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CHAPTER I
INTRODUCTION

This paper has as its primary objective the statement of
several formulaticns of the set-theoretic principle called the
YAxiom of Choice" and the proof of their equivalence,

Since the formal introduction of the axiom in the early year
of this century, a considerable amount of mathematical research has
been devoted to proving that a given statement implies, is implied
by, or 1s equivalent to the Axiom of Choice, The result of this
regearch has becn the production of a formidable array of proposi-
tions, each of which is equivalent to the axiom.

The motive for showing that a statement is equivalent to the
Axiicm of Cholce is not to lengthen an already extensive iist, but
is somewhat as folliows, Within a certain area of mathematics it
frequently happens that a particular 'law' is extremely desirable,
such as the 'trichotomy law' in the arithmetic of transfinite
cardinal numbers. By showing this law to be equivalent to the
&xiom of Choicey; cne establishes that it is impossible to use the
law without also endorsing the Axiom of Cholce, however distasteful
this may be on other grounds,

This paper deals with set theory from the naive point of

view; that is, set theory is largely taken to be an intuitive body

[

ry

acts of which the axicms furnish a convenlent summesy. The



reader will find that seldom is explicit mention made eof the axioms
of the set=theoretic system in use (Zérmelo-Fraenkel set theory).
The justification of this "“sin of omission' is that of conciseness
of exposition., In spilte of this neglect of the set-theoretic
axioms, to the best of the author's knowledge, every theorem and
prcof appearing in this paper can be formalized within any of the
scandard systems of set theory in current use.

in Chapter II the author has attempted to indicate some of
the different opinions that competent mathematicians have held
regarding the Axiom of Choice and to describe with some care the
causes of their dlsagreement, a point of common confusion. This
ig followed in Chapter III by a statement of the definitions and
notational conventions used in this paper, together with an ele-
mentary development of the fundamental "“facts of life' concerning
oxdinal numbers., Chapter IV, the main chapter of thls paper, is
conceimed with proving the equivalence of twelve commonly encountcered
formulacions of the Axiom of Choice., In Chapter V the auther has
attempted to give some informative examples of the application of
the axiom to several important arecas of modern mathematics,
Chapter VI concerns itself with the questions of consistency and
independence of the axiom and briefly considers the problems ¢f what
mathematics (in the field of classical analysis) can be developed

—

without the axiom.
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The prorequisites to a complete understanding of the contents
of this paper are practically nil except, possibly, in certain parts
of Chapter V. The most important requirement is that the rcader
poscess to a certain extent that quality called 'mathematical matu-
zity.? Set Theory is extremely general and is therefore quite abstract,
fowever, the mathematical platitude that 'the more generally a theorem
applies, the less profound it is' holds in set theory as in no other

araa of mathematics,



CHAPTER II

THE PHILOSOPHICAL SIGNIFICANCE OF

THE AXICM OF CHOICE

The first emplicit statement of the set=theoretic principle
subzequently calied the "Axiom of Cholce" appears to have been by
Zerislo in 1904, although he was to some extent anticipated by Paano
tn 1890 and Levi in 1902.) A modern formulation of the axiom can
be given in simple terms: if A is a set of non-empty sets, then
thore exists a mapping F such that F(x) € x for each x € A. That
iz, there exlsts & mapping which "chooses' precisely one element
from cach member of the collection A,

Since itz formal introductiocn, the Axiom of Choice has
generated @ contluuling spirited controversy among those i{nterested
in tho foundaticns of mathematical thought; in some cases mathemati-
cians have become o agitated by each other's peculiar attitudes
toward mathematics that they have resorted to robust language in

stating tholr views.2 There are two fundamental reasons for the strong

E, Hobzocn, The Theory of Functions of a Roal Varinbla,
Vol. I (low York: Dover Publications, Inc., 1957), p. 262,

')

“For a livaly account of one such battle between the mathoe=-
matical giants Hilbert hnd Brouwer, see E, Bell, Ihe Davelopmant
¢f lintheraties (llew Yorks McGraweHill Book Co., 1945), p. 569-570,




disagreements: first, a mathematical fear that use of the axiom
might result in the appearance of contradicéions within modezrn set
theory and, sccondly, an objection to the axicm on phileosophlical
grounds, Of thesey, the mathematical question has largely been
resolved and will be considered in the last chapter of this paper,.
By its nature, it is improbable that the philosophical objecticn
will cver be disposed of to the satisfaction of mathematicians in
general,

Before examining the issue on which mathematiclans disegree,
it is necggsary to goncsider the manner in which sets are conven=
cicnglly defincd. Tho usual procedure in mathematics is to say that
& hypothetical sct fexists' when its membership is determinate; that
ig, given any objocty it can be determined whether or not that objcct
ig in the collactica, This is done by means of propositional func-
tiocns, Given a propositional function P(x), a set A is defined--
namely, just those cbjects ¢ for which P(c) is a true statemant.l
For example, suppose that Al, Apsesess A, ars non-emply sets.. Then
¢ach 2ot Ag has at least one element, which may be denoted by 'a, .’
Letting ¥(x) ropresent the propositional function '(x = (4, ay) oz

o= (Agy e5) o5 o 0 o omx= (4, a) )" 1t is seon thet F(x) deilnes

IRuatriu:i;:s must be placed on the types of propositional
unctions allowed or the well-known set=theoretic paradoxes will
spear, For eiiple, the notorious YRussell Paradox™ is generated
vy using the propositional function 'x¢ x.' The primary goal of an
axicmatic treotment of set theory 1s to find conditions on the pro-

- T ~
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2 set consisting of n ordered pairs of the form (Ak’ ak). This
oxample shows that the Axiom of Choice is not required when it is

ary to choose cone element from each of a finite number of

I
O
O
(4]
(5
&

sets, For tho propesitional function P(x) given above defines a
cet of oxdered pairs, and it is easy to see this set is actually
a mapping of the type whose existence is claimed by the Axiom of
Cholca,

In logle, propositional functions aze certain finite strings
of loglcal cparators and variables. Consequently, the process
givaea in the pioceeding paragreph for the constructicn of meppings
caanct be cutondad o infinlite collections of sets, since such an
cxtensicn weuld involve preopositional functions of infinite length.
Revezthelees, in . cortain special cases the desired type of mepping
¢an ba congtzucted for infinite collections of sets. For example,
considor ca arbltrary collection A of non-empty sets of natural
rucbers, Teking P(B, x) to be the propositional function 'B is
& ¢loment of A and x 1s the smallest member of B, it is seen that
tho set of all ovdered pairs (B, x) making the propositional fumction
?{By %) tzuo is a mapping satisfying the claim of the Axicm of Choica.
It should be noted that this construction owes its success to the
f£aet that every non=ezpty set of natural numbers has the unusual
propezty of having a smallest element, which allcws a unique element
ia each sot Lo Lo identified, Neediess to say, not all sects econtain

2
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“he aspect of the Axiocm of Choice which has been primarily
responsible for the furor in the ranks of those interested in the
foundations of mathematicel thought can now be considered, Accord-
ing to the axiom, if A is any collection of non-empty sets, there
Yexists" a mapping F such that F(x) € x for each x € A. Since a
mapping is a caztain type of set, the axiom asserts the existence
of a special type of set, The fact is, no one knows of a genera
wothod to define such a sety that is, a propositional function P(x)
walch will define a set of the required type has yet to be found.
Furthozmore, i€ is extremely unlikely that such a propositional
function will ke found i{n the future. One might, of course, attempt
to infer the exictence of such a set by reductio zd absurdum, but
1o one has succeeded in doing so. Thus the Axiom of Cholice appears
to postulate the "existence"” of undefinable sets, But, if this
claim be granted, what does it mean to say such sets exist? 7This
is the questicn responsible for the uneasiness among many mathee
maticians regarding the axiom, Most mathematicians have held one
or the other of two opinlons concerning the Axiom of Cholce; a
bric? cuamination of these attitudes 1s glven in the next few pages.

