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CHAPTER I
INTRODUCTION

Although the Pythagorean Theorem 1as over 2000 years
old, 1t still continues to fascinate millions of people all
over the world. This 1s evidenced by the fact that there
exist a large number of proofs of the theorem. Much has been
written about the Pythagorean Theorem and its related topilcs,
and one of the most lmportant reasons for this study was to
collect and organize some of this material into a report
under a single cover. It must be kept in m}nd that while
there are no primary sources covering Greek mathematics
some sort of consistent, although largely hypothetical,

account has been compiled.

| PURPOSE OF STUDY

The purpose of thls study was to provide an enriching
resource of material on the Pythagorean Theorem. The main
pointﬁ that will be covered are (1) historical background
information on the Pythagorean Theorem, (2) a vagiety of
proofs of the theorem, (3) an analysis and classification

of these proofs, (L) a background for work on primitive

Pythagorean triples, (5) an application of the Pythagorean
Theorem to some famous figure-cutting problems, and (6) an
investigation into the feasibility of a Pythagorean relation-‘
ship for spherical triangles.



ORGANIZATION

Chapter two provides a historical background on
Pythagoras, the Pythagorean School, and the Pythagorean
Theorem. Included are some of the contributions of the
Pythagoreans in the flelds of religion, theory of numbers,
geometry, and astronomy, also, the early work on the theorem
among the Greek, Egyptian, and Chinese.

Given in chapter three 1is a varlety of the most well
known and different proofs of the Pythagorean Theorem. The
chapter 1s concluded with a proof which was developed by
the author of this paper.

Chapter four gives an analysis and classification
of the proofs presented in chapter three. The proofs are
gnalysed as to the fundamental properties on which they
were based and classified as to their similarities and
differences.

In chapter five conditions necessary for the selec~
tion of two integers which generate a primitive Pythagorean
triple are stated and proved. ’

The application of the Pythagorean Theorem to the
last four of fifteen filgure-cutting problems originally
presented by the mathematics staff of the University of

Chicago is given in chapter six.



Included in chapter seven i1s an investigation into
the feasibillity of a Pythagorean relationship for spherical
triangles. A summary of the paper is given in chapter
eight.



CHAPTER II

PYTHAGORAS, THE PYTHAGOREAN SCHOOL,
AND THE DEVELOPMENT OF THE PYTHAGOREAN THEEOREM

This chapter has been devoted to a historical account
of Pythagoras' life and the development of the Pythagorean
School., It includes some of the main contributions of the
school and early work on the Pythagorean Theorem in Greece,
China, and Egypt.

It must be kept in mind when reviewing the literature
of the primary sources covering Greek mathematics, that the
reviewer must rely chiefly on manuscripts and accounts dating
from Arabian and Christian times. Scholars have reliably
restored mani of the original texts, such as those of Euclid,
Apollonius, Archimedes, and others. From many fragments and
scattered writings by later authors and philosophers, some
sort of consistent, although largely hypothetical, account
of the history of early Greek mathematics has been complled.

The toples discussed in this chapter are the early
life of Pythagoras, the formation of the Pythagorean society,
the Pythagorean contributlions in the Tields of religion,
theory of numbers, geometry, and astronomy, and the early

work on the theorem in Greece, China, and Egypt.



I. DPYTHAGORAS

The Gresk philosopher, Pythagoras, was born about
572 B.C. on the Aegean Island of Samos off the coast of Asia
Minor., In his early life he was a student of Thales. Thales
had traveled in Egypt and learned much from the priests of
Egypt, and he strongly advised his pupil, Pythagoras, to pay
them a visit. Pythagoras heeded this advice and traveled
and gained a wide experience. This experience benefited
him when he later had disciples of his own, and he became
even more famous than his teacher. It 1s supposed that,
besides traveling to Egypt, he traveled also to Babylon and
perhaps on the Greek mainland.

Returning home he found Samos under the tyranny of
Polycrates and Ionia under the dominion of the Persians.
He then migrated from Samos to Croton in Southern Italy in
530 B.C. Thers he lectured on philosophy and mathematics.
His lecture room was crowded with enthusiastic hearers of.
all ranks, and many of the upper classes attended. Women
broke a law which forbade them to attend public meetings to
hear him. Among them was Theano, the beautiful young daugh-
ter of Pythagoras' host, Milo, Pythagorhs later married
Theano, who wrote a blography of him. This manuscript was

lost.



At the time of Pythagoras' arrival, Croton had
suffered a crushing defeat by the hand of the Locrians.
The moral and political reform which he promoted was
evidenced by the fact that Croton was able to defeat and
destroy the much more populous and powerful city of Sybaris

just twenty years later in 510 B.c.t

II. PYTHAGOREAN SOCIETY

S0 remarkable was the influence of Pythagoras that
the more attentive of his puplls gradually formed themselves
Into a society of brotherhood. This newly formed order,
the Pythagorean Brotherhood, had much in common with the
Orphic communities, which sought by rites and abstinences
to purify thé believer's soul and enable it to escape from
the "wheel of birth."2 This new order was soon exercising
a great influence across the Grecian world, though its
influence was more religious than political.

’Members of the society shared everything in common,
held the same philosophical beliefs, engaged in the same
pursuits, and bound themselves with an oath not to reveal

the secrets and teachings of the school. "When, for example,
[}

1"Pythagoras," Encyclopedia Americana (1960 ed.),
XXIII, p. 47.

2"pythagoras," Encyclopedia Britannica (1l4th ed.),
XVIII, p. 803.
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Hippasus perished in a shipwreck, was not his fate due to a
broken promise? For he had revealed one of the secrets of
the brotherhood."3

In the course of time this order spread to other
Itallan citlies. The .order was most outstanding in the
cities of Metapontum, Rhegium, and Locri. The order prob-
ably never ruled any of these cities directly, but rather
exercised its influence through members who had attained
leading political positions.

In addition to the internal reforms which it promoted
everywhere, the order also worked for a politiecal and eco-
nomie alliance between the cities 1n whioch 1£ was dominant.
The success of this poliocy 1s shown by the coins of the
period. Many of them had the emblem of Croton on one side
and the emblem of one of the other oitles on the reverse
side, thus indicating a monetary agreement in which Croton
had the leading part.h

In time the influence and aristooratic tendencies of
the brotherhood became so great that the demooratic forces
of southern Italy destroyed the buildings of the school and
caused the soclety to disperse. The first reaction against

the Pythagoreans was led by Cylon. This aotibn stemmed from

37ames R. Newman, The World of Mathematics (New York:
Simon and Schuster, 1956), Vol. I, p. 83.

u"Pythagoras,“ Encyclopedia Americana (1960 ed.),
XXIII, p. 47.




the victory of Croton over Sybaris in 510 B.C. The civie
disturbances which followed resulted in a setback to
Pythagorean power in Croton. According to one report,
Pythagoras fled to Metapontum where he later died, maybe
through murder, at the advanced age of seventy-five to
eighty years.

An act of violence against the Pythagoreans worthy
of mention was "the house of Milo" in Croton. Here fifty
to sixty Pythagoreans were surprised and slain. Those who
survived took refuge at Thebes and other places.s The \
brotherhood, although scattered, continued to exlst for atk

least two centuries longer.
III. PYTHAGOREAN CONTRIBUTIONS

i Some of the iImportant contributions of Pythagoras
and the Pythagorean School were religion, theory of num-
bers, geometry, and astronomy. These four subjects merit

discussion here.

Rellgion, One of the most advanced of the religious
dootrines of the school was the theory of the immortality
and transmigration of the soul. Pythagorean teaching on
this point was connected with the primitive belief in the
kinship of men and beasts. The Pythagorean rule of abstinepoe

Su thagoras,” Encyclopedia Britannica (lhth ed.),
XVIII, p. B03. . .
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from flesh was thué, in its origin, a taboo resting on the
blood-brotherhoocd of men and beasts. Likewlse, a number of
the Pythagorean rules of 1life which were found embodied in
the different traditions appeared to be genuine taboos
belonging to a similar level of primitive thought. The
moral and religious application which Pythagoras gave to
the doctrine of transmigration continued to be the teaching
of the school.6

Theory of numbers. The scientific doctrines of the

Pythagorean school had no apparent connection with the reli-
gious mysticlism of the soclety or their rules of living.
Their discourses and speculations all connec¢t themselves
with the mystical assumption that the whole number was the
cause of the various qualities of men and matter. This
oriental outlook may have been acquired by Pythagoras in
his eastern travels. It led to the exaltation and study of
number relationa and to a perpetuation of numerological non-
sense that lasted even into modern times.'

It has been found that much of the Pythagorean study

was of an unsclentific nature. In splte of this, however,

6Ibid., p. 803,

7Howard Eves and Carroll V. Newsom,,ég Introduction
to the Foundatlons and Fundamental Concepts of Mathematics
(New York: Holt, Rinehart, and Winston, 19587, p. 12.
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members of the soclety contributed a good deal of sound
mathematics during the two hundred or so years following
the founding of their organization. Aristotle said that
the Pythagoreans "applied themselves to the study of mathe-
matics and were the first to advance that sclence; insomuch
that, having been brought up in it, they thought that its
principle must be the principles of all existing things."8

Pythagoras is said to have attached supreme importance
to arithmetic, which he advanced and took beyond the realm
of commercial use., He also made geémetry a part of a liberal
education, examining the principle of the sclence and treat-
ing the theorems from an immaterial and intelleotual stand-
point.

Perhaps Pythagoras'! greatest discovery was that of
the dependence of the musical intervals on certain arith-
motlical ratios of lengths of string at the same tension,

2:1 giving the octave, 3:2 the fifth, and l:3 the fourth.
This discovery must have contributed powerfully to the idea
that "all things are numbers." According to Aristotle, the
theory in its original form did not regard numbers as rela-
tions predictable of things, but as actually constituting

thelr essence or substance. Hs sald numbers seemed to the

8n thagoras", Encyclopedia Britannica {1lith ed.),
XVIII, p. B803.
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Pythagoreans to be the first things in the whole of nature,
and they supposed the elements of numbers to be the elements
of all things and the whole heaven to be a musical scale and
a number. Later, in the fragmentary writings of Philolaus,
things were spoken of, not as being numbers, but as having

9

number and thereby becoming knowable.

