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The most important characcerictic of the complex

b
)

number system is the realization ci cystematic structure
i

developed by the extencgicrn of ths real mumber system, so

that it is possible to solve any polynomial equaticn. A one-

to-one correspondence betweca two scis of aill cowplex numbers

can be established by a relationshin called a mappinz or

transformation. The clasgs of mavpinzs to be consicdered 1is
the Mobius transformation,

Until recently the mcbius transformacion in itTs
entirety was included in an elemzntary course of complex
variables. OJince new developments have warranted emonasis,
this mapring has received only secondery consideratiocn. The
problem encountered by the author in stucdying the riobius
transformation was either the material was not presented in
contemporary notation or ths discussion was not complete.

Therefore the purpose of the thesis is to systemati-
cally develop the Mobius transformation in its entirety
using the language of modern day mathematics. This complete
study will bé'beneficial to any student of complex variables,
especlally when considering regions of the complex plane.

It should be mentioned that the reader of this thesis

should have a working knowledge of calculus and an introduc-




tion to abstract algebra. All the toprics not included in
these fields or their prerequisites will be discussed in the
material presented.

The topic of Mobius transiormation lends itself to
a systematic development. The complex number system will be
presented in Chapter II, in such a manner as to acquaint the
reader with all the representations that are encountered
throughout the paper. Lobilus translormations are defined
and developed in Chapter III, Chapter IV discusses the prop-
erties of the Mobius transformation, while Chapter V classi-
fies the various types of mappings that have been considered.
The final chapter summarizes the material presentec and sug-
gests other topics that might be considered by a student

pursuing the topic of Mobius transformations further.



CHAPTER II
THE SYSTEM OF COMPLEX NUMBERS

The concepts and properties of the complex number
system are essential to an understanding of the topics to be
considered. Complex numbers are most commonly intraduced in
terms of ordered pairs of real numbers. Other representa-
tions include: (1) geometrical, (2) vectorial, (3) polar,
(4) exponential, and (5) spherical. A brief discussion of
each of these will be given after a formal definition of
the system of complex numbers has been established. It is
often easier to explain certain operations in a more con-
venient form.

Ordered Pairs of Real Numbers (2.1)

The system of complex numbers is a field C having as
its elements the ordered pairs [?,@ of real numbers, along
with an equality and two binafy operations. The operations
will be called addition,+ , and multiplication, e . Given
two complex numbers & and A such that =<=la,b] and g=[ec,d],
where a, b, ¢ and d are elements of the real number system,
then the complex numbers < and / are said to be equal if and
only if azc and b=d. Addition and multiplication are
defiﬁed as follows:

< +p =[a,b] + [c,d] =[a+c,b +d] (2.1.1)
~<eg={a,b} « [c,d] = [ac - bd,ad+ bc]. (2.1.2)°



It should be noted that there exists a zero element
of C, namely O =[0,0], such that

Xt O0=0+K = o (2.1.3)
Also there exists an element M of C, such that

Lo = g o X=X (2e1.4)
The letter/u. is called the unit element of the complex num-
bers and is denoted by [1,6_\ , it is most commonly given by
the symbol 1.

In order to verify that with this definition the com-
plex numbers do form a field C, it is necessary to show the
field postulates for addition and multiplication. The fol-
lowing addition postulates can easily be proved by use of
the definition of complex numbers and the properties of the
real number system.

Given «{, B and Y elements of C, where \’s[f,%], the
addition postulates are:

Ay Closure- To every~ pair K and 4 elements of C,

there exists a uniquely defined element of C,
known as the sum of K and A.

A, Commutative Law- <X+ 8 =57 =<
A3 Associative Law- X+ (ﬂ+‘f) = (’H-ﬂ)*— v
A, Cancellation Law- X +Y=fB+Yy implies & = /3

As For every pair o« and £ elements of C, there
exists a unique element § , such that £+f< /5

Postulate A5 implies the existence of the inverse operation

of addition. This operation is referred to as subtraction,



Thus, .
§= 07 (2.1.5)
Each element a<=[a,6] of the field C has an inverse given by
- & =[-a,-b]." o (2.1.6)
The postulates of multiplication are given as for
addition.