Cnc group of mothematiclans, which will be called the
Yconstrucciviscs, ! enmphatically rejects the axiom to the extent
that it agserts the existence of sets which cannot be precisely

J ot & v A 0ne 4 o lmame y 4y 8 2 [ ee——] -ty - Py o Ta e g
dofined, TLo coastructivist typlcally profeszes to be uncbla to

P [y " ooa s gove & o 2op %y e w3y exbomen W NP R . e A ZE el gof -
understond tho moaning of the wozd Yoxistence" spart I{-on defimlitica

4



thls group considers the statement Ythe set A exists'! to be devold
of content unless supported by an accompanying propositional funce
tica to define the set A, Most of the constructivists find the
claim of the Axicm of Choice and that of the opening statement of
Genesis to be of the same general character.

The main argument offered by constructivists for theirzr
v.cupelint 1s a powerful one and has considerable intellectual
appeal to nearly all mathematicians, By taking the statements
'L oxigts? and 'A is well=defined? to be equivalent, the unplecase
antly vague conccpt of Wexistence" is given a precise and determinate
zsaning.

The socond major group of mathematicians, which will te
called the "moneconstructivists,' typlcally accepts the axiom,
elthcugh even hore thore are wide variations in the scope of the
axica which is considered admissible, Thus some mathematicians
accopt the auicm only when dealing with countable collections of
sats, whilo others hold that its use 1s to be restricted to those
cases in which the successive cholces are dependent on those pra-
vicusly made (in this case an application of the axiom vaguely
roscobles a vecursive definition, but in fact is not).

Poasibly thic majority of the noneconstructivists find
themsclves-uncemfortably close to pleading gullty to the ¥theology"
accusatica lovclced at them by the constructiviat cemp, but they

Faat Phealk PRl LF 2 2 . Ba i s K o
aCCa wadle TOS0CCLCa GO Chie axica wWould Le a calascacyag o



mathematics, For example, they point out that if the axiom were
rejected, it scems certain that essentially all of topology would
Lo loste Tiuls would msan the immediate end of modern general
anclysls bocause of its heavy dependence on the topology of mstric
spaces, Whille modern algebra would not receive such stunning
blowsy it appecrs that much of the generality of important theorcms
in this area would be lost.1

Those who accept the Axiom of Cholice are usually pragmatists
or idealists (in the technical philosophical sense)., The pragme-
Cis5¢C accepts tha axliom because so many interesting and useful
¢censequences can Lo deduced from its use, and also becauge many

oo thoese sawo cenccquences can be obtained without it, The ideal-

e

i8tsc accept the axicm because they are prepared to concelve of an

o!
)

ject as %exl

(’3

ting® even though they cannot ascertain just what
it is, The idealist approach is frequently rather metaphysical;
Gldel eppears to endorse this position when he writes:

Classes and concepts may « « « be conceived as real
chbjects o o « oxisting independently of our definitions
and constructions, It seems to me that the assumption

£ such objects 1z quite as legitimate as the assumption
of physical bodies and there is quite as much reason to
bolieve in their existence,

For a dizcussicen of these and related matters, see J, Rosser,
Loxle for Mathematicizas (New York: MeGraw-Hill Book Co., 1953),

04
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rom the azbove discussion the author hopes to have made clear
that the divergent attitudes of mathematicians toward the Axiom of
Choice are produced by irreconcilable differences of opinion on a
matter of ontolcgy. If this be true, the question of whether or not
the Axiom of Choice is 'legitimate® cannot be resolved within the
domaln of mathematics, It is entirely possible that future genera-
tions of mathematicians will regard the current arguments over the
Axiom of Cholce in much the same way as present day mathematicians

Togard the ancient controversy over Euclid's fifth postulate.

10



CHAPTER III

MATHEMATICAL PRELIMINARIES

Tals chzpter is divided into two sections, The first of
these sets forth the definitions and notational conventions cone-

cconing general set theory which are used in this paper, while the
ccecond is speclfically concerned with the proof of those theorems
about oxdinal numbors whilch are needed in Chapter IV, Notationsl

ccnventions are not welleestablished in set theory; the symbolism

adepted in this paper is that which scems simplest to the author.

™

Dafinitions and Notation., Throughout this paper the syme

belica A € D will indicate that A is a subset of By the notation
L € B will bo rosorved for the case in which A is a proper subset
o Do

Suppoce that A is a family of sets. By the union of 4
will Lo moant the set of those elements x such that x € y for
scma ¥y € A3 tho unlon of A is written U A, The collection of
Cthoso elezcnts 2 such that x € ¥y for all y € A is called the

intewraerion of A, end is denoted by N A. The notaticn A =B

is used to indicute the sct of elements in A which are not in B,
A roleticn is g set of ordered pairs; iIf R is & relation,
Xy ¥) € R 2nd = R y will be taken to mean precisely the same

thing. 7Zhe doc—-’n of a relation R, denoted by dom (R), i3 the
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set of all left components of the ordered pairs in R; analogously,
the range of R is the set of all right components of elements of R,
and is written range (R),
A relation F is said to be a mapping i1ff, for each x € dom (F),

thaore is precisely one element y for which (x, y) € F, If F is a

y =« F(x)e F is saild to be a mapping of A into B, written F§ A—>3B,

e
ri

2 A= dom (F) and range (F) & B, If it happens that range (F) = B,
the meppling is sald to be onto B, A mapping F is called one=to=ona
provided F(x) and F(y) are distinct for all distinct elements x and

'y of dom (F)o If T is a cne-to-cone mapping, the set of all ordered

"

aizs (y, x) such that (x, y) € F is a mapping called the inverse
of ¥, The inverse of F is denoted by F=l, If F is a mapping of A
into B, and if E {s a subset of A, then the collection of all F(x)
with x € E ic sald to be the image of E under F, written F(E).

Lct & be a family of sets indexed by a set I, The set of all
mappings F of I inte U A such that F(k) € X, for all k € I is
called the Cartesian Product of A, and is denoted by ma.

Two scts A and B are equipollent, written A ~ B, 1ff thera
exists a one-to-one mapping of A onto B, The notation A & B is
used to indicate that A is equipollent with some subset of B,

Lastly, A < B is written when A &£ B is true and A ~~ B is false,

A set S is said to be partisllvy-crdercd by a relation £ 1ff

e BaYY vt eass e nded % 2 £ 1 T ~E & P = e
Cae {olidwing paozis *tics hold for all elements cf Si \a.) P “y

&
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(2) tfx<yeandy < x, thenx =y, and (3) if x < yandy < 2,
then X < 2, If S is partially-ordered by <, the notatlonz < ¥y
is used to indicate that x and y are distinct elements of S such
that x = Yy, In this case x is sald to be smaller than y and y

lar-er than x. The set of all those elements of S which are smaller

then a given element x of S is called the strict initial sesment
of %3 the strict initial segment of x together with x itself is

"

cclled the waak initial segment of =.

