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generality results if g is odd and d even. Let g = ()2,
where G is the product only of distinect odd primes in 2r2,
thus, G is always odd. Then, let d = 2(n)2, where n is the
product of the remaining distinet primes in 2r2,

Then from (8) it follows,
(9) gd = 2r2 = 2n2G2, and
(10) r = na.
From (2), (3), and (4),
(11) a=2r + g = 206 + G°,

(12) b =2r + d = 2nG + 2n2.

(13) c=2r + g +d = 2nG + G2 + 2n°,

Using the tranaformation, u =G + n and v = n, state-
ments (11), (12), and (13) can be written as a = u® - v2,

b = 2uv, and ¢ = wl + v@ respectively. 1Inspection of the
tpree conditions on u and v in the theorem, will show that
the values of G and n 1n the transformation satisfy the
conditions also.

The necessary conditions for a primitive triple have
now beéen proven. It is now necessary to prove that the
values of a, b, and ¢ as expressed in equations (11), (12),
and (13), are always primitive when G is odd and n and G
are relatively prime.

By substituting these values in equation (1), one has

(2nG + G2)2 + (2nG + 2n2)2 = (2na + G2 + 2n2)2,
which simplifies to an identity and thus equation (1) is
satisfled.
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The next condition for a primitive triple is that G
be odd. For if G is even, it is apparent from (11), (12),
and (13) that a, b, and ¢ are also all even and the result-
ing triple 13 not primitive.

It now remains to be proved that the triple is always
primitive when n and G are relatively prime. Since G must
be odd, from (11), (12), and (13), a and ¢ must be odd and
b must be even, and as such they do not have the common
factor 2. They also do not have an odd common factor k
which is greater than 2. For i1f they did then every prime
divisor of k would be a common divisor of a, b, and ¢} or
even if k is prime let a = ka;, b = kby, and ¢ = ke¢;, then
from (4), (2), and (3),

ko, = 2nG + @2 + 2ne, ko, = 20G + 62 + 2n2,
/ ka, = 2nG + a2, and kb, = 2nG + 2n2,
Subtracting,

k(°1 - 0-1) = 2n2’ k(°1 - bl) = GZ’
or,

o = (2n%/x) by = (62/k)

1° % SRAE IS S| ‘

Since k is greater than 2, it would follow that k
divides n and G, which is contrary to the fact that n is
prime to G.

Q. E. D.3

31bid., p. 542-543.



CHAPTER VI

APPLICATION OF THE PYTHAGOREAN THEOREM
TO FIGURE-CUTTING PROBLEMS

This chapter 1s devoted to showing how the Pythagorean
Theorem was applied to four of fifteen well-publicized pro-
blems on figure-cutting. The fifteen problems were written
by the matheﬁ;tics staff of the University of Chicago. The
problems appeared as a series of six articles in The Mathe-

matics Teacher during the years 1956 to 1958.

The term "transform" as used in this chapter means to
cut a figure into parts using straight lines only and then
to rearrange these parts to form a new figure.

In this chapter each of the original fifteen problems
is stated, and then the ?ythagorean Theorem applied to

obtaln a solution of the last four.
I. 'STATEMENT OF THE PROBLEMS
(1) Given three congruent squares, to transform them

into a single square.

(2) Given a square, to transform it into three con-
gruent squares.

(3) Given two squares (congruent or not), to trans-
form them into a single square.

(L) Given a square, to transform it into an equi-
lateral triangle. .

(5) Given an equilateral triangle, to transform it
into a square.
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(6) Given a (non-rectangular) parallelogram, to
transform it into a square,.

(7) Given a square, to transform it into n congruent
equilateral triangles (where n is some natural number
greater than 1 and fixed in advance.)

(8) Given one or more rectangles, to transform them
into a square.

(9) Given a regular hexagon, to transform it into a
square.

(10) Given a regular pentagon, to transform it into
a square.

(11) A pin consists of three congruent silver squares
soldered at the vertices in such a way that the sides of
one square are extensions of the sides of another. It is
required to cut this pin along two pairs of parallel lines
and from the resulting parts to assemble a brooch having
the shape of a rhombus.

(12) Given a right triangle ACB whose longer side BC
is less than twice 1ts shorter side AC, to cut it into no
more than four parts that reassemble into a square.