M; Closure- To every pair o and /4 elements of C,
there exists a uniquely defined element of C,
known as the product of =X and 5.
M, Commutative Law- Ko p =[5
M3 Associative Law- Lo (feox) = (<eB) ey
M), Cancellation Law- Y=/ with Y#O implieSo(=ﬁ
M5 For every pair o€ and_/f elements of C, with
<#[0, OT and A #[0,0], thexée exists a unique ele-
ment A, such that o(°>\"/),
Postulate Mg implies the inverse operation of multiplication,
which is called division. Therefore,
A= B/ (2.1.7)
where é%k is called the quotient. The value of A is deter-

mined by

_ {7 ac_+ bd,bc - ad] ‘ (2.1.8)
- i c*4 d* ci+ d?

The distributive law is the final postulate necessary

to prove the system of complex numbers form a field C. Hence,

lEinar Hille, Analytic Function Theory (Boston: Ginn
and Company, 1959), I, 2.

2Tbid., p. 3.




D} For any three «, /£ and Y elements of C,
A(F+¥) = <ef+ <oy (2.1.9)
and therefore multiplication is distributive with respect to
addition.3 It has now been established that C.forms a field.
The set of complex numbers of the form [a,0] can be

placed in a one-to-one correspondence with the field of real

numbers,
[a,0] <> a. (2.1.10)
In particular,
[0,0] =0 (2.1.11)
[-a,0] = -a : (2.1.12)
[1,0] —1. (2.1.13)

Thus by definition, an isomorphism between the set of
ordered pairs of the form [a,o] and the set of real numbers
exists.h Frequently this isomorphism is expressed as saying
the field of real numbers is embedded in the complex field.
Symbolically, it is denoted Hy

R <*R'cC, (2.1.14)
where R represents the field of real numbers and R' is the'

set of complex numbers of the form [a,d}.E Since this one-

31bid.

bNeal H. McCoy, Introduction to Modern Algebra(Boston:
Allyn and Bacon, Inc., 1960}, p. 33.

5Hille, op. cit., p. 15.



to-one correspondence does exist between the reals and the
complex numbers, all complex numbers of the form [g,O] will
simply be denoted by the symbol a.

The complex number fO,i} may be given the symbol i,
such that,

i2 =[0,1] *{o,1)= [-1,0]= -1 © (2.1.15)
and i is the square root of -1. The symbol i is often
referred to as the imaginary number.

Since,

[a,b] =[a,o]+[o,b:\
then,

[2,b] =[a,0) +{b,0] <[ 0,1]
thus (g,b] can be denoted by a+bi. In this notation it
should be remembered that a—~>[a,0], b——r[b,O] and i-—>[0,13.
This form of complex numbers is the most commonly used.

Geometrical Representation (2.2)

The idea of mapping tﬂe complex numbers on the points
of a plane was a decisive step forward in the theory of com-
plex numbers. A geometrical representation derives its use-
fulness from the vivid mental pictures associated with a geo-
metric language. This concept occurred almost simultaneously
to three greéﬁ mathematicians- Wessel, Argand and Gauss. It
is éenerally agreed that Gauss was responsible for establish-
ing this idea universally. The main reasons that Gauss

receives this credit is that his development was very sys-'



tematic and, of course, his authority had been universally
accepted.6

This geometrical idea was brought about by the assump-
tion that there is a one-to-one correspondence between the
points on a straight line and the totaliﬁy of real numbers.
With this in mind, it should be possible to represent com-
plex numbers in some geometrical fashion. In order to make
this representation it is necessary to use a plane and intro-
duce a system of rectangular coordinates similar to those
used in analytical geometry. The plane will be referred to
as the complex plane or z-plane. Sometimes this plane is
called the Argand or Gauss plane. On this plane designate
any point O as the origin. Through point O a pair of orthog-
onal axes are drawn and the Cartesian coordinates are intro-
duced in the usual manner. The abcissa or distance along
the x-axis is the first number of the number pair {a,ﬁ}.
The unit element on the x-axis is [l,d]or 1. All complex
numbérs of the form [a,d] lie on the x-axis, so consequently,
it is called the real axis. The ordinate or distance along
y-axis is the second number of the number pair [a,t] . The
unit element on this axis is the complex number [Q,i] or i.
Since all comblex numbers of the form [p,ﬁ]are points on the

y-axis, it 1s customary to call this axis the imaginary axis.

