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CHAPTER I 

INTRODUCTION 

Although the Pythagorean Theorem is over 2000 years 

old, it still continues to fascinate millions of people all 

over the world. This is evidenced by the faot that there 

exist a large number of proofs of the theorem. Much has been 

written about the Pythagorean Theorem and its related topics, 

and one of the most important reasons for this study was to 

oolleot and organize some of this material into a report 

under a single cover. It must be kept in mind that while 

there are no primary sources oovering Greek mathematios 

80me sort of oonsistent, although largely hypothetioal, 

aooount has been oompiled. 

PURPOSE OF STUDY 

The purpose of this study was to provide an enriohing 

resource of material on the Pythagorean Theorem. The main 

points that will be covered are (I) historioal background 
\ 

information on the Pythagorean Theorem, (2) a variety of 

proofs of the theorem, (3) an analysis and classification 

of these proofs, (4) a background for work on primitive 

Pythagorean triples, (5) an application of the Pythagorean 

Theorem to some famous figure-outting problems, and (6) an 

investigation into the feasibility of a Pythagorean relation

ship for spherical triangles. 
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ORGANIZATION 

Chapter two provides a historioal baokground on 

Pythagoras, the Pythagorean Sohool, and the Pythagorean 

Theorem. Inoluded are some of the oontributions of the 

Pythagoreans in the fields of religion, theory of numbers, 

geometry, and astronomy, also, the early work on the theorem 

among the Greek, Egyptian, and Chinese. 

Given in ohapter three is a variety of the most well 

known and different proofs of the Pythagorean Theorem. The 

chapter is ooncluded with a proof whioh was developed by 

the author of this paper. 

Chapter four gives an analysis and olassification 

of the proofs presented in ohapter three. The proofs are 

analysed as to the fundamental properties on whioh they 

were based and olassified as to their similarities and 

differenoes. 

In ohapter five oonditions neoessary for the seleo

tion of two integers whioh generate a primitive Pythagorean 

triple are stated and proved. / 

The applioation of the Pythagorean Theorem to the 

last four of fifteen figure-outting problems originally 

presented by the mathematios staff of the University of 

Chioago is given in chapter six. 



) 

Inoluded in chapter seven is an investigation into 

the feasibility of a Pythagorean relationship for spherical 

triangles. A summary of the paper is given in ohapter 

eight. 

,
 



CHAPTER II 

PYTHAGORAS, THE PYTHAGOREAN SCHOOL, 

AND THE DEVELOPMENT OF THE PYTHAGOREAN THEOREM 

This ohapter has been devoted to a historioal aocount 

of Pythagoras' life and the development of the Pythagorean 

Sohool. It includes some of the main oontributions of the 

sohool and early work on the Pythagorean Theorem in Greece, 

China, and Egypt. 

It must be kept in mind when reviewing the literature 

of the primary sources covering Greek mathematics, that the 

reviewer must rely chiefly on manuscripts and acoounts datWg 

from Arabian and Christian times. Scholars have reliably 

restored many of the original texts, such as those of Euclid, 

Apollonius, Archimedes, and others. From many fragments and 

soattered writings by later authors and philosophers, some 

sort of consistent, although largely hypothetical, aocount 

of the history of early Greek mathematios has been compiled. 

The topios disoussed in this ohapter are the eaply 

life of Pythagoras, the for.mation of the Pythagorean 8ooiet,y, 

the Pythagorean oontributions in the rields of religion, 

theory of numbers, geometry, and astronomy, and the early 

work on the theorem in Greeoe, China, and Egypt. 
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I. PYTHAGORAS 

The Greek philosopher, Pythagoras, was born about 

572 B.C. on the Aegean Island of Samos off the ooast of Asia 

Minor. In his early life he was a student of Thales. Th~s 

had traveled in Egypt and learned muoh from the priests of 

Egypt, and he strongly advised his pupil, Pythagoras, to pay 

them a visit. Pythagoras heeded this advioe and traveled 

and gained a wide experience. This experience benefited 

him when he later had disciples of his own, and he beoame 

even more famous than his teaoher. It is supposed that, 

besides traveling to Egypt, he traveled also to Babylon and 

perhaps on the Greek mainland. 

Returning home he found Samos under the tyranny of 

Polyorates and Ionia under the dominion of the Persians. 

He then migrated from Samos to Croton in Southern Italy in 

530 B.C. There he leotured on philosophy and mathematics. 

His lecture room was crowded with enthusiastio hearers of. 

all ranks, and many of the upper olasses attended. Women 

broke a law whioh forbade them to attend public meetings to 

hear him. Among them was Theano, the beautiful young daugh
, 

ter of Pythagoras' host, Milo. Pythagoras later married 

Theano, who wrote a biography of him. This manusoript was 

lost. 
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At the time of Pythagoras' arrival, Croton had 

suffered a crushing defeat by the hand of the Loorians. 

The moral and political reform which he promoted was 

evidenced by the fact that Croton was able to defeat and 

destroy the much more populous and powerful city of Sybaris 

just twenty years later in 510 B.C. l 

II. PYTHAGOREAN SOCIETY 

So remarkable was the influence of Pythagoras that 

the more attentive of his pupils gradually formed themselves 

into a society of brotherhood. This newly formed order, 

the Pythagorean Brotherhood, had much in oommon with the 

Orphic communities, which sought by rites and abstinenoes 

to purify the believer's soul and enable it to esoape from 

the "wheel of birth." 2 This new order was soon exercising 

a great influence across the Grecian world, though its 

influence was more religious than political. 

Members of the society shared everything in oommon, 

held the same philosophical beliefs, engaged in the same 

pursuits, and bound themselves with an oath not to reveal 

the secrets and teachings of the school. "When, for example, 
• 

l"Pythagoras," Encyclopedia Americana (1960 ed.), 
XXIII, p. 47. 

2"Pythagoras," Encyclopedia Britannica (14th ed.), 
XVIII, p. 803. 
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Hippasus perished in a shipwreok, was not his fate due to a 

broken promise? For he had revealed one of the seorets of 

the brotherhood. ,,3 

In the course of time this order spread to other 

Italian cities. The -order was most outstanding in the 

oities of Metapontum, Rhegium, and Loari. The order prob

ably never ruled any of these cities direotly, but rather 

exercised its influence through members who had attained 

leading political positions. 

In addition to the internal reforms whioh it promoted 

everywhere, the order also worked for a politioal and eoo

nomio allianoe between the cities in whioh it was dominant. 

The SUQoess or this policy is shown by the ooins or the 

period. Many of them had the emblem of Croton on one side 

and the emblem of one of the other oities on the reverse 

side, thus indioating a monetary agreement in whioh Croton 

had the leading part. 4 

In time the influence and aristooratic tendenoies of 

the brotherhood beoame so great that the demooratio foroes 

of southern Italy destroyed the bUildings of the sohool and 

oaused the sooiety to disperse. The first reaotion against 

•the Pythagoreans was led by Crlon. This aotion stemmed from 

3James R. Newman, The World of Mathematias {New York: 
Simon and Schuster, 1956};-Vol. I, P: 83. 

41lPythagoras," Encyolopedia Amerioana (1960 ed.),
XXIII, p. 47. 

t.... 
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the victory of Croton over Sybaris in 510 B.C. The civio 

disturbances whioh followed resulted in a setback to 

Pythagorean power in Croton. According to one report, 

Pythagoras fled to Metapontum where he later died, maybe 

through murder, at the advanced age of seventy-five to 

eighty years. 

An act of violence against the Pythagoreans worthy 

of mention was "the house of Milo" in Croton. Here fifty 

to sixty Pythagoreans were surprised and slain. Those who 

survived took refuge at Thebes and other places. 5 The 

brotherhood, although scattered, continued to exist for at;
\ 

least two centuries longer. 

III. PYTHAGOREAN CONTRIBUTIONS 

Some of the important contributions of Pythagoras 

and the Pythagorean School were religion, theory of num

bers, geometry, and astronomy. These four sUbjects merit 

discussion here. 

Religion. One of the most advanced of the religious 

doctrines of the school was the theory of the immortality 

and transmigration of the soul. Pythagorean teaching on 

this point was connected with the pr~itive belief in the 

kinship of men and beasts. The Pythagorean rule of abstinenoe 

5IPythagoras," Encyclopedia Britannioa (14th ed.),
XVIII, p. 803. 
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from flesh was thus, in its origin, a taboo resting on the 

blood-brotherhood of men and beasts. Likewise, a number of 

the Pythagorean rules of life whioh were found embodied in 

the different traditions appeared to be genuine taboos 

belonging to a similar level of primitive thought. The 

moral and religious applioation whioh Pythagoras gave to 

the dootrine of transmigration oontinued to be the teaohing 
6of the sohool. 

Theo~ of numbers. The soientifio dootrines of the 

Pythagorean sohool had no apparent oonneotion with the reli 

gious mystioism of the sooiety or their rules of living. 

Their disoourses and speoulations all oonneot themselves 

with the mystioal assumption that the whole number was the 

oause of the various qualities of men and matter. This 

oriental outlook may have been aoquired by Pythagoras in 

his eastern travels. It led to the exaltation and study of 

number relations and to a perpetuation of numerological non

sense that lasted even into modern times. 7 

It has been found that muoh of the Pythagorean study 

was of an unsoientifio nature. In spite of this, however, 

6Ibid., p. 803. 

7Howard Eves and Carroll V. Newsom,~An Introduotion 
to the Foundations and Fundamental Concepts-of Mathematios 
TRew York: Holt, Rinehart, and Winston, 1958); p. 12. 
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members of the sooiety oontributed a good deal of sound 

mathematios during the two hundred or so years following 

the founding of their organization. Aristo.tle said that 

the Pythagoreans "applied themselves to the study of mathe

matios and were the first to advanoe that soienoe; insomuoh 

that, having been brought up in it, they thought that its 

prinoiple must be the prinoiples of all existing things. 1I 8 

Pythagoras is said to have attaohed supreme importanoe 

to arithmetio, whioh he advanoed and took beyond the realm 

of oommeroial use. He also made geometry a part of a liberal 

eduoation, examining the prinoiple of the soienoe and treat

ing the theorems from an immaterial and intelleotual stand

point. 

Perhaps Pythagoras' greatest disoovery was that of 

the dependenoe of the musioal intervals on oertain arith

metioal ratios of lengths of string at the same tension, 

2:1 giVing the ootave, 3:2 the fifth, and 4:3 the fourth. 

This disoovery must have oontributed powerfully to the idea 

that "all things are numbers." Aooording to Aristotle, the 

theory in its original form did not regard numbers as rela

tions prediotable of things, but as aotually oonstituting 

their essenoe or substanoe. He said numbers seemed to the 

811 Pythagoras" , Encyclopedia Britannica ~14th ed.),
XVIII, p. 803. 
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Pythagoreans to be the first things in the whole of nature, 

and they supposed the elements of numbers to be the elements 

of all things and the whole heaven to be a musioal soale and 

a number. Later, in the fragmentary writings of Pbilolaus, 

things were spoken of, not as being numbers, but as having 

number and thereby beooming knowable. 9 

The development of these ideas into a oomprehensive 

metaphysioal system was probably the work of Philolaus. 

