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CHAPTER I 

INTRODUCTION 

The purpose of this report is to investigate the 

properties of semi-open sets in topological spaces and 

to attempt to develop a topology based on the semi-

open sets. 

I. THE PROBLEM 

Very little has been done on fsemi-open sets. This 

may be due to their similarity to open and closed sets 

in some cases or to-their lack of closure under the 

operation of intersection. 

Norman Levin l has developed a few properties of 

semi-open sets and has defined semi-continuity in terms 

of them but has not developed a,topology on them. This 

report is an attempt to carry his development further. 

II. ORGANIZATION 

The rest of the introduction is concerned with 

definitions of terms to be used later. Chapter II 

develops some of the general topological properties 

for semi-open sets in topological spaces. Chapter III 

is the summary. 

IN. Levin, "Semi-Open Sets and Semi-Continuity in 
Topological Spaces," American Mathematical Monthly, 
LXX (1963), 36-40. 
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Standard set notation is used in this report with 

explanations of unusual symbols where needed. 

This report is intended to be read by graduate 

and undergraduate students who have had introductory 

courses in topology and advanced calculus. 

III. DEFINITIONS OF TERMS USED 

Definition 1. A topological space (X,;[) is a set 

X of points and a family ~ of subsets of X which satis

fies the following axioms: 
~ 

[0.1] The union of ~ny number of members of ~ is 
~ rr \a member of ;,t.. (-cp E ~ ) 

[0.2] The intersection of any finite number of 
~ ~ r:' 

members of ;;,t- is a member of ~. (X E ~) 
4r':'

Definition 2. The family ~ is called a topology 

for X. 
..-:

Definition 3. The members ,of ~ are called open 

sets in this topology. 

Note that all sets are not necessarily open sets 

as there may be other subsets of X than the members 
~ 

of ~. 

Example 1. Let X be the set of real numbers and 

~ be the family of open intervals about each point. 

This satisfies the axioms and thus is a topology for 

the real numbers. This is called the usual topology 

for the real numbers. 
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Definition 4. A point x is called a limit or 

accumulation point of a subset E iff every open set 

G containing x contains a point of E different from x; 
.,...-;' 

Le., if xeGE;tthen Ef'G-{x}+CfJ. (E may not be an 

open set and x may not be contained in E.) 

Example 2. The set of real numbers with the usual 

topology 40es have limit points, and in fact, every 

real number is a limit point of the set. 

Definition S. The set of all limit points of set 

E is called the derived set of E and is denoted by deE). 

Definition 6. A set is a closed set iff it con

tains all its limit points. A set F is a closed set 

iff d(F) ~F. 

A few of the properties of open and closed sets 

are given without proof. The theorems arc basic and 

the proofs are given in the general topology books 

such as Foundations of General Topology by William J. 

Pervin. 

Theorem 1. I f x ~ F, where F is a closed subset of 

a topological space (X,:l), then there exists an open 

set G such that x E G~CF, where CF denotes the comple

ment of F. 

Theorem 2. If F is a closed set, CF is an open 

set. 

Theorem 3. A set is a closed subset of a topologi

cal space iff its complement is an open subset of the 

space. 
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Theorem 4. The family :h of all closed subsets 

in a topological space has the following properties: 

[C.l] The intersection of any number of 
~ ~ 

members of ,;I, is a member of ;A. 

(X E;4) 

[C.2] The union of any finite number of 
.,.-:' r:" 

members of ~ is a member of .;h • 

( C(J €:4) 
Definition 7. A topology for X is defined as a 

~ 

family of closed sets, ~, satisfying [C.l] and [C.2]. 

Example 3. Let X be the set of real numbers and 
c-:' 

let :A be the fami ly of all unions of closed intervals 
~ r 

of X. Then ~ is a topology of the reals by Definition 7. 