(13) Given a square, by cutting it into at most four
{ parts to transform it into a right triangle whose longer
side 1s less than twice the shorter side.

(14) Given a square, to transform it into two squares
of which one has an area twice that of the other.

(15) Given a square, to transform it into three
squares whose areas are in the ratio 2:3:l.l

1Mathematics Staff of the University of Chicago, The
Mathematics Teacher, XLIX, May, 1956, p. 332; XLIX, October, -
1956, p. LL2; XLIX, December, 1956, p. 585; L, February, 1957,
p. 125; L, May, 1957, p. 330; LI, February, 1958, p. 96.
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II. APPLICATION OF PYTHAGOREAN THEOREM
TO PROBLEMS 12-15

In the January, 1962, issue of The Mathematics

Teacher, Frank Piwnickl has shown how the Pythagorean
Theorem can be applied to the solution of problems 12-15.
As the solutions of problems 1l and 15 are somewhat sim-
pler, they will be presented first, The solutions of these

problems are as follows,

Problem 1l4: Given a square, to transform it into two

squares of which one has an area twice that of the other,
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ABCD is the given square (Figure 1). On the side DC
a semi-circle is constructed with a radius equal to DC/2
and DE is equal to DC/3. From point E a perpendicular is
constructed to intersect the arc¢ DC at F. Now triangle DFC
is a right triangle with the hypotenuse AC and legs DF and
FC. With respect to this right triangle, the square on DC
is inward. The square on DF is then constructed inward,
and the square on FC outward.

Using the parallel lines formed in Figure 1, the
following right triangles can be shown to be congruent.
Triangle AND is congruent to triangle BRC, triangle ANK is
congruent to triangle DGL, triangle DFC 1s congruent to
triangle AHB, and triangle LMC is congruent to triangle KPB.

Therefore, the square ABCD on the hypotenuse of
triangle DFC, is cut into five parts by the segments DK,
CF, AN, and LM, all lying within the area of the square
ABCD. From these five parts the two required squares can
be constructed as shown in Figure 1. The squares completed
on the/sides of triangle DFC indicate how the Pythagorean
Theorem 1s used in the solution of this problem.

To verify that square FPRC is equal to twice square
AHPN, 1t is necessary to show only that FGZ = 2DF2., This
can be shown by applying the Pythagorean relationship‘to the
right triangles DFC, DFE, and FEC. The proof is as follows:



T2
(1) T2 = D68 - TFS,

(2) or, FC© = 95@2 - 5?2, since DC = 3DE.

(3) Therefore 35@2 = (1/3)?52 + (1/3) F2.

(4) Also, 552 = TF° + TE° op EF2 = TF2 - DE2,

(5) and Fol = BFC + Bee.

2 2

(6) Therefore, 552 = 5?2 - DE + ECS. From L and 6,

2 2 + LDE®, since EC = 2DE;

- B-F-ao

- DE
2

(7) 762 = OF

(8) or 35@2 = FC
(9) Therefore, FGZ - DFZ = (1/3) FG2 + (1/3) TF4.

From 3 and 8.

2 2

(10) or, FC° = 2DF<.
Q. E. D,
Before starting on exercise 15 it will be necessary
to construct several figures, which will all be grouped

together for convenience when referring to them.
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Problem 15. Given a square, to transform it into
three squares whose areas are in the ratios 2:3:l.

This problem has a two part solution, the first of
which is a division of the square into two squares in the
ratio 1:2. This part 1s a repetition of the solution just
given to Problem 1li. Figure 2 differs from Figure 1 in
that the square on DF, the smaller arm, 1is constructed, not
on that arm, but on AN which is equal to DF. The use of
Figure 2 in place of Figure 1 is Justified by the fact that
triangle DFC and LMC of Figure 1 are congruent respectively
to triangle AND and RLD of Figure 2. The trapezoid 2 and
triangle L make up the square shown in Figure 6b, as in
Figure 2 triangle ANK is congruent to triangle AMR. What
remains of the square ABCD now is Figure 3, which, with the
pieceé rearranged, becomes Figure L. The fact that Figure L
is a square is apparent since DC = CB and RD = XKE.

