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CHAPTER I 

INTRODUCTION 

It is the purpose of this paper to give the reader 

a general knowledge of celestial mechanics and to 

acquaint the reader with a specific problem in this 

field. The reader must have a strong undergraduate 

background in mathematics and a workable knowledge of 

vectors. 

I. THE PROBLEM 

This specific problem dealt with an artificial 

satellite and the action. or relative direction of 

motion. of an object released from the satellite. The 

object released can be thought of as an astronaut. 

This brought the problem closer to the recent problems 

of the Russian and American astronauts' walk in space. 

With the examination of the equations of satellite 

motion it was possible to predict the probable path of 

the released object. Also. with slight alteration of 

a radius vector the predictions of changes in related 

orbital elements could be obtained. 

Celestial mechanics is a far-reaching and very 

complex field of astronomy. Only the basic concepts of 

celestial mechanics were considered. Many things such 

as orbit perdurbations. orbit improvements. and orbit 
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determinations, to name a few, were not considered 

because of their complexity and irrelevance. There­

fore, some formulas and ideas must be accepted by the 

reader. 

If completely solved, the problem should be 

verified by practical applications. The results of 

the recent experiments in space will give this verifi­

cation. 

A reference frame is very important in locating 

objects in space. Until the vast space has been ex­

amined, awareness of the relevance of everyday words 

such as "velocity," "distance," and "size" is incon­

ceivable. To expound on this, an observer on a rail­

road platform was watching a passing train. Assume, 

in this hypothetical case, that there were two boys 

on the train playing catch 'with a ball. The train was 

moving in a direction perpendicular to the observer. 

Boy number one threw the ball in the same direction as 

the motion of the train. The ball's velocity, as noted 

by the observer on the platform, was larger than the 

velocity of the ball as seen by the boys on the train. 

The question is then, which velocity was the correct 

velocity? Was it the velocity as seen by the boys or 

by the observer? Maybe the true velocity was with 

respect to the North Pole of the earth, the moon, the 

sun, or even the center of the galaxy. To examine all 
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of the possible velocities of an artificial satellite 

would be very impractical. Therefore, a few of the 

useful coordinate systems or reference frames used in 

celestial mechanics have been explained. 

After examining the coordinate systems, the laws 

which govern the path of the satellite were derived. 

The sun, the moon, the earth, the satellite all have 

a gravitational attraction for one another. However, 

only the attracting forces of the satellite and the 

earth were considered. 

The problem had many compromises or simplifica­

tions, such as neglecting the gravitational attraction 

of the object released on the satellite. This as­

sumption is justified if the mass of the object is 

small relative to that of the satellite. A velocity 

has been given to the released object in the nature 

of v'. The relative position of the object with 

respect to the satellite in the orbit was found in 

the solution. Once into the problem the reference 

frame will be neglected and only the position in the 

orbit will be considered. 

II. HISTORY 

Astronomy being the oldest of the sciences dates 

back more than 2000 years. Then, the main concern 

was to define our universe in terms of some physical 
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idea. The Ptolemaic theory was the first and most 

lasting theory of that day. The Ptolemaic theory 

stated that the earth was the center of the universe 

with all other heavenly bodies travelling around the 

earth in very complex paths called epicycles. The 

Ptolemaic earth-centered universe was in complete 

agreement with the doctrine of the church and there­

fore, widely accepted. The theory was very lasting 

because of this church agreement and because there 

was nothing to disprove it. The observations of the 

day were not accurate enough to confirm or disprove 

the theory. 

In the middle of the 16th century, Copernicus 

unlocked the key to the physical system of the 

universe. Still, his system was in no better agree­

ment with the observations 'than the Ptolemaic system. 

At the time of Copernicus, and before, it was believed 

that the true and only curved path was a circle. In 

this new system the path of the heavenly bodies were 

perfect circles. 

Using a lifetime of accurate observations made by 

Tycho Brahe, Kepler achieved success in explaining the 

true character of the motion of planets. l Finally, 

with the refinement of Kepler's laws of planetary 

lA. D. Dubyago, The Determination of Orbits (New 
York: Macmillan Company, 1961), pp. 4-07 
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motion and the development by Newton of the law of 

universal gravitation, the period of practical 

astronomy ended and theoretical astronomy began. 2 

The discovery of new planets increased the 

desire to solve the general problem of the determin­

ation of orbits. Working with this problem were men 

such as Euler, Lambert, Lagrange, Laplace, and Gauss, 

who were prominent in almost every field of science. 

With Gauss, the theory of orbit determination reached 

a certain degree of completeness. 

In recent years the whole technique of calcula­

tions has changed. Previously, astronomical calcu­

lations were carried out with the aid of logarithms. 

In our day, widespread use of fast and reliable com­

puting machines has eliminated the use of logarithms 

in orbit computations. 

Considerable success has been achieved in working 

out methods of calculation of perturbations. In 1909, 

Cowell and Crommelim presented a method in which, by 

means of numerical integration, they obtained the 

perturbed coordinates themselves. This method is based 

on an almost direct utilization of the differential 

equations of motion written in their simplest form-­

in rectangular coordinates. 3 

2Forest Ray Moulton, An Introduction to Celestial 
Mechanics (New York: MacmiTlan Company, 1~4), pp. 29-35. 