De fini tion 8. The closure of a set E contained in 

(X,;Z) is the intersection of all closed subsets of X 

containing E. It is denoted by c(E). By [C.l], c(E) is 

a closed set and so is the smallest closed set containing 

E. A set is closed iff it equals its own closure. 

Definition 9. Two subsets A and B form a separa

t~ of a set E in a topological space, written E = AlB, 

iff E is the union of A and B, and they are nonempty, 

disjoint sets, neither of which contains a limit point 

of the other. The requirements that A and B be dis

joint and neither contain a limit point of the other 

are combined in the formula [Ar.c(B)] U[c(A)IlB] = CP. 
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Definition 10. A set is connected if it has no 

separation. 

The following theorem is stated without proof. 

Theorem 5. If C is a connected subset of a 

topological space (X,~) which has a separation X = AlB, 

then either CSA or C~B. 

Connectedness and separatedness are topological 

properties. (Topological property will be defined in 

Definition 15 below.) 

Definition 11. If x is a point of a subset E in a 

topological space then the union of all connected sets 

containing x and cORtained in E will be called the 

component of E corresponding to x. 

Definition 12. A neighborhood of a poin\t is any 

set which contains an open set containing the point. 

Some of the properties of neighborhoods are: 

(N.l) Every point of X is in at least one 

neighborhood and is contained in each 

of its neighborhoods. 

(N.2) The intersection of any two neighbor

hoods of a point is a neighborhood of 

the point. 

(N.3) Any set which contains a neighborhood 

of a point is itself a neighborhood of 

the point. 

---_._-
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(N.4)	 If N is a neighborhood of a point x, 

then there exists a neighborhood N* 

such that N is a neighborhood of each 

point of N*. 

These properties can also be used to define a 

topology for X. 

Definition 13. The interior of a set E contained 

in (X,~) is the union of all open sets contained in 

E. It is denoted by iCE) and is an open set by (0.1). 

A set E is open iff E = iCE). 

Definition 14. If ~;X~X* is one to one, onto, 

continuous, and maps open sets onto open sets, it is 

called a homeomorphism. 

De fini tion IS. Any property that
~. 

1S preserved 

under a homeomorphism is a topological property. 

Definition 16. A set A in (X,;Z) will be called 

semi-open (written s.o.) iff there exists an open set 

E such that E=.A.f.cE. 

Theorem 6. A subset A in a topological space X 

is s.o. iff A C c(i(A)).2 

Proof: Sufficiency. Let A!:: c (i (A)). Then for 

E =i (A), E~ A~ cE • 

Necessity. Let A be s.o. Then E~A'=cE 

for some open set E. But E f: i (A) 

and thus cE£c(i(A)). 

Hence	 A £cE.sc (i (A)) • 

2Ibid ., p. 36. 
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Note that with this definition, a semi-open set 

may be open or closed as the next three example show. 

Example 4. Let X be the reals with the usual 

topology and let E be the set consisting of the open 

interval (0,1). Then cE is the set consisting of the 

closed "interval [0,1]. Then if A is either one of the 

half open intervals (0,1] or [0,1), or if A is E or cE, 

then A satisfies the relation E £A ScE and therefore, 

A is semi-open. In this example, (0,1) is an open set 

that is semi-open, [0,1] is a closed set that is semi-

open and (0,1] and [0,1) are half open intervals that 

are semi-open sets which are neither open nor closed. 

Example 5. Let X be the space of the reals with 

the usual topology and let A"'-. (2:., 1) U (1, 1) u. · · 
242
 

U(..l-, L) tI· • • andB. {O} () (1, 1) U (1, 1) v. · ·
 
2m+ l 2m 242
 

U(~, L)()· .. Here, cA is [0,1] and A~BS:cA
 
2mT J. 2m 

shows that B is s.o. in X. In this example, B is 

neither open nor closed but is a semi-open set. 3 

Example 6. Let X be the Euclidean plane with the 

usual topology. Let E be set {(x,y) la l <x<a 2 , b <y<b 2}·l 

Then cE is the set {(x,y) lal~xsa2' blSy~b2}' Then if 

A is either E or cE, or if A is any subset of cE which 

contains E, then A is s.o. in X. The remarks in Example 

4 apply here. 