Suppose A is partially-ordered by =< and that B is a subsct
of A, 4An clexmcnt u € A is said to be an upper bound ¢f B im A
provided ® << u for all x € B, An element s € B is the smallest

elemcnt of B iff s is smaller than any other element of B, An

elezont m € B is sald to be a maximal element of B iff no element

of B is lavrger than m,

If A and B are partiaslly-ordered by relations « and =%,
rospectively, then the partially-ordered sets are sald to be
gimlinr €€ theyrs exists a one=-to-one mapping ¥ of A onto B such
that F(a) =<* F(b) whenever a < b,

If 8 is partially-ordered by & end either x =y or y < x

holds for all xand y in S, then S is sald to be totallv=-oxrdercd by

the velation., A totally-ordered subset B of a partially-crdercd

set S is called a chain of S, In case S 1s partially-ordered by
tho subsct sclation, a chaln of S 1Is sometimes called a nzit of S,

B P sak. b & Fobitl Salatati | sy o s ockote e
.= R S SCT 25 &8 COoTally=ordorsld 8T SUCO CUaT GVOly non=-clply

% o
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Suppose A is a family of sets partially-ordered by set
inclusion, and let F be a ﬁapping of A into itself, A subcollec-
tion B of A 1s sald to be a tower of A relative to F provided the
fcllowing conditions are satisfied: (1) B contains the empty set,
(2) ¥(x) is an element of B whenever x is, and (3) the union of
every ncst of B is an element of B,

4 set C is said to be complete iff every element of C is
also a subset of C, The set C is connected provided either x € vy
or ¥y € x holds for any distinct elements x and y of Co A set C

ig called an orilinel numbar provided C is both complete and con-

nocted, If A and B are ordinal numbers, the notaticn A < B will
mean that A € B, Finally, the symbolisn A < B will indicate
that ¢ither 4 » B or A < B holds,

A sct S 15 said to be Wreordered by a relation < iff the
following conditions are satisfied for all elements of 83 (i) if
x and y axe distinct, then either x < yory < x, (2) not x < %,
(3) if x < yand y <« 2z, then x < 2z, and (4) every non-cmpty

subget of S has & gmallest element.

-

Ordin~l Numbers, As previously stated, this pzper is not

cincerned with the axlomatic structure of set theory. However, it
is nccessary to state one axiom of Zermelo set theory, the Axiom

of feoulnaritys If A is any non-empty set, there exists an element B
1

2 euemb las A m B /
e s wmwes Ghei e ae O o= ~e
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Using this axiom it is easy to prove several lemmas which are

quite useful in the theory of ordinal numbers.

LODMA 1o IZ 4], A9y eeey Ay are sets, it is false that
41 € 49 € o0 € A, € 4+ In particuler,
A € A is false,
PROOF, By way of contradiction, suppose that Al' Az, scesy An are
sets wiich violate the conclusion of the theorem, Define S to be the
set {Ay, Agy eees 433 o Clearly X (\ S ¢ @ for any X in S; this

coatradicts the Axiom of Regularity,

LEMMA 2, Let S be Wr-ordered by <, and suppose B is 2
proper subset of S, There exists an elament x
in § such that B is the strict initial segment of
% 1ff, for all elements x and y of S, if y € B
and 2 < y, then 2 € B,
20007, Supposs that B is the strict initial segment of %, and assume
both 2 < yady €B, Theny < x, 80 2 < X, This means that z € B,
dssume that the second condition holds, Since S - B is non-empty,
thic set has & smallest element, say x. Let I(x) dencte the strict
initial scgment of x; 1t will be shown that I(x) = B,
ety € I(x)e Theny < x, so y 15 not an element of S - 2,
Thus y € B, which implies I(x) & B, Next suppose thaty € B, In

this case x and y are necessarily distinct, so either x <y ory £ x

is true, Tho hypothesis x <« y implies x € B, a contradictions
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thus y << x holds, which means y € I(x). This proves that

THEOREM O.1. If S is an ordinal number, the membership
relation is a W*-ordering of S,
PRO0F, Let x and y be distinct elements of S. Since S is com-

plete, either x € y or y € x must hold.

Leumma 1 sghows that x € x Is false for all elements x in S,

Suppose X € yand y € 2, Where X, ¥, 2 € S, Lemma 1 implies
that x and 2z are distinct, so either x € z or z € x must hold., The
hypothesis that 2 € X implies x € ¥y € 2z € x, contradicting Lemma 1,
sox € z.

Lastly, assume A is a2 non-empty subset of S. By the Axiom of
Regularity there exists x € A such that x M A -(‘5 o« The slement x
1z the emallest element of A, For suppose y € A, where y is dis-

tinet frcm x, TFrom the assumption that y € x the centradiction

7 € x {\ A is obtained, so y is not an element in x.

THCOREH 0.2, If A is a complete proper subset of an

oruainal S, then A 1s an element of S,

noAST™

£i007, Agsume Che condition of the theorem, and suppose both z € y
and y € 4 hold. Since A is complete, y must be a subset of A; but
then 2z is an elcament of A. From Lemma 2 and Theorem 0.1 it is seen

hat A is the stsicet initlal segment of some element x in S, so

BamRe ALY - c: S o th nelnal o
SLSCCSSaTLLY da = e =.0CCc X o, AT Conciusiln ..

)}
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THEOREM 0,3, If S and T are ordinals, then S is a proper
subset of T 1ff S is an element of T,
PROOF, If S is a proper subset of T, then S is an element of 7
by Theoxem 0.2,
Suppose S is an element of T, where T i3 an ordinal, It is
not possible that S = T, since this would imply S € S, contradicting

Lezma 1. This, together with the fact that T is complete, shows

that S is a proper subset of T,

THEOREM 0,4, Every element of an ordinal is itself an
ordinal,
ZRCCF, Supposc S is an element of an ordinal T, Since T is
complete, S iz a subset of T,
Lcsume that x and y are distinet elements of S, Then x and
y azre distinct elements of the ordinal T, so either x € yory € x
holds; this shows S Lz connected,
Suppose that y € S, If x € y, then x € S by Theorem 0.1,

g0 ¥y ic o subset of S, Thls means that S is complete.

THECREM 0,5, Every non-empty set C of oxrdinals has 2
smallest element, namely the intersaction
of C,
PROOF, Let x and y be distinct elements of NC, and let z be an

element of O, Thon x and y must both be elements of the ordinal gz,

2 fate . i -1 2 % 2 B LT . %~ - v o o o
so either x € y o= y € x must hold; this shows that N\C is comnccted.
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Next assume thet x € (\C, Then x is an element of every member

rh

of C, so x is a subset of every element of C, Thus x is a subset

of (\C. This shows that (\C is complete, and hence an oxdinsl.,

By way of contradiction, suppose (\C is not an element of C.
Since NC is certainly a subset of every element of C, this would
show that M C is a proper subset of every element of C. But then
Theorenm 0.3 implies that MN\C is an element of every member of C, so
that the conclusion NC € NC results; this contradicts Lemma 1,

o

The fact that (\C is the smallest ordinal in C is now quite

obvicus,.