3A• D. Dubyago, .£E.. ,cit., pp. 9-21. 



CHAPTER I I 

COORDINATES AND ORBIT DESCRIPTION 

In the following paragraphs» terms used in this 

discourse will be defined. 

I. DEFINITIONS 

A satellite is a body revolving around a planet. 

It is normally of negligible mass compared with its 

parent planet. The word "revolve" will be used in 

this paper to imply motion around a point. "Rotate" 

will imply motion about an axis. Thus» the earth 

revolves around the sun» but rotates on its axis. 

The earth is nearly spherical» with a radius of 

about 4000 miles or 6400 km. It is flattened at the 

poles» the deviation from a sphere being slight» but 

important for precise work. In most modern systems 

which depend on practical celestial mechanics» the 

distortions caused by a pear-shaped earth are not 

significant. Any deviations in the true revolution 

of a body» namely a satellite» are known as pertur­

bations. l In this problem» a small satellite around 

the earth will be dealt with. Therefore» the defini­

tions will be earth-satellite oriented. 

IJ. M. A. Danby» Fundamentals of Celestial Mechanics 
(New York: The Macmillan Company» ~62)>> pp. i-4. 
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The path of a satellite around the earth is known 

as the orbit of the satellite. In this orbit the point 

of closest approach is called the perigee; the point 

when the satellite is farthest away is called the 

apogee. A set of quantities which characterize an orbit 

is called the elements of the orbit. 

The prediction of the motions of the heavenly 

bodies was one of the earliest problems in astronomy. 

At first these predictions were based on the Ptolemaic 

system of epicycles, but as more and more accurate 

observations accumulated, this system was found to be 

unsatisfactory. 

Later, the motions of the planets were based on 

the laws which Kepler discovered through his analysis 

of Tycho Brahe's observations of Mars. Most of the 

work today in orbit mechanics is based upon assumptions 

that satellites obey Newton's laws of motion and gravi­

tation. In a later chapter it will be shown that from 

these assumptions the Keplerian laws of planetary motion 

can be derived. Therefore, it will be assumed that the 

following laws govern satellite motion. 

Kepler's Laws: (revised for purpose of this paper) 

1.	 The orbit of each satellite is an ellipse, 
with the center of the earth at one of its 
foci. 

2.	 Each satellite revolves so that the line join­
ing it to the center of the earth sweeps out 
equal areas in equal intervals of time. 
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3.	 The ratio of the square of the time of one 
revolution to the cube of the mean distance 
from the center of 2he earth is the same 
for all satellites. 

Newton's Laws: 

1.	 A particle will continue in a state of rest 
or of uniform motion in a straight line un­
less acted upon by some force. 

2.	 The action of a force upon a particle pro­
duces an acceleration which is proportional 
to the force and in the direction of the 
force, and inversely proportional to the 
mass of the particle. (F = rna) 

3.	 For every acting force there is an op~osite­
ly directed force of equal magnitude. 

4.	 Every particle of matter attracts every other 
particle with a force that is directly pro­
portional to the product of their masses and 
is inversely proportional to the s~uare of 
the distance between them. (F· k ml m2 
Universal Gravitation)4 ~ 

r 

II. COORDINATE SYSTEMS 

The celestial sphere is the imaginary sphere which 

surrounds the earth at a unit radius from the center of 

the	 earth. The heavenly objects are considered as being 

on this celestial sphere. The celestial sphere is used 

as a method of reasoning. 

2peter Van De Kamp, Elements of Astromechanics 
(San Francisco: W. II. Freeman andLompany, 1964), 
pp. 19-23. 

3paul Herget, The Computation of Orbits (Paul 
Herget, 1948), p. 1­

4Forest Ray Moulton, An Introduction to Celestial 
Mechanics (New York: The ~cmlilan Company, 1964), 
pp. 2-8. 
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The principal motions of the earth are its axial 

rotation and its revolution around the sun. As seen 

from the observer, all objects on the celestial sphere 

rise in the east, travel across the celestial sphere, 

and set in the west. 

Since the observations are from the earth, the 

earth's orbital motion becomes apparent as a motion of 

the sun among the stars. Once in approximately 365.25 

days the sun appears to have made a complete circuit 

with respect to the stars. The apparent great-circle 

path of the sun on the celestial sphere during the 

course of the year is called the ecliptic. 

The great circle obtained by projecting the plane 

of the earth's equator until it intersects the celestial 

sphere is the celestial equator. Figure (2.1) shows the 

earth at the center of the celestial sphere. The co­

ordinate systems used in this paper are right-handed 

systems. 

In Figure (2.1) the point P is the north celestial 

pole. The point where the sun crosses the equator from 

south to north about March 21 each year is called the 

vernal equinox (H). The vernal equinox is not fixed on 

the sphere, but moves westward along the equator at a 

rate of one revolution every 26,000 years. The point H 

is used in the inertial coordinate system to determine 

the X-axis, the center of the earth as the origin and 
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the north celestial pole, P, as the Z coordinate. 