3 Ib id., p. 38. 
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Theorem 7. Let {A} be a collection of s.o.« «£uA 

sets in a topological space X. Then lJ «£t.A« is s.o. 

in X. 4 

Proo f. Eve ry A0( is a semi -open set. From 

Definition 16) for every «£t.) there exists an open set 

0« such that O«~A«~cO«. ThenU«£t.0«SV«£t.A« 

5 U «£t. cO« S C U«£t. 0« and if 0 = V «£t. 0«) A = V«£t.A«) 

o£A ScO s'atisfies the definition of a s.o. set. There

fore) A = U«£t.A« is s.o. in X. 

Theorem 8. Let A be s.o. in the topological space 
S

X and suppose A=BScA. The B is s.o. in X. 

Proof. From De~inition 16) there exists an open 

set 0 such that O~AScO. Then O.sA~BS.cA. But cA~cO. 

Thus) B.s cO and O£BScO. Therefore) B is s. o. in X. 

An open set is a subset) of itself which is contained 
(a. ) 

In its closure; this implies that if E is open in X) then 

E is s.o. in X. The converse is false as shown by Example 4. 

Definition 17. S.a.eX) will denote the class of all 

5.0. sets in X. 

It is not true that the components of semi-open sets 

are semi-open as shown by Example S. In Example 5) B is 

s.o. and {a} is a component of B) but {a} is not s.o. 

in X. 

In general) the complement of a semi-open set is 

\ not semi-open as shown by the following example. 

4Ibid .) p. 36. 

SIbid. 
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Example 7. Let X be the subset [0,1] of the reals 

with the usual topology, and let S be the open interval 

(0,1) and cS the closed interval [0,1]. Let A be the 

half open interval (0,1]. Then A is semi-open in X and 

CA in X is {a}. But {a} is not semi-open. 

In general, the intersection of two semi-open sets 

is not semi-open as shown by the following example. 

Example 8. Let X be the reals with the usual 

topology, A be the closed interval [0,1], and B the 

closed interval [1,2]. A and B are semi-open as shown 

in Example 4, but AI'\B = {1}. {1} is not semi-open. 

Definition 18. A su~set E of a topological space 

X is called nowhere dense iff every nonempty open set in 

X contains a nonempty open set which is disjoint from E. 

Lemma 1. Let 0 be open in t. Then cO-O is nowhere 

dense in X. 

Proof. cO = OUd(O) implies (cO-O) ~d(O), i.e., 

cO-O consists of limit points of O. Let G be any non-

empty open set in X. Then there are three cases: 

Case (1)	 G =0 implies Gr. (cO-O) = CP. 

Case (2)	 Gf"\ 0 = cp. Since G contains no points 

of 0, it can contain no limit points of 

0, and therefore GIl(cO-O) = cp • 

Case (3)	 GI\O t ({) , G 1= O. Since G and 0 are 

open se ts, Gr. 0 is a nonempty open sub

set of G and of O. Thus, (cO-O)t'\(Gf"\O) 

= (/J. Therefore, for any nonempty open 
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set G, there exists a nonempty open 

subset of G that is disjoint from 

(cO-O). 

Norman Levin in his article in the American 

Mathematical Monthly, defines semi-continuity as 

follows: 

Definition 19. Let f:X~X* be single valued 

(not necessarily continuous) where X and X* are 

topological sp~ces. Then f:X~X* is termed semi

continuous iff for 0* open in X*, then f-l(O*)E 

s.O. (X). 

Continuity implies semi-continuity but not 

conversely. 

The article then develops some of the proper

ties of semi-continuity but does iot show whether 

or not this definition is equivalent to the usual 

definitions of semi-continuity. In particular, it 

is not shown equivalent to upper or lower semi

continuity. 