The development of these 1deas into a comprehensive
metaphysical system was probably the work of Philolaus.
According to the Pythagoreans, the elements of numbers
referred to by Aristotle were the odd and the even, which
they ldentiflied with the limit and the unlimited. The
unlimited and therefore the limit also, was conceived as
spatial (of or pertaining to space). Numbers wWere thus
spatially regarded, and "one" was identified with the point,
‘Wwhich was a unit having position and magnitude; "two" was
similarly identified with the line; "three" with surface;
and "four" with solid.:?

The odd and even and the limit and unlimited were
the first two of a set of ten fundamental oppositions postu-
lated by the Pythagoreans, The remaining eight were the
following: one and many, right and left, male and female,

rest and motion, straight and curved, light and darkness,

9Tbid., p. 803. :
107ames R. Newman, The World of Mathematics (New York:
Simon and Schuster, 1956), Vol. I, p. 85.
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good and evil, and square and oblong. To the Pythagoreans
the universe was in a sense the realization of these oppo-
sites. |

Some further speculations of the Pythagoreans on the
subject of number rested mainly on fanciful analogiles.
"Five" suggested marrlage because it was the union of the
first masculine and the first feminine number (3 +'2, unity
not being considered a number); "one" was identified with
reason because it was unchangeable; "two" with opinion be-
cause it was unlimited and indeterminate; "four" with Justice
because it was the first square number, the product of

equals.11

(””Pythagoras pictured numbers as having characteristic
desiéns. There were the triangular numbers, one, three, six,
ten, and so on. Ten was known as the Holy Tetractys and was
highly revered by the brotherhood. The triangular numbers

were represented by figures of the following kind:

which represent respectively one, three, 8ix, and ten. The
figures show at a glance the composition of the triangular
numbers, for example 10 =1 + 2 + 3 + j. To add a row of

five dots to "ten" gave the next triangular number with S

M1piga., p. 85.
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as the side, and so on, showing that the sum of any number
of the serles of natural numbers beginning with 1 was a
triangular number. The sum of any number of the series of
odd numbers beginning with 1 was similarly seen to be a
square, so the square numbers were represented by figures

like the following.

o oy

Each of these square numbers could be derived from its
predecessor by adding an L-shaped border. Great importance
was attached to this border; it was called a gnomon (car-
penter's rule). If the gnomon added to a square was itself
a square number, e.g., 9, there resulted a square number
which was the sum of two squares: thus 1 + 3 + 5 + 7 = 16

or uz, and the addition of 9 or 32 gave 25 or 52, thus

32 + u2 = 52, Pythagoras himself was credited with a
general formulal? for finding two square numbers the sum
of which was also a square. Namely, (if m is any odd num-
ber), mé + [%(m2 - lﬂz = [%(m2 + 1)]2. Letting m be a
number of the form 2k + 1 where k is an integer, and then

simplifying the formula, shows that it is an 1dentity.

l2"pythagoras", Encyclopedia Britannica, (llith ed.)
XVIII, p. 80L.
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Another pattern was obtained by taking the sum of
any number of even numbers beginning with 2. These were
called the oblong numbers, and they were represented by

figures of the following kind.

e L] [ 4 0’. L4 L] * L]

L] * L] . . L 4 L]

Geometry. One of the greatest contributions to
geometry by Pythagoras was the dlscovery of the irrational.
In other words, he proved that it was not always possible
to find a common measure for two given lengths a and b. The
practice of measuring one line against another must have
been very primitive. Given below i1s a long line a, into
which the shorter line b fits three times, with a still
shorter plece ¢ left over.

b , b . b C

a

Today it 1s expressed by the equation a = 3b + ¢, or more
generally by a = nb + ¢. If there 1s no such remainder g,
the line b measures g; and a 1s called a multiple of b, If,
however, there is a remainder ¢, further subdivision might
perhaps account for each length &, b, ¢ without remainder:
experiment might show, for instance, that in tenths of
inches, a = 17, b = 5, ¢ = 2, At one time it was thought
that it was always possible to reduce lengths a and b to

such multiples of a smaller length. It appeared to be
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simply a question of patient subdivision, and sooner or
later the desired measure would be found. So the required
subdivision, in the present example, was found by measuring
b with ¢. For ¢ fit twice into b with a remalnder d; and
d fit exactly twice into ¢ without remainder. Consequently
d measured ¢, and also measured b and also a. This was how
the numbers 17, 5, and 2 came to be attached to a, b, and ¢;
because a cohtained_g 17 times.

This reduction of the comparison on a line & with a
line b to that of the number 17 with 5, or speaking more
technically, this reduction of the ratio a:b to 17:5 would
have been agreeable to the Pythagoreans. It exactly fitted
in with their philosophy; for it helped to reduce space and
geometry to pure number. Then came the discovery by
Pythagoras himsélf that the reduction was not always possi-
ble, that something in éeometry eluded whole numbers.
Exactly how this discovery of the irrational took place was
not related, although two early examples can be cited. First
when.g was the diagonal and b was the side of a square, no
common measure could be found; nor could it be found in a
second example, when a line a was divided in golden section
into parts b and ¢. This meant that the ratio of g, the
whole line, to the part b was equal to the ratio of b to the
other part ¢. Here ¢ could be fitted once into b with re-

mainder g; then d could be fitted once into ¢ with remainder
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e, and so on. It was not hard to prove that such lengths
a, b, ¢, d, + . « form a geometrical progression without
end, and that the desired common measure could never be
found.13
The reason why such a problem came to be studled was
to bs found in the star pentagram. It was the badge of the
Pythagorean Brotherhood, and each line in it was divided
into this golden section. The star had five llnes, each
cut into three parts, the lengths of which can be taken as
a8, b, a. As for the ratio of the dlagonal to the side of a
square, Aristotls suggested that the Pythagorean proof of
its irrationality was substantially as the following:
If the ratio of diagonal to side 1s commensurable,
let 1t be piq, where p and q are whole numbers prime
to one another. Then p and q denote the number of
equal subdivisions in the dlagonal and the side of a
; square respectively. But since the square on the gia
onal 1s.double that on the side, 1t follows that p >f.
Hence p© is an even number, and p itielf must be even.
Therefore p m S be taken to be 2r, p% to be lr<, and
consequently g< to be 2r2, This requires q to be even;
which 1s impossible because two numbers p, q, prime to
each other cannot both be even. So the original suppo-
sition 1s untenable: no common meiﬂure can exist; and
the ratlio 1s therefore irrational.
Other contributions to geometry by the Pythagoreans

include the following. (1) Credit was usually given to

137ames R. Newman, The World of Mathematics (New York:
Simon and Schuster, 1956), Vol. I, p. 87-88.

Wrbid., p. 89.
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Pythagoras for formulating geometry. (2) The Pythagoreans
proved that the sum of the three angles of any trlangle was
equal to two right angles. Their proof, iike Euclid's, used
the property of parallels; hence they knew the theory of
parallels. (3) They discovered the powerful method in
geometry of the application of areas, including application
with excess and defect (Euclid, vi, 28-29) which amounted
to the geometrical solution of any quadratiec equation in
algebra having real roots. (l4) Pythagoras himself is said
to have discovered the theory of proportion and the three
means: arithmetic, geometric, and harmonic. 1In Babylon,
Pythagoras 1s sald to have learned the "perfect proporti&n":

a : a+b = 2ab ¢ b
2 a +b

which involved the arithmetical and harmonical means of two
Aumbers as its middle terms. Particular cases being 12:9,
8:6, from the terms of which the three musical intervals
can be obtained. The Pythagorean theory of proportion was
arithmetical (after the manner of Euclid, book vii) and did
not apply to incommensurable magnitudes; it must not, there-
fore, be confused with the general theory due to Eudoxus,
which was expounded in Euclid V.

In the field of geometric constructions, the assump-
tion that the Pythagoreans could construct a regular pentagon

was confirmed by the fact that the star pentagram was used
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by the Pythagoreans as a symbol of recognition between the
members of the school and was called by them health., The
Pythagoreans élso discovered how to construct a rectilineal
figure equal to one and similar to another rectilineal
figure.lS

In summing up the Pythagorean geometry, one can say
that i1t covered the bulk of the subject matter of EBuclid's
books 1, ii,riv, vi, (and probably 1ii), with the qualifi-
cation that the Pythagorean theory of proportion was inade-

quate in that i1t did not apply to incommensurable magnitudes.

Astronomy. Pythagoras was one of the first to hold
that the earth and the universe were spherical in shape. He
realized that the sun, moon, and planets had a motion of
their own independent of the dally rotation and in the oppo-
Site sense. It was unlikely that Pythagoras himself was
responsible for the astronomical system known as Pythagorean,
which disposed the earth from its place in the center and
made 1t a planet like the sun, the moon, and the other
planets. For Pythagoras apparently the earth was still at
the center.

The Pythagorean system was attributed alternatively
to Philolaus and to Hicetas, a native of Syracuse. They

15"Pythagoras", Encyclopedia Britannica (llth ed.)
XVIII, p. 804.
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bellieved that the universe was spherical in shape and finite
in size. Outside it was infinite vold, which enabled the
universe to breathe. At the center was the central fire,
called the hearth of the universe, wherein was situated the
governing principle, the forse which directed the movement
and activity of the universe. 1In the universe there re-
volved around the central fire the following bodies: near-
est to the central fire was the countsrearth which always
accompanied the earth; next in order (reckoning from the
center outward) was the sarth, then the moon, then the sun,
then the five planets and then, last of all, the sphere of
the fixed stars. The counterearth, revolving in a smaller
orbit than the earth, was not seen by them because the hemi~
sphere in which they lived was always turned away from the
counterearth (the analogy of the moon which always turned
the same side to them may have suggested this). This part
of the theory involved the assumption that the earth rotated
about its own axis in the same time as 1t took to complete
its ofbit around the central fire; and as the latter revo-
lution was held to produce day and night, it was a logical
inference that the earth was thought to revolve around thse

central fire in a day and a night, or in twenty-four hours.16

61p14., p. 804.
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EARLY DEVELOPMENT

Gresk Developmsnt. Since Pythagoras' teaching was

entirely oral and it was the custom of the brotherhood to
refer all discoveries back to the revered founder, it is
difficult to know just which mathematical findings and
which philosophical viewpoints should be credited to
Pythagoras, and which to the other members of the frater-
nity. However, tradition has unanimously ascribed to
Pythagoras the independent discovery of the theorem which
bears his name; namely, that the square on the hypotenuse
of a right triangle 1s equal to the sum of the squares on
the two legs. Others may have known of the theorem before
Pythagoras, but he may well have given the first general
proof of 1it.