Now if the 1:2 ratio of the squares in Figures 6b
and 4 is regarded as 3:(2 + l), then the square in Figure L
has torbe cut into squares in the ratio 2:4, which is 1l:2.
This gives the same ratio and the same operation as applied
in Figure 2. In Figure 5 FT is constructed perpendicular to
CB. Triangle FTC here is similar to triangle CFD in Figure 2,
and therefore, the ratio of the squares on its arms TC and
FT is 1:2. The whole of Figure 5 is similar to Figure 2

except for the difference 1n size and the presence of tri-
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angle KLB. Hence from the pieces of Figure 5, the squares
QG (Figure 6¢) and FH (Figure 6a) can be assembled.

If the parts 1in Figure 2 of Figure 3, numbered 3 and
S, are replaced by parts from Figure 5, numbered 3' + 3'! +
3''" and 5' + 5'! respectively, then Figure 2 is reassembled
showing all the necessary cuts to assemble the three required
squares, Figures 6c¢, 6b, and 6a which areas are in the ratio
2:3:Y4. Figure 7 illustrates the necessary cuts. Again the
use of the Pythagorean Theorem in the solution of this pro-
blem is indicated by the squares on the sides of the right
triangle.

Before the solution of problems 1l2 and 13 are given,
it 18 necessary to illustrate how to do two constructions
used in the solution of problems 12 and 13. First consider
the tranaformation of a right triangle into & square and
the reverse. The Pythagorean Theorem establishes the
following relation between certain elements of the right
triengle: the area of the square on an arm of the right
triangle 1s equal to the area of a rectangle constructed
of the hypotenuse and the projection of the arm on the hy=-

potenuse.,
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By applying proof number L of chapter 3 to Figure 8,
the following 1s evident: (DE)2 = (HD)(AD) = (ED)(DC), and
(8¢)2 = (HC)(CB) = (HO)(DC).

Examination of Figure 8 suggests methods (1) of
transforming the'redtangle into a square of equal area, and

(2) of 'transforming a square into a reotangle of equal area.
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Figure 9

Problem: Given a rectangle to transform it into a

square of the seme ares.

Let the glven rectangle be AFEC of Figure 9, then

the solution 1is obtained by the following:

(1)
(2)
(3)
()
(5)

Extend AF to X.

Construct AL equal to AC on AX.

Construct a semi-circle with AL as diameter.
Extend EF to intersect the semi-circle at K.
Draw‘lines KL, and KA, resulting in the right
triangle AKL.

Then the line AK 1s the side of the desired square,

and (AK)? = (AF)(AL) = (AF)(AC). The heavy lines represent

the necessary construction elements to find the side AK of

the square.

Broken lines relate the diagram to the Pythag-

orean Theorem.
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A

Figure 10 Figure 10a

Figure 10 shows basically the same operation as
Figure 9 with one significant change. In Figure 9 the
required square was constructed outward of the right tri-
angle AKL, and in Figure 10 the required square AKJH was
constructed inward on the triangle AKL. If JH 1s extended
it will pass through the point C, which with HA, divides
the rectangle AFEC into three parts from which the square
AKJH of Figure 10a can be assembled. Numerals indicate the
congruencse of trianéles, and quadrilateral 1 is common.

' Problem: Given a square to transform it into a
rectangle of the same area.

Examination of Figure 1l0a suggests a simple method
of outting a square into three parts from which a rectangle
can be assembled. From K let line KG intersect JH at G,
and erect AF perpendicular to KG. KXG and AF now divide the
square into three parts from which a rectangle can be assem-

bled (compare Figure 10).
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Figure 10 shows that a given rectangle can be trans-
formed into one and only one square, but that a given square
can be transformed into an unlimited number of rectangles.,
Therefore, when transforming a square into a rectangle it 1s
necessary to have a side of the desired rectangle given. 1In
Flgure 12 a point G may be chosen anywhere on JH. If G
coincided with J, then XKG would be equal to KJ, and this
would merely reconstruct the square. If G coincided with H,
then KG would equal KH, and square AKJH would be transformed
into a rectangle whose dimensions would be ay/2 and a+/2/2
where a 1is thé side of the square. Thus, the given method 1s
correct for transforming a square into a rectangle only if

the ratio of the sides of the rectangle 1s betwesen 1 and 2.