This report is concerned primarily with proper

ties of semi-open sets other than semi-continuity, 

so this is the only consideration given here to this 

property • 

._--- -



CHAPTER II 

SEMI-OPEN SETS 

This chapter develops some of the properties of 

semi-open sets in topological spaces. 

For the purposes of this report, when there 

exists a semi-open set E having an open subset C as 

in the definition above, C will be said to define the 

semi-open set E. As there may be many semi-open sets 

in c(C), C cannot be said to define a unique semi-open 

set, as shown in Example 4 of Chapter I. Also, the 

same semi-open set may be defined by more than one 

open set. An example which illustrates this will be 

given later (see Example 14). ) 

The empty set does not define any semi-open sets 

except itself as q; ~ c CP implies. C{J£ qJ £ c cp and shows 

that the empty set satisfies the definition of semi

open sets. A result of this is that no set of the 

reals containing only one point can be semi-open as the 

only open set it contains is the empty set. 

Theorem 9. Let A~ B f: cA where A is open and B 

is s.o. If B -A is nonempty, the points of B -A are 

limit points of A. 

Proof. Since B ~cA, (B-A) ~ (cA-A) ~ d(A). There

fore, (B-A) S d(A) and the theorem is proved. 
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Theorem 10. Let AS Bs;,cA where A is open and B 

is s.o. If B-A is nonempty, all of the limit points 

of B-A are contained in cA. 

Proof. Let x be any limit point of B-A. Then 

any open set containing x must contain at least one 

point y of B-A distinct from x. But since any point 

of B-A is a limit point of A by Theorem 9, every open 

set containing x and y contains a point of A distinct 

from y. Therefore, x i~ a limit point of A and must 

be in cA. 

Theorem 11. Let AtE. 5.0. (X), let f:X"'X* be a 

continuous open mapping where X and X* are topological 
6 

spaces. Then f(A)€S.O.(X*). 

Proof. Let A = 0 VB where 0 is open and B~ cO-O. 

Then f(O) ~f(A) • (f(O) Vf(D)) ~(f(O~ Uf(cO)) ~(f(O) Ucf(O)) 

= cf (0); hence, f (0) ~ f (A) c: cf (0) and f (0) is open in X* 

since f:X...X* is open. Therefore., f(A) c 5.0. (X*). 

This shows that semi-openness is a topological 

property. The theorem is not true if the mapping is not 

open as shown by Example 9 below. 

Example 9. Let X and X* both be the space of reals 

and f:X...X* as follows: f(x):l for all x~X. Now if 

AE. 5 • O. (X), f (A) ={1 } =X*, A t ({) , but {l} is Il0 t s. 0 • 

in X*.7 

6 Ib id., p. 38.
 

7Ibid ., p. 38.
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Theorem 12. Let 7' be the class of open sets in 

a topological space X, then re 5.0. (X). 

Proof. rES.O.(X) follows from (a.) on page 8 and 

Definition 17. 

Theorem 13. Let A € 5.0. (X) where X is a topo

logical space. Then A = 0 UB where (1) 0 e r, the 

class of open sets in X, (.2) OIlB = (fJ and (3) B is 

nowhere dense. 8 

Proof. From Definition 16 there exists a set 0 

where 0 c r, the class of open sets in X such that 

o S=A'scO. Then A = O~(A-O). Let B = A-O, then 

B £ cO-O and this is nowhere dense by Lemma 1, and 

A = OUB. OnB = cP follows from B = A-O. 

This theorem shows that a semi-open set can 

always be expressed as the union of two dJsjoint sets, 

one open and the other nowhere dense. The converse 

of Theorem 13 is false, as shown by Example 10. 