Egyptian Development. The Egyptian geometrical

knowledge seems to have been of a wholly praotical nature.
The Egyptians knew of special cases of the Pythagorean
Theorém, but they didn't offer a general proof of it. An
illustration of the way they used the theorem is given by
the following example.

The Egyptians were very particular about the exact
orientation of their temples. They had to obtain a north
and south line and an east and west line with accuraoy.

They observed the points on the horizon where a star rose
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and set, took a plane midway between them, and obtained a
north and south line., To get an east and west line, which
had to be drawn at right angles to thils, they used a rope
ABCD, divided by knots or marks at B and C, so that the
lengths AB, BC, CD were in the proportion 3:4:5. The length
BC was placed along the north and south line, and pegs P and
Q inserted at the knots B and C. The piece BA was then
rotated around the peg P, and the plece CD was rotated
around the peg Q until the ends A and D coincided. The
point thus indicated was marked by a peg R. The result
was to form a triangle PQR whose angle at P was a right
angle, and the line PR gave an east and west line.

The Egyptians probably knew that this theorem was
true for a right-angied triangle when the sides which con-
tained the right angle were equal; for it would be obvious
if a8 floor were paved with tiles of that shape. But thesse
facts cannot be sald to show that geometry was then studied

as a soience.l7

!

Chinese Development. The Chinese in the time of

Chou~Kong had known of the Pythagorean Theorem. Although
it was not enunciated in such a concise geometrical form as
was given by Euclid, there can be no denying the fact that
it was soundly established by the Chinese.

175ames R. Newman, The World of Mathematics (New York:
Simon and Schuster, 1956) Vol. I, p. 1l.
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The Chinese mathematlical treatise now in existence
next in age to the Chou-pel i1s doubtless the Chlu-chang
Saun-shu, or the "Arithmetic in Nine Sections.”" It was
written by Ch'ang Ts'ang around 176 B.C.

The ninth and last section 1s on the "kou-ku.," The
kou was one side of a right triangle, and the ku another
side. The term "kou-ku" meant, therefore, the right tri-
angle. The problems 1n the ninth section were mostly those
that could be solved by means of the Pythagorean Theorem.
The theorem was enunclated in the followlng words:

Square the first slide and the second slde, and add

them together; then the square root (of the sum) is
the hsien or the hypotenuse.

Again, when the square of the second side is sub-
tracted from the square of the hypotenuse, the square
root of the remainder is the first side.

Again, when the square of the first side 1s sub-

tracted from the square of the hypotenuseﬁ_the square
root of the remainder i1s the second side. 8

18Yoshio Mikami, The Development of Mathematics in
China and Japan (New York: G. E. Strechert and Co., 1913),
p. 21.




CHAPTER III

PROOFS OF THE PYTHAGOREAN THEOREM

This chapter has been devoted to a presentation of
some of the more noteworthy proofs of the Pythagorean Theorem.
These proofs range from the one that was thought to have been
given by Pythagoras to an original one derived by the author
of this paper.

The materials contalning proofs of the Pythagorean
Theorem are quite abundant, and in faect there exist some
very large collections of the proofs of the theorem. For

example, in the second edition of his book, The Pythagorean

Proposition, E. S. Loomis has collected and classifled 370

demonstrations of the famous theorem. It was not, however,
the intent of this chapter to exhaust the supply of avail-
able proofs, but rather to present a varlety of some of the
more noteworthy and different proofs of the theorem.

.Proofs included in this chapter start with a dissec~
tion proof that might have been offered by Pythagoras and
another dissection proof given by Bhaskara. Also included
will be a second proof by Bhaskara which was rediscovered by
John Wallis in the seventeenth century, and the proof given
by Euclid in his famous Elements. A proof by James A. Garfisld

and some proofs from a collection by Willlam W. Rupert com-
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prise the bulk of the remainder of this chapter. In con-
cluding the chapter the author of this paper has given his
original proof of the theorem, which was developed during
the writing of this paper.

The square on the hypotenuse of a right triangle is

equal to the sum of the squares on the two legs. This

‘theorem has remained one of the most famous geometrical
theorems of all time, and has fascinated millions of people
all over the world. This has been evidenced by the fact
that there exist so many proofs of it. There has been much
conjecture as to the proof Pythagoras might have offered,
but it has generally been felt that it was a dissection
type of proof like the one on the following page.
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Figure 1 Figure 2

Proof No. 1. Let a, b, and ¢ denote the legs and
hypotenﬁse of the given right triangle, and consider the two
squares in the accompanying flgure, each having a + b as a
side.

To prove that the central plece of the second dissec-
tion is actually a square of side ¢, employ the fact that
the sum of the angles of a right triangle 1s equal to two
right triangles. The rest of the proof is as follows:
The area of the square 1 1s given by,
a® + b2 + L(ab/2).

The area of aquare 2 is given by,
c? + L(ab/2).

Hence,

a2 + b2 + L(ab/2) = ¢2 + L(ab/2).

t

Or,
a2 + b2 = ¢2,

Q. E. D.l

lyoward Eves, An Introduction to the History of Mathe-
matics (New York: Holt, Rinehart, and Winston, 1960), p. 59.
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A second dissection proof was given by Bhaskara, the
famous Hindu mathematician. 1In this proof the square on
the hypotenuse was cut, as indicated in Figure 3, into four
triangles each congruent to the given triangle and a square.
-The pleces were easlily rearranged to give the sum of the
squares on the two legs. Bhaskara drew the figure and
offered no further explanation than the word "Behold ! The

proof is as follows.

a
b
c b-
a b-g
b-a b
a
a ~ c
TS ‘
' Figure 3 Figure L

Proof No, 2. If ¢ is the hypotenuse and a and b
are the legs of the triangle, the area of the square in
Figure'3 is oZ.

The area of the figure formed by reassembling the
pleces 1is,

L(ab/2) + (b - a)2 = 2ab + b2 - 2ab + & = a® + b2,

Therefore, 02 = a2 + b2.

Q. E. D.2

2Ibid., p. 187.
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Bhaskara also gave a second demonstration of the
Pythagorean Theorem, which was rediscovered by John Wallis
in the seventeenth century. This proof has been used in
many of the present day high school geometry texts.3 In
the following figure, the altitude h is constructed on the

hypotenuse ¢ of the given right triangle.
l

Figure 5

Proof No. 3. From similar right triangles,
o/b = b/m, and ¢/a = a/n;
or,
cm = b2, and on = a2.
Then by adding,
; 82 + b2 = o(m + n) = o2,

Q. E. D.4

3A M. Welchons, W. R. Krickenberger, and Helen R.
Peaﬁson, Plane Geometry (Boston: Ginn and Company, 1958),
17.

quward Eves, An Introduction to the History of Mathe-
matics (New York: Holt, Rinehart, and Winston, 19607, P. 59.
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Probably the most well-known proof of the Pythagorean
Theorem was given by Euclid, as Proposition 47 of Book I, in

his Elements. The complete proof is given below,

Figure 6

Proof No., 4. In right-angled triangles the square
j on the side subtending the right angle 1is equal to the
squares on the sides contalning the right angle.

Let ABC be a right-angled triangle, with the right
angle at A; I say that the square on BC is equal to the
squares on BA, AC. For let there be described on BC
the square BDEC, and on BA, AC the squares GB, HC;
through A let AL be drawn parallel to either BD or CE,
and let AD, FC be Jolned.

Then, since each of the angles BAC, BAG is right, 1t
follows that with a stralight line BA, and at the point A
on it, the two straight lines AC, AG not lying on the
same slde make the adjacent angles equal to two right
angles; therefore CA 1s in a stralght line with AG.

For the seame reason, BA 1s also in a straight line
with AH. And, since the angle DBC 1s equal to the angle
FBA, for each 1s right, let the angle ABC be added to
each; therefore, the whole angle DBA is equal to the
whole angle FBC.
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And, since DB 1s equal to BC, and FB to BA, the two
sides AB, BD are equal to the two sides FB, BC respec-
tively; and the angle ABD i1s equal to the angle FBC;
therefore, the base AD 18 equal to the base FC, and the
triangle ABD is equal to the triangle FBC.

Now the parsallelogram BL is double of the triangle
ABD, for they have the same base BD and are in the same
parallels BD, AL.

And the square GB 1s double of the triangle FBC, for
they again have the same base FB and are in the same
parallels FB, GC.

But the doubles of equals are equal to one another.

Therefore, the parallelogram BL 1s also equal to the
square GB. Similarly, if AE, BK be Jjoined, the paral-
lelogram CL can also be proved equal to the square HC;
therefore, the whole square BDEC is equal to the two
squares GB, HC.

And the square BDEC 13 described on BC, and the
squares GB, HC on BA, AC.

Therefore, the square on the side BC is equal to the
squares on the sides BA, AC.

Q. E. D.°

The above proof has also been included in many high
6

school textbooks.  However, some of the terminology used

in the translation of the proof as presented here would no

doubt seem strange to many students of modern day mathe-

matics.

5Robert M. Hutchins (ed.), Great Books of the Western
World (Chicago: William Benton, 1952), XI, 28-29.

6A. M. Welchons, W. R. Krickenberger, and Helen R.
Pear;on, Plane Geometry (Boston: Ginn and Company, 1958),
p. 252. :
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A very beautiful proof of the Pythagorean Theorem
was glven by General James A, Garfield. It appeared in the

New England Journal of Education in 1876, five years before

~ General Garfield became president. Garfield's proof utilizes

the area of a trapezoid.

D a' E
b!?
B
" A
B
Figure 7

Proof No. 5. ABC is the given right-angled triangls.
CB 1s extended to D, making b' = b, ED 1ls constructed per-
pendicular to BD, making a' = a. BE and AE are drawn. The
area S of the trapezoid CAED is given by the formula:

/

S =4%(a+Db'")(b + a').
S = 4(a + b)(b + a), since b!' = b, and a! = a,
S = 3(a® + 2ab + b2),

S = 3a2 + ab + b°.