61pid., p. 18.
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It is sometimes necessary to obtain the value of the
real axis coordinate of a complex number z, where 2 :[h,b]
or a+bi. The symbol R(z) is used to denote this coordinate.
Likewise, the symbol I(z) is used to symbolize the imaginary
axis coordinate of the complex number z. In other words,
given a complex number z= a+ bi, R(z) denotes the real part,
a, and I(z) designates the imaginary part, b. If the complex
number is of the form O+bi, it is said to be pure imaginary.

Every complex number a+ bi can now be mapped onto a
point of the complex plane whose coordinates are [a,Bl. Con-
versely, every point on the complex plane is associated with
a unique a+bi. For example, let z :[x,y] or z=Xx+yi, then
z would be represented on the complex plane as shown in fig-
ure l. It should be noted that no distinction will be made

for the symbols that designate points and numbers.

A I(2)
Y | _:_ - IZ=[X,‘/J
|
|
e |
3 |
|
e | R(2)
(0] 1 X
FIGURE 1

REPRESENTATION OF A POINT ON THE COMPLEX PLANE
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Vector Representation (2.3) .

Each point different from the origin of the complex
plane determines a vector from the origin to the point =z.
Therefore a complex number can be represented .as a vector.
If the notation z=a + bi is used, addition can be repre-
sented as the sum of the real components R(z) of two com-
plex numbers and the sum of the imaginary parts of the same
numbers. With this in mind it can be seen that addition of
complex numbers corresponds to vector addition in the complex
plane according to the parallelogram method.

Let Z, and Z, be any two points on the complex plane.
The addition can then be performed by drawing through Z,

a line segment equal and parallel to 0Z,. Call this line
Z2,2z. Point Zs has the coordinates X, + X;, ¥, + Y,
therefore Z; represents Z,* Zz. The following figure

shows the parallelogram method of addition.

3

I (Z)G | 7= (X0 +Xy, Yo+ Ve
5
>'i : Z| = [X! IYI]
‘*T“|Zfﬂﬂﬂ ;-i "_T—

1

A7)
X ]

ADDITION OF COMPLEX NUMBERS

1

|

1

|

|

)

F_ Xz——N— X|"‘Xl—"
VN

FIGURE 2
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Subtraction of complex numbers can just as easily
be carried out vectorially by use of the parallelogram.7

It is often necessary to determine the length of a
vector associated with a complex number. In reference to
figure 1, the distance of 0Z or € is the vector length.

The value of @ is a real non-negative number called. the
modulus or abéolute value. This value is equal to zero
only if the complex number in question is the origin or
v :[0,0] . The absolute value of z=a+bi is denoted by
]zl. By use of the Pythagorean theorem

|2| =\a%+b* . (2.3.1)
The square of the absolute value is called the norm of the
complex number,

The concept of absolute value of a complex number is
beneficial to the study of areas and regions of the complex
plane. For example, let r be any positive real number and
from the definition of absolute value, all the points z
such that,

|zl =r (2.3.2)
defines a circle C' of radius r whose center is at the

origin. If the inequality signs { or > replace the equal

7Louis L. Pennisi, Elements of Complex Variables
(New York, Holt, Rinehart, and Winston, 1963), p. 10.
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sign, the region described is. the interior or the exterior
of the circle C' respectively.

To obtain a circle with the center at some point
other than the origin, say z,, (2.3.2) becomes

|z - z.|=r (2.3.3)
Again the inequality signs can be used to designate: the
interior or exterior regions of the given circle.

The annulus ring is a region bounded by two concentric
circles. The equation of the annulus is

r'g [z-z°|<r", (2.3.4)
where r' and r'' are the radii of two circles with center z,.
If the boundaries are to be included it is necessary to have
the equality signs.

Certain families of circles are very helpful in des-
cribing topics to be considered later. Take as an example

the equation

SLCELE,): };_:?,,C; (2.3.5)

where é' and éz are fixed points and C is any positive real
number. Equation (2.3.5) defines a circle except when C=1.
In this particular case the equation is the perpendicular
bisector of line é;éi. It can be seen from the equation
that these circles are the locus of points whose distance
from & and éz have a constant ratio. More information con-
cerning this family of circles will be developed later.