Aooording to the Pythagoreans, the elements of numbers 

referred to by Aristotle were the odd and the even, whioh 

they identified with the 11mit and the unlimited. The 

unlimited and therefore the limit also, was oonoeived as 

spatial (of or pertaining to spaoe). Numbers were thus 

spatially regarded, and "one" was identified with the point, 

whioh was a uni t having position and magnitude i "two" was 

similarly identified with the line; "three" with surfaoe; 

and "four" with solid. 10 

The odd and even and the limit and unlimited were 
, 

the first two of a set of ten fundamental oppositions postu

lated by the Pythagoreans. The remaining eight were the 

following: one and many, right and left, male and female, 

rest and motion, straight and ourved, light and darkness, 

910 i d., p. 8°3• 

lOJames R. Newman, The World of Mathematios (New York: 
Simon and Sohuster, 1956);-Vol. I, P: 8S. 
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good and evil, and square and oblong. To the Pythagoreans 

the universe was in a sense the realization of these oppo

sites. 

Some further speoulations of the Pythagoreans on the 

subjeot of number rested mainly on fanoiful analogies. 

"Five" suggested marriage because it was the union of the 

first masculine and the first feminine number (3 + 2, unity 

not being considered a number); "one" was identified with 

rea.son beoause it was unohangeable; "two" with opinion be

oause it was unlimited and indeterminate; "four" with justice 

beoause it was the first square number, the product of 
11equals. / 

r'·~·pythagoras piotured numbers as having oharaoteristio 
\ 

desi~s. There were the triangular numbers, one, three, six, 

ten, and so on. Ten was known as the Holy Tetraotys and was 

highly revered by the brotherhood. The triangular numbers 

were represented by figures of the following kind: 

• . . • • • . . . . 
which represent respeotively one, three, six, and ten. The 

figures show at a glanoe the composition of the triangular 

numbers, for example 10 = 1 + 2 + 3 + 4. To add a row of 

five dots to "ten" gave the next triangular number with 5 

llIbid., p. 85. 
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as the side, and so on, showing that the sum of any number 

of the series of natural numbers beginning with 1 was a 

triangular number. The sum of any number of the series of 

odd numbers beginning with 1 was similarly seen to be a 

square, so the square numbers were represented by figures 

like the following • 

• ".J • " • I " .~" ........:...J • · . . .
 · . . . · . . . 
Each of these square numbers could be derived from its 

predecessor by adding an L-shaped border. Great importance 

was attached to this border; it was called a gnomon (car

penter's rule). If the gnomon added to a square was itself 

a square number, e.g., 9, there resulted a square number 

which was the sum of two squares: thus 1 + 3 + 5 + 7 = 16 

or 42 , and the addition of 9 or 32 gave 25 or 52, thus 

32 + 4 2 = 52. Pythagoras himself was credited with a 

general formula 12 for finding two square numbers the sum 

of which was also a square. Namely, (if m is any odd num

ber), m2 + [~(m2 - 1~2 = [~(m2 + 1)]2. Letting m be a 

number of the form 2k + 1 where k is an integer, and then 

simplifying the formula, shows that it is an identity. 

12 lf Pythagoras lf 
, Encyclopedia Britannica, (14th ed.) 

XVIII J p. 804. 
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Another pattern was obtained by taking the sum of 

any number of even numbers beginning with 2. These were 

called the oblong numbers, and they were represented by 

figures of the following kind • 

...• • •-.:.J • .~. . 

Geometry. One of the greatest contributions to 

geometry by Pythagoras was the discovery of the irrational. 

In other words, he proved that it was not always possible 

to find a common measure for two given lengths a and b. The 

practice of measuring one line against another must have 

been very primitive. Given below is a long line ~, into 

whioh the shorter line b tits three times, with a still 

shorter piece ~ left over. 

b b b ,c 
a 

Today it is expressed by the equation a = 3b + c, or more 

generally by a = nb + c. If there is no suoh remainder 0, 
, 

the line b measures gi and A is called a multiple of b. It, 

however, there is a remainder ~, further subdivision might 

perhaps account for each length~, ~, £ without remainder: 

experiment might show, for instance, that in tenths of 

inches, a = 17, b =5, c = 2. At one time it was thought 

that it was always possible to reduoe lengths a and b to 

suoh multiples of a smaller length. It appeared to be 
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simply a question of patient subdivision, and sooner or 

later the desired measure would be found. So the required 

subdivision, in the present example, was found by measuring 

b with c. For c fit twice into b with a remainder dj and 

d fit exactly twice into c without remainder. Consequently 

d measured~, and also measured b and also a. This was how 

the numbers 11, 5, and 2 came to be attached to.!, b, and.,2j 

because a contained d 11 times. 

This reduction of the comparison on a line a with a 

line b to that of the number 11 with 5, or speaking more 

technically, this reduction of the ratio a:b to 11:5 would 

have been agreeable to the Pythagoreans. It exactly fitted 

in with their philosophyj for it helped to reduce space and 

geometry to pure number. Then came the discovery by 

Pythagoras himself that the reduction was not always possi

ble, that something in geometry eluded whole numbers. 

Exactly how this discovery of the irrational took place was 

not related, although two early examples oan be cited. F~t 

when ~ was the diagonal and b was the side of a square, no 

common measure could be foundj nor could it be found in a 

second example, when a line ~ was divided in golden section 

into parts b and Q. This meant that the ratio of A, the 

whole line, to the part b was equal to the ratio of b to the 

other part~. Here ~ could be fitted once into b with re

mainder Qi then ~ oould be fitted once into ~ with remainder 
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~, and so on. It was not hard to prove that such lengths 

.!!, b, £, d, • • • form a geometrical progression without 

end, and that the desired common measure could never be 

found. 13 

The reason why such a problem came to be studied was 

to be found in the star pentagram. It was the badge of the 

Pythagorean Brotherhood, and each line in it was divided 

into this golden section. The star had five lines, each 

cut into three parts, the lengths of whioh can be taken as 

~, b,~. As for the ratio of the diagonal to the side of a 

square, Aristotle suggested that the Pythagorean proof of 

its irrationality was substantially as the following: 

If the ratio of diagonal to aide is oommensurable. 
let it be p:q, where p and q are whole numbers prime 
to one another. Then p and q denote the number of 
equal subdivisions in the diagonal and the side of a 
square respectively. But since the square on the 2iag~ 
onal is double that on the side, it follows that p =2q-.

2Hence p is an even number, and p it~elf must ~e even. 
Therefore p ma2 be taken to be 2r, p to be 4r , and 
consequently q to be 2r2• This requires q to be even; 
whioh is impossible because two numbers p, q, prime to 
each other oannot both be even. So the original suppo
sition is untenable: no common met~ure oan exist; and 
the ratio is therefore irrational. ~ 

Other contributions to geometry by the Pythagoreans 

include the following. (1) Credit was usually given to 

13J~~es R. Newman, The World of Mathematics (New York: 
Simon and Schuster, 1956), Vol. I, p:-81-88. 

14Ibid., p. 89. 
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Pythagoras for formulating geometry. (2) The Pythagoreans 

proved that the sum of the three angles of any triangle was 

equal to two right angles. Their proof, like Euclid's, used 

the property of parallels; hence they knew the theory of 

parallels. (3) They discovered the powerful method in 

geometry of the applioation of areas, inoluding applioation 

with excess and defeot (Euclid, vi, 28-29) whioh ~ounted 

to the geometrical solution of any quadratio equation in 

algebra having real roots. (4) Pythagoras himself is said 

to have discovered the theory of proportion and the three 

means: arithmetio, geometric, and harmonic. In Babylon, 

Pythagoras is said to have learned the "perfeot proportion": 

a	 : a + b = 2ab: b 
2 a + b 

whioh	 involved the arithmetioal and harmonioal meanS of two 

nur.~bers as its middle terms. Partioular oases being 12:9. 

8:6, from the terms of whioh the three musioal intervals 

oan be obtained. The Pythagorean theory of proportion was 

arithmetioal (after the manner of Euclid, book vii) and did 

not apply to incommensurable magnitudes; it must not, there

fore, be oonfused with the general theory due to Eudoxus, 

which was expounded in Euclid V. 

In the field of geometrio constructions, the assump

tion that the Pythagoreans could construct a regular pentagon 

was confirmed by the fact that the star pentagram was used 
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by the Pythagoreans as a symbol of recognition between the 

members of the school and was oalled by them health. The 

Pythagoreans also disoovered how to oonstruot a reotilineal 

figure equal to one and similar to another reotilineal 

figure. 1S 

In summing up the Pythagorean geometry, one oan say 

that it oovered the bulk of the subjeot matter of Euolid's 

books i, ii, iv, vi, (and probably iii), with the qualifi

oation that the Pythagorean theory of proportion was inade

quate in that it did not apply to inoommensurable magnitudes. 

Astronomy. Pythagoras was one of the first to hold 

that the earth and the universe were spherioal in shape. He 

realized that the sun, moon, and planets had a motion of 

their own independent of the daily rotation and in the oppo

site sense. It was unlikely that Pythagoras himself was 

responsible for the astronomioal system known as Pythagorean, 

whioh disposed the earth from its plaoe in the oenter and 

made it a planet like the sun, the moon, and the other 

planets. For Pythagoras apparently the earth was still at 

the oenter. 

The Pythagorean system was attributed alternatively 

to Philolaus and to Hicetas, a native of Syraouse. They 

15 II Pythagoras II , Encyolopedia Bri tannioa (14th ed.) 
XVIII, p. 804. 
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believed that the universe was spherical in shape and finite 

in size. Outside it was infinite void, which enabled the 

universe to breathe. At the oenter was the oentral fire, 

oalled the hearth of the universe, wherein was situated the 

governing principle, the foroe whioh direoted the movement 

and aotivity of the universe. In the universe there re

volved around the central fire the following bodies: near

est to the central fire was the counterearth which always 

acoompanied the earth; next in order (reckoning from the 

center outward) was the earth, then the moon, then the sun, 

then the five planets and then, last of all, the sphere of 

the fixed stars. The counterearth, revolving in a smaller 

orbit than the earth, was not seen by them beoause the hemi

sphere in which they lived was always turned away from the 

counterearth (the analogy of the moon whioh always turned 

the same side to them may have suggested this). This part 

of the theory involved the assumption that the earth rotated 

about its own axis in the same time as it took to oomplete 

its orbit around the oentral fire; and as the latter revo

lution was held to produce day and night, it was a logioal 

inferenoe that the earth was thought to revolve around the 

oentral fire in a day and a night, or in twenty-four hours.16 

16Ibid., p. 804. 

, 
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EARLY DEVELOPMENT 

Greek Development. Since Pythagoras' teaching was 

entirely oral and it was the custom of the brotherhood to 

refer all discoveries back to the revered founder, it is 

difficult to know just which mathematical findings and 

which philosophical viewpoints should be credited to 

Pythagoras, and which to the other members of the frater

nity. However, tradition has unanimously ascribed to 

Pythagoras the independent discovery of the theorem which 

bears his name; namely, that the square on the hypotenuse 

of a right triangle is equal to the sum of the squares on 

the two legs. Others may have known of the theorem before 

Pythagoras, but he may well have given the first general 

proof of it. 