Considering the areas of the triangles of the trape-
zold,

S = %ab + 102 + ab.

S = ab + %c°.
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Therefore,
ab + %cz = %az + gb + %bz.
Or,
0® = g + b2.

Q. E. D.7

Some very fine proofs of the Pythagorean Theorem
were collected by William W. Rupert and were published by
D. C. Heath and Company in 1900. Several of these proofs
have been chosen for presentation in this chapter. 1In all
fairness to Mr. Rupert, it should be known that each of
these proofs has been rewritten, adding to them and reword-
ing them where the line of thought could be better trans-
mitted. In some of the proofs, congruency of areas is
involved. In these proofs, for the sake of brevity, no
éffort was made to show all of the steps involved in prov-
ing these congruences, However, they can be supplied
readily by the reader. Also, for continuity and easiness

of reading, these proofs will be presented one to a page.

TIbid., p. 253.
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E
F N
D (]
G
A H
Figure 8

Proof No. 6. ABC is a right-angled triangle. The
four triangles ABC, AGF, FEN, and EDC are equal to each
other. HNFG is a square, and 1s equal to the square on AB.

(1) Area of GBCEF = AGZ + 3GAFG + 3AB-E0.

(2) Also, area of GBCEF = GH® + iEN-FN + 3DC-ED +BC2.

Since triangles ABC, AGF, FEN, and EDC are equal:

(3) %GA*FG = 3AB°BC = 4EN‘FN = 3DC-ED.

'"From (1) and (2)

AC2 = GE® + BC4.
Or, KEZ = Kﬁa + 552, since GH = AB.

Q. E. 0.8

8William W. Rupert, Famous Geometrical Theorems and
Problems (Boston: D. C. Heath and Company, 1960), p. 21.
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Figure 9

Proof Ne. 7. In right triangle ABC, BA is extended
to D, making AD = BC; also BC is extended to E, making
CE = AB, and the square 1is completed. A square is erected
on AC. Then (AB + AD)Z = area of square BEHD. But this
area 1s oomposed of the area of the four triangles, whioh
are equal to each other, and the squarse of AC. Hence,

(1) Square BEHD = 4[ (48 x ap)/2] + EG2.

e (AB + AD)a,

2

(2) Then DB

2

= AB“ + 2(AB x AD) + AD-.

From (1) and (2),

' 2

(3) 2(AB x AD) + AC 2

2 4 2(AB x AD) + AD-.

= 7B
or, A2 = EB® + AD°.

But AD = BC.

. 1w = B2 + Bo°.

Q. E. D.7

91bid., p. 23.
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B
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Figure 10

Proof No. 8. ABC 1s a right-angled triangle. The
squares ABFI and ACDE are constructed. At D the perpendic-
ulars are constructed to IF extended, (G), and to FC, (H).
The triangles ABC, DHC, EGD, and AIE are equal, and there-
fore the side of square FGDH is equal to BC., Let AB = b,
BC = a, and CA = h,

Then, AEFHDC AEDC + DEG - FGDH,

h2 + ab - a.(1)

Also, AEFHDC

"

ABC + ABFI + CDH - AEI,
= %ab + b2 + 2ab - #ab.(2)

Equating (1) and (2), and solving for ne,
ne =

Or, TE® = BG® + AB°.

Q. E. D.X°

2+b2.

o

101p1d., p. 32.
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H A
G S ¢
B
F
E D
Figure 11

Proof No. 9. ABC 1is a right-angled triangle. The
square ABGH is constructed, and also the square GEDS with
side equal to BC, and square AFDC is completed. It 1is
easily shown that F lies on HE. Therefore, square AFDC =
triangle ABC + triangle DSC + figure FABSD.

’ But since AB = AH and AC = AF, triangle ABC ¥ tri-
angle AHF.

Also since ED = DS and FD = DC, triangle DSC ¥ tri-
angle FED.

Therefore, square AFDC = triangle AHF + triangle
FED + figure FABSD,

Also triangle AHF + trlangle FED + figure FABSD =
2 2

square GEDS + square ABGH = BC® + AB°,

Therefore, square AFDC = BG® + KB Or;KEZ = BG? + AB2

Q- E. D.11

1l1p14., p. 27.
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Figure 12

Proof No. 10. ABC 1s a right-angled trlangle, with
Squares constructed on 1ts sides. DK is constructed parallel
to BA extended, and MK 1s constructed perpendicular to MA and
KD. AL is extended to J and LK is drawn. It 1is evident that
square ACDE = parallelogram CDKL + parallelogram AEKL (as
triangle ALC = triangle EKD).

But parallelogram CDKL = square ABGF (as CL = AB = LJ),
and parallelogram AEKL = square BCIH (as BC = AL = MA).

Therefore, square ACDE = gquare ABGF + square BCIH.

or, KG% = B2 + BGS. Q. E. D.1°

121p14., p. 31.
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Figure 13

Proof No. ll. ABC is a right-angled triangle, with
squares constructed on the sides. DK is constructed perpen-
dicular to CL.

Square AEDC = triangle AJI + triangle CKD + triangle
ﬁKL = figure AELCIJ. Square AGFB + square BCHJ = triangle
CHI + triangle AGE + triangle EFL + figure AELCIJ.

But, triangle AGE = triangle CKD (as AE = AC = CD
and AG = AB = CK) and, triangle EFL £ triangle AJI (as
angle JAI = angle FEL and AJ = EF) and, triangle CHI = tri-
angle DKL (as angle KLD = angle HIC and KL = HI).

Therefore, square AEDC = square AGFB + square BCHJ.

2 2 2

OI',A_C =TB +-E-CO

Q. E. D.13

131p44., p. 32.
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Figure 1L

Proof No. 12. ABC is a right-angled triangle, with
squares constructed on the sides. KL and JI are extended
to F and G, respectively, and BHE is drawn.
Square AFGC = rectangle AFED + rectangle CGED.
The square AKLB = parallelogram AFHB,
= rectangle AFED, (as they have the same

bases in the same sets of parallels).

The square BJIC parallelogram BHGC,

’ = rectangle CGED, (same as above).
Therefore, AFGC AKLB + BJIC.

or, G2 = AB® + BES,

H

Q. E. D.14

h1p14,, p. 28
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Proof No. 13. ABC 1s a right-angled triangle, with
the right angle at A, The squares ABGF and ACDE are com-
pleted, and GF and DE are extended until they meet at H.
Let BI, CK be perpendicular to BC and Join IK. The aquare
BCKI on the hypotenuse has now been completed. The three
triangles BGI, IHK, KDC are equal to each other, and to the
triangle ABC. (as BI = IK = KC = CB and the corresponding
acute angles are equal.) Hence, the square on BC = figure
BGHDC - 3 times the area of triangle ABC.
Now the rectangle AEHF = AE x HE
= 2 times the area of triangle ABC.
(As AE = AC and HE = KD = BC.)
And, BGHDC - (rectangle AEHF + triangle ABC) = B2 + xce.
That 1s, BGHDC - 3 times area of triangle ABC = ABZ + AG2.
Therefore, 552 = KEZ + 252. Q. E. D.15

151pid., p. 24
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Figure 16

Proof No. 1L. ABC is a right-angled triangle with ths
right angle at B. The squares on thse sides and rectangle BLKH
are completed. FA 1s extended to I, and KE is drawn parallel
to CD and FAI. The squars AGHB equals parallelogram AIKB, as
they have the same base, AB, in the same set of parallels;
which in turn is equal to rectangle ANEF, as they have equal
bases, AI = AC = AF, in the same set of parallels. 1In a
like manner CBLM = NCDE.

Therefore, 'A‘62 = TBZ + —_éz. Q. E. D.16

lélbi’d. F) p. 220
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Figure 17

Proof No. 15. ABC is a right-angled triangle with
squares constructed on its sides. DB and AG are parallel as
are BM and CG; also EG 1s parallel to DA and MC. The rec-
tangle ADEF esquals parallelogram ADBG, as they have the same
base DA, and are in the same set of parallels.

The area of triangle ABG = % of square AKLB. (As
triangle AKG = triangle AHG and triangle BHG = triangle BLG.)

But triangle ABG = # parallelogram ADBG.

| ... square AKLB = parallelogram AGBD = rectangle ADEF.

In like manner square BCIH = parallelogram BGCM =
rectangle FEMC.

But ADEF + FEMC = square on AC.

o.u K-C-a = —A_B.2+ B_Cai
Q. E. D.17

YT1p14., p. 26.
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Figure 18

Proof No. 16. ABC is a right-angled triangle, with
squares constructed on 1ts sides. In square AC triangles
1, 2, 3, and 4 all constructed equal to triangle ABC. 5 is
a square with a side of b-a. In square AB triangles 1! and
2! are constructed equal to triangle ABC. Square 5' is com-
pleted with a side of b-a. Rectangle 7 will have the di-
mensions of a and b=-a.

.. triangle 1 = triangle 1', triangle 2 = triangle 2',

and square 5 = triangle 5°'.

3ab + %ab = ab.

al + a(b-a) = ab.

But, triangle 3 + triangle 4

Also, squarse 6 + rectangle 7

.. triangle 3 + triangle L4 = square 6 + rectangle 7.

.. 762 = 282 + B62. Q. E. D.18

81p14., p. 33.
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Proof No. 1l7. ABC is a right-angled triangle. AD
is erected perpendicular to and equal to AC, and BE perpen-
dicular to and equal to AB. DE is drawn. DF is drawn per-
pendiculér to AD, and DH perpendicular to AB., Let AB = b,
BC = a, AC = h,

Triangle ADH = triangle ABC, and AH = BC = a, and
BH = DE = b-a.

Since the triangles ABC and DEF are similar,

DF = h(l-a/b), and EF = a(l-a/b).

Obviously, ADEC = ADEB + ABC,

' = %b[b + (b-a)] + ab = b2, (1)
ADFC + DEF,

= 3n[h(1-a/b) + h] + 3ab(1-a/0)2. (2)
Equating (1) and (2), and solving for h2,

Also, :ADEC

(2b-a)h® = (2b-a)(al + b2),
Or, h2 = a2 + b2.
o.o Iéa = -B_éa + KEZ. Q. En D019

191b1d., p. 35.
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Proof No. 18. ABC is a right-angled triangle. BCDF
1s constructed on the hypotenuse. AE is drawn parallel and
equal to BF (and CD). ED and EF are drawn and BA is extend-
ed to H.