(Figure 2.1) The X V-plane is in the plane of the 

celestial equator. S 

The other principal coordinate system, reference 

frame, is also earth centered. This system is an 

earth-fixed reference frame, where the X and Y axes 

rotate at the same rate as the earth. An arbitrary 

point has been chosen on the equator and an imaginary 

great circle, known as the prime meridian, has been 

drawn through this point and the north pole. This 

great circle which passes through Greenwich, England, 

is defined as the 0 0 line of longitude and aiso serves 

as the reference line for time zones on the earth. 

00Using this longitude point on the equator as the X 

coordinate of the earth-fixed system to pass through 

this point and the earth's 'center, Figure (2.2) shows 

the earth-fixed coordinate system. 

When converting from one coordinate system to 

the other, the X V-planes coincide and thus, the Z 

coordinates are the same for any position in space. 

The problem in conversion is to find the X and Y 

coordinates (earth-fixed) with respect to the X and 

Y inertial coordinates. This conversion depends on 

the rotation of the earth which is a measure of time. 

Sv. M. Blanco and S. W. McCuskey, Basic ~hkiiCS 
of the Solar System (Massachusetts: Addlson- e ey 
PUbliShlng Company, Inc., 1961), pp. 1-6. 
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The equation of motion of the equinox and the equinox 

position at given times are given in the American 

Epheneris. With these facts it is possible to convert 

to inertial coordinates from earth fixed and conversely. 

When an observation is made on the surface of the 

earth, the inertial coordinates of the observation are 

not known and neither are the earth-fixed coordinates. 

If the observer's position on the earth's surface is 

known, it is possible to convert to earth-fixed co­

ordinates by a series of angle rotations of the obser­

vations. 

III. ORBIT DESCRIPTION 

In order to find the position of the plane of the 

orbit of the satellite in space, it is necessary to use 

the inertial coordinates X, Y, Z. In Figure (2.3) 

where E E' is in the celestial equatorial plane and 

A A' is in the orbital plane, the X axis is directed 

to the point of the vernal equinox H, and the X Y 

plane is made to coincide with the plane of the celestial 

equator. 6 

The straight line 0 N is called the line of nodes, 

and its intersections with the celestial sphere are the 

nodes of the orbit. The node in which the satellite 

passes from the southern hemisphere of the celestial 

6A. D. Dubyago, ~. cit., pp. 32-33. 
~ 
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sphere into the northern, bears the name ascending 

node and has the symbol N. The angle XON designated 

by the symbol R, is called the right ascension of the 

ascending node and is one of the elements of the orbit. 

The second element determining the plane of the orbit 

is the inclination i of the plane of the celestial 

equator, equal to E'NA'. If i < 90°, then the body 

moves in a so-called direct motion. If i > 90°, then 

the motion is called retrograde. Most of the United 

States' satellites have an inclination i < 90°. The 

rotation of the earth will aid in a launching of a 

direct motion orbit, whereas in a retrograde orbit 

this rotation velocity of the earth would have to be 

7overcome. 

The remaining elements describe the satellite 

position in the plane of its orbit. In Figure (2.3) 

the point P is the point of closest approach in the 

orbit, called the perigee, and s is the position of 

the satellite. Then B denotes the angle NOS, custom­

arily called the argument of latitude of the satellite. 

The true anomaly V, is equal to the difference between 

argument of latitude 8 and the argument of perigee w, 

written 

V = 8-w (2.1) 

7J. M. A. Danby, ~. £il., pp. 155-157. 

-
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When the two-body problem is solved in Chapter III, 

six constants of integration are found; these are then 

expressed in terms of six other constants, the elements 

of the orbit. These new constants are the following: 

i-the inclination of the orbit.
 
R - the longitude of the ascending node.
 
w - the argument of perigee.
 
a - the semi-major axis
 
e - the eccentricity
 
T - the moment of passage of the perigee.
 

The first three elements give the position of the 

plane of the orbit in space and the direction of the 

major axis of the orbit. These depend upon the selection 

of the coordinate system. 

The size and the form of the eliptical orbit are 

determined with the aid of the next two elements. B 

The last element fixes the position of the body in 

the orbit at a definite moment. 

Chapter IV will expound on the geometric interpre­

tation of the orbit size and position in space. 

BV. M. Blanco and S. W. McCluskey, 2£. cit., p. 31. 



CHAPTER I I I 

TWO-BODY PROBLEM 

The motion of a satellite around the earth is 

governed by central forces. A central force is one 

which acts along the line joining the two bodies. 

Newton's law of gravitation states that any material 

body in the universe attracts any other body with a 

force which varies directly as the product of their 

masses and inversely as the square of the distance 

between them, and this force acts along the line 

joining the bodies. 

k2 m1 m2 
F = - (3.1) 

r 2 

where k 2 is the universal gravitational constant. 
F is the attracting force between the two bodies. 
m1 and m2 are their respective masses. 
r is the distance between m1 and m2. 

The negative sign in (3.1) denotes an attractive 

force. 