THEQORZHM 0.6, The Trichotomy Law is valid for ordinal numbers.
PROOF, 1I¢ must be shown that, for any two ordinal numbers S and T,

exactly one of the following is true: (1) S =T, (2) s < T, and
(3 T <s,

Suppose S and T are distinct ordinals, Theorem 0.5 shows that
S M T is an elemaat of the set {S, T} e It may be assumed that
€7\ Tw S that is, assume that S is a subset of T, Since S is
distinet from T, S iz an element of T by Theorem 0.3, This means
that S < T, It nced only be shewn that no two of the three possible
rolatiocns between S and T can hold simultaneously,

If S = T, then the hypothesis that S € T implies S € S,

contradictIng Lemma I, Similarly, it 1s impossible that T € S,

a ¢c Gam I L O ] €27 % P P STe A f A1 en
A2 S KC L, thicn S =« T is false by the above arzumsnt., Also,

Lt armpel hracan Shak T & "3 Sl el e Tl *

<€ cannolt hepzea that T €© S, since this contradictzs Lec=a L.
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THEOREM O0.7. Every set of ordinals is well-ordered by the
relation <,

PROCOF, Let S be a set of ordinals. For any ordinal A € S, the
fact that 4 = A shows that A =< A, Suppose that A and B are elements
of S such that A =< B and B =< A; Theorem 0.6 then establishes that
A =3B, Assume that A, B, C € S and that both of A S Bend B < C
held, Obvicusly A = C if any two of these are equal, so suppose
they ave distinct, Then A < B and B << C are both true, so A € B
and B € C, Theorem 0,3 then implies A € Cj that is, A = C holds,
It has been shown that S is partially-ordered by <.

Thoorem 0,6 shows the orxdering is a totale-ordering, waile

s

cozcm 0.5 proves it to be a well-ordering.

TUEQREM 0.8, If C is & set of ordinals, then UC is an
orxdinal, Furthermore, no ordinal in C is
larger than UC,

PRCOF, It noed only be shown that \JC is an ordinal; the last
cssertion of the theorem is then obvious,
Let x be an element in UC, Then x € y for some y € C,
50 X is a subsst of y, This implies that x is a subset of UC, so
the sect 1s complete.

se X and y are distinct elements of UC, Then there are

(
"
O
(x
¥

ordinals A and B in C such that x € A and y € B, By Theorem 0.3

it can be assumad that A =< B, Theorem 0.3 and Theorem 0.6 now
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show that A is e subset of B, so x and y are distinct elements
¢f B B is an ordinal, so either x €y or y € x must hold, This

b3

shows UC to be connected,

THEQOKEM 0.9, There is no largest ordinal; in particular,
if A is an ordinal, then A U {A} is an
oxdinal and A < A U TAl.
IIOOF, Suppose that x € A U {Al . If x = A, then certainly
vicasubset of A U {A) . If x# A, it must be so that @ € A.
Ia thils case Theorem 0.4 proves that X is an ordinal, Theorem G.3

-
o T

shaows that x 1s a subsct of A, so certainly x is a subset of

A U $4Y . It has been established that A \U {A%l is complete.
Ascume x and y are distinct elements of A U {Ad . If both

% and y are clements of the ordinal A, then either x € yory € =

holds, The only other possibility may be taken as y = 4 and x €& A,

Then X € y is trivial, This shows A U TAlis connected,

That A < A U {A} 1is trivial, since A € A U {al.

THEOIZM 0,10, There is no set which contains all oxdinal

numbers,

PROCY, Let C Lo an arbitrary set of ordinals, Theorem 0.8 proves
that UC is an ordinal at least as large as any oxdinal in C. Define
A to be the set (UUC) U {U C} $ A 1s an ordinal larger than any

than any ciement of C by Theorem 0,9, Since A cannot be 1
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than itself, it is impossible that A be an element of the set C.
Thus C does not contain all ordinal numbers.,
In conclusion, the comforting fact that ordinal numbers do
exist should be noted; for example, the empty set is an ordinal

number, Theorem 0.9 supplies a method for constructing more inspire

ing examples of oxndinals from this one given oxrdinal,



CHAPTER IV

THE AXIOM OF CHOICE

3

In this chapter the author has stated twelve commonly ene
countercd fommuiations of the Axiom of Choice and shown their
matual equivalence. The reader will find the various formulations
of the axicm in the first section; in each case the full title
of the formulation iz given, along with an abbreviation of that
title which will be used in the sequel, The second section is

cueclusively deveccd to the equivalence proofs,

 J— » el -~ e T, -l
Formulations of tha Axionm,

1. Choiez Fumetien Formulation == CF,

Let & bo any szet of none-empty sets, Then there exists a mapping

F$s A——U A such that F(X) € X for all X € 4,

- .

2o CLaztesinsg Pxoduct Formulation == CP,

The Cartesian Product of any non=empty collection of non~empty

sats s noneempty.

3, Driatien Fo~mintisn == RL,

—— ————

Lvezy wzolcticn inciudes as a subset a function with ths same

demaine

-



8.

Intersection Formulation -- INT,

Let C be a collection of palrwise disjolnt non-empty sets,
Then there exists a set X such that X (') A has precisely

one element for each A € C,

Well-Ordering Princinle -- WOP,

If A ls a set, there exists a relation which well-orders A,

Numeration Theorem -~ NUM,
If A is a set, there exists an ordinal number S such that A

is equipollent with S,

Trichotomy Law for Cardinals =-- TRI,

If A and B are sets, exactly one of the following relations

is true:
( 1) A< B
(11) 8< A

(1i11) A~ B,

Zorn's Lemma == ZL,
Let A be a non-empty partially-ordered set, If every chain

of A has an upper bound in A, then A has a maximal element,

Maximal Principle ] =-- MPIl,
Let B be a chain of a partially-ordered set A, Then there

exists a maximal chain C of A such that B & C,

23
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0, Mawinal Prineinle 2 =« MP2,

B

Every partliallye-ordered set has a maximal chain.

tle Mzxinal Pxinciple 3 == MP3,

Let B be a nest of a set A, Then there exists a maximal nest

C of & such that E Ce

12. 1'::: ".,1'. P'“.‘-'S"’{‘DFQ A i MP&.

Evezy set has a maximal nest,

Bouivelence Frrafs, The first three theorems proven below

goe devoted Lo showing the equivalence of the first four formulations

¢ the precceding scction.

THECREM 1. CFP-¢—>CP,

PROCF, Llet A bo a noneempty set of non-empty sets, and essume CF,
1t moy be acowssd that A is indexed by a set I. By CF thore exists
2 napping F such that F(Kk) € X, for each k¥ € I. Defino a mapping
Ci I—+UA by the formula G(k) = F(X, ). Then G € mA, so mA |is
noa=cupty.

Asgums thot & is a get of none-empty sets, and suppose CP
holds. As beforv, suppose that A 1s indexed by a set I, Ey CP

cthore exlsts o mopping G such that G(k) € Xk for cach k € } 7

i

define & mepping F
o e -3

for each k¥ € I by the formula F(X.) = G(k).

Cleazly F ic & moppling of the typs required in C7,
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THEOREM 2, CF-<—>RL,
PROOF, Let R be a relation and assume CF, For each element b»
in dom (R), define Sy to be the set of all x such that (b, x) € R,
Let A be the set of all such Sy, By CF there exists a mapping F
such that F(S,) € S, for each b in dom (R). Obviously the mapping F
satisfies the clalm of RL,
Let A be a collection of non-empty sets, and assume RL,
Define S to be the set of all ordered pairs (X, x) such that x € XE€4;
note that dom (S) = A, By RL there exists a mapping F such that

dom (F) = A and F & S, Clearly F satisfies the assertion of CF.

THEOREMY 3, CP=———>INT.

