)

g point gt b g0l ing With oy
t xplayg" Fagy tap, tay -ag, "'322’

7 3
£ 2 \l"l * %y (8y1073 + 891899 = 85y0,9)
+ 2x x2+x2(u Qin ¥ Onnlas = Gnnlan)
2‘]1 9 (015913 + 899894 = 83900,

* Zyxplay 0,y + ag 0y, - e5y0,5,) = 0.

Therefore:

%3%11 * 9239 " %33%;
913% 2 * 99399 " 9339 =
91199 * G919gp " 9510839 = O

and hence:

(053 + °31)2 = (o, + °13’2 Y °23)2

(agp * "33)2 = fogpt ) + (g * "23’2

(g * 859" = lag, + "12’2 * g * "22’2
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For the elliptic case where ¢ = 1, to have x‘2 + x22 + ax32 = 0 at least one
coordinate of the point must be complex. With suitable change of coordinates it
cunbomdetobox3. Then x32 < 0 and -x32 > 0.
Substituting xaz = -("12 + x22) the following conditions result:
X gy *ag a3 -8y -9y - “332)

2, 2 2 2 2 2
F Xy ey tagy tagy magg -ayy - °332)

7 3
* 2, \l"n ¥ xg" ay03 a9 099 * a5 59

2

>
£ Zxg \Xp1 * X9 (819819 + 6990850 + ag5040)

* yxglay ey, +ag ey, +ag,0,5)) =0
Therefore:
2 2 2 2
Oy YOy tag mag =gy magy =0
2 2 2 2
12 Y99 T O3y =013 =@y =gy =0

%91%3 ¥ 92193 * 9319%3
912% 3 * 99293 * 932933
%1192 * 921992 * 991939 =

and hence:

@y - '°13)2 * oy - '°23) (033 * lagy)



@y - "13’2 * (ogy - '°23’2 = (agy * lag)”

(O - "’12’2 * oy - "’22’2 = lagy + '°31)2

Now if Qg = Ggy = Ggy = Ggy = 0, the same transformation will apply
to both hyperbolic end elliptic geometry. A transformation satisfying the

condition is:
e 1
N2 W2
gy, L,
z 3 lAy| # 0.
o o 1/ ,

_ 5.4, A comparison. Parcbolic, Euclidean, hyperbolic, and elliptic
geometries will now be compared with respact to certain figures of the
projective plane.

Triangle. A triangle is an ordered set of 3 noncollineor points. The points

(x] ' X4 x3), (yl '+ Yor ys), (zl ' 2o 13) are noncollinear If and only if:

m(xyz) = Y1 Y9 473 # 0

Measure. This determinant m (xyz) is defined os the measure of the triangle.

The measure is positive or negative depending on the order in which the vertices
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are named. The aree of a triangle is equal to 1/2 its measure. The areas of
other figures shall be determined by dividing the figure into triangles. A
transformation preserves measure If and only if the determinant of the trans-
formation = +1. A comparison of the transformations of parabolic, Euclidean,

hyperbolic and elliptic geometries:

Parabolic Euclidean Hyperbolic and Elliptic

24 SRR T

"N "y %13 1N "2 %3 z 3
11,

% 22 12 1. *n V2 13

0 0 1 0 0 ] 0 0 1

2 2
lAnl oy,  *a,, #0 IA“’ 1 lA“,;‘O

shows the determinants of Euclidean transformations to be 1, hence they
preserve area and ore referred to as rigid motions. The parabolic transforma=
tions can increase or decrease area and are called similorities.

Lines. "0,0,17 is the ideal line of parabolic geometry. Euclideon geometry
has no ideal line. The ideal conic (x‘2 + x22 + ex32 = 0) Is the ideal line
of hyperbolic geometry where e = =1 and the Ideal line of elliptic when

e = 1. A point on the ideal line does not separcte the Ideal line into two
segmenfs. A point on an ordinary line in Euclidean or hyperbolic geometry
separates the line into two segments, in parabolic or alliptic it does not. A

point may or may not separate an ulira~ideal line into two segments.



Parallel. Two lines are said to be parcllel If they have on ideal point in

common.

Nonintersecting. Two lines are said fo be nonintersecting if they do not have

an ordinary point or an ideal polnt In commen, or If they have an ultra=idsal
point in common.

Intarsacting. Two lines are intersecting if they have on ordinary point in common.
Lines In parabolic geometry are either intersecting or parallel. In Euclidean
geometry lines are either Intersecting or nonintensecting. Euclidean noninter-
secting lines are called parallel. In hyperbolic geometry lines can be intersecting,
nonintersecting or parallel. In elliptic geometry all lines are Intersecting.