Newton's second law of motion states that 

F = rna (3.2) 

where a is the acceleration of a body of mass m subject 

to a force F. 1 

Consider two masses m1 and m2 situated at points 

r1 and r2 in a rectangular coordinate system in which 

1A• D. Dubyago, ~. £!l., pp. 22-23. 



18 

Newton'S laws of motion ho1d. 2 (Figure 3.1) Let m1 

have the coordinates (B 1 ,B 2,B 3) and m2 have the co­

ordinates (C1 ,C2 ,C3). Then the projection of the 

force expressed in (3.1) on the Ai axis is 

k2 m1 m2 
Fi a - 2 • Cos(r,A i ) i a 1,2,3 (3.3) 

r 

where (r,Ai ) is meant to be the angle between the 

direction along a line from m1 to m2 and the Ai -axis. 3 

However, 

(Ci-Bi)
Cos(r,Ai ) = i .. 1,2,3,r 

substituted into (3.3) gives 

k 2 m1 m2 
F'1 = - 3 (C'-B')1 i .. 1,2,3. (3.4)r 1 

The projection of the force expressed in (3.2) on the 

A·-axis is1 

d2 A·1
Fi .. mai .. m i .. 1,2,3 (3.5)

dt 2 

where Ai is a distance on the axis. Now equating 

formulas (3.4) and (3.5) for the body m1 we find 

d2 B'1 k2 m1 m2 
m1 = (Ci-Bi)

dt 2 r 3 

or 

d2 Bi k2 m2
Z- = (C'-B') i = 1,2,3 (3.6)dt r3 1 1 

2Forest Ray Moulton, ~. £!l., pp. 140-142. 

3A• D. Dubyago, ~. cit., pp. 24-25. 
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and similarly for m2 

d2 Ci k2 m1 
dtr- = - r 3 (Ci-Bi) i ... 1,2,3. (3.7) 

These two equations may be subtracted to obtain 

d2 2dt! (Ci-Bi) .. - k (ml + m2) (Ci -Bi) i III 1,2,3. 
r 3 (3.8) 

Now introducing a new coordinate system with origin 

at the center of ml, its axes are paralleled to those of 

the old frame. 4 Then calling these new axes Xl ,X2 ,X3 , 

the coordinates of m2 become 

X' = C·-B­ i .. 1,2,3. (3.9)111 

With this substitution. equation (3.8) becomes 

d2Xi k 2 (ml + m2).. - -3-- Xi i 1,2,3. (3.10)IIIdt! r 

With the notation 

k 2 (ml + m2) = K2 , 

equation (3.10) becomes 

d2 Xl .. _ K2 Xl ,-d-t"ll"Z- r 3 

d2 X2 K2 X2
 
r- .. - ,


dt r 3
 

d2 X K2 X3
3 
r- .. - • (3.11)3dt r 

4Porest Ray Moulton, ~. £i!., pp. 143-145. 
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These three are then the differential equations 

of motion which will give six constants of integra­

tion. S These constants are related to six orbital 

elements. 

A change to the familiar coordinate notation 

X,Y,Z, can be made by setting Xl • X, X2 = Y, X3 • Z. 

Then system (3.11) becomes 

d2 X K2 X 
;:;r = - -:r ' dt r
 

d2 Y K2 Y

'dt2 • - -;r , 

d2 Z K2 Z 
= - -:rdtr r (3.11) 

Multiplying the first of these equations by -Y, 

the second by X and then adding, yields 6 

X d 2 Y d2 X 
- Y ~ = 0

dt 2 dt~' 

Y d2 Z d2 y 
- Z -. 0

dt 2 dt 2 '
 

Z d2 X d2 Z
;:r- - X -;:r = O. (3.12)
dt dt 

SA. D. Dubyago, ~. cit., p. 24.
 

6.Forest Ray Moulton, 2.E.. cit., p. 144.
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This can also be written as 

d (X dY _Y dX). 0 
at err at ' 

d (Y dZ -z dY)_ 0 err at at ' 

d (z dX -X dY)_ 0 (3.13)err err err • 

(3.13) can then immediately be integrated to give 

X dY _Y dX • a 
at CIt I' 

Y dZ -Z dY • a 
at CIt 2' 

Z dX -X dZ a a (3.14)at CIt 3· 

Multiplying this system by Z, X, Y respectively, and 

adding, gives 7 

a l Z + a X + a 3 Y = O. (3.15)
2 

This is the equation of a plane passing through the 

origin of the coordinates (ml). Since this plane 

passes through a definite point of space, it is 

completely determined by two parameters. 

Multiplying both sides of each equation in (3.14) 

yields 

XdY - YdZ al dt,0: 

YdZ - ZdY 0: a2 dt, 

ZdX - XdZ • a3 dt. 

7paul Herget, ~. £!l., p. 26. 
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Let the moving body at the moment t be at point P 

with coordinates X,Y,Z, and at moment t + dt be at 

point P' with coordinates X + dX, Y + dY, Z + dZ, 

(Figure 3.2). Then, X d(Y)- Y d(X)expresses twice the 

area of triangle OQQ', which is the projection of tri ­

angle OPP' on plane XOY. Now, the area OQQ' equals 

the area OPP' multiplied by the cosine of the angle 

between the plane of motion of the body AOA' and the 

plane XOy. 8 

The problem has thus been simplified by reducing 

it to a problem in the plane. The next choice is a 

reference .frame in the orbital plane with the earth as 

(3.16)dt! = - --;r 

the center, calling the coordinates X and Y; these are 

not, of course, the same X and Y previously used. Thus, 

the following equations are left to be solved. 