ZRC0F, Let C ba a collection of noneempty pairwise disjoint
sets, and assume CF, By CF there exists a mapping F such that
F(4) € A for each A in C, Let X be the set F(C). It is an easy
matter to show X\ A is a singleton for each A in C.

Let A be a collection of non-empty sets indexed by a set I,
and assume INI, With each set ¥, Iin A assoclate a set Xy * defined
as follows: X * is the set of ordered palrs (x, k) with x in X,.
Then let A* be the set of all such X, *, Since A* is a set of pair-
wise disjoint non-empty sets, INT can be used to infer the existence
of a set C* such that C* M\ X * is a singleton for each k € I,
fine a magtin;; F as followst for each k € I, let F(}Zk) be the

S E som 't &, sn & s el A} f s 1 7~ 2 v b 2 o~ we e
CRIGUQ C€LCLCLC K L0 A4, Lo waicn \=, n) = C= PSR CA'.\-\..:.:'] el
~

3 . < 2 AT
anemend once T -’ ~ey eleen Al mlen Fe
b A et A i a e - v wie CLE10 OL Ul ™
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The next seven theorems, together with those already proven,

suffice to establish the following implication scheme!

MP3

’///’//’,//;7 \\\\\\\\\k
M;l >=1P2 ¢ >=MP4
ZL< - CP< c,?
)
!
RL >INT

This will shcw that the first four and last five formulations of the

&xicm of Choice arc ecquivalent,

THZOREM &, ZL—>MPl,
PROCT, Let B be & chain of a set A partially-oxdered by a
relation <4 and assume ZL,

Define S to be the set of all chains of A having B as a
subset; S is not empty, since B is an element of S, Partialiy-
coder S by set inclusion and suppose T is any nest of S, The
set UT ig a subset of A and, consequently, is partially-ordercd
by L3 obvicusiy UT contains as a subset every element of T. To
prove t¢hat UT is an upper bound of T in S, it need only be shown that
U T is totaliy-ordered by &, Thus let x and y be elements of U T,
There exist elements F and G in T such that x € F and y € G, Since

£ - - d 35 g il B honridd SRats WU 4 & bset of G s 3
% e =D - : o o ~ - o =~ ooy 1 . .. - . —
- wao 4 MCOU, LU L4 OC asSodlla LAt © WS & Shosce ok ° 4080 K LA Y &S



elements of the chain G, so either x < y or y << x must hold,
This proves that UT is an upper bound of T in S. By ZL we con=-
clude that S has a maximal element, say C. Clearly € is the maximal

chain containing B which 1s desired in MP1,

THEOREH 5, W2l—>MP2,
FROCF, Let 4 bs a set partially-ordered by a relation <, and
cssume MPl, The empty set is a subset of A which is also a chain
of A, By NPl thexre exlsts a maximal chain C of & containing S'a as

a subset. ince every chain of A has gé as a subsst, C is the maximal

chaln vhose exigtence is asserted by MP2,

Lramand

THEOREY 6, MPl—¢MP3,

PROCF, MP3 ic a special case of MPl in which the partial-oxdering

aken to b2 set inclusicn.

o
3]

TEE0REM 7, MPI——>MP4,

ZROC?, Thisc is a special case of Theorem 35,

TAZOREM 8, MP2—m—>MP4,
PRCOF, &g ia Thoorem 6, it need merely be noted that MP4 is a

spaclal czsa of ¥P2,

e

PN ENAMLA ). ;‘:34 > CF.

-

PRCCF, " Let & ba & collection of non-empty sets, and assume MP4,

w

Dofine S to ba the sct of all mappings £ such that dea (£) & A and,



for each x in dem(f), £(x) € x. S is non-empty, since ¢ is an

element in S, By MP4 there exists a maximal nest of S, say N,

'

be chowm that there exists F in N such that dom (F) = A,

t wil

1

Cicarly such a mappling F is of the type required in CF,

Define F to be (N, and suppose both of (%, ¥) and (%, 2z)
aze clements of Fy It will be proven that v = 2z, which allows the
conclusion that F is a mapping.

There exlst eclements £ and g in N such that (x, y) € £
and (x, 2) € g« Since N is a nest, 1t may be assumed that g = £.
Then (2, y) and (&, z) are both elements of the mapping £, so y = .

It is clear that dom (F) is a subset of A} it must be shown
that dom (F) = A, By way of contradiction, suppose that dom (F)
ic a proper subsct of A, Note that F is an element of N, since
otherwise N UJ ‘ZI-‘} is a nest of S properly containing N, This
would cocntradict the assumed maximality of N, Let x be an element
of A which is not in dom (F). Since x is non-empty, there exists
en element ¥y in %, Define G to be the mapping F \L/ {(x’ Y)} o
By conclzuction; G 1s an element of S which properly contains F as
& subset, But now N \J {G¥ 1s a nest of S which properly contains

tis nest N3 this ig a contradiction,

DRAAR

ZPROOF, ‘Let A be a none-empty set partially-ordered by < such

’

thct every ciicin of A has an upper bound in A, Assune CF, The first

$ote o £21 . 1% - -a

Sfenm y4F 1T 9 P = 4 3 S PRT atlan Fa e Fha £ Al G Taariyl
SC8p V.ol Lo CO L0 Chat 1ce is suizicicenl Lo poove Che Zolloving rasu

€
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(1) Let X be a noneempty collection of sets partially-ordered by
set inclusion., Then X has a maximal element provided:
( 1) each subset of an element of X is in X, and

(11) the union of each nest of X is an element of X.

For define X to be the set of all chains of A, and let X be
partially-ordered by set inclusion. It is easy to prove the conditions
of (1) are then satisfied, so X has a maximal element, say M, If &
has no maximal element, then there is an upper bound b In A of M
(since M is a chain of A). But this would mean that M \ {b} is
« chain of A, which contradicts the maximality of M., Thus it is
sufficient to prove the theorem given in (1).

By CEF there exists a mapping F which chooses an element from
cach non-empty subset of UX. For each element A of X, define the
set A¥ to be the set of elements x of UX for which A {/ {x} € X,
Define a mapping G for each A in X as follows: G(A) = A if A% = A;
otherwise, G(A) = A U {F(a* - A)T . It is clear that an element
.- of ¥ 1s maximal 1£f G(A) = A, It is, therefore, sufficient to prove
that a set A exists such that G(A) = A to establish the theorem,

It ig easy to show that X 1s a tower of X relative to G and
thiat the intersecticn of a non-empty collection of towers of X is
again a towezr of X, Define T to be the intersection of all towers

of X; obvicusly T

is the smallest tower of X, If T can be proven to

- - - re = =r - - 1 I™M &~ - .y - a8 ™ o1 ATl ol o pim ——— - -
Bz a nest of akg taca VU7 is an element of T by deflalticn ©f a toweT.
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But then, again applying the definition of a tower, it is seen that
G(UT) 1s in T. This means that G(UT) & UT. But the definition
of G shows that UT & G(UT), so G(UT) = UT., This shows that

UT is 2 maximal element of X Thus it is seen that:
(2) The proof is complete {f T is a nest of X.