Example 10. Let X be the space of reals and 

A = {xI0<x<1}V{2L Then A~S.O.(X) even though (1), 

(2) and (3) in Theorem 13 hold, i.e., ° = (O,l)ET, 

\.,rhere i is the class of open sets in X, (O,1)1"'l{2} 

= ~, and B = {2} is nowhere dense. Here since {2} 

has no limit points and is not a limit point of any 

open set contained in A, it is not in the closure of 

any open set contained in A. Therefore, A cannot be 

contained in the closure of any open set it contains. 

8 Ib i d., p. 37. 
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Example 11. Let X be the space of reals and 

A = {xIO<x<2}U{3} and B = {xll<x<4}. Then A is not 

semi-open but A UB E S .0. (X). !Iere the union of a set» 

A» that is not semi-open with a set B» that is s.o.» 

results in a semi-open set. 

Example 12. Let X be the space of reals and let 

A = {xIO<x<3} V{4} and B = {x\2<x<5} U{l}» A and B 

are not semi-open» but AUBES.O.(X). 

Theorem 14. If Xl and X
2 

are topological spaces» 

then (X l )X(X
2

) is the topological product. Let , 

AlES.O.(Xl ) and A2 €S:O.(X
2
). Then Al XA 2 ES.0.[(Xl )X(X

2
9

)]. 

Proof. By Theorem 13» A
1
" = 0. U B. where 0. is open

111 

in Xi and Bi ~ (c 0i -Oi) for i = 1» 2 and Bi is nowhere 

dense in Xi. Then Al X A2 = (01 VB l ) X (02UB2) and expanding» 

Al XA2 • (OlX 02) U (01 X B2) 1I (BIX 02) lJ (B XB but 01 x 02 

is 0 pen in ( Xl) X( X2) and (°1 X°2) U (B 1 ~ °
l 

1 ) U 

2)

(0 1 X B2) 

V(B l XB 2) S[(cxlOl)X(cX202)] = c(x,)X(X,v(01X02). There

fore» 01 X 02 c: (AI X A2 ) ~ c(x/)X(xJ,} (01 X 02) and from Definition 

17» Al XA2 €S.0.(01X0 ).
2

It was shown in Example 8 that the intersection of 

semi-open sets need not be semi-open. Using Theorem 13» 

it is seen that if the intersection of semi-open sets is 

semi-open» it must consist of the disjoint union of an 

open set and a nowhere dense set. However» the converse 

of this is not true as shown by the next example. 

9Ibidq p. 39. 
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Example 13. Let A = (1,2) U (3,5)U {I, 2, 3, 5} 

and B = (0,1) U (2,4) U {O, 1, 2, 4}. A and Bare semi

open in X and each consists of the disjoint union of a 

nonempty open set and a nowhere dense set. AflB = 

(3,4) V{l, 2, 3, 4} shows that the intersection of A 

and B consists of the disjoint union of a nonempty open 

set and a nowhere dense set, but the subset {1,2} of 

AI) B is not in the closure of any open set containe.d 

in An B. 

Theorem l5~ If C is an open connected set and 

C~F S;c(C), then E is s.o. and connected. 

Proof. That E is s.o. follows from Definition 

16. If E is not a connected set, it must have a 

separation E = AlB. By Theorem 5, C must be contained 

in A or contained in B. Without loss of generality, 

suppose C£A. Then it follows that c(C) ~c(A) and 

hence ( c ( C) () B) £ (c (A) n B) = <p. But B f: E f: c (C) and 

c(C)/lB = ~ , so B = q? which contradicts the hypothesis 

that E = AlB. Therefore, E must be connected. 

This shows that semi-open sets are connected when 

the open sets which defined them are connected. The 

converse of this is not true in general as shown by 

the following example. 

Example 14. Let A = (0,1) U(1,2), E = (0,2), 

c(A) = [0,2]. A is an open set that is not connected, 

E is a semi-open set that is connected. Note that 
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F = (0,1) V (1,2] is also a semi-open set defined by A 

but F is not connected. Finally, since A and E are 

both open sets andcE is s.o., it is seen that the 

same semi-open set can be defined by more than one open 

set, Le., EScE ScE and A~,E £cA where cE = cA = [0,2]. 