EABF and EACD are parallelograms.
Triangle FED = triangle BAC,

.". BFEDCA = square BFDC.

Triangle AHE = triangle DEF,

Since the altitude of BAEF = HE = AB,

BAEF = AB°.

Since the altitude of ACDE = AH = AC.
ACDE = AG°.

.. BFEDCA = BG2 = AB® + G4,

Q. E. 0.2

201pid., p. 38.
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Proof No. 19. ABC is any triangle. Let AE, BF, and
CD be the three perpendiculars from the angles upon the oppo-
site sides, or upon the sides produced. Since an angle in-
seribed in a semi-circle is a right angle, a circumferenqe
described on any side as a dlameter passes through the feet
of two of the perpendiculars. From theorems relating to
secants and to intersecting chords,
AB x AD = AC x AF = AGZ + AC x FC, and
AB x DB = BC x EB = BC® + BC x CE.
Adding, AB® = AC® + BC® + 2AC x FC (or 2BC x CE).
The + sign belng taken when C is obtuse, and the =
sign when C is acute. If, however, C 1ls a right angle,

CE and CF become 0.

2l1pi4., p. 35-36.
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Proof No. 20. Let AC be any chord in the circle DAC

with center at P, The diameter DK 1s drawn perpendicular to
AC, and any point in the circumference, as H, is Joined with
'D and K. From similar right triangles, DN/DB = DK/DH.

.. DN x DH = DB x DK.

But, DK = DB + BK.
/ Hence, DN x DH

DB(DB + BK).
= DE2 + DB x BK.
But from interesting chords in a circle,
DB x BK = AB x BC = KB,
.". DN x DH = DB? + AB?,
Now concelve point H to revolve about P as a center

until the point coincides with the point A. Then,
DN = DH = DA,
and DA = DB® + AB°.

Q. E. D.22

221bid., p. 28.
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Figure 23

Proof No., 21. From an external point C, the tangent CA and
the secant CD are drawn to the given cirole having B as its
center,
. . EC/AC = AC/DC.
But DC = BC + BD,

= BC + AB.
Also EC = BC -~ BE.

= BC - AB.

. . (BC = AB)/AC = AC/(BC + AB).

i OI', -B_éz - -A—Bz = 1_02.
or, BG? = AG2 + AB°.
Q. E. D.23

231pid., p. 22.
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Figure 2l

Proof No. 22. ABC is a right-angled triangle. Using

the hypotenuse AC as a radius and with the center at A4, a

circle is constructed. AB is extended until it meets the

¢ircumference in D.

DE is constructed perpendicular to AC.

Triangle AED = trlangle ABC. Let a represent DE and CB,

h represent HA and CA, b represent EA and BA, HE = h + b,

and CE = h - b,

/

Since DE

DE- =

]

@
]
-
o )
i

o o A" =

1s a mean proportional between HE and CE,
HE x CE.

(h + b)(h - b).

n® - b2,

32 + b2.

CB® + BA°. q. E. D.2

2k1p1d., p. 30.
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Figure 25

Proof No. 23. ABC 1s a right-angled trlangle wlth
altitude BD. Let AB=x, BC =y, CA=12, AD=m, CD = n,
and BD = w. |
(1) Then x2/y2 = imw/inw (since x/w = y/n and x/m = y/w).
(2) Also 2z2/y2 = ixy/inw (since z/y = y/n and z/x = y/w).

Adding one to both sides of (1),

(3) (x2 + y2)/32 = &(m + n)w/3nw.

Since #xy = 3(m + n)w, proportion (2) becomes,
(4) 22/y2 = 3(m +n)w/inw.

From (3) and (4),

(x2 + yZ)/yZ = za/yZ’
2).

or, yzzz = yz(x2 +y

Therefors, 22 = x2 + y2,
or, GA® = AB2 + BCe.
Q. E. D.25

251bid., p. 29.
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Proof No. 2. ABC is a right-angled triangle. At A,
a perpendicular is constructed to AB, and BC 1s extended
until it intersects this perpendicular at some point D. Now
triangle DAB will also be a right triangle, in which AC is
an altitude. Let AD =y, DC = x, AC = b, BC = a, and AB = ¢.
Therefore, by similar triangles,
(1) x/b = b/a or b2 = ax.
(2) Also (a + x)/o = o/a.
(3) From (2) ¢2 = a2 + ax.
(u) From (1) and (3) ¢2 = a2 + b2,

2 2 2

Oor, AB“ = BC® + AC“.

Q. E. D.

i



CHAPTER IV

ANALYSIS AND CLASSIFICATION OF THE
PROOFS OF CHAPTER III

This chapter is devoted to an analysls and classi-
fication of the proofs presented in chapter three. First,
each proof has been analysed as to the fundamental property
on which it was based, and then the proofs were classified
as to their similarities and differences.

Two definitions nesed to be presented at this time.
The terms outward and inward refer to the manner in which
the squares were constructed on the sides of a right tri-
angle, If a square 1s constructed outward on the side of a
right triangle, then it lies entirely outside of the tri-
angle. If a square is then rotated 180° about the side on
which it 1is constructed so that part of the interior of the
square coincides with part or all of the interior of the
triangle, then it 1s constructed inward.

i

I. ANALYSIS OF EACH PROOF

In this section each proof of chapter three has been
analysed as to the fundamental property on which each was

based.

Proof No. l. Two congruent squares were dissected

differently, and the Pythagorean relationship was obtained

by setting the areas of the two squares equal to each other,
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Proof No. 2. The square on the hypotenuse was dis-
sected into four congruent triangles and a square. The
pleces were reassembled to give the sum of the squares on

the legs.

Proof No. 3. An altltude was constructed to the hy-
potenuse of the given right triangle, and from similar right
triangles proportions were derived which when simplified

give the Pythagorean relationship.

Proof No. 4. The squares on ths sides of a right
triangle were constructed outward. The squares on the legs
were then divided into parts, the sum of whose areas 1is

equal to the square on the hypotenuse.

Proof No. 5. A trapezoid was constructed with one
ér the legs of the given right triangle as a base. The
Pythdgorean relationship was then derived by use of for-
mulas for the area of a trapezold and a triangls.

i

Proof No. 6. The square on the hypotenuse of the
given right triangle was constructed inward, and the square
of one of the legs was constructed outward. The square of
the remaining side was constructed so &s to have vertices
in common with the other two squares. The squares on the
legs were divided into parts, the sum of whose areas is

equal to the square on the hypotenuse.



53
Proof No. 7. Four congruent right triangles were
constructed along the interior sides of a square with a
square remaining in the middle. The Pythagorean relation-
ship was obtained by setting the area of the original square
equal to the sum of the areas of the four triangles and the

square in the middle.

Proof No. 8. The square on the hypotenuse of a given
right triangle was constructed inward, and the square of one
of the legs was constructed outward. The asquare of the re-
maining side was constructed so as to have vertices in common
with the other two squares. The squares on the legs were
divided into parts, the sum of whose areas is equal to the

square on the hypotenuse.

! Proof No. 9. As in proof 8, the square on the hy-
potenuse of a given right triangle was constructed inward,
and the square of one of the legs was constructed outward.
The aquare of the remalining side was constructed so as to
have ;ortices in cormmon with the other two squares. The
squares on the legs were divided into parts, the sum of

whose areas is equal to the square on the hypotenuse.

Proof No. 10. The squares were constructed outward
on all sides of the right triangle, with two triangles con-
gruent to the given right triangle constructed on two of
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the sides of the square on the hypotenuse. With the aid of

some ' auxiliary lines the area of the square on the hypotenuse
was shown to be equal to the sum of the area of the other two

squares.

Proof No. 1ll1l. The aquares on the hypotenuse and one
of the aldes were constructed inward, and the square on the
other side was constructed outward. The area of the square
on the hypotenuse was shown to be equal to the sum of the

areas of ths other two squares.

Proof No. 12. The squares on the two sides of the
right triangle were constructed inward, and the square on
the hypotenuse was constructed outward. With some auxiliary
lines, the area of the square on the hypotenuse was shown to

be equal to the sum of the areas of the other two squares.

Proof No. 13. The squares on the legs of the given
right triangle were constructed outward. The sides of these
squares were extended to form a rectangle which was adjacent
to both of the aquares. The square on the hypotenuse was
constructed inward, and the sum of the parts of the areas
of the squares on the legs was shown to be equal to the area

of the square on the hypotenusse.

Proof No. l4. The squares on the legs of the given

right triangle are constructed outward. The sides of these
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squares were extended to form a rectangle which was adjacent
to both of the aquares. The square on the hypotenuse was
constructed outward and with the aid of some auxiliary lines,
the sum of the parts of the areas of the squareé on the legs
was shown to be equal to the area of the square on the

hypotenuse.

Proof No. 15. The squares on all the sides were con-
structed inward., With the aid of auxiliary lines, the sum
of the parts of the areas of the squares on the legs was

shown to be equal to the area of the square on the hypotenuse.

Proof No. 16. All of the squares on the sides were
constructed outward. Each of the squares were dissected
into congruent triangles, squares, and a rectangle. Some
of the pleces were reassembled to form parts of the square
on the hypotenuse. The remaining area of the square on the
hypotenuse was showq to be equal to the area of the remain-

ing parts of the ‘other two aquares.

!

Proof No. 17. An irregular quadrilateral was formed
by constructing a rectangle and a right triangle on one leg
of the given right triangle., The area of the figure was
found two different ways by summing different parts of the
figure. By setting these two sums equal to each other, the
Pythagorean relationship was derived.
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Proof No., 18. The square on the hypotenuse was con-
structed inward, and on the opposite side of the square
another triangle congruent to and i1n the same relative po-
sition as the given triangle was constructed. With the aid
of auxiliary lines, parallelograms and triangles were con-
structed to show that the square on the hypotenuse was equal

to the sum of the squares on the legs.

Proof No. 19. A seml-circle was constructed on the
hypotenuse of a right triangle. The Pythagorean relation-
ship was derived by obtaining proportions relating to

secants and intersecting chords.

Proof No. 20. A right triangle was lnscribed in a
circle with its hypotenuse acting as the diemeter of the
circle. From similar right triangles and intersecting
chords in a circle, proportions were derived giving the

Pythagorean relationship.