There also exist other families of circles and curves which
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can be described by using the concept of absolute value.

Polar Representation (2..4)

Each point z of the complex plane can be represented
by two polar coordinates @ and ©. Coordinate € is the non-
negative length of vector 6;, or simply [z|, while © is the
angle the vector makes with the real axis. This angle is
called the argument or amplitude of z. It is denoted by

@=arg z. (2eh4a1)

The polar coordinates [@,8] of a complex number
z= x+ 1y can be determined from figure 1 by using the fol-

lowing equations:

C =iz =X +y2 (2.4.2)

x=Ccos © (R2el4o3)
y:C’sin e (2014-0[4-)
tan 6 =y/x. (24445)

By substitution z=x+1iy becomes
z=€cos O+1 Csin 6
or z= @(cos © +isin ©) (2.4.6)
It should be noted that the argument of z gives the direc-
tion of 6;. The argument of a complex number z is infinitely
multivalued, hence all of its values differ only by integral
multiples of'27T, and are congruent to each other mod 277,

The principal value of © is that value of © that satisfies

8Hille, op. cit., pp. 26-28.
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the condition -7<{© <7, Therefore, two complex numbers are
congruent if their principal values coincide and their abso-
lute values are equal. For the null vector, or zero, the
amplitude is regarded as undefined or indeterminate.

If two complex numbers differ only in the sign of the
imaginary coordinate, they are said to be complex conjugates.
That is, if z=x+1iy is a complex number, then the conjugate
is given by z=x - iy. The conjugate is denoted by the sym~
bol z. In polar coordinates where z= € (cos ©+ isin 9), the
conjugate becomes z=((cos © - isin 0). When number pairs
are used, the conjugate of z:[@,@] becomes z = [@,-Q] . In a
geometrical representation the conjugate of z is the corre-
sponding point symmetric to the real axis as shown in the

following figure.

|z=X+iY
|
| R()
|
@ | Z=X-1Y

FIGURE 3
COMPLEX CONJUGATE
The important application of the polar form of com-

plex numbers is the convenience of multiplication. Consider



any two complex numbers written in polar form, say

z, = ¢(cos 6,+isin ©)

zz = Glcos 0, +isin 6,),
then the product of 2z,z,can be written in the, form

7,2, = € (cos ©,+1isin 0,)-G(cos O, +isin Oz)

Z, %, T @,E’Z[cos 6, cos Bz - sin 6, sin Oy

+i(sin 6, cos ©,+sin 0, cos O,)]

2,2, —_-e'f’z[cos(g\-r ©2) + isin(e,+ Oz)] . (Relye7)
The length of vector 2z,z,is equal to the product of the
lengths of z, and z,, that is G, . The angle of inclina-
tion of the vector z,z, is the sum of the angles ©, and 6,.

The following figure shows geometrically the multiplication

of two complex numbers.

ﬂ\
I@ 7,2, = [€.6,©:%%

Z f &l [e?. ,623

FIGURE 4
- MULTIPLICATION OF COMPLZIX NUMBERS
Another important use of the polar coordinates and
complex numbers is in the representation of a special family

of circles. This family has the equation
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Y (8): arg z-% = (2:4.8)
z - ’

where éﬁnui £Lare any two fixed points in the complex plane
and ~»®(0<*+ 2, In essence, these circles are actually cir-
cular arcs from é. to £, and the complementarﬂr arc is
T (e+2m), which of course, is also a member of T*(6).
The families T(0) and J\(Ei,ék) form a famil& of
orthogonal circles if both have the same fixed points. This
configuration is often referred to as the circular net or

9

Steiner circles.