In parabolic geometry thare is only one ideal point on each line therefore

through a point not on a line there can be one and only one line parallel to an
ordinary given line. This is also true In Fuclidean geometry, howaver in hyper~
bolic geometry with two ideal points on every ordinary line there are exactly

two lines through a point not on that line parallel to the given line.

A line intersecting one of two parallel lines in parabolic geometry or Euclidean
geometry must intersect the other. In hyperbolic geometry It may or may not

intersect the other.

Perpendicular lines. Two ordinary lines |‘ and | 5 ore perpendicular if and only
If the ideal point of |, and the ideal point of |2 form a pair under the absolute

involution.
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If 'l is an ordinary line, p is on ordinary point. There is one and only one line
I2 through p perpendiculor to I]. Henca in parabolic geometry and Euclideen
geomatry two lines perpendicular o the same line are parallel, in hyperbolic
geometry they are nonintersecting and in elliptic geometry they are intersecting.
All lines perpendicular to a given line In hyperbolic geometry have an ultra-
ideal point in common,
Points. In parcbolic geometry points are either ordinary or ideal. In Euclidean
gzometry and elliptic geometry all points are ordinary. In hyperbolic geometry
points are ordinary, Ideal or ultra~ideal.

Ideal line of the projective plane. An inspaction of the tronsformations of

parabolic, Euclidean, hyperbolic, and elliptic geometries shows Oqq =Cny = 0,
[Gan =1, ond therefore all four leave the ideal line of tha projective plane
invariant,

The absolute involution. The four transformations also leave the points that

correspond to each other with respect to the ebsolute involution invariont.

5.5. Summary. In this chapter four subgeometries of projective geometry;

parcbolic geometry, Fuclidean geometry, hyperbolic geometry, and elliptic

geomotry are defined and the conditions on their transformations are derived.
The geometries are then compared according to ideal and ordinary points, ideal
and ordinary lines, parallel lines, perpendiculor lines, intersecting ond noninter-
secting lines and invariance of area and invariance of the line 70,0,17, and the

absolute involution.



CHAPTER VI
CONCLUSION

6.1. Introduction. This thesis Is a study of parabolic geometry, Euclidean
geometry, hyperbolic geometry, and elliptic geometry as subgeometrias of pro-
jective geometry. The geomeiries are identified by their algebraic properties
and comparad on the projective plane.

In Chapter | the problem is outlined and terms defined. Chapter Il presents
a brief history of the development of geometry. The history is divided into four
general pericds. The first period includes the time from nearly 4000 B.C. to
400 B.C. and shows man's ecrly use of geometry in measuring. The second s
one in which geometry is made Into a rigorous deductive science; rules are sat
up and geometry is placed on a sound logical basis. The third period from about
the fourth century A.D. to the nineteenth century is characterizad by attempts
to prove Euclid’s fifth postulate and culminating in the discovery of non-Euclidean
geometry. During this period analytic geometry is also discovered, These
discoverles lead to a renewad interest In geometry and in recent years geometry
has become organized and clossified under the more general geometry, projective
geometry. In Chapter Ill the projective plane is coordinatized and the points
and lines of the plone are identified. Chapter IV is o description of conles.

The general conlic is derived, and special points are defined. In Chapter V the
geometries are defined and their tronsformations derlved. The geometries are

then compared and their similarities and differences noted.
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6.2, Results. The transformations of parabolic geometry, Euclidean

geometry, hyperbolic geomatry, and elliptic geometry cll leave the ideal line
0,0,17 of the projective plane invariont, which is not invarlant in the more
general projective geometry. By specializing the transformations so that pairs
of points that correspond to each other with respect to the absolute involution
will be corresponcing points with respect to the transformations in parabolic
geometry, Euclidean geometry, hyperbolic geometry and elliptic geometry, all
four geometries can be represented by the same general transformation. In this
case the differences In the geometries depend on the selection of the ideal line

for each geometry and the statements involving Ideal points,

6.3. Suggestions for further study. In this study the projective plane is

defined for real points. Since the ideal conic of elliptic geometry involves
Imaginary numbers, further research into the idea of complex coordinates on the
projective plane and transformations involving complex points is indicated. This
thesis compares the general transformations of four particular subgeometries of
projective geometry. There are several other subgroups of projective trans-
formations which could be given closer Investigation, A metric comparison of

these geometries could also be made by defining the distance concept.
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