'Proof No. 2l. A right triangle was formed by con-
structing a tangent and a secant to a circle from an exter-
nal point, together with a radius of the circle. Proportions
which involved secants and tangents to a ¢ircle provided the

Pythagorean relationship.

Proof No. 22. Two congruent right trliangles were

constructed in a c¢ircle with the hypotenuse of one of the

o
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triangles coinciding with a radius of the circle. From
mean proportional relationships, the Pythagorean relation-

ship was derived.

Proof No. 23. An altlitude was constructed upon the
hypotenuse of a right triangle, and from similar right tri-
angles the Pythagorean relationship was obtailned.

Proof No. 24. A right triangle was constructed upon
one of the legs of a right triangle so that the two right
angles of the triangles were adjacent. From similar right
triangles, proportions were obtained which provided the
Pythagorean relgtionship.

II. CLASSIFICATION AS TO SIMILARITIES
AND DIFFERENCES

In the classification of the proofs of chapter three,
the proofs were classified in one of three categories, and
then the proofs in each group were compared. The categories

are dihsection. sum of the parts, and proportions.

Dissection. In dissection proofs a figure of known

area i1s dissected and the pieces reassembled in a different
manner to give the desired areas. Proofs 1 and 2 are of
this type and differ only in the manner in which the dissec-

tion was made.
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Sum of the Parts. The majority of the proofs pre-
sented in chapter three depended upon the premise that the
area of the whole was equal to the sum of the areas of the
parts. These proofs were numbered L4-18 inclusive. Of this
group, proof number L, the one given by Euclid, was probably
the classic in regard to the length of the proof. The
Pythagorean relationship was obtained in proof number 5 by
use of the parts of a trapezoid, while proof number 7 used
the parts of a square. Proofs 6, 8-15, and 18 are very
much alike., They all depended upon constructing the squares
on the sides or upon constructing some of the squares on the
sides together with some auxiliary lines to obtain the "parts."
The differences of these proofs lie mainly in the manner in
which the constructions were'accomplished, i.e. whether the
squares were constructed‘outward or inward or some combina-
tion thereof, and the manner in which the parts were asso-
ciated together to get the sum of the parts. Proof 16 was
a oomb;nation of dissection and the sum of the parts, as
some of the parta were dissected to be reassembled while
the remaining parts were shown to have equal sums.

Proof number 17 of this group had two triangles and
a trapezoid erected on one leg of the given triangle to form
an irregular polygon, rather than constructing the squares

upon the sides.
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Proportions. The second largest classification of

the proofs of chapter three was the one based upon propor-
tion. Proofs numbered 3, 23, and 24 all employed the same
general diagram and the necessary proportions were derived
by use of similar triangles. The three proofas differ only
in the use of the simllar triangles which were used to de-
rive the necessary proportions.

Proofs numbered 19-22 of this group all relied upon
the circle to obtaln the necessary proportions. Proof 19
had the given right triangle inscribed in a semli-circle
with the hypotenuse coinciding with the dlameter of the
circle, while proof 20 used the same diagram with the ex-
ception that it had another diameter construoted perpen-
dicular to the first one. Proof 21 dspended upon a tangent
to a ¢ircle with a radiué drawn to the point of tangency to
form the right angle, while a secant was drawn from the
point of origin of the tangent through the center of the
circle/to ocomplete the necessary right triangle. Proof 22
had th§ right triangle constructed with its hypotenuse
coinciding with the radiua, rather than the dlameter of the

circle.



CHAPTER V
PRIMITIVE PYTHAGOREAN TRIPLES

The subject of Pythagorean triples has fascinated
many students of mathematica. Pythagorean triples are three
positive integers a, b, and ¢ which satisfy the Pythagorean
relationship a2 + b2 = o2, Examples of the triples which are
given quite often are (3,415), (5,12;13), and (7,24;25).

An account of Pythagoreaﬁ triples 1s presented in
this chapter. Included 1s a proof of the restrictions that
are necessary for the selection of two positive integers u
and v, which will generate a primitive Pythagorean triple.

There are an infinite number of these tripleas, and
various methods of determining how to £ind these numbers
have been advanced. One‘suoh method was given by Euclid as
lemmas 1 and 2 of Proposition 28 of Book X. The algebraic
conclusion of these lemmas is that the values of aa, ba, and

62 must always be of the form
i

2 2 mpmg2, 12 = (mna - m 2]2, o2 = (mﬁz . miz]z,
2 2
with the further condition that mp2 and mq2 must both be

either even or odd simultaneously.l

A triple 1s primitive 1f the greatest common divisor
(g.0.d.) of a, b, and ¢ is unity. For example consider the

1Ben Moshan, "Primitive Pythagorean Triplea » The
Mathematics Teacher, November, 1959, p. 541.
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triple (6,8;10). Since the g.0.d. is 2 which is greater
than 1, this triple is not primitive, whereas the triple
(3,435) is primitive.

Another and more frequently used method of determin-
ing Pythagorean triples 1is to chose two positive intergers
u and v such that u is greater than v. Then a, b, and ¢
will be determined by the following:
a=ul - v2, b = 2uv, o = ul + v2,
Verification of these formulas for a, b, and ¢ is
given in the following:
(1) b = 2uv.
(2) B2 = (2uv)? = Lusve,
(3) a=ud - v2, .
(4) a2 = (u2 - v2)2 = ult - 2022 4 yh,
’ (5) o =u2 + v2,
(6) o2 = (u2 + v2)2 = ult + 2032 4+ ¥4,
(7) a2+ ba.s uuav2 rult o 2udv2 4 W4, (From 2 and 4).
(8) 82 + b2 = ult + 2u2v2 + v4,
(9) a2 + b2 = 02, (From 6 and 8).
As an illustration of this method let u = 6 and v = 4,
then: a = 62 - 2 = 36 - 16 = 20. |
b = 2(6)(L4) = 48.
o =62 +)2 =36+ 16 = 52,
Since a2 + b2 is to equal 02,
(20)2 + (48)% = (52)2,
or, 40O + 2304 = 270L.
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Although in this example the values of u and v pro-
duced a Pythagorean triple, it was not a primitive triple
as the g.c.d. of a, b, and ¢ 18 4. Therefore more restric-
tions must be placed on the choice of u and v to insure
that the triple will be primitive. The restrictions were
given as a theorem by Ben Moshan.?2

Theorem. If u and v are two positive integers which
determine values of a, b, and ¢ as followst a = u2 - v2,
b=2uv, 6 =u2 + v2 and (1) u and v are "relatively prime"
integers, 1.e. they have no common divisor greater than 1,
(2) u and v are of "opposite parity", i.e., one of them is
even and the other is o0dd, (3) wu is greater than v to in-

sure that a is positive, then a, b, and ¢ will form a

primitive Pythagorean triple.

;

2Tbid,, p. 541
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Figure 1

Proof: Let triangle ABC be a right triangle, labeled
as in figure 1; r 1is the radius of the lnscribed circle,
known as the inradius., FE and QH are tangents to the circle,
such that FE L AC, and QHLBC.

' From the diagram the following are evident:

(1) o2 = a2 + b2,

(2) a=2r +g, org=a - 2r.

(3) b=2r+d, ord=b - 2r,

Now, ¢ = AD + BD = AK + BL, since the tangents from
an external point to a oircle are equal, But AK =4 + r
and BL = g + r, Therefore,

(4) o =2r + g + d.
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By substituting (2) and (3) in (4),
(5) o=a+Db = 2r,

From (2) and (5) it follows that,
() g =0 - Db,

From (3) and (5) it follows that,
(7) 4 =06 - a.

Now substituting (2), (3), and (4) in (1):

 (ar+ g+ d)2 = (2r + g)2 + (2r + Q)2
which simplifies to,

(8) gd = 2rd,

If a, b, and ¢ are integers which satisfy the equa-
tion (1), it is obvious from (5), (6), and (7) that 2r, g,
and d are integers. And since g and d are integers, it
follows from (8), 2r is also an integer.

It will now be prdved that since both 2r and 2r2 are
integers, r is also an integer. If r is not an integer, and
2r is, then r must be of the form r = k + ¥, where k 15 an
integer. It then follows that 2r2 = 2(k + %)2 = 2k2 + 2k + 4,
which is impossible since 2r2 is an integer.

Now 1t will be proved that if the triple is primitive,
then g and d are relatively prime and of opposite parity.

If g and d have a common divisor k which is greater than 1,
then every divisor of k would be a common divisor of g and
d, or even if k is prime, g and 4 can be expressed as

g = kgy, d = kd,.
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Equation (8) would then be,

kagldl = 2ré or g1d; = 2(r/x)2,
thus k is a factor of r, say r = kr,.
Then from (2), (3), and (4),
a = 2kr; + kgq, or (a/k) = 2ry + g;;
b = 2kry + kdq, or (b/k) = 2rq + d;;
o = 2kr + kg, + kd,, or (e/k) = 2r) + gy + 4;.

Thus, k divides a, b, and ¢, which i1s contrary to the
fact that the triple 1s primitilve.

Every composite integer r can be expressed as a pro-
duct of primes in one and only one way i1f no distinction is
made between arrangements of the same prime factors, say,

p = atplm . pan . p3w . Pnz’
where py, Py P3s « « «» Pp are distinet odd primes and
th my N, Wy, « ¢« ¢y 2 are‘positive integers.

Thus, 2r2 can be expressed as a product of distinct
primes, .

2rd = 2(2% , ™" .. pnz)2 = gd,
where 51’ Pps + « «» P, 8re distinect odd primes only and
ty, my n, « - », 2 are positive integers.

All of the factors of 2r2, since 2rl = gd, must be in
g and d taken together, but each distinect prime can only be
in g or d since g and d are relatively prime, Therefore,
2(2%)2 can only appear in either g or d, and since all of
the other distinect primes of 2re are odd, it follows that
either g or d is even and the other is odd. No loss of
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generality results if g is odd and d even. Let g = ()2,
where G is the product only of distinect odd primes in 2r2,
thus, G is always odd. Then, let d = 2(n)2, where n is the
product of the remaining distinet primes in 2r2,

Then from (8) it follows,
(9) gd = 2r2 = 2n2G2, and
(10) r = na.
From (2), (3), and (4),
(11) a=2r + g = 206 + G°,

(12) b =2r + d = 2nG + 2n2.