FIGURE 5

STEINER CIRCLES

9Lars. V. Ahlfors, Complex Analysis (New York: McGraw
Hill Book Company, Inc., 1953), pp. 31-32.
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The Steiner circles have some interesting properties
that should be mentioned for later use. For example, every
;oint of the complex plane except the fixed points has oﬂe
and only one element of each of the families ¥(©) and
~fL(€v’fl) passfng through it. Also, every circle of the
family 77(©) meets every circle of.fl(é},ﬁl) at right angles,
and conversely.lO

Exponential Representation (2.5)

Complex numbers can be represented in a form of the
exponential function. The derivation of the exponential
representation of z will be presented as developed by
Tovnsend. 'l It is important to remember that all the prop-
erties for eX must be valid, since the real numbers are
embedded in the field of comvlex numbers.

The definition of the exponential function of the
complex number z= x+ iy is given by the equation

e?= limit (1+2z/n)", (2.5.1)
n—*

where n is a positive whole number. For this definition to
be true the limit must exist.
It should be noted that

l+z/n=1+x/n+iy/n. (2.5.2)

101pid. p. 32.

llE. J. Townsend, Functions of a Complex Variable (New
York, Henry Holt and Company, 1915), p. 122,
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Now let ‘ .

1+x/n=Ccos © and (2.5.3a)

y/n=€sin 0. . (2.5.3b)
By substitution (l+z/n)® becomes

(€ cos 6+ 1 €sin 0)1,
which is simplified, by use of basic multiplication. operations
of complex numbers,12 to the form

€

Since n can be taken so large that 1+ x/n is always positive,

D(cos n6+ isin no). ' (2.5.4)
cos © will always be greater than zero. From (2.5.3) the
principal value of © is the arctan y/(n+x) or

® =arctan y/(n+x). (2.5.5)
The value of € can easily be expressed in terms of x and y
by use of the equation (2.4.2), thus

C=[(1+x/n) %+ (v/a)2]3,

Therefore en becomes

en =[(1+x/n?+(y/n) 22,

™= (14x/0)°[1+¥%/ (n 222, (2.5.6)

The limit (2.5.2) can now be simplified by use of
(2.5.4), (2.5.5) and (2.5.6).13 Thus,

12Ruel'V. Churchill, Introduction to Complex Variables
and Applications (New York, McGraw-Hill Book Company, Inc.,
1948), pp. 1ll-12.

13

Townsend, op. cit., pp. 122-3.
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limit (1+ z/n)n-_- limit eh(cos ne +isin no)

n—r o n—> o
—limit (l+x/n)n[l+y2/(n+x)2] n/2°
n—e
(cos n8+isin no)
= limit (1 + x/n)n, (245.7a)
n—> o

2 ',
limit [1+y2/(n+ x)z]no/ (2.5.7b)

n—> oo

[:limit cos n arctan y/(n+x) +

n— co

i limit sin n arctan y/(n+ x)]
n— oo

provided these limits exist. These limits do exist and can
be easily evaluated.
By the definition of e*, (2.5.7a) becomes

limit (14+x/n)" = e . (2.5.8)

N e~p o=
To evaluate (2.5.7b), two situations must be examined. That
is, when y=0, then the limit becomes one. If y#0 , then

it is necessary to rewrite (2.537b) in the form

n) 2
{limit [1+—y2/(n+ x)2]} . (2.5.9)
n—y o
2 n
Now limit [1 +y2/(n+x)]
n —»ao )2 2
(n+ x limit ne
:{limit{l_,_ lun-i—x)z:l y2 n—>re< Zn+x52; L
n-—»o® y2

Separating the exponent and applying limit rules

lh1pig., p. 123.
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(n «+ x)2
1 2
limit |1+ (n +x§2] y = el and
n—yeco 2

y

limit n [yz/(n-f-x)ZJ: 0.

n—ee

Hence,
limit [ 1, _y? n_ el 1, " (2.5.10)
n—eo | (n+-x)2

By substituting (2.5.10) into (2.5.9), it can be seen that

1
. nl® 0.1, %
limit [l+y2/(n+x)2] } = (e ) *=1. (Re5.11)
n—rce

It should be noted that the cosine is a continuous
function and the

limit cos n arctan y/(n+ x)
n—s<

= cos limit n arctan y/(n+ x)
n—’aa

cos limit ny/(n+x) . arctan y/(n+ x)

n—rec y/{n+x)
—cos . (2.5.12a)
Similarly,
limit sin n arctan y/(n+x)= sin y. (2.5.12b)
N> =

Using the limits (2.5.8), (2.5.11) and (2.5.12) equa-

tion (2.5.7) now becomes

e?=eX(cos y+isin y) 10

l5;bid.