Egyptian Development. The Egyptian geometrioal 

knowledge seems to have been of a wholly praotioal nature. 

The Egyptians knew of speoial oases of the Pythagorean 

Theorem, but they didn't offer a general proof of it. An 

illustration of the way they used the theorem is given by 

the following example. 

The Egyptians were very particular about the exact 

orientation of their temples. They had to obtain a north 

and south line and an east and west line with accuraoy. 

They observed the points on the horizon where a star rose 
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and set, took a plane midway between them, and obtained a 

north and south line. To get an east and west line, which 

had to be drawn at right angles to this, they used a rope 

ABCD, divided by knots or marks at B and C, so that the 

lengths AB, BC, CD were in the proportion 3:4:5. The length 

BC was placed along the north and south line, and pegs P and 

Q inserted at the knots Band C. The piece BA was then 

rotated around the peg P, and the piece CD was rotated 

around the peg Q until the ends A and D coinoided. The 

point thus indicated was marked by a peg R. The result 

was to form a triangle PQR whose angle at P was a right 

angle, and the line PR gave an east and west line. 

The Egyptians probably knew that this theorem was 

true for a right-angled triangle when the sides which oon

tained the right angle were equal; for it would be obvious 

if a floor were paved with tiles of that shape. But these 

facts cannot be said to show that geometry was then studied 

as a science .17 

Chinese Developmenl. The Chinese in the ·time of 

Chou-Kong had known of the Pythagorean Theorem. Although 

it was not enunoiated in such a concise geometrical form as 

was given by Euclid, there oan be no denying the faot that 

it was soundly established by the Chinese. 

17James R. Newman, The World of Mathematics (New York: 
Simon and Sohuster, 1956) Vol. I, p.-rl. 
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The Chinese mathematical treatise now in existenoe 

next in age to the Chou-pei is doubtless the Chiu-ohang 

Saun-shu, or the "Arithmetic in Nine Sections." It was 

written by C~'ang Ts'ang around 176 B.C. 

The ninth and last section is on the "kou-ku." The 

kou was one side of a right triangle, and the ku another 

side. The term "kou-ku" meant, therefore, the right tri

angle. The problems in the ninth seotion were mostly those 

that could be solved by means of the Pythagorean Theorem. 

The theorem was enunciated in the following words: 

Square the first side and the seoond side, and add 
them together; then the square root (of the sum) is 
the hsien or the hypotenuse. 

Again, when the square of the second side is sub
tracted from the square of the hypotenuse, the square 
root of the remainder is the first side. 

Again, when the square of the first side is sub
tracted from the square of the hypotenuse 'lathe square 
root of the remainder is the seoond side. 

lByoshio Mikami, The Development of Mathematics in 
China and Japan (New York: G. E. Streohart and Co., 19l)T, 
p. 21. 



CHAPTER III 

PROOFS OF THE PYTHAGOREAN THEOREM 

This chapter has been devoted to a presentation of 

some of the more noteworthy proofs of the Pythagorean Theorem. 

These proofs range from the one that was thought to have been 

given by Pythagoras to an original one derived by the author 

of this paper. 

The materials containing proofs of the Pythagorean 

Theorem are quite abundant, and in fact there exist some 

very large collections of the proofs of the theorem. For 

example, in the second edition of his book, The Pythagorean 

ProEosition, E. S. Lo~mis has collected and olassified 310 

demonstrations of the famous theorem. It was not, however, 

the intent of this chapter to exhaust the supply of avail

able proofs, but rather to present a variety of some of the 

mora noteworthy and different proofs of the theorem. 

Proofs included in this chapter start with a dissec

tion proof that might have been offered by Pythagoras and 

another dissection proof given by Bhaskara. Also included 

will be a second proof by Bhaskara which was rediscovered by 

John Wallis in the seventeenth century, and the proof given 

by Euclid in his famous Elements. A proof by James A. Garfield 

and some proofs from a collection by William W. Rupert com
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prise the bulk of the remainder of this chapter. In con

oluding the chapter the author of this paper has given his 

original proof of the theorem, which was developed during 

the writing of this paper. 

The sguare £g the hypotenuse of ~ right triangle is 

egual to the sum of the squares ~ the two legs. This 

theorem has remained one of the most famous geometrical 

theorems of all time, and has fasoinated millions of people 

allover the world. This has been evidenced by the faot 

that there exist so many proofs of it. There has been much 

oonjecture as to the proof Pythagoras might have offered, 

but it has generally been felt that it was a disseotion 

type of proof like the one on the following page. 
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a 
b 

b 

Figure 1	 Figure 2 

Proof No. 1. Let a, b, and 0 denote the legs and 

hypotenuse of the given right triangle, and oonsider the two 

squares in the aooompanying figure, eaoh having a + b as a 

side. 

To prove that the oentral pieoe of the seoond disseo

tion is aotually a square of side 0, employ the faot that 

the sum of the angles of a right triangle is equal to two 

right triangles. The rest of the proof is a8 follows: 

The area of the square 1 is given by,
 

a2 + b 2 + 4(ab/2).
 

The area of square 2 is given by,
 

0 2 + 4(ab/2).
 

Henoe,
 

a2 + b2 + 4(ab/2) = 0 2 + 4(ab/2).
 

Or,
 

a2 +	 b2 = 0 2•
 
1


Q. E. D. 

lHoward Eves, An Introduotion to the Histo~ of Mathe
matios (New York: Holt, Rinehart, an~Winston, l~Or; p. 59. 
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A second dissection proof was given by Bhaskara, the 

famous Hindu mathematician. In this proof the square on 

the hypotenuse was cut, as indicated in Figure 3, into four 

triangles each congruent to the' given triangle and a square. 

The pieoes were easily rearranged to give the sum of the 

squares on the two legs. Bhaskara drew the figure and 

offered no further explanation than the word llBehold!" The 

proof is as follows. 

Figure 3 Figure 4 

Proof No.2. If 0 is the hypotenuse and a and b 

are the legs of the triangle, the area of the square in 

Figure I 3 is 0 2 • 

The area of the figure formed by reassembling the 

pieces is, 

4(ab/2) + (b - a)2 = 2ab + b2 - 2ab + a2 =a2 + b2• 

Therefore, c2 = a2 + b2 • 
2Q. E. D. 

2Ibid., p. 187. 
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Bhaskara also gave a seoond demonstration of the 

Pythagorean Theorem, whioh was redisoovered by John Wallis 

in the seventeenth century. This proof has been used in 

many of the present day high school geometry texts. 3 In 

the following figure, the altitude h is constructed on the 

hypotenuse c of the given right triangle. 
I 

~ . 0 

Figure 5 

Proof !£. 1. From similar right triangles, 

c/b = blm, and cia = a/n; 

or, 

cm = b2 , and on = a2• 

Then by adding, 

2 2 •a + b 2 =o(m + n) = 0
 

Q.. E. n. 4
 

3A. M. Welchons, W. R. Kriokenberger, and Helen R. 
Pearson, Plane Geometry (Boston: Ginn and Company, 1958), 
p. 411. 

4Howard Eves, An Introduction to the Historl of Mathe
matics (New York: HoIt, Rinehart, an~W~nston, 19 Or; p. 59. 
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Probably the most well-known proof of the Pythagorean 

Theorem was given by Euolid, as Proposition 47 of Book I, in 

his Elements. The oomplete proof is given below. 

H 

K 

F 

Figure 6 

Proof No. &. In right-angled triangles the square 
on the side subtending the right angle is equal to the 
squares on the sides oontaining the right angle. 

Let ABC be a right-angled triangle, with the right
angle at A; I say that the square on BC is equal to the 
squares on BA, AC. For let there be desoribed on BC 
the square BDEC, and on BA, AC the squares GB, HC; 
through A let AL be drawn parallel to either BD or CE, 
and let AD,'FC be joined. 

Then, since eaoh of the angles BAC, BAG is right, it 
follows that with a straight line BA, and at the point A 
on it, the two straight lines AC, AG not lying on the 
same side make the adjaoent angles equal to two right 
angles; therefore CA is in a straight line with AG. 

For the same reason, BA is also in a straight line 
with AH. And, since the angle DBC is equal to the angle
FBA, for each is right, let the angle ABC be added to' 
each; therefore, the whole angle DBA is equal to the 
whole angle FBC. 
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And, sinoe DB is equal to BC, and FB to BA, the two 
sides AB, BD are equal to the two sides FB, BC respec
tively; and the angle ABD is equal to the angle FBC; 
therefore, the base AD is equal to the base FC, and the 
triangle ABD is equal to the triangle FBC. 

Now the parallelogram Bt is double ot the triangle
ABD, for they have the same base ED and are in the same 
parallels BD, AL. 

And the square GB is double of the triangle FBC, for 
they again have the same base FB and are in the same 
parallels FB, GC. 

But the doubles of equals are equal to one another. 

Therefore, the parallelogram BL is also equal to the 
square GB. Similarly, if AE, BK be joined, the paral
lelogram ct can also be proved equal to the square HC; 
therefore, the whole square BDEC is equal to the two 
squares GB, HC. 

And the square BDEC is described on BC, and the 
squares GB, HC on BA, AC. 

Therefore, the square on the aide BO is equal to the 
squares on the sides BA, AC. 

5Q. E. D. 

The above proof has also been included in many high 

school textbo"oks. 6 However, some of the terminology used 

in the translation of the proof as presented here would no 

doubt seem strange to many students of modern day mathe

matics. 

5Robert M. Hutchins (ed.), Great Books of the Western 
World (Chicago: William Benton, 1952), XI, 28-29--.-

6A• M. Welchons, W. R. Krickenberger, and Helen R. 
Pearson, Plane Geometry (Boston: Ginn and Company, 1958), 
p. 252. 
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A very beautiful proof of the Pythagorean Theorem 

was given by General James A. Garfield. It appeared in the 

New England Journal of Education in 1876, five years before 

General Garfield became president. Garfield's proof utilizes 

the area of a trapezoid. 

D a' E 

I' c ::=t\ A 

Figure 7 

Proof !2. 2. ABC is the given right-angled triangle. 

CB is extended to D, making b' =b. ED is oonstruoted per

pendioular to BD, making a' = a. BE and AE are drawn. The 

area S of the trapezoid CAED is given by the formula: 

J S = i( a + b') (b + a'). 

S = j-(a + b)(b + a), sinoe b' = b, and a' = a. 

S = t(a2 + 2ab + b2 ). 

S = ta2 + ab + ib2 • 

Considering the areas at the triangles ot the trape

zoid, 

s = lab + *0 2 + lab. 

S = ab + t02• 
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Therefore,
 

ab + t02 = ia2 + ab + ib2 •
 

Or,
 

0 2 :: a2 + b2 •
 

Q. E. D. 1 

Some very fine proofs of the Pythagorean Theorem 

were oo~leoted by William W. Rupert and were published by 

D. C. Heath and Company in 1900. Several of these proofs 

have been chosen for presentation in this chapter. In all 

fairness to Mr. Rupert, it should be known that each of 

these proofs has been rewritten, adding to them and reword

ing them where the line of thought could be better trans

mitted. In SOMe of the proofs, oongruenoy of areas is 

involved. In these proofs, for the sake of brevity, no 

effort was made to show all of the steps involved in prov

ing these oongruenoes. However, they can be supplied 

readily by the reader. Also, for oontinuity and easiness 

of reading, these proofs will be presented one to a page. 