Ceztainly T is partially-ordered by the set inclusion relation

ot X; thus it need only be shown that, for any elements A and B in T,

either A &5 or B &< A. This will establish (2), An element A in T

will be callud compazable provided A & B or B & A holds for zll

B in 7, There arec comparable elements in T, since (..) is one, Define

W to be the collection of all comparable elements of T, If it can

be shown that W is & tower of X, then (2) is proven, since then T & V¥
(T is the smallest tower of X). Obviously ¢ is an element of W, and

it is easily shown that the union of every nest of W is an element

of U, Thea W ig a tower of X provided G(A) € W whenever A € W, and

this will pzove T is a nest of X, Hence:
{3) The proof is complete i{f G(A) € W for all A € W,

Let A ia W be given, Define U to be the collection of eclements
B in T such that either B & A or G{A) & B, If U can be shown to be

a tower, then U =

-

T; for U & T by definition, and T & U since T is

thie smallest towes, Supposing this, let B € T, Then, i

i

-

i

° Ay it

4 o o — N ke Z - —_— e P
ic clear that 5 = G(4), since A = G(A). If not B & A, then G{..; & B,



since B € U, This means G(A) is comparable, so G(A) € W, Thus
the proof 1s finished if U is a tower., Obviously U contains the
cupty seti it is easy to prove that the union of any nest of U is

zn elexent of U, This clearly shows that:

(4) The proof is complete i1f G(B) € U for all B € U,

A3 bafore, A is the given element of W, Let B be any element
of U, Thzree csses must be considered.

Suppose that B is a propey subset of A, Since G(B) can have
no more than one element not in B, it is clear that G(B) is a subset
of A, But B is also in T, so G(B) € T, Thus G(B) is in U,

If E w A,y then G(B) = G(A). A is an element of T, so G(4)
is in T, Thus G(B) is a member of T. This shows that G(B) is in U,

The last possiblility is that A is a proper subset of B, In
this case G(A) is a subset of B, so G(A) is a subset of G(B), But
B iz in T, so G(B) is an element of T. These facts prove that G(B)
is in U,

The last paragraphs prove (&) holds, so the proof of the
thecrem is complete.

Tiiz final four theorems aze devoted to esteblishing the

implication scheme given below!

ZL > TRI o

NUM > WOR >—CF.

31
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These theorcus, together with those already proven, suffice to show

the equivelcnce of all twelve formulations,

TEIZOREM 11, ZL—>TRI,
DROSF, Assume ZL, Let A and B be any two sets, If either A or

s empty, TRI Iis a trivial conclusion, so suppose A and B are none-

Supposa ther B < A, By definition, the case A ~~ B is then
impossible, The hypothesis that A < B contradicts the Schroder-
Bernstein th;or;u.l

As a consequence of the preceeding parsgraph, it may be
assumad that B < A 1s false, Precisely stated, this means that one
of tho following must hold: (1) there is no one=to-cne mapping of B
inco &, and (2) there exists a one-to-cne mapping of A onto B, Define
S to bz the collection of all one-to-one mappings F such that dom (F)SA
and range (F) & B, Since A and B are non-empty, S is non-cmpty.

.

Parcially~oxder S by set inclusion, It is a trivial matter to shew
chat the hypothesis of ZL is satisfied by the partially-ordered set S,
£0 S nhas a maximal element, say F, Then F is a maximel one-to-one

mapping of soms subset of A into B,

1 X (0]
2. Halmos, HNaive Set Theory (New York: D. Van Nostrand

Ccmpany, Inc.s 1960), p. 88.




If range (F) = B, then 7"l is a one-to-one mapping of B
into 4, so B ® A, Since B < A is false by hypothesis, the
conclusion A B follows,

The only other possibility is that range (F) is a proper
subset of B, Let y be an element in B « range (F), It is easy
Lo see that dom (F) = A, since otherwlse there exists an element
x in A - dom (F)s this allows the construction of a function
F\J {(x, y)T which is one-to-one on a subset of A and properly
contalins F, a contradiction, Thus F is a one-to-one mapping of A
into a proper subset of B, But this means that A &% B, Since not

both of A < B and A ~~ B can hold, the proof is complete.

THLOREM 12, TRI——~NUM,

PROCF, Lot A be a set and define H(A) to be the collection of

33

all oxdinals which are equipollent to some subset of A, Assume TRI,

The first step will be to prove that H(A) is an ordinal.
Zaat H{A) is coanected is obvious from Theorem 0.6 of Chapter III,

Suppose X is an element of H(A), and let y be any element of x.

-

E7 Theczem Co3 of Chapter III, y is a subset of %, Since x is

equipollent to scme subset of A, the same is true of y, Thus y is

en elcment of H(A). It has been showa that every element of x is

ca elexcac of K{L), so x is a subset of H(A); that is, H{A) is

-

completa, This clows H({A) is an ordinal,

e - - > -~ —- -y v 2 2 . T Avmde 2 ~%- ¢ -~ - oyt -
4L iC 135 assumsd that .‘L(:./ a8 eqdpo-v.g..... Wicl 8CLe sussat

-~ 8, - -

¢ A; & contradiction results, For 1t has been zioven that I\4)



is zn ozdinal, so this hypothesis would imply H(A) is a member of
itself; Lemma 1 of Chapter III shows this to be impossible., Since
ECL) £ 4 is false, TRI implies that A < H(A) is true. Thus A is
cqulpcllent with scme subset of H(A). But every subset of a well=-
ordered set is elither similar to that set or to & strict initial

cogment of 1:.1 Thus it is clear that A is elther equipolient to
I.{4) or an initial segment of H(A), say I(B). But I(B) = B, so A
is equipollent to B or H(A); in either case, 4 is equipollent to

s "
came vl dne
SLdc U.\d-‘.-\.—-_ -

THEQREM 13, NUM-—=WOP,
PRCCF, Lot A Lz a set and assume NUM, By NUM there exists =«
one=to=ony mapplng F of & onto S for some ordinal number S,

Def€ine an ordering relation R on A as follows: for any
elements x and y in A, xRy 1ff F(x) < F(y). Obviously R is a
total=0ozdering for A,

Let C be any non-empty subset of A. Thea F(C) is a none-cmpty
g2t of oxdingls by Theorem 0.4 of Chapter 1II, Theorem 0.5 of
Chapter III insurcs that F(C) has a smallest element, say E. It
is easy to z.ouve that the element FL1(E) of A is the smallest elcment

¢f Ly Thus &4 13 well-ordered by the relation R,

Haizos, oD, cits, DPe 73,



>~CF.

PRCOF. Let A be any set of non-empty sets, and assume WOP,
Ey Y02 thers exists a relation < wvhich well-orders the set UA,
Svery clemeut X of A is a subset of UA; thus there exists a
unique cmallest element of each member of A, Define a mapping F
for each element X of A by the following method: F(X) is the

smeilest element of X, Clearly the mapping F chooses one element

Zzcom each member of A; this is precisely the claim of CF.
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CHAPTER V
APPLICATIONS

The first four formulations in Chapter IV have an undeniable
intultlve appeal for most mathematicians, For this reason, particu=-
ii-ly in the area of mathematical analysis, one finds many tacit

usages of the Axiom of Choice, Thus Apostol1 instructs his readers

(= H

¢« « s Lat {xn} be a sequence whose terms are distinct

points o S , » » Whera S is an infinite set in En. s e

such that x, + & snd Lim x, = a,

épostol®s readers must, therefore, be prepared to pick a

countable subset from S; since S is an infinite set, it is considered
‘obvigus? thot countabie subsets of S do exist, It will shortly be
geen that the only known proof of this fact utilizes the Axlem of
Cholce., No doubt Apostol was aware of this, but does not indicate
8o to his readers.