If x=0 in (2.5.13), the equation beccmes

el¥=cos y+isin y
or writing the above in conventional notation

et®_ cos 0+ 1isin O. - (2.5.14)
Therefore, the complex number z in polar coordinates,

z=¢ (cos @ +isin 9),
can also be written as

2= C 16, (2.5.15)
Complex numbers of the form (2.5.15) can easily be multiplied.
For example, the product of any two complex numbers say,
Z, =-@,eig’and 2, = €,el%would be
z, z2,=(6 et ) (€, i)

z, 2, = €, Cet(6,+0,).
Again the vector length of z, z, is equal to €,@, and the
angle of inclination is equivalent to the sum of the arguments
of the two numbers being multiplied or ©,+ 6;.

Spherical Representation (2.6)

The complex numbers have been represented as points
on a plane. For some purposes it is important to employ a
surface in three dimensions, specifically the sphere. If
the sphere 1s to perform the same function as the plane,
then, there must exist a one-to-one mapping of the sphere
onto‘the plane and vice versa.

The common procedure for performing this one-to-one

correspondence 1s to use the complex plane and to place a



" 22
sphere of radius one-half unit, tangent to the plane at the
origin. The point of tangency is called the south pole, S,
and the point diametrically opposite it is called the north
pole, N.

It is possible to systematically project every point
of the plane onto the sphere if the north pole is the center
of projection. This is accomplished by considering the
rays that emit from N and intersect the plane at point P.
Each ray will also intersect the sphere at some point called
the image or P'. A mapping of this kind is referred to as
a stereographic projection,

The stereographic projection sets up a one-to-one
correspondence between the points on the complex plane and
the sphere. In a similar manner all the points on the sphere
correspond to one point on the plane, with the exception of N.
If a new complex number-eg called infinity-is introduced,
then this one exception is rémoved because N now maps to <,
This new number performs as any other number, except that
it cannot be used in the combinational operations. The
point®is considered to be infinitely distant and therefore
the length of its vector is not defined. Whereas, all the
other complek'numbers are considered to be finite. Consid-
eriﬁg only the ordered pairs of real numbers the complex
plane will be called finite or open. By including the point
o, the plane will be referred to as the infinite or closed

plane.
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In working with the complex plane it 1s beneficial
to be able to map a given confipuration of the sphere onto
the plane and then map it back onto the sphere after perform-
ing certain operations. The procedure for:determining this
mapping and the properties of the stereographic transformation

16

are discussed in detail by Townsend.

16Townsend, Ibid., pp. 184-90.



CHAPTER III
MOBIUS TRANSFORMATIONS

The properties of certain elementary mappings of the
complex plane onto itself are essential to the development
of the topic to be considered. It is often convenient to
use two planes to visulize the mappings. These planes will
be referred to as the z-plane and the w-plane. The w-plane
is used to represent the image of the z-plane under a given
transformation.

The general form of the basic transformation to be
considered is defined by the fraction

T(z)=w=az+Db (3)
cz+4d’

where z is the independent complex variable, w is the image
of the mapping and a, b, ¢ and d are predetermined complex
constants. The mapping is known as the Mobius transforma-
tion, because A. F. Mobius began the study of an equivalent
class of geometrical transformations. He called this set of
mappings "Kreisverwandtschaft', which means circle relation-
ships. This same mapping can be referred to as the bilinear
transformation, fractional linear transformation, homographic

transformation or homogr‘aphy.1

lHille, op. cit., p. 46.
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To complete the definition (3), it is necessary to
include the following restriction, that is

ad - bc# 0. (3a)

The reason this stipulation must be included is that the
equality produces a degenerate case. In other words, the
image points will be identical to the points in the. z-plane,
the image points are undefined, or the image points are a
constant or zero. The extended definition now allows it to
be said that all Mobius transformations map the points in
the z-plane to unique points in the w-plane, except when
z=-d/c. Let the point o0 of the w-plane be assigned to
correspond with z= -d/c and when z=< let w=a/c. Now the
transformations set up a one-to-one correspondence between
all the points in the two planes.