1Ib i d., p. 253. 
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G, Y f.. t.. 

Figure a 

.;;;.P..;;;.,r...;;.o...;;.o,;;"f _N_o. 6. ABC is a right-angled triangle. The 

four triangles ABC, AGF, FEN, and EDC are equal to each 

other. HNFG is a. square, and is equal to the square on AB. 

(1) Area of GBCEF =AC 2 + iQA·FG + tAB-Be. 

(2) Also, area of GBCEF =G~ + tEN·Fj + tOO-ED +ac2 _ 

Sinoe triangles ABC, AGF, FEN, a.nd EDC are equall 

(3) lGA-FG = tAB·BC = !EN·FN = tDC-ED. 

'From (1) and (2) 

AC2 = GH2 + BC2• 

Or, AC2 = AB2 + BC2 , sinoe GH = AB. 

aQ. E. D. 

aWilliam W. Rupert, Famous Geometrical Theorems and 
Problems (Boston: D. C. Heath and Company, 1960l, p. 2r:
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Figure 9 

Proof No.1. In right triangle ABC, BA is extended 

to P, ~aking AD = BC; also BC is extended to E, making 

CE = AS, and the square 1s completed. A square is erected 

on AC. Then (AB + AD)2 :: area of square BEHD. But this 

area 1s oomposed of the area of the four triangles, whioh 

are equal to each other, and the square of AC. Hence, 

(l) Square BEHD :: 4[{AB x AD)/2] + AC2 • 

(2) Then DB2 :: (AB + AD)2, 

:: AB
2 + 2{AB x AD) + AD2• 

From (l) and (2), 

(3) 2{AB x AD) + AC2 :: AB2 + 2{AB x AD) + AD2• 

Or, AC 2 :: AB2 + ID2 • 

But AD = BC • 

••• An 2 =IB2 + BC2 • 
9Q. E. D. 

9Ibid., p. 23. 
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Figure 10 

Proof No. 8. ABC is a right-angled triangle. The 

squares ABFI and ACDE are oonstruoted. At D the perpendio

ulars are oonstruoted to IF extended, (G), and to FC, (H). 

The triangles ABC, DHC, EGD, and AlE are equal, and there

fore the side of square FGDH is equal to BC. Let AB • b, 

BC =a, and CA = h. 

Then, AEFHDC = AEDC + DEG - FGDH, 

= h2 + lab - a 2 .(l) 

Also, AEFHDC = ABC + ABFI + CDa - AEI , 

= tab + b2 + lab - tab. (2) 

Equating (1) and (2), and solving for h2, 

h2 = a 2 + b 2 • 
-2 -2 -2Or, CA = BC + AB • 

10Q. E. D. 

lOIbid., p. 32. 



DS and FD =DC, triangle DSC ~ tri-

I,' " ~C 

Also since ED 

Figure 11 

Therefore, square AFDC = triangle AHF + triangle 

llIbid., p. 27. 
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H A 

, J.. 

angle FED. 

But since AB = AH and AC = AF, triangle ABC ~ tri

angle AHF. 

easily shown that F lies on HE. Therefore, square AFDC = 
triangle ABC + triangle DSC + figure FABSD. 

Proof No. 9. ABC is a right-angled triangle. The 

square ABGH is construoted, and also the square GEDS with 

side equal to BC, and square AFDC is oompleted. It is 

FED + figure FABSD. 

Also triangle AHF + triangle FED + figure FABSD = 
-2 -2 square GEDS + square ABGH = BC + AB • 

Therefore, square AFDC = BC 2 + AB2• Or, 'AC 2 = 'BC2 + n 2• 
11

Q. E. D. 
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Figure 12 

Proof No.!Q. ABC is a right-angled triangle, with 

squares constructed on its sides. DK is constructed parallel 

to BA extended, and MK is oonstructed perpendioular to MA and 

KD. At is extended to J and tK is drawn. It is evident that 

square ACDE :: parallelogram ODKL + parallelogram AEKL (as
I 

triangle ALe ~ triangle EKD). 

But parallelogram CDKL :: square ABGF (as ot :: AB :: tJ), 

and parallelogram AEKL :: square BCIH (as BO = AL = MA). 

Therefore, square AODE =square ABGF + square BOIH. 

Or, IC2 =AB2 + ~2. Q. E. D. 12 

12Ibid., p. 31. 
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Figure 13 

Proof !£. 11. ABC is a right-angled triangle, with 

squares constructed on the sides. DK is construoted perpen

dicular to CL, 

Square AEDC == triangle AJI + triangle CKD + triangle 

DKL == figure AELCIJ. Square AGFB + square BCHJ = triangle 

CHI + triangle AGE + triangle EFL + figure AELCIJ. 

But, triangle AGE ~ triangle CKD (as AE = AC == CD 

and AGI = AB = CK) and, triangle EFL ~ triangle AJI (as 

angle JAI = angle FEL and AJ = EF) and, triangle CIn == tri

angle DKL (as angle KLD = angle HIC and KL == In). 

Therefore, square AEDC == square AGFB + square BCHJ. 

Or, AC2 = AB2 + BC2 • 

13Q. E. D. 

13Ibid., p. 32. 
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Figure 14 

Proof No. 12. ABC is a right-angled triangle, with 

squares constructed on the sides. KL and JI are extended 

to F and G, respeotively, and BEE is drawn. 

Square AFGC =reo tangle AFED + rectangle CGED. 

The square AKLB = parallelogram AFHB, 

= rectangle AFED, (as they have t~ same 

bases in the same sets of parallels). 

The square BJIC = parallelogram BHGC, 

= rectangle CGED, (same &s above). 

Therefore, AFGC = AKLB + BJIC. 

Or, IC2 = AB2 + BC2• 
14Q.. E. D. 

14Ibid., p. 28 
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Figure 15 

G 

D 

Proof !£. li. ABC is a right-angled triangle, with
 

the right angle at A. The squares ABGF and ACDE are com-,
 

j pleted, and GF and DE are extended until they meet at H.
 

l Let BI, CK be perpendioular to BC and join IK. The square 

BCKI on the hypotenuse has now been oompleted. The three,j 
1 triangles BGI, IRK, KDC are equal to eaoh other, and to the1
 

triangle ABC. (as BI = IK = KC = CB and the corresponding
 

acute angles are equal.) Henoe, the square on BC • figure
 

BGHDC - 3 times the area of triangle ABC.
 
I 

Now the reo tangle AEHF = AE x HE 

= 2 times the are a of triangle ABC. 

(As AE =AC and HE = KD BO.)::I 

And, BGHDC - (reotangle AEHF + triangle ABC) =n 2 + AC2 • 

~ That is, BGHDC - 3 times area of triangle ABC • IB2 + la2 • 
i Therefore, BC2 

::I AB2 + AC2• Q. E. D. 15 

15Ibid ., p. 24 
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Figure 16 

Proof No.~. ABC 1s a right-angled triangle with the 

right angle at B. The squares on the sides and reotangle BtKH 

are oompleted. FA is extended to I, and KE 1s drawn parallel 

to CD and F~I. The square AGHB equals parallelogram AIKB, as 

they have the same base, AB, in the same set of parallels; 

whioh in turn is equal to reotangle ANEF, as they have equal 

bases, AI = AC = AF, in the same set of parallels. In a 

like manner CBLM = NCDE. 
-2 -2 -2 16Therefore, AC = AB + BC. Q. E. D. 

16Ib i-d., p. 22. 



17Ibid., p. 26. 

Figure 17 

Proof No. 12. ABC is a right-angled triangle with' 

squares constructed on its sides. DB and AG are parallel as 

are BM and CG; also EG is parallel to DA and MO. The rec

tangle ADEF equals parallelogram ADBG, as they have the same 

blase DA, and are in the same set of parallels. 

The area or triangle ABG = i or square AKLB. (As 

triangle AKG ~ triangle AHG and triangle BRG ~ triangle BW.) 

But triangle ABG = ~ parallelogram ADBG. 

:. square AKLB = parallelogram AGBD = reotangle ADEF. 

In like manner square BOIR = parallelogram BaOM • 

reotangle FEMO. 

But ADEF + FEMC = square on AC • 
. -2 -2 -2• • AO = AB + BO • 

17Q. E. D. 

41 
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Figure 18 

Proof !2. 16. ABC is a right-angled triangle, with 

squares oonstructed on its sides. In square AC triangles 

1, 2, 3, and 4 all constructed equal to triangle ABC. 5 is 

a square with a side of b-a. In square AB triangles l' and 

2' are constructed equal to triangle ABC. Square 5' is com

pleted with a side of b-a. Rectangle 1 will have the di

mens ions of a and b-a. 

:. triangle 1 = triangle 1', triangle 2 = triangle 2', 

and square 5 = triangle 5'. 
But, triangle 3 + triangle 4 =tab + tab = abe 

Also, square 6 + rectangle 7 = a2 + a(b-a) = abe 

••• triangle 3 + triangle 4 = square 6 + rec tangle 1• 

••• AC 2 = AB2 + BC2 • Q. E. n. 18 

l8Ibid., p. 33. 



Proof No. 11. ABC is a right-angled triangle. AD 

is ereoted perpendicular to and equal to AC, and BE perpen

dioular to and equal to AB. DE is drawn. DF is drawn per

pendioular to AD, and DH perpendicular to AB. Let AB =P, 

BC = a, AC • h. 

Triangle ADH: triangle ABC, and AH = BO =a, and 

BH = DE = b-a. 

E 

I<" .&..L ,0 

Figure 19 

Since the triangles ABC and DEF are similar, 

DF = h(l-a/b), and EF = a(l-a/b). 

Obviously, ADEC = ADEB + ABC, 

= tb[b + (b-a)] + tab = b2• (1) 

Als 0, ,: ADEC = ADFC + DEF, 

= th[h(l-a/b) + h] + tab(1-a/b)2. (2) 

Equating (1) and (2), and solving for h2 , 

(2b-a)h2 = (2b-a)(a2 + b2 ). 

Or, h2 = a2 + b2 • 
-2 -2 -2 19.' • AC = BC + AB. Q. E• D. 

19Ibid., p. 35. 
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Proof !2. 18. ABC is a right-angled triangle. BCDF 

i8 oonstruoted on the hypotenuse. AE is drawn parallel and 

equal to BF (and CD). ED and EF are drawn and SA 1. extend

ed to H. 

D 

F 

,.. :;)C 

B 

Figure 20 

EABF and EACD are parallelograms. 
~

Triangle FED: triangle BAC, 

.0. BFEDCA = square BFDC • 
..,

Triangle ABE = triangle DEF. 

I Sinoe the altitude of BAEF ::: HE = AB, 

BAEF ::: AB2• 

Sinoe the altitude of ACDE = AH = AC. 