B

Figure 11
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Before the problem of transformation of a triangle
into a rectangle may be solved, one more step ls necessary.
In right triangle ACB (Figure 11), if CB and AB are bisected
at E and D respectively, then ED will cut the triangle into

two parts from which the rectangle AFEC can be assembled.

3
J
)i
2

E GAD FON K

H

2
c |
A f
’ A
Figure 12 Figure l2a

Problem 12: 'Given a right triangle ACB whose longer
side BC 1s less fhan twice 1ts shorter side AC, to cut it
into no more than four parts that reassemble Into a square.

In Figure 11 one cut, ED, transformed triangle ACB
into rectangle AFEC. 1In Figure 10 is shown how the same
rectangle AFEC, by two cuts, CG and AH, i1s transformed into
square AKJH. PFigure 12 1s a composite of Figures 10 and 11,
and shows how right triangle ACB was cut with segments ED,
CG, and AH, to reassemble the square AKJH.
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Flgure 13

Problem 13. Given a square, by cutting it into at
most four parts to transform it into a right triasngle whose
longer side is less than twice the shorter side.

The reverse procedure of problem 12 1s applied to
g§olve problem 13, 1l.e., (1) transform the square into a
rectangle, and (2) transform the rectangle into a triangle,
Séep 2 has already been shown in Figure 1l. A;C; 1s the
shorter side of the desired right triangle.

Step 1 is shown in Figure 13, where a square AHJK is
given. The given square is to be transformed into a rectan-
gle whose area 1s equal to that of the square, One side
ACq 1is given.

The complete solution of problem 13 is as follows:

On side AK of square AKJH at K, the right angle AKZ
is constructed by extending JK. With an arc of radius
AL = A1Cy and center at A, KZ is intersected at L. KF is

constructed perpendicular to AL; then AF 1s the shorter side
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of the required rectangle. To construct that rectangle,
the square ALMC 1s constructed, and KF 1s extended to E.
The area of the rectangle AFEC 1s equal to the area of the
given square AHJK. 1In Figure 13 the square 1is constructed
outward on the right triangle AKL. If it 1s placed inward
on the triangle, then it is the diagram of Figure 10. 1In
Figure 10a segments AF and CG cut the square into three parts
from which the rectangle AFEC can be assembled. Figure 12
shows how to transform this rectangle lnto a right triangle.
In Figure 12a (D will be the third cut. Figure 12a shows
all the cuts of the square to transform it into a right

triangle.?

2Frank Piwnicki, "Application of the Pythagorean
Theorem in the Figure-Cutting Problem, "The Mathematics
Teacher, LV, January, 1962, p. L4-51.




CHAPTER VII

EXTENSIONS OF THE PYTHAGOREAN RELATIONSHIP

This chapter 1s devoted to a brief discussion of an
extension of the Pythagorean relationship to non-right

plane trlangles and to right spherical triangles.

j ‘ Figure 1
I. LAW OF COSINES

The Law of Cosines of plane trigonometry for any
triangle, such as the one in Figure 1, states that:

02 = a2 + b2 - 2ab cos C.

When C 1s a right angle, cos C = 0, and the Law of
Cosines reduces to:

c2 = a2 + b2,

Therefore, the Law of Cosines 1s an extension of the

Pythagorean Theorem for any triangle of plane geometry.
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II. RIGHT SPHERICAL TRIANGLES

This section considers the possibility of an exten-
sion of the Pythagorean relationship to right spherical
triangles.

Several definitions and propositions from spherical

geometry need to be given here for reference.

l., A great circle of a sphere 1is the intersection
of the sphere and a plane through the center
of the sphere.

2. A spherical polygon is a closed line on a sphere
consisting of three or more arcs of great circles.

3. A spherical polygon of three sides in which each
side lies between 00 and 180° is a spherical
triangle.

. Each side of a spherical triangle is less than
the sum of the other two sides.

/ 5. The sum of the sides of a spherical triangle is
‘ less than 360°,

6. A right spherical triangle is one which has only
one angle equal to 90°,

7. The sum of the angles of a spherical triangle 1is
f greater than 180° and is less than 540°.

8. If a spherical triangle has one right angle, the

other angles may both be acute, both obtuse, or
one acute and the other obtuse.