= ­d 2 X 
dt 2 

J(2 X 
--;r 

d2 Y K2 Y 

which will give four constants of integration. 

As before, multiplying (3.16) by -Y and X respective­

ly, and adding, gives 

X d2 Y _ Y d2 X = o. (3.17)dtZ dZt 

8A• D. Dubyago, 2£. cit., p. 26. 
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Integrating this, yields 

dY dX
X d.t -Y err = C3· (3.18) 

It is now advantageous to introduce polar coordinates. 

Let 

X = r cos 8, 

Y = r sin 8, 

then 

dX = cos 8 dr - r sin 8 deerr crt err ' 
dY . dr deerr = Sln 8 err + r cos 8 err (3.19) 

Substituting (3.19) into (3.18) gives 

2 d8 . 
r (It = C3 (3.20) 

From Figure (3.3) 

d(A)= "!1 
r d8 r 

or 

22d (A) = r d 8 • (3.21) 

Comparing (3.20) and (3.21) gives 

2 dA = Cerr 3, 

which immediately integrates to9 

2 A = C3 t + C4 (3.22) 

9pau1 Herget, ~. £i!., p. 26. 
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Formula (3.22) expresses Kepler's Second Law: 

Each body revolving around the earth moves in a plane 

passing through the center of the earth; moreover, the 

area being described by the radius vector of the body 

changes proportionally with time. 

Multiplying (3.16) by
 

dX dY

2 at and	 2 at' 

respectively, and adding, yields 

2 2
2 d X dX + 2 d Y dY = -2 K2 dX dY 

:!(X err	 + Y at)·crt err <It err r 
(3.23) 

Differentiating 

r2 = X2 + y 2 , 
with	 respect to time gives 

r dr = X dX + Y dY (3.24)at err err· 
Substituting this into (3.23) yields 

2 d2 X dX d2 Y dY = -2 K2 dr 
dt 2 err	 + 2 dt2 err ;z at· (3.25) 

But the left-hand side of (3.25) can be written as 

2 22 d X dX + 2 d Y dY = d((dX)2 + (dY)2)
dt2 err dt2 err err err err 

(3.26) 

with (3.26) the (3.25) becomes lO 

2d((dX)2	 + (dY) 2) = _2 K dr (3.27)err at err ;Z at· 

10	 . 28A. D. Dubyago, ~. ~., p. • 
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Integrating this equation	 gives ll 

K2
(dX)2 + (dY)2 = 2 - + C	 (3.28)crt (I'f r 5 

which in many different forms is known as the energy 

integral. 12 So the change in kinetic and potential 

energy are equal. Transforming to polar coordinates, 

using (3.19), (3.28) becomes 

(dr)2 + r2 (de)2 = 2 ~ +	 C (3.29)err err r 5 

But since 

dr dr de 
err = as err 

(3.29) becomes 

(*)2 ((~)2 + r 2) = 2 K~	 + Cs (3.30) 

2 
Using (3.20), replacing (~)2 by §t , (3.30) then reads 

r 

2) 
, K2C~ d;4 ((ern:) 2 + r = 2 - +	 Cs • r 

Thus solving for de gives 

C3 dr 

de = J2K2 + Cs - C3
2: 

2 r -	 :-Tr r	 (3.31) 

which, since 

C
-d (:;)- -=f dr, 

r 

llForest Ray Moulton, 2E. cit., p. 28. 

l2 J • M. A. Danby, £2. cit., p. 64. 
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(3.31) may be written in the form 13 

-d(f3.)

d8 = 
+ k

4 
k

2 
(3.32)JC5 C3 - (E3

r 

- £1) 2 r 

Now let 

K2
~-fz.­ -J.
1.3 r -

Since then 

C3
d(J)= dCI=') (3.33) 

(3.32 becomes, using (3.33), 

-d(J)
d8 .. 

'-/ C5 + qR4 - J 2 (3.34) 

which. when integrated. gives 

J 
8 = cos- l + C6~ C . + K4 (3.35)5 C2

3 

or using (3.33) again, 

K2C3 - - ­r C3
8 = cos- l 
+ C6
 

~cs + ~i 

13Forest Ray Moulton, ££. cit., p. 148. 
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or 
K2C3

r-'C3 
cos (S - C6 ) = 

R 4 
C5 +	 2r

C3 

Solving the equation for r gives 14 

C3r =0 

K2 I K4 cos (S - C6)C3 + V C5 + ­C2 
(3.36) 

3 

which is the polar equation of a conic section with the 

origin at one of its foci. This equation demonstrates 

Kepler's first law, namely that the satellites move in 

ellipses, the earth beine one of the foci. 