ACDE = AC2• 

•'. BFEDCA = BC2 ::: 'AB2 + 'AC 2• 
20

Q. E. D. 

20llli., p. 38. 
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D 

Figure 21-a Figure 21-b 

Proof No. 19. ABC is any triangle. Let AE, BF, and 

CD be the three perpendioulars from the angles upon the oppo

site sides, or upon the sides produoed. Since an angle in

soribed in a semi-oirole is a right angle, a ciroumference 

desoribed on any side as a diameter passes through the feet 

of two of the perpendioulars. From theorems relating to 

seoants and to interseoting ohords, 

AB x AD == AC x AF = AC2 ± AC x FC, and 

AB x DB = BC x EB = BC2 ± BC x CEo 

Adding, AB2 == AC2 + BC2 ± 2AC x FC (or 2BC x CE). 

The + sign being taken when C is obtuse, and the 

sign when C is aoute. If, however, C is a right angle, 

CE and CF beoome O. 

• -2 -2 -2• • AB = AC + BC • 

Q. E. D. 21 

21Ibid., p. 35-36. 
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Figure 22 

pc:: • I '1K 

Now conceive point H to revolve about P as a oenter 

46 

= DH = DA, 

= DB2 + AB2 • 

Q. E. D.22 

But from interesting chords in a circle, 

-2DB x BK = AB x BC = AB • 

· -2 -2• • DN x DH = DB + AB • 

But, DK = DB + BK. 

Henoe, DN x DH =DB(DB + BK). 

= DB 2 + DB x BK. 

DN 

and DA2 

until the point coincides with the point A. Then, 

~P~r_o_o~f No.__2_0. Let AC be any chord in the circle DAC 

with oenter at P. The diameter DK is drawn perpendioular to 

AC, and any point in the circumference, as H, is joined with 

'D and K. From similar right triangles, DN/DB =DK/DH• 

• '. DN x DH = DB x DK. 
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Figure 23 

Proof No. 21. From an external point C, the tangent CA and 

the seoant CD are drawn to the given oirole having B as its 

oenter • 

• •• EC/AC = AC/DC. 

But DC =BC + BD, 

= BC + AB. 

Also EC = BC - BE. 

= BC - AB. 

• •• (BC - AB)/AC = AC/(BC + AB). 
-2 -2 -2lOr, BC - AB = AC • 

Or, ire2 :: IC2 + 'AB2• 

23Q. E. D. 

23Ibid., p. 22. 
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Figure 24 

Proof No. 22. ABC is a right-angled triangle. Using 

the hypotenuse AC as a radius and with the oenter at A, a 

oircle is construoted. AB is extended until it meets the 

oiroumferenoe in D. DE is oonstructed perpendioular to AC. 

Triangle AED :: triangle ABC. Let a represent DE and CB, 

h represent HA and CA, b represent EA and BA, BE =h + b, 

and CE = h - b. 

Since DE is a mean proportional between HE and CE, 

DE2 :: HE x CE. 

• •• a 2 = (h + b) (h - b). 

2 2 
:: h - b • 

222Or, h :: a + b • 

• - 2 -2 -2 24• • CA :: CB + BA. Q. E. D. 

24Ibid., p. 30. 



Proof No. ~. ABC is a right-angled triangle with 

altitude BD. Let AB = x, BC = y, CA = z, AD = m, CD = n, 

and BD = w. 

(1) Then x2/y2 = ~w/~nw (since x/w = yin and x/m = y/w). 

(2) Also z2/y2 = txy/~nw (sinoe z/y = yin and z/x = y/w). 

B 

A.< ... -, .. 'C 
z 

Figure 25 

Adding one to both sides of (1), 

(3) (x2 + y2)/y2 = I(m + n)w/lnw. 

Sinoe ixy = i(m + n)w, proportion (2) beoomes, 

(,4) z2/y2 = I(m +n)w/inw. 

From (3) and (4), 

(x2 + y2)/y2 =z2/y2, 

or, y2 z2 =y2(x2 + y2). 

Therefore, z2 = x2 + y2, 

or, Cl2 =AB2 + Bc2. 

25Q.. E. D. 

25Ibid., p. 29. 
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D <' x t ~ 'B 

Figure 26 

Proof No.~. ABC is a right-angled triangle. At A, 

a perpendioular is oonstruoted to AB, and BC is extended 

until it interseots this perpendioular at some point D. Now 

triangle DAB will also be a right triangle, in whioh AC is 

an altitude. Let AD =y, DC = x, AC = b, BC = a, and AB =o. 

Therefore, by similar triangles, 

(1) x/b =b/a or b2 = ax. 

(2) Also (a + x)/o • o/a. 

(3) From (2) 0 2 = a2 + ax. 
I 

(4) From (1) and (3) 0 2 = a2 + b2 • 

Or, AB2 = BC2 + AC2• 

Q. E. D. 



CHAPTER IV
 

ANALYSIS AND CLASSIFICATION OF THE
 

PROOFS OF CHAPTER III
 

This chapter is devoted to an analysis and classi 

fioation of the proofs presented in ohapter three. First, 

each proof has been analysed as to the fundamental property 

on which it was based, and then the proofs were classified 

as to their similarities and differences. 

Two definitions need to be presented at this time. 

The terms outward and inward refer to the manner in which 

the squares were constructed on the sides of a right tri 

angle. If a square is oonstructed outward on the side of a 

right triangle, then it lies entirely outside of the tri 

angle. If a square is then rotated 1800 about the side on 

which it is oonstructed so that part of the interior of the 

square coincides with part or all of the interior of the 

triangle, then it is oonstruoted inward. 

I. ANALYSIS OF EACH PROOF 

In this section eaoh proof of chapter three has been 

analysed as to the fundamental property on whioh eaoh was 

based. 

Proof No. 1. Two congruent squares were dissected 

differently, and the Pythagorean relationship was obtained 

by setting the areas of the two squares equal to eaoh other. 
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Proof No. 2. The square on the hypotenuse was dis

sected into four congruent triangles and a square. The 

pieces were reassembled to give the sum of the squares on 

the legs. 

Proof N0.1. An altitude was constructed to the hy

potenuse of the given right triangle, and from similar right 

triangles proportions were derived which when simplified 

give the Pythagorean relationship. 

Proof No.~. The squares on the sides of a right 

triangle were constructed outward. The squares on the legs 

were then divided into parts, the sum of whose areas is 

equal to the square on the hypotenuse. 

Proof NO.2. A trapezoid was oonstruoted with one 

of the legs of the given right triangle as a base. The 

Pythagorean relationship was then derived by use of for

mulas for the area of a trapezoid and a triangle. 

Proof No. 6. The square on the hypotenuse of the 

, given right triangle was construoted inward, and the square 

of one of the legs was oonstruoted outward. The square of 

the remaining side was oonstruoted so as to have vertioes 

in oommon with the other two squares. The squares on the 

legs were divided into parts, the sum of whose areas is 

equal to the square on the h1'potenuse. 
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Proof No.1. Four congruent right triangles were 

oonstructed along the interior sides of a square with a 

square remaining in the middle. The Pythagorean relation

ship was obtained by setting the area of the original square 

equal to the sum ot the areas ot the four triangles and the 

square in the middle. 

Proof No. 8. The square on the hypotenuse of a given 

right triangle was oonstruoted inward, and the square of one 

of the legs was construoted outward. The square of the re

maining side was construoted so as to have vertioes in oommon 

with the other two squares. The squares on the legs were 

divided into parts, the sum of whose areas is equal to the 

square on the hypotenuse. 

Proof No.9. As in proof 8, the square on the hy

potenuse or a given right triangle was oonstructed inward, 

and the square of o~e of the legs was oonstructed outward. 

The square of the remaining side was oonstruoted so as to 
I 

have vertioes in oommon with the other two squares. The 

squares on the legs were divided into parts, the sum of 

whose areas is equal to the square on the hypotenuse. 

Proof No. 10. The squares were oonstructed outward 

on all sides of the right triangle, with two triangles oon

gruent to the 'given right triangle oonstruoted on two of 
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the sides of the square on the hypotenuse. With the aid of 

some' auxiliary lines the area of the square on the hypotenuse 

was shown to be equal to the sum of the area of the other two 

squares. 

Proof No. 11. The squares on the hypotenuse and one 

of the sides were construoted inward, and the square on the 

other side was oonstruoted outward. The area of the square 

on the hypotenuse was shown to be equal to the sum of the 

areas of the other two squares • 

.;;.P.;;.r..;;.o..;;.o.:;.f _N_o. 12. The squares on the two sides of the 

right triangle were oonstruoted inward, and the square on 

the hypotenuse was constructed outward. With some auxiliary 

lines, the area of the square on the hypotenuse was shown to 

be equal to the sum of the areas of the other two squares. 

Proof No. 11. The squares on the legs of the given 

right triangle were;oonstruoted outward. The sides of these 

squares were extended to form a reotangle which was adjaoent 

to both of the square.. The square on the hypotenuse was 

oonstruoted inward, and the sum of the parts of the areas 

of the squares on the legs was shown to be equal to the area 

of the square on the hypotenuse. 

Proof No.~. The squares on the legs of the given 

right triangle are oonstruoted outward. The sides of these 



- -

55 

squares were extended to form a reo tangle whioh was adjaoent 

to both of the squares. The square on the hypotenuse was 

oonstruoted outward and with the aid of some auxiliary lines, 

the sum of the parts of the areas of the squares on the legs 

was shown to be equal to the area of the square on the 

hypotenuse. 

Proof No. 12. The squares on all the sides were oon

struoted inward. With the aid of auxiliary lines, the sum 

of the parts of the areas of the squares on the legs was 

shown to be equal to the area of the square on the hypotenuse. 

Proof No. 16. All of the squares on the sides were 

oonstruoted outward. Eaoh of the squares were disseoted 

into oongruent triangles, squares, and a rectangle. Some 

of the pieoes were reassembled to form parts of the square 

on the hypotenuse. The remaining area of the square on the 

hypotenuse was Ihow~ to be equal to the area of the remain

ing parts of the ·other two squares. 

Proof No. 17. An irregular quadrilateral was formed 

by oonstructing a reotangle and a right triangle on one leg 

of the given right triangle. The area of the figure was 

found two different ways by summing different parts of the 

figure. By setting these two sums equal to eaoh other, the 

Pythagorean relationship was derived. 
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Proof No. 18. The square on the hypotenuse was oon

struoted inward, and on the opposite side of the square 

another triangle congruent to and in the same relative po

sition as the given triangle was oonstruoted. With the aid 

of auxiliary lines, parallelograms and triangles were oon

struoted to show that the square on the hypotenuse was equal 

to the sum of the squares on the legs. 

Proof No. 19. A semi-oirole was oonstruoted on the 

hypotenuse of a right triangle. The Pythagorean relation

ship was derived by obtaining proportions relating to 

seoants and interseoting ohords. 

Proof No. gQ. A right triangle was insoribed in a 

oircle with its hypotenuse aoting as the diameter of the 

o~role. From similar right triangles and interseoting 

ohords in a oircle, proportions were derived giving the 

Pythagorean relatio~ship. 

'PrQof!2.~. A right triangle was formed by oon

struoting a tangent and a seoant to a oirole from an exter

nal point_ together with a radius of the oirole. Proportions 

whioh involved seoants and tangents to a oirole provided the 

Pythagorean relationship. 