Theorem IS and Example 14 lead to the following 

definition. 

Definition 20. If a semi-open set E is connected 

but an open set A which defined it is not connected, 

then A will be said to be semi-connected. 

Theorem 16. If,a semi-open set E is a separated 

set, any open set C which defined it is also separated. 

Proof. Let C~ ESc (C) where C is open and E is 

s.o. with a separation E = AlB. Then [Al'\c(B)] V 

[c(A)f\ B] :a tp • 

Assume C is not separated. Then C~A or CCoB. 
' 

Now it was shown in Theorem 9 that E-C consists of 

limit points of C. Without loss of generality, let C <E:.A. 

Since B S(E-C) and B +q; , C~A implies a limit point of 

C is a limit point of A and thus B contains at least one 

limit point of A, i.e., c(A)nB +~. This contradicts 

the statement that A and B are separated. 

Theorem 17. Semi-connectedness is a topological 

property. 

Proof. Let f:X~X* be a homeomorphism, where X and 

X* are topological spaces. Let C=: E ~ c (E) =. X where C is 
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an open separated set and E is s.o. and connected. 

then C is semi-connected. Then f(C) = C* implies 

C* is an open separated set. feE) = E* implies that 

E* is semi-open since semi-openness is a topological 

property by Theorem 11. and since connectedness is 

a topological property. E* must be connected. There

fore. C* is semi-connected since f is a homeomorphism 

an d C*S E* S c (E *) ~ X*• 

Let (Y.;?) be a topological space. and Y an 
tr:" 

infini te set where the members of ;,t- are the comple
~ 

ments of finite sets and the empty set. i.e •• C(A)~~ 

where A is finite. Since each set C(A) is open. each 

finite set A must be closed. Y will always be used 

to denote a space with this topology in this paper. 

The entire set Y contains all points of Y and 

therefore all limit points of itself. and is thus open-
and closed. 

Since all finite sets are closed sets. the only 

open set they contain is the empty set. The only semi

open set that the empty set defines is itself; thUS. 

there are no finite semi-open sets in this topology. 

Theorem 18. In the topological space Y every 

semi-open set is an open set. 

Proof. Since any open set E. except 4? is infinite. 

every semi-open set defined by E is infinite. But every 

open set is the complement of a finite set and thus an 

infinite set. 



18
 

Lemma 2. In the topological space Y every point 

of a finite set A is a limit point of its complement. 

Proof. Let x be any point of A where A is finite. 

Then C(A) is an open set. Let E be any other open set 

which contains x. Then, since E is infinite and A is 

finite, E must contain at least one point of C(A) since 

(E-A) ~ CA. 

Theorem 19. In the topological space Y, each,open 

set defines at most, a finite number of semi-open sets. 

Proof. Let A be a finite subset of Y. Then CA is 

an open set. Since every point of A is a limit point 

of CA by Lemma 2, the ·closure of CA is c(CA) = CAVA 

(i.e., the entire space). Let E be any s.o. set such 

that CA£Es'Y, E = CAUK, K is any subset of A. Since 

there are a finite number of points in A, there can be 

only a finite number of sets contained in Y and con

taining CA. 

Theorem 20. In the topological space Y, if an 

open set is compact, each of its semi-open subsets is 

compact. 

Proof. Let CA be a compact open subset of Y, and 

E a s.o. set of Y defined by CA. Now given any open 

covering, G, of E there exists a finite number of sets 

of G that cover CA since CA~ E. E- CA is afini te sub

set of E and thus a finite number of elements of G 

which cover E-CA. Hence, E is covered by the union of 
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the fini te coverings of CAl '__;f'''.~ union of 

these two finite coverings~"~aiin~flnl~" Therefore, 

E is compact. 

Let X be a topological space with the discrete 
r:

topology, i.e., ;,t. is the family of all subsets of X. 