In order to write the orbital elements (shown in 

an earlier chapter) into terms of the above constants 

of integration, where 

p 
r =	 (3.37)1 + e cos {8 - w) 

is the ordinary equation of a conic with origin at the 

"right-hand" focus. P is the semi-latus rectum and w 

the angle, between the major axis and the polar axis. 

Multiplying numerator and denominator of (3.36) 

by ~~ yields 
2

C3 
j(7
 

r =
 

1 + C3 C5 cos(S - C6) (3.38)1 +J 2 

K4 

14	 . 29A. D. Dubyago, ~. ~., p. • 
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A comparison of (3.37) and (3.38) yields 

p = 
C3

2 

K2 

C~ C51 + --,e=j 
K 

w = C6 (3.39) 

The elements i and R, describing the orientation of 

the orbital plane in space, are related to our constants 

of integration by the following equations: 15 

a1 = C3 cos i 

a2 

a3 

= ! 
a + 

C3 sin i 

C3 sin i 

sin R} 

cos R 

upper sign if a1 

lower sign if a1 

positive 

negative 

(3.40) 

Note that 

2 2 2C3 = ~ a + a + a (3.41)123 

is thus not a new constant of integration. 

The elements in Chapter II can now be written in 

terms of the constants of integration. Where 

-1 a1i = cos C3
 

. -1 a2 ,

R = S1n C3 sin 1
 

w =
 C6 
C2
 

a = J
 
K(l - e 2 ) 

15Forest Ray Moulton, ££. Ell., p. 146. 
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CHAPTER IV 

DEVELOPMENT OF THE ORBITAL ELEMENTS 
FOR THE ASTRONAUT 

This chapter yields orbital elements for the re­

leased astronaut in terms of the elements of the cap­

sule. 

I. EQUATIONS OF AN ELLIPSE 

A look at the simple equation of an ellipse, as 

shown in Figure (4.1), will aid in the development of 

the .astronaut's orbital elements. The conic section 

is the locus in a plane of all points having constant 

ratio e between the distance r from a fixed point F 

(focus) and the distance d from a fixed line 

(directrix):l 

r = e d (4.1) 

The distance from focus to directrix is 

DF = d + r cos V = rle (1 + e cos V) (4.2) 

Here the true anomaly V is measured in the direction 

of orbital motion from the radius of perigee FP. 

Since 

p = e DF (4.3) 

lpeter Van de Kamp, Elements of Astromechanics,
 
(San Francisco: W~ H. Freeman and-Company, 1964), p. 9.
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eliminating DF from (4.2) and (4.3) yields 

--..Er = (4.4) 

the well-known equation of the conic section in polar 

coordinates, with the origin at the focus; e represents 

the eccentricity. If 0 < e < 1 the orbit will be 

elliptical in shape. The radius of perigee will occur 

when V is zero. The radius of apogee will exist when 

V is ?(. 

The elliptic orbit is of primary importance in 

celestial mechanics. The radius of perigee and apogee 

are 

pr .. , (4. S)p 1 + e 

p
r a =- , (4.6)i - e 

The average of these, 

p
r a (4.7)? = i - e Z , 

is called the mean distance, which equals the semi­

major axis a, hence 

p = a (1 - e 2 ) (4.8) 

and 

T II a (1 + e), r II a (1 - e). (4.9)a p 
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Thus for an elliptic orbit. equation (4.4) written in 

polar coordinates and referred to the focus, may also 

be wri tten as 

a (l - e 2)
r = (4.10 )1 + e cos V 

The distance OF, called the linear eccentricity, is 

given by 

c = ea. (4.11) 

II. KEPLER'S EQUATION 

There is a single but important derivation of 

Kepler's equation (4.15) which explains the geometric 

significance of E, known as the eccentric anomaly.2 

Construct the ellipse in which the body moves, 

and also its auxiliary circle AS'P (Figure 4.2). The 

angle PPS is the true anomaly v; the angle POS' will 

be defined as the eccentric anomaly E. 3 

The true anomaly v and the eccentric anomaly E, 

are related as follows: 

Squ

r sin 

r cos 

r = a 

aring and a

v = a sin E 11 _ 

v = a (cos E-e), 

(1 - e cos E). 

e2 

dding equation (4.12) gives 

(4.13) 

(4.12) 

2J • ~1. A. Danby, op. ill., pp. 126-127. 

3Porest Ray Moulton, ~. cit., pp. 159-160. 
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In the equation 

n(t-T) = E-e sin E (4.14) 

n represents the mean angular motion of the body in its 

orbit; (t-T) represents a change in time. The quantity 

n(t-T) is the angle which would have been described by 

the radius vector if it had moved uniformly with the 

average rate. This imaginary angle denoted by M· is 

called the mean anomaly. The following equation is 

known as Kepler's equation,4 

n(t-T) = M = E-e sin E. (4.15) 

A convenient relation between v and E is found by 

eliminating r from (4.12) and (4.13).5 

cos E-e cos v = (4.16)1 - e cos E 

The linear distance of the focus F to the center 

is ae. The other "empty" focus, equidistant on the 

other side of the center, does.not appear explicitly 

in the equation in polar coordinates and has no physical 

significance in astrornechanics. It is, however, signif­

icant in the construction of the ellipse, which is usual­

ly carried out in rectangular coordinates. The relation 

4~., p. 159.
 