The example above is quite typlecal of the tacit usages of the

cxionm to be found in the literature of mathematics, In many instences

T. Apo-col, [‘sthematleal Analysis (Reading, Massachusettss
Addisen~Wesiay Publishing Co., Ince, 1957), p. 66, That the example
fhosch £rom this text is not to be construed as a criticism of

-
s+postol; nlis text is written with great cara,
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the usc of the axiom -3 so thoroughly concealed by plausible verbal
Peasoning that cily the most careful reader is iikely to notice its
ezployzont, Thls doss not necessarily imply any lack of rigor or
¢ccZe in suca proois, but merely indicates that the axiom is being
wootptod and vood without comment in common mathematics, just as
iv;le is so assumed,

Tho remeainder of this chapter is concermned with iilustrating
vac propsr usao of the Axiom of Cholcee in the proof of scme common
oathematical theorcnse. In each case the theorems azra, to the bog
of the author’s Lnowledgze, incapcble of proof without the aid of

TN s P
tae exXtica.

& oL X £ goid to be finite {ff X is empty or equipollent with
€3S set {l, 2, ¢ ¢ o 9 n} for some Integer n, The set X is Infipite
222 X i5 not iinite., This definition of 'infinite’ cots is somewhat
tohoatisiactory in tha sense that it requires a preliminazy deovelepment
va tho notuzel nonbezs, Thus a non-nmumerical definition is dosirable,

¢ne ¢ the woze comon beingt

Lozet W Lo PDedrtind Infinite $£€ X i3 equipollent with scmo

. 233 Sy e ¢ i
LaCpas Subsct of the sex X,

L o
« - f et am il
e Stapns, L=ilcant

Se Theorv (New Yorks D. Van Nostrand

&
Clapony, -ICey ivud)s Pe 1352,
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that these definitions are equivalent utilizes
the follcwing thecorem, which is not known to be provable without

1

the Axicm of Choics,

“4 ATV
¥ -

THZCRIM: If X is any infinite set, then X hag a countable
subset,

\CCF. Since X is noneempty, choose x; € X, Let F bo a cholce

Sunction for the collection of non-cmpty subsets of X, Recursively

define fora = 1, 3, + 1 = F(X = {X1, %95 o o « 5 %} )y and note

that, gince X iz not finlte, this can be done for every natuzal

mumbsye o,

-

Tha E3CTl s Ko o o 0 3 s e s is the requircd ccuntable

R .
e

EXAMPLE IT
Using the Boizana-Welerstrass theorem, it is not difficult
tu characterize the countably compact subsets of the real iine as
poceiscly thoss sots which are closed and bounded, Censequently,
the content ¢f the ceclebrated Heine-Borel theorem for the zeal line
-3 thot counboble compactness and compactness are equivalent, The
Sencwallontlion of this result holds in any second axiom Hausdorf?

" .

L2acC, Lol inte. oting point here is that the Heine-Boxel theorem
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can be proven without the Axiom of Choice,1 but the generalization

2

cennoty to the best of our knowledge, be so proved,” The Heine-

-~

Sorel tCheoren is one example of a comforting class of theorems

cbtainable with or without the Axiom of Cholce,

TZZOREM: Let (X, T) be a second axiom Hausdorff space.
A subset of X is countably compact'iff the subset
is compact.
PROOF, (The ‘only i1f* portion of the proof iliustrates the use
of the axicm, so this is the only part proven hexe.,
Let {fn: ne 1, 2, ..:} be a countable bage for the topology
T and guppose that C = {Ok: k & 13 is any copen covering ¢ the
couitably conpact set A, It will be shown that a finite subcovering

of A can be found among the open sets of C. A standard theorem for
3

Ty

Hausdorif spaces” asserts that this can be done provided a countable

subcovering of A can be extracted from C,

1J. Rosser, Lozic for Mathematicisns (New York: McGraw=-Hill
Bock Company, Ince., 1953), p. 432=454,

>
i

Z 2l
M. Pciwvin, Foundations of General Topology (New York:
Acadenlc Press, 1980), p. 71.




Define S to be the collection of all integers k such that

-

By & Oy for some i € I, Define E to be the collection{Cy: k € sJ,

waere € 1s the set of all those 0; € C for which By & 0g; note that
C;. is non=cumpty for k € S, Let F be a choice function for the set E
and denote F(Ci) by G.s Then, for k € S, 1t 13 seea that Iy < G
and € € C,

Suppose that x € A, Then x € Ok for some kK € I. There
exists a natural number n € S such that x € Bn = 01:; this shows
that x € Gn. Thus the collection{an: ne1, 2, ...} is the

piomised countable subcovering of A,

EXAMPLE IXI
1 wao romazked in Chapter I that to reject the Juicm of Choice
would mean the 1oss of considerable generality in modezn algebra., The
following theorem of algebra (and that of the next example) is an

illustration of one which, to the bast of the author's knowledge, is

not knowm to be provable without the Axiom of Cholica,

=)

HLORCM: If V is a vector space over a field F and A

iz a linearly independent subset of V, there

exists a basis X for V such that A ".1

1‘1’ E2anl ta X

For £inite diminsional spaces this theorem can ba proven
without the Aziom of Choice, For such a proof, szece P, Halmos,
h 7 - b

Finire Dimmaional Vector Spaces (New Yorks D, Van Nostrand Co.,

N TQE : “ -
—,avey MUy Yo Lioa
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PRCOF, Suppose A is a linearly independent subset of V, Let S
be the collection of all linearly independent subsets of V which
contain 4 as a subset; this collection is nen-empty sincs 1t con-
tains A itself, S may be partially-ordered by set inclusion,
Suppoce T is any chain of S, and let C =\UT, It will be shown
that C is an upper bound of T in S; Zorn's lemma may then be applied
o the partially-orxdered set S, |
Assume that S1%) * 8%y ¥ eee ¥ 25X, = 0, where
“1s Woy eeey X, € C and ag, 855 eesy 85 € Fo Theve exnlst sets
A1 ‘“‘2’ seep 4, in T such that Xy € 4y for k = 1, 25 seey N3 But
T is g chain, sc, for some j, it is the case that K13 g5 seey % € Aj.
Now A, is lincarly indopendent, so 8 ® 28 ® s =a = Ce Hence C
is linecarly independent, Obviously G & C for all G € T, so C is
an upper bound ¢ T in S; by Zorn's lemma it is seen that S has a
maximal slemant, say X.
It has been shown that there exlsts a maximal linearly
independent subset of V which contains A; that 1s, there exists

basis X which contains A.

£

EXAMPLE IV
Given a f£icld ¥, the set of all polyncmials having coeffi-
cients in P will be denoted by F[x] . By a 'root ficld' for a
polyacmial 2(x) of Flx] will be meant a minimal extension field

; e, W o N e SN g L e ea AN o el s PNy s ictissh- T anallics
<« Ua & SUGI alde it/ a3 L28CC0ZTaDLE8 10100 l1litieoy Laoovzg NV el
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coefficients in F¥, A well-known theorem of modern algebra1

states
that, if F is any given field and £f(x) € F[x] , there exlsts a root
field of Z(x) which is unique to within isomorphism,

An cxtension field K of a field F is called "algebraicaily
cczplete over F' provided every polynomial in Flx] can be factored
into linear factors having coefficients in K, The famous “Funda-
mental Theorom of Algebra'" insures that the field of complex numbers
i3 algebralically complete over the reals, A partial generallization

of this resuit will be proven.

LSCRIM: Evezy field has an algebraically couplete
ci:tension £iold.?