Proof No. 22. Two oongruent right triangles were 

oonstruoted in a circle with the hypotenuse of one of the 

~:)' 
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triangles ooinoiding with a radius ot the oirole. From 

mean proportional relationships, the Pythagorean relation

ship was derived. 

Proof No.~. An altitude was oonstruoted upon the 

hypotenuse of a right triangle, and from similar right tri 

angles the Pythagorean relationship was obtained. 

Proof No.~. A right triangle was oonstruoted upon 

one of the legs of a right triangle so that the two right 

angles of the triangles were adjaoent. From similar right 

triangles, proportions were obtained whioh provided the 

Pythagorean relationship. 

II. CLASSIFICATION AS TO SIMILARITIES
 

A~D DIFFERENCES
 

In the olassifioation of the proofs of ohapter three, 

the proofs were olassified in one of three oategories, and 

then the proofs in eaoh group were oompared. The oategories 

are disseotion, sum of the parts, and proportions. 

Disseotion. In disseotion proofs a tigure ot known 

area is disseoted and the pieoes reassembled in a different 

manner to give the desired areas. Proofs 1 and 2 are of 

this type and differ on11 in the manner in whioh the disseo

tion was made. 
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_S_UM__o_f _t_b_e .;;;..P..;;.;a.;;;..r....;.t....;.s. The majority of the proofs pre

sented in ohapter three depended upon the premise that the 

area of the whole was equal to the sum of the areas of the 

parts. These proofs were numbered 4-18 inolusive. Of this 

group, proof number 4, the one given by Euclid, was probably 

the olassio in regard to the length of the proof. The 

Pythagorean relationship was obtained in proof number 5 by 

use of the parts of a trapezoid, while proof number 7 used 

the parts of a square. Proofs 6, 8-15, and 18 are very 

muoh alike. They all depended upon oonstruoting the squares 

on the sides or upon oonstruoting some of the squares on the 

sides together with some auxiliary lines to obtain the "parts." 

The differenoes of these proofs lie mainly in the manner in 

whioh the oonstruotions were aooomplished, i.e. whether the 

squares were oonstruoted outward or inward or some oombina

tion thereof, and the manner in whioh the parts were asso

oiated together to set the sum of the parts. Proof 16 was 

a oombination of' disseotion and the sum of the parts, as 

some of the parts were disseoted to be reassembled while 

the remaining parts were shown to have equal sums. 

Proof number 17 of this group had two triangles and 

a trapezoid erected on one leg of the given triangle to form 

an irregular polygon, rather than oonstruoting the squares 

upon the sides. 
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Proportions. The seoond largest olassification of 

the proofs of chapter three was the one based upon propor

tion. Proofs numbered 3, 23, and 24 all employed the same 

general diagram and the neoessary proportions were derived 

by use of, similar triangles. The three proofs differ only 

in the use of the similar triangles whioh were used to de

rive the necessary proportions. 

Proofs numbered 19-22 of this group all relied upon 

the oirole to obtain the neoessary proportions. Proof 19 

had the given right triangle insoribed in a semi-oirole 

wi th the hypotenuse ooinoiding with the diameter of the 

oircle, while proof 20 used the same diagram with the ex

oeption that it had another diameter oonstruoted perpen

dioular to ~he first one. Proof 21 depended upon a tangent 

to a oirole with a radius drawn to the point of tangenoy to 

form the right angle, while a secant was drawn from the 

point of origin of the tangent through the center of the 

circle to oomplete the neoessary right triangle. Proof 22 
I 

had the right triangle construoted with its hypotenuse 

ooinoiding with the radius, rather than the diameter of the 

oirole. 



CHAPTER V 

PRIMITIVE PYTHAGOREAN TRIPLES 

The subjeot of Pythagorean triples has fasoinated 

many students of mathematios. Pythagorean triples are three 

positive integers a, b, and 0 whioh satisfy the Pythagorean 

relationship a2 + b2 = c2 • Examples of the triples whioh ~ 

given quite often are (3,415), (5,12;13), and (1,24;25). 

An aooount of Pythagorean triples is presented in 

this ohapter. Inoluded is a proof of the restrictions that 

are necessary for the seleotion of two positive integers u 

and v, whioh will generate a primitive Pythagorean triple. 

There are an infinite number of these triples, and 

various methods of determining how to find these numbers 

have been advanoed. One suoh method was given by Euolid as 

lemmas 1 and 2 of Proposition 28 of Book X. The algebraio 

2 b2conolusion of these ;lemmas is that the values of a , , and 

0 2 must always be of the form 

b2 , .2 .. mp2mq2. .. (mp2 ; mq2 y. 0 
2 -lmp2 ; mq2J 2. 

with the further oondition that mp2 and' mq2 must both be 

either even or odd simultaneously.l 

A triple is primitive if the greatest oommon divisor 

(g.o.d.) of a, b, and 0 is unity. For example consider the 

IBen Moshan, ·Primitive Pythagorean Triples", The 
Mathematics Teaoher,November, 19.59, p • .541. _
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triple (6,8;10). Sinoe the g.o.d. is 2 whioh is greater 

than 1, this triple is not primitive, whereas the triple 

(3,4;5) is primitive. 

Another and more frequently used method of determin

ing Pythagorean triples is to ohose two positive intergers 

u and v suoh that u is greater than v. Then a, b, and 0 

will be determined by the following: 

a = u2 _ v2 , b = 2uv, o = u2 + v2 • 

Verifioation of these formulas for a, b, and 0 is 

given in the followings 

(1) b • 2uv. 

(2) b2 • (2uv)2 • 4u2y2. 

(3) a =u2 _ v2• 

(4) a2 = (u2 _ v2)2 ~ u4 ,. 2u2v2 + y4. 

(5) o • u 2 + v2 • 

(6) 0 2 = (u2 + v2)2 = u4 + 2u2v2 + y4. 

(1) a2 + b2 "~ 4u2v2 + u4 • 2u2v2 + y4. (From 2 and 4). 
: (8) a2 +"b2 =u4 + 2u2y2 + y4. 

. (9) a2 + b2 =0 2• (From 6 and 8) • 

As an illustration of this method let u • 6 and y • 4, 
thens a =62 - 42 • 36 • 16 • 20. 

b • 2(6)(4) =48. 

o =62 + 42 =36 + 16 =52.
 

Sinoe a2 + b2 is to equal 0 2 ,
 

(20)2 + (48)2 • (52)2.
 

Or, 400 + 2304 • 2104.
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Although in this example the values of u and v pro

duoed a Pythagorean triple, it was not a primitive triple 

as the g.o.d. of a, b, and 0 is 4. Therefore more restrio

tions must be placed on the ohoice of u and v to insure 

that the triple will be primitive. The restrictions were 

given as a theorem by Ben Moshan. 2 

Theorem. If u and v are two positive integers whioh 

determine values of a, b, and 0 as followsz a = u2 _ v2 , 

b = 2uv, 0 = u2 + v2 and (1) u and v are "relatively prime" 

integers, i.e. they have no oommon divisor greater than 1, 

(2) u and v are of "opposite parity", i.e., one of them is 

even and the other is odd, (3) U is greater than v to in

sure that a is positive, then, a, b, and 0 will to~ a 

primitive Pythagorean triple. 

2Ibid., p. 541 
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c t r 1'-: ~ g~ 

Figure 1 

Proof: Let triangle ABC be a right triangle, labeled 

as in figure 1; r is the radius of the insoribed oircle, 

known as the inradius. FE and QH are tangents to the oirole, 

suoh that FE J. AC, and QHL BC. 

From the diagram the following are evident: 

(1) 0 2 a a2 + b 2• 

(2) a =2r + g, or g = a - 2r. 

(3) b = 2r + d, or d • b - 2r. 

Now, 0 =AD + BD = AK + BL, sinoe the tangents from 

an external point to a oircle are equal. But AK • d + r 

and BL • g + r. Therefore, 

(4) 0 = 2r + g + d. 
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By sUbstituting (2) and (3) in (4), 

(5) 0 = a + b • 2r.
 

From (2) and (5) it follows that,
 

(6) g == 0 • b.
 

From (3) and (5) it follows that,
 

(1) d = 0 • a. 

Now substituting (2), (3), and (4) in (1)1 

(2r + g + d)2 ~ (2r + g)2 + (2r + d)2, 

which simplifies to, 

(8) gd = 2r2 • 

If a, b, and 0 are integers whioh satisfy the equa

tion (1), it is obvious from (5), (6), and (1) that 2r, g, 

and d are integers. And sinoe g and d are integers, it 

follows from (8), 2r2 is also' an integer. 

It will now be proved that sinoe both 2r and 2r2 are 

integers, r is also an integer. If r is not an integer, and 

2r is, then r must b.,e of the form r = k + I, where k is an 

integer. It then follows that 2r2 = 2(k + 1)2 = 2k2 + 2k +t, 
whioh is imp08sible 8inoe 2r2 i. an integer. 

Now it will be proved that if the triple i8 primitive, 

then g and d are relatively prime and of opposite parity. 

If g and d have a oommon divisor k which i8 greater than 1, 

then eve~ divisor of k would be a oommon divisor of g and 

d, or even if k is prime, g and d oan be expres8ed a8 

g = kgl , ·d = kdl • 
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~~ '! 

Equation (8) would then be, 

k2g1dl = 21'2 or gldl a 2(r/k)2, 

thus k is a factor of 1', say l' = krl • 

Then from (2), (3), and (4), 

a a 2krl + kgl , or (a/k) a 21'1 + gl; 

b = 2krl + kdl , or (b/k) =21'1 + dli 

c = 2krl + kgl + kdl , or (c/k) =21'1 + gl + dl • 

Thus, k divides a, b, and 0, whioh is oontrary to the 

faot that the triple is primitive. 

Every oomposite integer l' oan be expressed as a pro

duot of primes in one and only one way if no distinotion i8 

made between arrangements of the same prime factors, say, 

I r =2t plm • P2n
• P3w

• • • Pn , 

where Pl' P2' P3' • • ., Pn are distinot odd primes and 

t l, m, n, w, ••• , z are positive integers. 

Thus, 21'2 oan be expressed as a produot of distinot 

primes, 

2 2 - 2(2t m n z)2 d'1' - • Pl • P2 • • • Pn = g , 

where Pl' P2' • • ., Pn are distinot odd primes only and 

t, m, n, ••• , z are positive integers. 

All of the factors of 21'2, sinoe 21'2 = gd, must be in 

g and d taken together, but eaoh distinot prime oan only be 

in g or d sinoe g and d are relatively prime. Therefore, 

2(2t )2 oan only appear in either g or d, and sinoe all of 

the other distinot primes of zr2 are odd, it follows that 

either g or d i8 even and the other Is odd. Ho 1088 of 
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generality results if g is odd and d even. Let g = (G)2, 

where G is the product only of distinot odd primes in 2r2 , 

thus, G is always odd. Then, let d =2(n)2, where n is the 

produot of the remaining distinot primes in 2r2• 

Then from (8) it follows, 

(9) gd =2r2 = 2n2G2, and 

(10) r. nG.
 