5peter Van de Kamp, 2£. cit., p. 15.
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between the distances rand r' from a point on the 

ellipse to the two foci is of particular interest. 

We have 

r • a (1 - e cos E) 

It is easily seen that for the empty focus 

(4.17) 

r + r' = 2a 

Hence, 

which is the expression showing 

r' • a (1 + e cos E). 

that the 

(4.18) 

(4.19) 

sum of the 

radius vectors connecting any point on the ellipse 

with the two foci is equal to the length of the major 

axis. 6 This relationship is shown in Figure (4.3). 

III. ASTRONAUT'S ORBITAL ELEMENTS 

The four elements for the capsule, as listed, will 

be perturbed to give new elements for the astronaut's 

orbit. 

r • radius vector 

a = semi-major axis 

e = eccentricity 

P = period of revolution 

Neglecting the argument of perigee, right ascension 

of ascending node and the inclination of the orbit will 

not affect the solution of the problem a great deal. 

6Ibid., p. 16. 
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Note that the elements used, namely a, e, and P, 

are elements which describe the position of the 

satellite in the orbit. 

The following are equations already derived in 

7the paper or attained from another source. 

2V = k2(m l + m2) (t - t) (4.20)o 

where V is the velocity of the capsule,o 

k is the universal gravitational constant, 

ml' m are masses of two objects,2 
r is the distance from the capsule to the center 
of the earth, and 

a is the semi-major axis. 

k Iml + m2 (4.21)n • a3/ 2 

where n is the mean angular motion. 

M = n(t-T) (4.22) 

where M is the mean anomaly, 

(t-T) is the change in time, 

2 'IT 
n = -,r (4.23) 

where P is the period of revolution. 

M • E - e sin E (4.24) 

where e is the eccentricity, and 

E is the eccentric anomaly. 

r = a(l - e cos E). (4.25) 

7Forest Ray Moulton, 2£. cit., pp. 164-165. 
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The method for solution will be to assign the 

astronaut a velocity differing from the capsule's 

velocity by dVo • Once the variation of the other 

elements due to the dVo are found, the elements of 

the astronaut can be derived. 

From equation (4.19) differentiating gives 

dr + dr' = 2da.	 (4.26) 

Now making the assumption that dr = dr', yields 

2dr = 2da. (4.27) 

The assumption is justified as an average over the 

complete orbit. 

Next, differentiating equation (4.20) gives 

2dr da]2V dV • k 2 (m1 + m2) [- ---of' + ~. (4.28)
o 0	 rO:; a 

Substituting into	 (4.28) from (4.27) yields 

2 2dr dr2VodVo = k (m1 + m2) [- ~ + -:2]. 
r a 

or 

2Vdr = av;;-	
o 

i 2]k
2 (m1 + m2) [ra -	;z (4.29) 

which is the change in r with respect to a change in yo. 

Dividing equation (4.27) by dVo gives 

2dr 2da 
~=~. 
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So 

ZVoda = (4.30)CW;	 1 2kZ(m1 + mZ) [:1" - :-z]a r 

Differentiating (4.Z5) and solving for dE yields 

dr - da + ae cos E da + a cos E de dE .. 
ae Sln E	 • 

(4.31) 

Then 

MillE - e sin E, 

gives 

dE = dM + sin E de. (4.3Z) 

Equating	 (4.3Z) and (4.31) yields 

(dM + sin E de) ae sin E .. dr - da + ae cos E da 

+ a cos	 E de 

or 

(ae sinZ E - a cos E)de = dr + (ae cos E - l)da 

- ae sin E dM. 

Solving	 for de gives 

dr + (ae sin E - l)da - ae sin E dMde = ae sln 2	 E - a cos E 

or 

de dr + (ae sin E - l)da - ae sin E dMav:- .. Cae sln 2 E - a cos E)dV oo 
(4.33) 
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Using the equation 

k/m l + m2
 
n =
 as! 2 

will give 

k/ml + m2 t da.dn = (4.34)5/2a 

Equation (4.22) gives 

elM = dn(t-T). 

Substituting for dn from (4.34) yields 

k/ml + m2 
dM = '23 da (t-T) 

a s/ 2 

or 

dM k Irnl + m2 3 da<IV:' = '! <IV:" (t-T). (4.35)o as/2 o 

Substituting da/dVo from equation (4.30) gives 

dM k Iml +m2 • 3 • 2Vo
<IV:" = - as/2 '! 2 i 2 (t-T) 

0 k (ml +m2) [:2 - :2]a r 

or 

dM - 3V0 (t-T)
ClV:" = (4.36) 

0 as/ 2 k/ml +m2 [-1 - -]2 
a 2 r 2 

Now that dM/dV is known, a solution for de/dVo can beo 

found. Using equation (4.33) rewritten 

de [dr + (ae sin E-l) ~ - ae sin E £V:]<IV:' • CI\'c;"0 o 0 

1 
ae sinZ E - a cos E 

, 
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with a great deal of substitution, finally gives 

de • 2aeVo sin E (a5/ 2 + kim] + mz (t-T)) 
•av; k 2 (ml+m2) [;} - ;}][ae sin2 E-a cos E] 

(4.37) 

The final element used in the comparison is P,' period 

of revolution. From equation (4.23) 

21T
dP - - :-! dn 

n 

or 

dP 21T dn (4.38)--:-r av:'~ n 0 

Since 

klml + m2 3 d 
dn· - 5/2 "'"£. a, 

a 

then 

k/ml + m2 3Vo • 
(4.39)dn • - 5 2 2 [1 2]~ a / k (ml + m2) ;! - ;! 