Consideration will be given only to those spherical

triangles that contain only one right angle.
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From plane trigonometry, if A and B are the two acute
angles of a right triangle (Figure 2), then sin®A + 8in®B = 1,
which when expressed in terms of the ratios of the sides
gi?es: a2/c2 + b2/¢c2 = 1, or a2 + b2 = g2, This then is
the Pythagorean relationship.

Therefore one approach to the problem is, what is the
value of sin2A + sinZB, where A and B represent the non-right
angles of a right spherical triangle. There are three possi-
ble values for this relationship which are: (1) sinla +
sin2b = 1, (2) sina + sin®b >1, and (3) sina + sin2b (1.
If (1) is found to be true then the Pythagorean relationship
holds for right spherical triangles. If either or both of
(2) and (3) hold true then there is no Pythagorean relation-
ship.

By property (8) there are three cases to consider for
A and B. These cases are when they both are acute, when one
is acute and the other obtuse, and when they are both obtuse.
FPirst considering the case where A <90° and B < 90°, and
900 (A + B <1809, Selecting some specific values for A and
B gives the following table.
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TABLE I
A B A+ B sinA + sin°B
o] (o] 0]

899 29 910 1.001

500 %30 930 1,052

60 0 120 1.500

70° 80° 150° 1.843

89° 89° 178° 1.999

Now considering the case where A< 90°, 90°¢ B 180°,
and 90°¢ A + B €270°,

TABLE II

A B A+ B sinA + sinB
8° 959 103° 1.011

609 952 15852 : 1.742
8o 150o 1580 0.269

89° 95° 184.° 1.991

89 150 239 1.249

89° 175° 264° 1.075

Next considering the case where 90°¢ A< 180°,
90°¢ B € 180°, and 180°< A + B <360°.

TABLE III

A B A+ B sin®A + sin®B
95° 959 190° 1.98L
958 1502 2452 1.242

95 178 273o 1,011
150° 150° 300 0.500
175° 175° 350° 0.152

Examination of the three tables shows that con-

dition (2) or (3) holds for possible choices of A and B.
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The results of the three tables suggest that: If
angles A and B are both less than 909, then their sum will
be greater than 90°, and the value of sin®A + sin®B will be
greater than 1 and less than 2., If either or both of the
angles are greater than 90° but less than 180°, then the
value of their supplement(s) (or related angle(s)) gives
the value of sinla + sin®b. In this case, if the sum of the
two angles, or related angles, exceeds 909, then.lA(sinzA +
sin®B ¢ 2, and if the sum is less than 90°, then O ¢sin2A +
sin®B <1. Therefore, this approach does not yield an
extension of the Pythagorean relationship for the sides
of right spherical triangles.



CHAPTER VIII
I. SUMMARY

In chapter one the purpose of this paper was stated
to be: to provide a resource of enrichment material on the
Pythagorean Theorem. This resource of material was to cover
five areas: (1) historical background, (2) proofs, (3)
primitive Pythagorean triples, (L) figure-cutting, and
(5) spherical triangles. It was the authors intent to
cover each of these areas and keep the report brief.

Chapter two provided a historical background on
Pythagoras and the Pythagorean School which included soms
of thelr main contributions in the fields of relligion,
theory of numbers, geometry, and astronomy. Also early
work on the Pythagorean Theorem by the Greek, Egyptian, and
Chinese was considered.

Chapter three contained a wide variety of proofs of
the Pythagorean Theorem. The proofs varied from one thought
to have been given by Pythagoras to an original one developed
by the author of this paper.

In chapter four the proofs were analyzed as to the
fundamental property on which each was based. These prop-
erties were classified into three areas: (1) dissection,
(2) sum of parts, and (3) proportion. The proofs were

then classified as to their similarities and differences.
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Necessary conditions for the selection of two inte-
gers that will generate a primitive Pythagorean triple, were
stated and proved in chapter five.

Chapter six demonstrated how the Pythagorean Theorem
could be applied to the solution of figure-cutting problems.
The problems considered in this chapter were the last four
of a set of fifteen problems written by the Mathematics Staff
of the University of Chicago.

In chapter seven the Law of Cosines was considered
as an extension of the Pythagorean relationship. Also, the
relationship of sin?A + sinaB, where A and B are the non-
right angles of a right spherical triangle, was used to show
that the Pythagorean Theorem does not hold for the sldes of

a right spherical triangle.

!
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