From (2), (3), and (4),
 

(11) a =2r + g = 2nG + G2 • 

(12) b = 2r + d =2nG + 2n2 • 

(13 ) o = 2r + g + d = 2nG + a2 + 2n2• 

Using	 the transformation, u = G + n and v =n, state

2 2ments (11), (12), and (13) oan be written as a = u - v , 

b = 2uv, and 0 = u2 + v2 respeotively. Inspeotion of the 

tpree conditions on u and v in the theorem, will show that 

the values of G and n in the transformation satisfy the 

oonditions also. 

The neoes~ary oonditions for a primitive tr1ple have 

now been proven. It is now neoessary to prove that the 

values of a, b, and 0 as expressed in equations (11), (12), 

and (13), are always primitive when G is odd and n and G 

are relatively prime. 

By substituting these values in equation (1), one has 

(2nG + G2)2 + (2nG + 2n2)2 = (2nG + G2 + 2n2)2, 

whioh simplifies to an identity and thus equation (1) is 

satisfied. 
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The next condition for a primitive triple is that G 

be odd. For if G is even, it is apparent from (11), (12), 

and (13) that a, b, and 0 are also all even and the result

ing triple is not primitive. 

It.now remains to be proved that the triple is always 

primitive when n and G are relatively prime. Since G must 

be odd, from (11), (12), and (13), a and ° must be odd and 

b must be even, and as suoh they do not have the oommon 

tactor 2. They also do not have an odd common tactor k 

whioh is greater than 2. For if they did then every prime 

divisor ot k would be a common divisor of a, b, and cJ or 

even it k i8 prtme let a • kal' b = kbl' and c • kOl' then 

trom (4), (2), and (3), 

kO l = 2nG + G2 + 2ri2 , kO l • 2nG + G2 + 2n2, 

ka =2nG + G2~ and kb l • 2nG + 2n2 •1 
SUbtracting, 

k(cl - al~ = 2n2, k(ol - bl) =G2, 

or, 

01 - al = (2n2/k), 01 - bl = (G2/k). 

Sinoe k is greater than 2, it would tollow that k 

divides nand G, whioh i8 oontrary to the faot that n i8 

prime to G. 

3Q. E. D. 

3Ibid., p. 542-543. 



CHAPTER VI
 

APPLICATION OF THE PYTHAGOREAN THEOREM
 

TO FIGURE-CUTTING PROBLEMS
 

This chapter is devoted to showing how the Pythagorean 

Theorem was applied to four of fifteen well-publicized pro

blems on figure-outting. The fifteen problems were written 

by the mathematios staff of the University of Chicago. The 

problems appeared as a series of six articles in The Mathe

matio$ Teacher during the years 1956 to 1958. 

The term "transform" as used in this ohapter means to 

cut a figure into parts using straight lines only and then 

to rearrange these parts to form a new figure. 

In this ohapter eaoh of the original fifteen problems 

i. stated, and then the Pythagorean Theorem applied to 

obtain a solution of the last four. 

I. -'STATEMENT OF THE PROBLEMS 

(1) Given three oongruent squares, to transform them 
into a single square. 

(2) Given a square, to transform it into three con
gruent squares. 

(3) Given two squares (oongruent or not), to trans
form them into a single square. 

(4) Given a square, to transform it into an equi
lateral triangle. 

(5) Given an equilateral triangle, to transform it 
into a square. 
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(6) Given a (non-reotangular) parallelogrwm, to
 
transfo~ it into a square.
 

(7) Given a square, to transfo~ it into n oongruent
equilateral triangles (where n is some natural number 
greater than 1 and fixed in advanoe.) 

(8) Given one or more reotangles, to transfo~ them 
into a square. 

(9) Given a regular hexagon, to transfo~ it into a 
square. 

(lO) Given a regular pentagon, to transfo~ it into 
a square. 

(11) A pin oonsists of three oongruent silver squares 
soldered at the vertioes in suoh a way that the sides of 
one square are extensions of the sides of another. It is 
required to out this pin along two pairs of parallel lines 
and from the resulting parts to assemble a broooh having
the shape of a rhombus. 

(12) Given a right triangle ACB whose longer side BC 
is less than twioe its shorter side AC, to out it into no 
more than four parts that ,reassemble into a square. 

(13) Given a square, by outting it into at most four 
i	 parts to transform it into a right triangle whose longer 

side is less than twioe the shorter side. 

(14) Given a square, to transform it into two squares
of whioh one has ,an area twioe that of the other. 

(15) Given a square, to transform it into three
 
squares whose areas are in the ratio 2:3:4. 1
 

IMathematios Staff of the University of Chioago, The 
Mathematios Teaoher, XLIX, May, 1956, p. 332; XLIX, Ootober, 
1956, p. 442; XLIX, Deoember, 1956, p. 585; L, February, 195~ 
p. 125; L, May, 1951, p. 330; LI, February, 1958, p. 96. 
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II. APPLICATION OF PYTHAGOREAN THEOREM
 

TO PROBLEMS 12-15
 

In the January, 1962, issue of The Mathematics 

Teacher, Frank Piwnioki has shown how the Pythagorean 

Theorem oan be applied to the solution of problems 12-15. 

As the solutions of problems 14 and 15 are somewhat sim

pler, they will be presented first. The solutions of these 

problems are as follows. 

Problem~: Given a square, to transform it into two 

squares of whioh one has an area twioe that of the other. 
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Figure 1 
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ABCD is the given square (Figure 1). On the side DC 

a semi-oircle is constructed with a radius equal to DC/2 

and DE is equal to DC/). From point E a perpendioular is 

construoted to intersect the arc DC at F. Now triangle DFC 

is a right triangle with the hypotenuse AC and legs DF and 

FC. With respect to this right triangle, the square on DC 

is inward. The square on DF is then constructed inward. 

and the square on FC outward. 

Using the parallel lines formed in Figure 1, the 

following right triangles oan be shown to be congruent. 

Triangle AND is oongruent to triangle BRC. triangle ANK is 

congruent to triangle DGL, triangle DFC is congruent to 

triangle AHB, and triangle LMC is congruent to triangle KPB. 

Therefore. the square ABCD on the hypotenuse of 

triangle DFC, is out into five parts by the segments DK, 

CF. AN, and 1M, all lying within the area of the square 

ABCD. From these f~ve parts the two required squares oan 

be oonstruoted as shown in Figure 1. The squares oompleted 
I 

on the sides of triangle DFC indio ate how the Pythagorean 

Theorem is used in the solution of this problem. 

To verify that square FPRC is equal to twioe square 

AHPN, it is neoessary to show only that F'c2 = 2DF2 • This 

can be shown by applying the Pythagorean relationship to the 

right triangles DFC, DFE, and FEC. The proof is as follows: 
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(1)	 FC 2 = DC 2 _ DF2,
 
-2 -2 -2 (2 ) or,	 FC = 9DE - DF , since DC = 3DE. 

(3)	 Theret'ore 3DE2 = (1/3)FC 2 + (1/3) DF 2• 

(4)	 Also, DF2 = EF2 + DE2 Of EP2 = !5F2 _ m:2, 

(5) and	 FC2 = EF2 + EC2• 

(6)	 Theret'ore, FC2 = DF2 - DE2 + EC2• From 4 and 6. 

(7) FC 2	 = DF2 - DE2 + 4DE2, since EC = 2DE; 

(8)	 or 3DE2 = FC2 _ DF2• 

(9)	 Theret'ore, FC2 - DF2 = (1/3) FC2 + (1/3) DiF2. 

From 3 and 8. 

(10)	 Or, FC 2 = 2DF2•
 

Q.. E. D.
 

Bet'ore starting on exercise 15 it will be neoessary 

to construot several figures~ which will all be grouped 

together for oonvenience when referring to them. 
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Problem 12. Given a square, to transform it into 

three squares whose areas are in the ratios 2:3:4. 

This problem has a two part solution, the first of 

whioh is a division of the square into two squares in the 

ratio 1:2. This part is a repetition of the solution just 

given to Problem 14. Figure 2 differs from Figure 1 in 

that the square on DF, the smaller arm, is oonstruoted, not 

on that arm, but on AN whioh is equal to DF. The use of 

Figure 2 in plaoe of Figure 1 is justified by the faot that 

triangle DFC and LMC of Figure 1 are oongruent respeotively 

to triangle AND and RLD of Figure 2. The trapezoid 2 and 

triangle 4 make up the square shown in Figure 6b, as in 

Figure 2 triangle ANK is oongruent to triangle AMR. What 

remains of the square ABCD now is Figure 3, whioh, with the 

pieoes rearranged, beoomes Figure 4. The fact that Figure 4 

is a square is apparent sinoe DC = CB and lID = lB. 

Now if the 1:2 ratio of the squares in Figures 6b 

and 4 is regarded as 3: (2 + 4), then the square in Figure 4 

has to be out into squares in the ratio 2:4, which is 1:2. 

This gives the same ratio and the same operation as applied 

in Figure 2. In Figure 5 FT is constructed perpendioular to 

CB. Triangle FTC here is similar to triangle CFD in Figure 2, 

and therefore, the ratio of the squares on its arms TC and 

FT is 1:2. The whole of Figure 5 is similar to Figure 2 

exoept for the difference in size and the presenoe of tri 
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angle KLB. Henoe from the pieoes of Figure 5, the squares 

QG (Figure 60) and FH (Figure 6a) oan be assembled. 

If the parts in Figure 2 of Figure 3, numbered 3 and 

5, are replaced by parts from Figure ~ numbered 3' + 3" + 

3'" and 5' + 5" respeotively, then Figure 2 is reassembled 

showing all the necessary cuts to assemble the three required 

squares, Figures 6c, 6b, and 6a which areas are in the ratio 

2:3:4. Figure 7 illustrates the necessary cuts. Again the 

use of the Pythagorean Theorem in the solution of this pro

blem is indicated by the squares on the sides of the right 

triangle. 

Before the solution of problems 12 and 13 are given, 

it is necessary to illustrate how to do two oonstructions 

used in the solution of problems 12 and 13. First oonsider 

the transformation of a right triangle into a square and 

the reverse. The Pythagorean Theorem establishes the 

following relation b,etween oertain elements of the right 

triangle: the area of the square on an arm of the right 

triangle is equal to the area of a rectangle construoted 

of the hypotenuse and the projeotion of the arm on the hy

potenuse .. 
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A B'L , 

G 

R 

p 

Figure 8 

By applying proof number 4 of ohapter 3 to Figure 8, 

the following is evident: (DE)2 = (HD)(AD) = (He)(DC), and 

(EC)2 = (HC)(CB) = (He)(DC). 

Examination ot Figure 8 suggests methods (1) ot 

transforming the reotangle into a square ot equal area, and 

(2) ot/transforming a square into a reotangle ot equal area. 
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J 

C 

H 

Figure 9 

Problem: Given a rectangle to transform it into a 

square of the same area. 

Let the given rectangle be AFEC of Figure 9, then 

the solution is obtained by the following: 

(1) Extend AF to X. 

(2) Construct AL equal to AC on AX. 

(3) Construct a semi-oirole with AL as diameter. 