Substituting dr/dVo from (4.39) into (4.38) yields 

dP 3Vo
 
<IV:' 5/2 1 2'
 o I: a k/ml + m2 [71 - :1] (4.40)

a r 

The astronaut's elements are the elements of the 

capsule plus any change due to dVo ' The following are 

the astronaut's orbital elements. 

dr 2Vo
r* • r + ~ • r + av_ 2 1 2 

o k (ml + m2) [:-r - :r] (4.41) 
a r 
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2Voda 
a* • a + uv: • a + 2 1 2 (4.42)o k (ml + mZ) [:1' - :r]

a r 

de ,2aeVo sin E(aS/ 2 + f!</m l+m2 (t-T)) 
e * • e + CIV:' • e + -----~-...,or_-=--------

o k2Cml+mz)[:t - :fICae sin 2E-a cos E)
a r 

C4.43) 
3Vo

dP • P + 1 2]
p* • P + UV; aS/Z k/ml + mZ [;! - ;! 

C4.44) 

,.... 



CHAPTER V 

CONCLUSION 

I. ASTRONAUT'S POSITION 

This final analysis will use the derived orbital 

elements for the astronaut from Chapter IV. A compar­

ison can be made between the capsule's future position 

and the astronaut's future position by using the 

original elements and the derived elements. The solu­

tion is simplified because the orbit planes are the 

same. The elements which determine the satellite's 

position in the orbit are the only elements that have 

changed. The astronaut's elements are written in terms 

of the capsule elements. 

The radius vector to the astronaut. the magnitude 

of which is given in equation {4.41). will have a 

change amounting to 

ZVo 
1 2

k Z (m 1 + mZ) [~- ~] (5.1) 

from r. Where Vo is the velocity of the capsule. 

k Z(m1 + mZ) is a constant factor defined in Chapter III. 

a the semi-major axis, and r the distance between the 

origin and the object. r* will be smaller than r if 

(5.1) is negative. and larger than r if (5.1) is positive. 

Both V and k Z(m 1 + m2) are positive.o 



48 

Another compromise in the analysis must be made; 

the eccentricity must be less than .14. This is not 

a serious compromise since most of the satellites 

which carry astronauts travel in rather circular orbits. 

If the orbit is circular, then e • O. 

Equation (4.9) suggests that 

a (1 - e) S r s a (1 + e) (5.2) 

Since e < .14, (5.2) gives 

r < 1.14 a, 

for all r, or 

r 2 - 2a2 < O. (5.3) 

Dividing both sides of (5.3) by a2r 2 yields 

r 2 - 2~22 Z 1.:r 2- :r < 0, for e < .14. 
a r a r 

Therefore :t -:t is negative; then (5.1) will be nega­
a r 

tive, and r* will 'be less than r. 

Since the equation for the change in the semi­

major axis, a, is the same as that for r, the a* will 

be smaller than a. 

The factor :t -:t also appears in the equation 
a r 

(4.44)	 as indicated. 

3Vop* .p +	 1 ~]as/ 2 k{ml + m2 [;r- ;r 
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Since V ' as/ 2 and k/ml + m2 are all positive ando 

:t -:t is negative, the value of P* will be less than 
a r 

the value for P. 

The eccentricity is so small that any change in 

it would not affect this analysis. 

All three elements r*, a*, and p* for the astro­

naut will have a smaller magnitude than r, a, and P 

for the capsule. 

The values of a* and r* indicate that the astro­

naut will be somewhere between the capsule and the 

earth. The value of p* indicates the position of the 

astronaut. The astronaut will either lead the capsule, 

trail the capsule, or be directly between the capsule 

and the earth. The time per revolution for the 

astronaut is less ,than the time per revolution for 

the capsule, since p* is less ,than P. This means that 

at any given moment after the separation of the astro­

naut from the capsule the astronaut will lead the 

capsule. After a great many revolutions the astronaut 

will be well in front of the capsule in an orbit some­

what smaller than that of the capsule's orbit. 

II. FUTURE STUDY 

The preceding discussion does not close the prob­

lem or give a refined answer. It has been possible to 



SO 

predict a probable path of the released astronaut with 

the aid of a great many compromises. 

The problem could be approached from a numerical 

point of view with the aid of a computer. The in­

accuracies of the problem could be overcome by giving 

the capsule and the astronaut exact positions and 

velocities. Using an orbit prediction program and a 

high-speed computer, one could predict very accurate 

positions of the two objects at any future time. 
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