ERCCH, Lot F ba a field and suppose Flx] = {ii(z;): i € I} i
Sy the Well~Qzdoring Principle the index set I can be considered to
Le wellwoxdercd by a rolation <, Let Yo' denote the first element
of I and *F ¢ dencte the root fleld of fo(x). For k # o, define ¥y
to be the root field of fi(x) over the fleld UFy: 1< x}.>

Lastly, define K to be the field Ut &k € I} .

*G, Bizltheff snd S, Maclane, A Survey of Modeorn Algebra (New
York: Tao Maczmillan Company, 1953), p. 428,

“

“This Chworom can be proven for finite flelds without the use
¢ Cls Auiem of Choices For such a proof, sca Birkhoif and Maclene,
£0e¢ & Dey Be Szoe

It is sasy to show that the union of an asconding chaln of
€iclde 1o . field under the obvious definition of zdiition and
=altipliicziien, Using transfinite induction on the welle ;_d-ﬂ;i
Eal de Yhars ig a2 ;;:--\—1—-54 in ;-u/-..: that 'a' is d¢iinsd Sor &il



Since K is an extension field of F, it need only be shown that
X 1s algebraically complete cver F, Thus suppose that £, (x) € F[x] .
Now Fy is the root field of £,(x) over the field U{F;: 1 < L} and
F& U{Fi: i < Kl 3 thus fk(x) is factorable into linear factors

having cocefficients in Fk. Since Fk < K, the proof is finished.

e



CHAPTER VI

TiZ CURRENT STATUS COF THE AXIOM OF CHOICE

I-eent Devalopments. One of the classic open problems of set

theory is the question of the independence of the Axiom of Choice
with respset to the remaining axioms of Zermelo set thaory, Suppesl
Timarks that the likelihoed of 1ts independence is very high. As
previoucly stated, the souzce of interest in this problem lles in
thie ncaeconstructive character of the axicn,

The fcar that the use of the Axlom of Choice might lead to
&cms contradiction 1o definitely without foundation in tha following
sense, Gllel® has chown that If the axioms of Zormolo set theory
aoe consistent without the Axiom of Choica, then they are consistent
i€ the axicm ig added to them, In other woxds, it is quite as *safe!
to use the axicm as Lo reject it. On the other hand, application of
the axtiom can lcad to some extremely unintuitive results, possibly

the most notoricus of which is the Banach=Tarski pa:'adox.3 A special

1

P, Suppes, Anlomatic Set Theory (New York: D, Van Nostrand
‘aw., 1900)9 p. 25&.

2

KRe Gizl, YThe Consistency of the Axlom of Chelce and of

e Generalized Contluuum Hypothesis,® Proc, of tha lational
N nf So: CoS U. S. A°’ Vo~.. 26 (1938)’ Do 556-557.

“le Tozshi end 8. Benach; "Sur la c-;“*asit_cn des ansembles

Zz points e portles respectivement congruentes,” Funs--santn

2. = - T 'h-u-o b \AIZ"*}, Pe 2-&4“77

R e —
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case of the theorem proved by Banach and Tarski is that a sphere of
unit radius can be decomposed into a finite number of parts which
can be recascambled to form two spheres, ecach having unit radius,

Research in recent years has uncovered implications wihich
Lold between the Axicm of Cholce and statements in other areas of
cLthcematics which bear no discernible relationship to any of the
Zomumulatiens given in this paper., Sierpinski provedl that the
Generalised Continuum Hypothesis (asserting that, if A is any infi-
nite set, there 1s no sct B such that A < B < 23) implies the
Asticm of Choles, while Kelley has established> that the Tychonoff
Zroduct theorem of topology is equivalent to the axiocam.

- -2 4

Mash-=1i2an! Annlvels Without the Axiom of Choica. 4 brief

dlscuasion is given here on the question of how much of elassical
cnalysis can Lo daoveloped If the Axiom of Choice is not assumed,
iue discussicn glven is essentically en abridged version of cne by

3

~USEQTe

la. Storpingkl, “Lihypothdse glnéralisbe du continu et
1%axicma du choix,¥ ticae, Vol, 34 (1947),

oo i"Jo

v

“Je izilcy, YThe Tychonoff Product Theorem Implies tha
solom of Cholce," Pupdorenta Machematiecae, Vol. 37 (1950)3
}o 7;-7&.

-« 53 :

Se Nroser, [nzic for Mathematiclens (New Yorks MoGraw=Hill

- - s .,-5.'2
e Wey vy (. wav -dg
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Starting with the axloms of Zermelo set theory, one can

1

proceed with Halmos®™ to the proof of the Peano Postulates for the

natural nunbcrse From here Landau's popular little book2

can be
conzulted for a rigorous development of all the properties of the
real and complex number systems; no use of the Axica of Cholce

1 be made to this point,

With an eye to cbtalning theorems such as the Cauchy Integral
Theorem, naxt proceed to a careful analytical treatment of Euclidean
goomatsy by the usual Cartesian constiuctions, In this way the
caommen gescmatric rosults can be obtalned without difficuity. Since
complex functica thicory requires the Jorden Curve Theorcm for polys

3

Gons, turn to Ccurent cnd Robbins™ for a proof of this result which

<oes not regulre the Axiom of Choica.

(3

Using the background cutlined above, consult Haxdy™ for a

zigorous develogment of the calculus, Occasionally Hardy does make

>, Halmos, Naive Set Theozy (New Yorks Van Nostrand, 1960),
p' 46“:&7.

(New York: Chelseca

Z:. Landau, Crundliacen do
“ubli -.u&‘.ok.) CCNM‘J\—--.]Q i 4~v0> ®

2, Couzent and H, Robbins, What is Mathemoties? (New York

V.--:\u-;l U;“.;V\n---v_l :-\-90’ lt)“‘).

’.
“G. Hazdy, Course of Pure Mathematics (llow York: <The

Micillen Cooengy 1967).
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Choice, but in each case the procfs can be re=-
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writtcn so that the "choices' are made from the field of rational
numbersy since tha rationals are welleordered, the axiom can be
avoided in cach cases
After completing Hardy's text; see Titchmarshl for a careful
dovelopment of considerable portions of complex function theory.
Taere are occasional uses of the Axiom of Choice, but they can all
52 circumveniecd in the manner previcusly described.
It o zcars that the £irst unavoideble use of the Axicm of
Cholice in Titchmarsh's text occurs in the proci of the first funda-
mental theorem of Lebesgue measuro.z Rosser remasikss
e ¢ o Hore cne plcks an gpen set O, for cuch set E_
¢Z a ceguence of measurable sots, There seena to be fo
vay to speelfy O ualquely, so that the proof falls unless
one is permitted to use the denumerable axiom of cholce.
Vs know of no other proof of the theorem which will proceed
witicut tihe denumerable axiom of cholice,

In additien to the example cited; there are several othor

instaaces in vwhich the axiom appears to be used in an essential way.

I, Titchmarsh, The Theory of Functions (New York: Oxford

[ O

2itchizcach, on. cit.y, pe 329 and p, 369,

-




Zvaluating these difficulties, Rosser statess
e o o It is thus cpen to grave doubt that one can
deovelop the theozy of Lebesgue measure without use of
tic denumerable act of choice,
If this cpinion is true of real and complex analysis, it is
Leyend deubt that no appreciable portion of modern analysis could
possibly be developed without the axiom. 1In short, it is virtuaily
cerCaln that the Axiom of Choice will not be banished from mathee

matics in the forecscable future,
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