(4) Extend EF to interseot the semi-circle at K. 

,(5) Draw lines KL and KA, reSUlting in the right 

triangle AKL. 

Then the line AK is the side of the desired square, 

and (AK)2 = (AF)(AL) = (AF)(AC). The heavy lines represent 

the neoessary oonstruction elements to find the side AK of 

the square. Broken lines relate the diagram to the Pythag

ore an Theorem. 
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J J 

I t :>.K 

C I' "'l. ........
 
A A 

Figure 10 Figure lOa 

Figure 10 shows basioally the same operation as 

Figure 9 with one signifioant ohange. In Figure 9 the 

required square was oonstruoted outward of the right tri

angle AKL, and in Figure 10 the required square AKJH was 

oonstruoted inward on the triangle AKL. If JH is extended 

it will pass through the point C. whioh with HA. divides 

the reotangle AFEC into three parts from whioh the square 

AKJH of Figure lOa oan be assembled. Numerals indioate the 

oongruenoe of triangles, and quadrilateral 1 is common. 
I 

Problem: Given a square to transfor.m it into a 

reotangle of the same area. 

Examination of Figure lOa suggests a simple method 

of outting a square into three parts from whioh a reo tangle 

oan be assembled. From K let line KG interseot JH at G, 

and ereot AF perpendioular to KG. KG and AF now divide the 

square into three parts from whioh a reo tangle oan be assem

bled (oompare Figure 10). 
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Figure 10 shows that a given rectangle can be trans

formed into one and only one square, but that a given square 

can be transformed into an unlimited number of rectangles. 

Therefore, when transforming a square into a rectangle it is 

necessary to have a side of the desired rectangle given. In 

Figure 12 a point G may be chosen anywhere on JH. If G 

coincided with J, then KG would be equal to KJ, and this 

would merely reconstruct the square. If G coincided with H, 

then KG would equal KH, and square AKJH would be transformed 

into a rectangle whose dimensions would be a V2 and a V'2/2 

Where a is the side of the square. Thus, the given method is 

correot for transforming a square into a rectangle only if 

the ratio of the sides of the reotangle is between 1 and 2. 

B 

Figure 11 
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Before the problem of transformation of a triangle 

into a reotangle may be solved. one more step is neoessary. 

In right triangle ACB (Figure 11), if CB and AB are biseoted 

at E and D respeotively, then ED will out the triangle into 

two parts from whioh the reo tangle AFEC oan be assembled. 

B 

J 

I - - ri)K
Pl. 

A 
A 

Figure 12 Figure l2a 

Problem 12: "Given a right triangle ACB whose longer 

side BC is less than twice its shorter side AC, to out it 

into no more than four parts that reassemble into a square. 

In Figure 11 one cut, ED, transfor.med triangle ACB 

into rectangle AFEC. In Figure 10 is shown how the same 

reotangle AFEC, by two outs, CG and AH, is transfor.med into 

square AKJH. Figure 12 is a composite of Figures 10 and 11. 

and shows how right triangle ACB was out with segments ED, 

CG, and AH, to reassemble the square AKJH. 
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Problem 11. Given a square, by cutting it into at 

most four parts to transform it into a right triangle whose 

longer side is less than twice the shorter side. 

The reverse procedure of problem 12 is applied to 

solve proble~ 13, i.e., (1) transform the square into a 

rectangle, and (2) transform the rectangle into a triangle. 

Step 2 has already been shown in Figure 11. A1Cl is the 

shorter side of the desired right triangle. 

Step 1 is shown in Figure 13, where a square AHJK is 

given. I The given square is to be transformed into a rectan

gle whose area is equal to that of the square. One side 

A1C l is given. 

The complete solution of problem 13 is as follows: 

On side AK of square AKJH at K, the right angle AKZ 

is constructed by extending JK. With an arc of radius 

AL = A1Cl and center at A, KZ is intersected at L. KF is 

oonstructed perpendicular to ALi then AF is the shorter side 

J 

HAl 

~igure 13 

Cl 

C' ~ 

M 
r ,..- -----•

E ~ 1.:1 =-t", 

z 
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of the required rectangle. To construct that rectangle, 

the square ALMC is constructed, and KF is extended to E. 

The area of the rectangle AFEC is equal to the area of the 

given square AHJK. In Figure I) the square is oonstructed 

outward on the right triangle AKL. If it is placed inward 

on the triangle, then it is the diagram of Figure 10. In 

Figure lOa segments AF and CG cut the square into three parts 

from which the rectangle AFEC oan be assembled. Figure 12 

shows how to transform this rectangle into a right triangle. 

In Figure 12a ;~ will be the third cut. Figure 12a shows 

all the outs of the square to transform it into a right 

triangle. 2 

2Frank Piwnicki, I1Application of the Pythagorean 
Theorem in the Figure-Cutting Problem, tiThe Mathematics 
Teacher, LV, January, 1962, p. 44-51. 
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CHAPTER VII 

EXTENSIONS OF THE: PYTHAGOREAN RELATIONSHIP 

This chapter is devoted to a brief discussion of an 

extension of the Pythagorean relationship to non-right 

plane triangles and to right spherical triangles. 

A 

"B 

Figure 1 

I. LAW OF COSINES 

The Law of Cosines of plane trig~nometry for any 

triangle, such as the one in Figure I, states that: 

0 2 = a2 + b2 - 2ab oos C. 

When C is a right angle, oos C = 0, and the Law of 

Cosines reduces to: 

c 2 = a2 + b 2 • 

Therefore, the Law of Cosines is an extension of the 

Pythagorean Theorem for any triangle of plane geometry. 
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II. RIGHT SPHERICAL TRIANGLES 

This section considers the possibility of an exten

sion of the Pythagorean relationship to right spherical 

triangles. 

Several definitions and propositions from spherical 

geometry need to be given here for reference. 

1.	 A great circle of a sphere is the intersection 
of the sphere and a plane through the center 
of the sphere. 

2.	 A spherical polygon is a closed line on a sphere 
oonsisting of three or more arcs of great circles. 

3.	 A spherical polygon of three sides in which each 
side lies between 00 and 1800 is a spherical 
triangle. 

4.	 Each side of a spherical triangle is less than 
the sum of the other two sides. 

5.	 The sum of the sides of a spherical triangle is 
less than 360 0 • 

6.	 A right spherical triangle is one which has only 
one angle equal to 900 • 

7.	 The sum of the angles of a spherical triangle is 
greater than 1800 and is less than 540 0

• 

8.	 If a spherioal triangle has one right angle, the 
other angles may both be acute, both obtuse, or 
one aoute and the other obtuse. 

Consideration will be given only to those spherioal 

triangles that oontain only one right angle. 
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, 
a ::> B 

Figure 2 

From plane trigonometry, if A and Bare the,two acute 

angles of a right triangle (Figure 2). then sin2A + sin2B = 1, 

which when expressed in terms of the ratios of the sides 

gives: a2/c2 + b2/c2 = 1, or a2 + b2 = 0 2 • This then is 

the Pythagorean relationship. 

Therefore one approach to the problem is, what is the 

value of sin2A + sin2B, where A and B represent the non-right 

angles of a right spherioal triangle. There are three possi

ble values for this relationship which are: (1) sin2a + 

sin2b = 1, (2) sin2a + sin2b >1, and (3) sin2a + sin2b <1. 

If (1) is found to be true then the Pythagorean relationship 

holds for right spherical triangles. If either or both of 

(2) an~ (3) hold true then there is no Pythagorean relation

ship. 

By property (8) there are three cases to consider for 

A and B. These oases are when they both are acute, when one 

is acute and the other obtuse, and when they are both obtuse. 

First considering the case where A <90 0 and B <900 , and 

900 <A + B <1800 • Selecting some specific values for A and 

B gives the following table. 
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TABLE I 

A B A + B sin2A + sin2B 

2089 0 910 1.001 
500 t3° 93 0 1.052 
600 00 120 0 1.500 
70 0 800 1500 1.843 
89 0 890 1780 1.999 

Now considering the case where A<900 
, 90 0 <B<1800 

, 

and 900 
( A + B <2700 

• 

TABLE II 

A B A + B sin2A + sin2B-
80 950 103 0 1.011 

600 950 1550 1.7t2 
80 150 0 158 0 0.2 9 

890 950 1840 1.991 
890 1500 239 0 1.249 
890 1750 2640 1.075 

Next considering the case where 900 < A<1800 
, 

900 <B <1800 
, and 1800 <A + B <360 0 

• 

TABLE III 

A B A + B sin2A + sin2B-
95 0 95 0 1900 1.984 
95 0 150 0 2450 1.242 
950 178 0 273 0 1.011 

1500 1500 3000 0.500 
1750 1750 350 0 0.152 

Examination of the three tables shows that con

dition (2) or (3) holds for possible choices of A and B. 
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The results of the three tables suggest that: If 

angles A and B are both less than 90°, then their sum will 

be greater than 90°, and the value of sin2A + sin2B will be 

greater than 1 and less than 2. If either or both of the 

angles are greater than 90° but less than 180°, then the 

value of their supplement(s) (or related angle(s)) gives 

the value of sin2a + sin2b. In this case, if the sum of the 

two angles, or related angles, exceeds 900 , then 1 <sin2A + 

sin2B <2, and if the sum is less than 90°, then 0 <sin2A + 

sin2B <1. Therefore, this approach does not yield an 

extension of the Pythagorean relationship for the sides 

of right spherical triangles. 



CHAPTER VIII 

I. SUMMARY 

In chapter one the purpose of this paper was stated 

to be: to provide a resource of enrichment material on the 

Pythagorean Theorem. This resource of material was to cover 

five areas: (1) historical background, (2) proofs, (3) 

primitive Pythagorean triples, (4) figure-cutting, and 

(5) spherical triangles. It was the authors intent to 

cover each of these areas and keep the report brief. 

Chapter two provided a historical baokground on 

Pythagoras and the Pythagorean Sohool which included aome 

of their main contributions in the fields of religion, 

theory of numbers, geometry, 'and astronomy. Also early 

work on the Pythagorean Theorem by the Greek, Egyptian, and 

Chinese was considered. 

Chapter three contained a wide variety of proofs of 

the Pythagorean Theorem. The proofs varied from one thought 

to have been given by Pythagoras to an original one developed 

by the author of this paper. 

In chapter four the proofs were analyzed as to the 

fundamental property on which each was based. These prop

erties were classified into three areas: (1) dissection, 

(2) sum of parts, and (3) proportion. The proofs were 

then classified as to their similarities and differences. 
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Necessary conditions for the selection of two inte

gers that will generate a primitive Pythagorean triple, were 

stated and proved in chapter five. 

Chapter six demonstrated how the Pythagorean Theorem 

oould be applied to the solution of figure-cutting problems. 

The problems considered in this chapter were the last four 

of a set of fifteen problems written by the Mathematics Staff 

of the University of Chicago. 

In chapter seven the Law of Cosines was considered 

as an extension of the Pythagorean relationship. Also, the 

relationship of sin2A + sin2B, where A and B are the non

right angles of a right spherical triangle, was used to show 

that the Pythagorean Theorem does not hold for the sides of 

a right spherioal triangle. 
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