Here, every set is an open set, and since every open 

set is s.o., all sets are s.o. 

Let X be a topological space with the indiscrete 
c-:

topology. Here, ~ consists of Q' and X itself. The 

closure of qJ is rp and the closure of X is X; there

fore, the only semi-open sets possible are ~ and X, 

i.e., rp ~ cp ~ c cp and XG.X~cX. 

Let X be a To space. Then if there are two dis

tinct points, x and y in X, there exists an open set 

G which contains one point but not the other. With

out loss of generali ty, let x E G where G is open. 

If y is not contained~n any open set other than 

the entire space, or if y is contained in a nowhere 

dense set disjoint from G, then GUy may be semi-open 

provided y GcG. However, unless more is known about 

a space, the property of being To is not sufficient 

to investigate semi-open sets. 

Let X be a Tl space. Then if there exist two 

distinct points x and y, there exist two open sets, 

one containing x, and the other containing y. (Any 

TI space is, of course, To). 
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The following theorem is stated without proof. 

Theorem Zl. In a T space X, a point x is a limitl 
point of a set E iff every open set containing x con

tains an infinite number of distinct points of E. 

From Theorem 21, it follows that no finite set E 

in a Tl space can have a limit point, as no open set 

containing such a limit point can possibly contain an 

infinite number of points of E. Therefore, every finite 

set is a closed set. Thus, it would seem that no finite 

set can define a semi-open set in a Tl space unless the 

set is both open and closed in the topology of the space. 

Let X be a T2 space. Then for any two distinct 

points x and y there exist two disjoint open sets, one 

containing x and one containing y. Indeed, most of the 

spaces discussed in this report are TZ spaces. 

Since every TZ space is also Tl , the statement 

above concerning finite semi-open sets in any Tl space 

probably applies to T2 spaces. 

The reals with the usual topology are a T2 space 

and have no finite semi-open sets since they have no 

finite open sets. 

Infinite semi-open sets are possible in Tl or TZ 
spaces. 

A brief survey of other types of spaces will now 

be presented. 

Let X be a regular space. Then if F is a closed 

subset of X and x is a point of X not in F, there exist 
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two disjoint open sets, one containing F and one con

taining x. The closed set F may contain semi-open 

sets. Since x is not in this closed set, it is not 

in the closure of any open set contained in F, and 

therefore, there is no semi-open set containing x which 

is defined by an open set contained in F. There may 

be a semi-open set which contains F or some points 

of F and x. 

A T3 space is a regular space that is also a Tl 

space. 

Let X be a normal space. Then if Fl and F2 are 

two disjoint clos~d subsets of X, there exist two 

disjoint open sets, one containing Fl and the other 

containing F2• 

A T4 space is a normal space that is also a T1 

space. 
~ 

Let X be a completely normal space. Then if A 

and B are two separated subsets of X, there exist two 

disjoint open sets, one containing A and the other 

containing B. 

A T5 space is a completely normal space that is 

also a Tl space. 

Since T3 , T
4

, and T5 spaces are also Tl , the 

previous comment regarding finite semi-open sets in Tl 
spaces could be made here. In the regular and normal 

spaces, semi-open sets may be contained in closed sets. 
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To investigate semi-open sets more fully in these 

spaces is beyond the scope of this report as these are 

specialized areas of study. 

A semi-open set contains an open set. Therefore, 

any semi-open set B is a neighborhood of a point x if 

x cAS: B E cA where A is an open set in the topological 

space. The semi-open set B satisfies all of the axioms 

for neighborhood in Definition 10, but since the inter

sections of semi-open sets need not be semi-open, not 

all neighborhoods are semi-open. Thus, there appears 

to be little value in applying the neighborhood concept 

to semi-open sets~ 

Finally, a topology in terms of semi-open sets 

is considered. Let X be a nonempty set of points and 

S be the family of semi-open sets of X such that the 

intersection of any finite number of elements of S is 

semi-open. (X,S) is a topological space as defined by 

De fini tion 1. 