The study of the Mobius transformations can be
approached by discussing the properties of those mappings
that have specially assigned'complex constants. It will then
be possible to discuss the general transformation in relation
to the simpler mappings.

Translation (3.1)

When the complex constants are assigned the values
a=d, ¢c=0 and b any arbitrary complex number, the relation-
shib (3) becomes

W=12+B, (3.1.1)

where B=b/d. The images of z are obtained by adding the
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vector B to each value of z being considered. This is a
rigid motion transformation that carries each point z of the
z-plane the distance }Bl in the direction ©, where 6=arg B.
For example, consider the rezion O<€R(z)<2 and 0<£I(2)<3
of the z-plane. The following figure shows the region and

its image under the mappinz w=2z +(2+31i).

p» R26]  Q[e,6]
T (w) //f

%
1(z) 4 Z-plave /% w- plane
Alo3] Q[2.3] , /4}) [43]
/A R(Z)_ e:A'rgB k(w)
Olle,) plz,e] ’ 0 !
FIGURE 6

TRANSLATION
It should be noted that the image 1s congruent to the
givén region. Generally speaking, the whole plane is trans-
lated parallel to the line joinins the origin to the point B.
Fach point is moved except the invariant point eo. A line
parallel to 6% is translated into itself. Any other line is

transformed into a line parallel to the given line.

Rotation and/or Dilation (3.2)
 If the constants of (3) are designated as b=c¢ =0,
a and d to be any arbitrary constants, the iobius transfor-

mation becomes
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w =Az, . (3.2.1)

where A=a/d. Since A is a complex number, it can be writ-

ten as
A=—@eiO,

where €= lAl and ©=arg A. Assuming =rei¢, (3.2.1) becomes
w= (@ eig)(rei¢)
w= Crel(o+g) . (3.2.2)

When a value of A is chosen such that \Al =C=1, (3.2.2)
takes the form

w=rei(9+¢), (3.2.3)
which is another rigid motion mapping known as rotation.
Geometrically speaking (3.2.3) is a rotation of the radius
vector about the origin through the angle ©. For example,
the region 0£R(z)<2, 0£I(z)<3 under the Mobius trans-

formation w= (12_+\f5 i) z 1is shown in figure 7.
2

Ta) ﬂﬁ

R(0,3] Qz,3) [T)\z'

: % ﬂ\\ w- plane
REBE A
/ 7-plave
Phzy¥z]

Aéé R(D) Q\/e ~M@'

Ollae] P10 ol lo,0]

FIGURE 7
ROTATICN
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It should be noted that from the definition of polar
coordinates the Arctan Q.;E_E_]@::l or ©=45°% Therefore. the
w-plane shows the region ofzthezz-plane rotated 45° around
the origin. The image is congruent to the region under con-
sideration.

The origin is always an invariant point of the rota-
tion transformation. If the extended plane is being used,
thene is mapped into itself. Also, circles with centers at
the origin are mapped into themselves, with the interior of
each circle transformed into itself. A line through the
origin is carried into another line through the origin making
an angle © with the first line.

When a value for A is chosen such that lAt==e # 1
and arg A or =0, then (3.2.2) would be

w=cerelf, (3.2.4)
This transformation is known as dilation or stretching. It
is bften classified by the relationship of @ to 1. That is,
if ©>1, the mapping is known as a magnification, and if @< 1
it is referred to as a contraction.

In this mapping the radius vector is magnified or con-
tracted by a ratio of @: 1. For example the region QéR(z)/;Z
and 0SI(z)€73 is magnified by the Mobius transformation

' W, = 22
and contracted by

w,=2/2
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as shown in figure 8.

It should be noted that the image is similar to the
given region. The invariant points of the dilation mappings
are the same as for rotation. In (3.2.4) some properties
should be observed. These are: (1) all straight lines through
the origin are transformed into themselves, (2) a half plane
on one side of a line through the origin is mapped into
itself, and (3) any circle with center at the origin is car-

ried into another circle with center at the origin.