(13) c=2r + g +d = 2nG + G2 + 2n°,

Using the tranaformation, u =G + n and v = n, state-
ments (11), (12), and (13) can be written as a = u® - v2,

b = 2uv, and ¢ = wl + v@ respectively. 1Inspection of the
tpree conditions on u and v in the theorem, will show that
the values of G and n 1n the transformation satisfy the
conditions also.

The necessary conditions for a primitive triple have
now beéen proven. It is now necessary to prove that the
values of a, b, and ¢ as expressed in equations (11), (12),
and (13), are always primitive when G is odd and n and G
are relatively prime.

By substituting these values in equation (1), one has

(2nG + G2)2 + (2nG + 2n2)2 = (2na + G2 + 2n2)2,
which simplifies to an identity and thus equation (1) is
satisfled.
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The next condition for a primitive triple is that G
be odd. For if G is even, it is apparent from (11), (12),
and (13) that a, b, and ¢ are also all even and the result-
ing triple 13 not primitive.

It now remains to be proved that the triple is always
primitive when n and G are relatively prime. Since G must
be odd, from (11), (12), and (13), a and ¢ must be odd and
b must be even, and as such they do not have the common
factor 2. They also do not have an odd common factor k
which is greater than 2. For i1f they did then every prime
divisor of k would be a common divisor of a, b, and ¢} or
even if k is prime let a = ka;, b = kby, and ¢ = ke¢;, then
from (4), (2), and (3),

ko, = 2nG + @2 + 2ne, ko, = 20G + 62 + 2n2,
/ ka, = 2nG + a2, and kb, = 2nG + 2n2,
Subtracting,

k(°1 - 0-1) = 2n2’ k(°1 - bl) = GZ’
or,

o = (2n%/x) by = (62/k)

1° % SRAE IS S| ‘

Since k is greater than 2, it would follow that k
divides n and G, which is contrary to the fact that n is
prime to G.

Q. E. D.3

31bid., p. 542-543.



CHAPTER VI

APPLICATION OF THE PYTHAGOREAN THEOREM
TO FIGURE-CUTTING PROBLEMS

This chapter 1s devoted to showing how the Pythagorean
Theorem was applied to four of fifteen well-publicized pro-
blems on figure-cutting. The fifteen problems were written
by the matheﬁ;tics staff of the University of Chicago. The
problems appeared as a series of six articles in The Mathe-

matics Teacher during the years 1956 to 1958.

The term "transform" as used in this chapter means to
cut a figure into parts using straight lines only and then
to rearrange these parts to form a new figure.

In this chapter each of the original fifteen problems
is stated, and then the ?ythagorean Theorem applied to

obtaln a solution of the last four.
I. 'STATEMENT OF THE PROBLEMS
(1) Given three congruent squares, to transform them

into a single square.

(2) Given a square, to transform it into three con-
gruent squares.

(3) Given two squares (congruent or not), to trans-
form them into a single square.

(L) Given a square, to transform it into an equi-
lateral triangle. .

(5) Given an equilateral triangle, to transform it
into a square.
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(6) Given a (non-rectangular) parallelogram, to
transform it into a square,.

(7) Given a square, to transform it into n congruent
equilateral triangles (where n is some natural number
greater than 1 and fixed in advance.)

(8) Given one or more rectangles, to transform them
into a square.

(9) Given a regular hexagon, to transform it into a
square.

(10) Given a regular pentagon, to transform it into
a square.

(11) A pin consists of three congruent silver squares
soldered at the vertices in such a way that the sides of
one square are extensions of the sides of another. It is
required to cut this pin along two pairs of parallel lines
and from the resulting parts to assemble a brooch having
the shape of a rhombus.

(12) Given a right triangle ACB whose longer side BC
is less than twice 1ts shorter side AC, to cut it into no
more than four parts that reassemble into a square.

(13) Given a square, by cutting it into at most four
{ parts to transform it into a right triangle whose longer
side 1s less than twice the shorter side.

(14) Given a square, to transform it into two squares
of which one has an area twice that of the other.

(15) Given a square, to transform it into three
squares whose areas are in the ratio 2:3:l.l

1Mathematics Staff of the University of Chicago, The
Mathematics Teacher, XLIX, May, 1956, p. 332; XLIX, October, -
1956, p. LL2; XLIX, December, 1956, p. 585; L, February, 1957,
p. 125; L, May, 1957, p. 330; LI, February, 1958, p. 96.
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II. APPLICATION OF PYTHAGOREAN THEOREM
TO PROBLEMS 12-15

In the January, 1962, issue of The Mathematics

Teacher, Frank Piwnickl has shown how the Pythagorean
Theorem can be applied to the solution of problems 12-15.
As the solutions of problems 1l and 15 are somewhat sim-
pler, they will be presented first, The solutions of these

problems are as follows,

Problem 1l4: Given a square, to transform it into two

squares of which one has an area twice that of the other,
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ABCD is the given square (Figure 1). On the side DC
a semi-circle is constructed with a radius equal to DC/2
and DE is equal to DC/3. From point E a perpendicular is
constructed to intersect the arc¢ DC at F. Now triangle DFC
is a right triangle with the hypotenuse AC and legs DF and
FC. With respect to this right triangle, the square on DC
is inward. The square on DF is then constructed inward,
and the square on FC outward.

Using the parallel lines formed in Figure 1, the
following right triangles can be shown to be congruent.
Triangle AND is congruent to triangle BRC, triangle ANK is
congruent to triangle DGL, triangle DFC 1s congruent to
triangle AHB, and triangle LMC is congruent to triangle KPB.

Therefore, the square ABCD on the hypotenuse of
triangle DFC, is cut into five parts by the segments DK,
CF, AN, and LM, all lying within the area of the square
ABCD. From these five parts the two required squares can
be constructed as shown in Figure 1. The squares completed
on the/sides of triangle DFC indicate how the Pythagorean
Theorem 1s used in the solution of this problem.

To verify that square FPRC is equal to twice square
AHPN, 1t is necessary to show only that FGZ = 2DF2., This
can be shown by applying the Pythagorean relationship‘to the
right triangles DFC, DFE, and FEC. The proof is as follows:
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(1) T2 = D68 - TFS,

(2) or, FC© = 95@2 - 5?2, since DC = 3DE.

(3) Therefore 35@2 = (1/3)?52 + (1/3) F2.

(4) Also, 552 = TF° + TE° op EF2 = TF2 - DE2,

(5) and Fol = BFC + Bee.

2 2

(6) Therefore, 552 = 5?2 - DE + ECS. From L and 6,

2 2 + LDE®, since EC = 2DE;

- B-F-ao

- DE
2

(7) 762 = OF

(8) or 35@2 = FC
(9) Therefore, FGZ - DFZ = (1/3) FG2 + (1/3) TF4.

From 3 and 8.

2 2

(10) or, FC° = 2DF<.
Q. E. D,
Before starting on exercise 15 it will be necessary
to construct several figures, which will all be grouped

together for convenience when referring to them.
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Problem 15. Given a square, to transform it into
three squares whose areas are in the ratios 2:3:l.

This problem has a two part solution, the first of
which is a division of the square into two squares in the
ratio 1:2. This part 1s a repetition of the solution just
given to Problem 1li. Figure 2 differs from Figure 1 in
that the square on DF, the smaller arm, 1is constructed, not
on that arm, but on AN which is equal to DF. The use of
Figure 2 in place of Figure 1 is Justified by the fact that
triangle DFC and LMC of Figure 1 are congruent respectively
to triangle AND and RLD of Figure 2. The trapezoid 2 and
triangle L make up the square shown in Figure 6b, as in
Figure 2 triangle ANK is congruent to triangle AMR. What
remains of the square ABCD now is Figure 3, which, with the
pieceé rearranged, becomes Figure L. The fact that Figure L
is a square is apparent since DC = CB and RD = XKE.

Now if the 1:2 ratio of the squares in Figures 6b
and 4 is regarded as 3:(2 + l), then the square in Figure L
has torbe cut into squares in the ratio 2:4, which is 1l:2.
This gives the same ratio and the same operation as applied
in Figure 2. In Figure 5 FT is constructed perpendicular to
CB. Triangle FTC here is similar to triangle CFD in Figure 2,
and therefore, the ratio of the squares on its arms TC and
FT is 1:2. The whole of Figure 5 is similar to Figure 2

except for the difference 1n size and the presence of tri-
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angle KLB. Hence from the pieces of Figure 5, the squares
QG (Figure 6¢) and FH (Figure 6a) can be assembled.

If the parts 1in Figure 2 of Figure 3, numbered 3 and
S, are replaced by parts from Figure 5, numbered 3' + 3'! +
3''" and 5' + 5'! respectively, then Figure 2 is reassembled
showing all the necessary cuts to assemble the three required
squares, Figures 6c¢, 6b, and 6a which areas are in the ratio
2:3:Y4. Figure 7 illustrates the necessary cuts. Again the
use of the Pythagorean Theorem in the solution of this pro-
blem is indicated by the squares on the sides of the right
triangle.

Before the solution of problems 1l2 and 13 are given,
it 18 necessary to illustrate how to do two constructions
used in the solution of problems 12 and 13. First consider
the tranaformation of a right triangle into & square and
the reverse. The Pythagorean Theorem establishes the
following relation between certain elements of the right
triengle: the area of the square on an arm of the right
triangle 1s equal to the area of a rectangle constructed
of the hypotenuse and the projection of the arm on the hy=-

potenuse.,
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By applying proof number L of chapter 3 to Figure 8,
the following 1s evident: (DE)2 = (HD)(AD) = (ED)(DC), and
(8¢)2 = (HC)(CB) = (HO)(DC).

Examination of Figure 8 suggests methods (1) of
transforming the'redtangle into a square of equal area, and

(2) of 'transforming a square into a reotangle of equal area.
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Figure 9

Problem: Given a rectangle to transform it into a

square of the seme ares.

Let the glven rectangle be AFEC of Figure 9, then

the solution 1is obtained by the following:

(1)
(2)
(3)
()
(5)

Extend AF to X.

Construct AL equal to AC on AX.

Construct a semi-circle with AL as diameter.
Extend EF to intersect the semi-circle at K.
Draw‘lines KL, and KA, resulting in the right
triangle AKL.