Example 15. Let X be the set of reals. Let S be 

the family of semi-open sets which are unions of sets· 

of the form [a,b), (or (a,b]) where a and b are real 

numbers. This family of sets satisfies the axioms of 

De fini tion 1. 

But if some intervals are closed on the left and 

others on the right, then some of the intersections 

may not be s.o. since they can be single points. 
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Example 16. Let X be the Euclidean plane. Let 

S be the family of semi-open sets which are unions of 

sets {(x,y)la~x<b, c~y~d}. Then this family satisfies 

the axioms of Definition 1. If the interval a~x<b 

were closed on the right instead of the left, or if 

the interval cSy<d were closed above instead of below, 

the members of S would still satisfy the axioms. How

ever, if some of the intervals a~x<b were closed on the 

right and some on the left and/or if some of the inter

vals ~Sy<d were closed above and some below, then the 

intersections would not necessarily be semi-open. 

Example 17. Let X be the set of reals. Let S be 

the set of semi-infinite intervals of the form (a, + m) 

= {xlx>a}. This set satisfies the axioms of Definition 1. 

Semi-open sets may ~e a base for a topology, but 

as the intersection of any two members of a base must 

be a union of members of the base, it is necessary to 

form the base of s.o. sets whose intersections are 

semi-open. 

In conclusion, a topology formed from semi-open 

sets is possible, but since it would have to exclude 

those semi-open sets whose intersections are not semi

open, it may be impractical. 



CHAPTER III 

SUMMARY AND CONCLUSIONS 

I. SUMMARY 

In Chapter I, background information and definitions 

were provided to lead up to the concept of semi-open sets. 

Semi-open sets were defined, and several of their proper

ties were presented. 

I f A is· an open set, and A~ E~cA, then E was de

fined to be semi-open and the following were demonstrated. 

Open sets are semi~open, but not all semi-open sets are 

open. The unions of semi-open sets are semi-open, but 

the intersections of semi-open sets may not be semi-open. 

The complement and the components of semi-open sets may
\ 

not be semi-open. Examples were given to illustrate 

these properties. 

Semi-continuity was defined in terms of semi-open 

sets, but this property was not investigated in this 

report. 

In Chapter II, many properties of semi-open sets 

were investigated. When there existed a semi-open set 

contained in the closure of an open set, the open set was 

said to define the semi-open set. It was shown that the 

only semi-open set the empty set defines is the empty 

set itself. An open set does not define a unique semi

open set, nor is a semi-open set defined by a unique 

open set. 
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Semi-openness is a topological property, and a 

semi-open set can be represented as the disjoint 

union of an open set and a nowhere dense set, but 

not conversely. 

Probably the most interesting property discussed, 

and certainly the most original, is that of semi

connectedness. If a connected open set defines a 

semi-open set, that semi-open set is connected; but 

when a separated open set E defines a connected semi

open set, then E is semi-connected. Semi-connected

ness is a topological property. 

Semi-open set~ in several different topologies 

were investigated. 

Neighborhoods were found to be of little interest 

here. 

Topologies fdrmed with families of semi-open sets 

were briefly examined and several examples were shown. 

These topologies had to be restricted to semi-open sets 

whose intersections are semi-open. To define a topology 

in terms of semi-open sets appears to be quite difficult 

and certainly is a problem for future research. 

II. CONCLUSIONS 

The principal conclusion of this report is that a 

semi-open topology is of little value as it must be 

restricted to semi-open sets whose intersections are 

semi-open. 
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Other properties studied may be investigated 

further, particularly semi-continuity, which was not 

studied, and compactness. 

Semi-open sets in T3 , T4 , T ' regular, normals 
and completely normal spaces were mentioned only 

briefly and may be investigated more fully. 

The terminology that an open set "defines" a 

semi-open set is original in this report. 
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