Then the line AK 1s the side of the desired square,

and (AK)? = (AF)(AL) = (AF)(AC). The heavy lines represent

the necessary construction elements to find the side AK of

the square.

Broken lines relate the diagram to the Pythag-

orean Theorem.
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A

Figure 10 Figure 10a

Figure 10 shows basically the same operation as
Figure 9 with one significant change. In Figure 9 the
required square was constructed outward of the right tri-
angle AKL, and in Figure 10 the required square AKJH was
constructed inward on the triangle AKL. If JH 1s extended
it will pass through the point C, which with HA, divides
the rectangle AFEC into three parts from which the square
AKJH of Figure 10a can be assembled. Numerals indicate the
congruencse of trianéles, and quadrilateral 1 is common.

' Problem: Given a square to transform it into a
rectangle of the same area.

Examination of Figure 1l0a suggests a simple method
of outting a square into three parts from which a rectangle
can be assembled. From K let line KG intersect JH at G,
and erect AF perpendicular to KG. KXG and AF now divide the
square into three parts from which a rectangle can be assem-

bled (compare Figure 10).
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Figure 10 shows that a given rectangle can be trans-
formed into one and only one square, but that a given square
can be transformed into an unlimited number of rectangles.,
Therefore, when transforming a square into a rectangle it 1s
necessary to have a side of the desired rectangle given. 1In
Flgure 12 a point G may be chosen anywhere on JH. If G
coincided with J, then XKG would be equal to KJ, and this
would merely reconstruct the square. If G coincided with H,
then KG would equal KH, and square AKJH would be transformed
into a rectangle whose dimensions would be ay/2 and a+/2/2
where a 1is thé side of the square. Thus, the given method 1s
correct for transforming a square into a rectangle only if

the ratio of the sides of the rectangle 1s betwesen 1 and 2.

B

Figure 11
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Before the problem of transformation of a triangle
into a rectangle may be solved, one more step ls necessary.
In right triangle ACB (Figure 11), if CB and AB are bisected
at E and D respectively, then ED will cut the triangle into

two parts from which the rectangle AFEC can be assembled.

3
J
)i
2

E GAD FON K

H

2
c |
A f
’ A
Figure 12 Figure l2a

Problem 12: 'Given a right triangle ACB whose longer
side BC 1s less fhan twice 1ts shorter side AC, to cut it
into no more than four parts that reassemble Into a square.

In Figure 11 one cut, ED, transformed triangle ACB
into rectangle AFEC. 1In Figure 10 is shown how the same
rectangle AFEC, by two cuts, CG and AH, i1s transformed into
square AKJH. PFigure 12 1s a composite of Figures 10 and 11,
and shows how right triangle ACB was cut with segments ED,
CG, and AH, to reassemble the square AKJH.
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Flgure 13

Problem 13. Given a square, by cutting it into at
most four parts to transform it into a right triasngle whose
longer side is less than twice the shorter side.

The reverse procedure of problem 12 1s applied to
g§olve problem 13, 1l.e., (1) transform the square into a
rectangle, and (2) transform the rectangle into a triangle,
Séep 2 has already been shown in Figure 1l. A;C; 1s the
shorter side of the desired right triangle.

Step 1 is shown in Figure 13, where a square AHJK is
given. The given square is to be transformed into a rectan-
gle whose area 1s equal to that of the square, One side
ACq 1is given.

The complete solution of problem 13 is as follows:

On side AK of square AKJH at K, the right angle AKZ
is constructed by extending JK. With an arc of radius
AL = A1Cy and center at A, KZ is intersected at L. KF is

constructed perpendicular to AL; then AF 1s the shorter side
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of the required rectangle. To construct that rectangle,
the square ALMC 1s constructed, and KF 1s extended to E.
The area of the rectangle AFEC 1s equal to the area of the
given square AHJK. 1In Figure 13 the square 1is constructed
outward on the right triangle AKL. If it 1s placed inward
on the triangle, then it is the diagram of Figure 10. 1In
Figure 10a segments AF and CG cut the square into three parts
from which the rectangle AFEC can be assembled. Figure 12
shows how to transform this rectangle lnto a right triangle.
In Figure 12a (D will be the third cut. Figure 12a shows
all the cuts of the square to transform it into a right

triangle.?

2Frank Piwnicki, "Application of the Pythagorean
Theorem in the Figure-Cutting Problem, "The Mathematics
Teacher, LV, January, 1962, p. L4-51.




CHAPTER VII

EXTENSIONS OF THE PYTHAGOREAN RELATIONSHIP

This chapter 1s devoted to a brief discussion of an
extension of the Pythagorean relationship to non-right

plane trlangles and to right spherical triangles.

j ‘ Figure 1
I. LAW OF COSINES

The Law of Cosines of plane trigonometry for any
triangle, such as the one in Figure 1, states that:

02 = a2 + b2 - 2ab cos C.

When C 1s a right angle, cos C = 0, and the Law of
Cosines reduces to:

c2 = a2 + b2,

Therefore, the Law of Cosines 1s an extension of the

Pythagorean Theorem for any triangle of plane geometry.
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II. RIGHT SPHERICAL TRIANGLES

This section considers the possibility of an exten-
sion of the Pythagorean relationship to right spherical
triangles.

Several definitions and propositions from spherical

geometry need to be given here for reference.

l., A great circle of a sphere 1is the intersection
of the sphere and a plane through the center
of the sphere.

2. A spherical polygon is a closed line on a sphere
consisting of three or more arcs of great circles.

3. A spherical polygon of three sides in which each
side lies between 00 and 180° is a spherical
triangle.

. Each side of a spherical triangle is less than
the sum of the other two sides.

/ 5. The sum of the sides of a spherical triangle is
‘ less than 360°,

6. A right spherical triangle is one which has only
one angle equal to 90°,

7. The sum of the angles of a spherical triangle 1is
f greater than 180° and is less than 540°.

8. If a spherical triangle has one right angle, the

other angles may both be acute, both obtuse, or
one acute and the other obtuse.

Consideration will be given only to those spherical

triangles that contain only one right angle.
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A
t
c
b
c Y B
Figure 2

From plane trigonometry, if A and B are the two acute
angles of a right triangle (Figure 2), then sin®A + 8in®B = 1,
which when expressed in terms of the ratios of the sides
gi?es: a2/c2 + b2/¢c2 = 1, or a2 + b2 = g2, This then is
the Pythagorean relationship.

Therefore one approach to the problem is, what is the
value of sin2A + sinZB, where A and B represent the non-right
angles of a right spherical triangle. There are three possi-
ble values for this relationship which are: (1) sinla +
sin2b = 1, (2) sina + sin®b >1, and (3) sina + sin2b (1.
If (1) is found to be true then the Pythagorean relationship
holds for right spherical triangles. If either or both of
(2) and (3) hold true then there is no Pythagorean relation-
ship.

By property (8) there are three cases to consider for
A and B. These cases are when they both are acute, when one
is acute and the other obtuse, and when they are both obtuse.
FPirst considering the case where A <90° and B < 90°, and
900 (A + B <1809, Selecting some specific values for A and
B gives the following table.
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TABLE I
A B A+ B sinA + sin°B
o] (o] 0]

899 29 910 1.001

500 %30 930 1,052

60 0 120 1.500

70° 80° 150° 1.843

89° 89° 178° 1.999

Now considering the case where A< 90°, 90°¢ B 180°,
and 90°¢ A + B €270°,

TABLE II

A B A+ B sinA + sinB
8° 959 103° 1.011

609 952 15852 : 1.742
8o 150o 1580 0.269

89° 95° 184.° 1.991

89 150 239 1.249

89° 175° 264° 1.075

Next considering the case where 90°¢ A< 180°,
90°¢ B € 180°, and 180°< A + B <360°.

TABLE III

A B A+ B sin®A + sin®B
95° 959 190° 1.98L
958 1502 2452 1.242

95 178 273o 1,011
150° 150° 300 0.500
175° 175° 350° 0.152

Examination of the three tables shows that con-

dition (2) or (3) holds for possible choices of A and B.
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The results of the three tables suggest that: If
angles A and B are both less than 909, then their sum will
be greater than 90°, and the value of sin®A + sin®B will be
greater than 1 and less than 2., If either or both of the
angles are greater than 90° but less than 180°, then the
value of their supplement(s) (or related angle(s)) gives
the value of sinla + sin®b. In this case, if the sum of the
two angles, or related angles, exceeds 909, then.lA(sinzA +
sin®B ¢ 2, and if the sum is less than 90°, then O ¢sin2A +
sin®B <1. Therefore, this approach does not yield an
extension of the Pythagorean relationship for the sides
of right spherical triangles.



CHAPTER VIII
I. SUMMARY

In chapter one the purpose of this paper was stated
to be: to provide a resource of enrichment material on the
Pythagorean Theorem. This resource of material was to cover
five areas: (1) historical background, (2) proofs, (3)
primitive Pythagorean triples, (L) figure-cutting, and
(5) spherical triangles. It was the authors intent to
cover each of these areas and keep the report brief.

Chapter two provided a historical background on
Pythagoras and the Pythagorean School which included soms
of thelr main contributions in the fields of relligion,
theory of numbers, geometry, and astronomy. Also early
work on the Pythagorean Theorem by the Greek, Egyptian, and
Chinese was considered.

Chapter three contained a wide variety of proofs of
the Pythagorean Theorem. The proofs varied from one thought
to have been given by Pythagoras to an original one developed
by the author of this paper.

In chapter four the proofs were analyzed as to the
fundamental property on which each was based. These prop-
erties were classified into three areas: (1) dissection,
(2) sum of parts, and (3) proportion. The proofs were

then classified as to their similarities and differences.
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Necessary conditions for the selection of two inte-
gers that will generate a primitive Pythagorean triple, were
stated and proved in chapter five.

Chapter six demonstrated how the Pythagorean Theorem
could be applied to the solution of figure-cutting problems.
The problems considered in this chapter were the last four
of a set of fifteen problems written by the Mathematics Staff
of the University of Chicago.

In chapter seven the Law of Cosines was considered
as an extension of the Pythagorean relationship. Also, the
relationship of sin?A + sinaB, where A and B are the non-
right angles of a right spherical triangle, was used to show
that the Pythagorean Theorem does not hold for the sldes of

a right spherical triangle.

!
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