” W, -plane
Tw) }/’[o,(o] Q’[‘*,‘ﬂj
I(z) Z - Plane //
R %WJ / T wy-plome
/é Rez) /é Rlw)
Ollao] pP(2,0) O(le,0] P'(4,0]
FIGURE 8
DILATION

When a value for A is chosen such thatlA\#l and
arg A# 0, the Mobius transformation takes the form given in
(3.2.2). This mapping can be imagined as a combination of
(3.2.3) and (3.2.4). Obviously, the invariant points are O
and'OO. It should be mentioned that all circles with center
at the origin are carried into other circles having the same
center. Each half line through the origin is mapped into

a half line making an angle © with the given line.
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Linear Transformation (3.3)

A lipear mapping is a Mobius transformation that is
a combination of the mappings discussed in (3.1) and (3.2).
The complex constant ¢ =0, while the other constants are any
complex numbers. The general form of the linear transfor-
mation is

w= Az +B , (3.3.1)
where A=a/d and B=b/d.

The linear transformation is the product of two
mappings. Let,

Z=Az and

Ww=27Z+3B,
then (3.3.1) is a rotation and/or dilation followed by a
translation. It is important to perform the mappings in the
indicated order, because these transformations are not com-
mutative.

Generally speaking, under a linear transformation the
image is similar to the given region. The invariant points
are oo and b/(d - a). The determination of the invariant
points will be described in 4.5.

Reciprocal Transformation (3.4)

The Mobius transformation
W=l/Z \ (301}01)
is obtained by letting a=d =0 and b=c. This mapping is

referred to as the reciprocal transformation. It should be
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mentioned that this particular mapping is an involution.
That is, repeated application of this transformation gives
the original region as an image. By using polar coordinates
in exponential form, (3.4.1) can be written as

w= 1/ relO or

i
w=ee ¢, (3-4-2)
where @=1/r and g= -6.
It can be seen that (3.4.2) is the product of two

consecutive transformations. The mappings are
ie

z' _ le (3.443a)
r
W::-Z-'. (BOLI'OBb)

The point z' is obtained by inversion with respect to the
unit circle. Geometrically speaking, 2z' 1s the point on the
half ray originating at the origin and passing through z

such that /zlo'zq = 1l. The final image or w is the conjugate
of z', which is the rotating of the point 2z' about the real
axis. This operation is often called reflection. The fol-
lowing figure shows the image of any point z under the

Mobius transformation w=1/z.

V4
|
Z
_1 | 1 R ( 'LZ
FIGURE 9

RECIPROCATION
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It should be noted that the points outside the unit
circle are carried to points inside the unit circle and
vice versa. Those points on the unit circle are mapped to
other points on the unit circle. The points 1 and -1 are
left invariant under this mapping.

To consider the point at infinity 1t should be
cbserved when z increases without bound, z' decreases
correspondingly. This is stated symbolically by

if z — o2, then z'—>0.

Therefore the image of z = == is O under the mapping w=1/z.
Similarly, when z=0, then w=o=,

Generally speaking, the reciprocal transformation
maps circles or straight lines into circles or straight lines.
This is shown by using the general equation for.a circle of
analytical geometry, that is,

A(xR+ y* )+ b, x+b,y+c=0. (3.4.4)
Let ﬁ

B=1 (b,- ib,) and since

)
=

the relationship (3.4.4) can be rewritten with these sub-
stitutions. The new general equation of a circle becomes

AzZ +Bz + Bz +C =0, (3.4.5)
wllefe A0 and C are real constants.

When C=0, (3.4.5) becomes the equation of a circle

that passes through the origin, z=0. When A=0, the general
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relationship reduces to a straight line.

The reciprocal mapping mavs the circle given by
(3.4.5) into another circle given by

Cww +Bw+Bw+ A=0, if C#0. : (3.4.6)
The above equation is obtained by substitution. If C=0,
the general circle maps into a straight line not through
the origin.

When A= 0 and C# 0, the eguation (3.4.5) would
represent straight lines not through the origin. Applying
w=1/z, the image would take the form

Cww +Bw+ Bw =0,
which are circles through the origin.

Finally, when A=0 and C=0, (3.4.5) becomes

Bz + Bz =0,
or straight lines through the origin. The reciprocal trans-
formation would transform these lines into

BWw +Bw=0,
which are obviously straight lines through the origin.

As an example of the preceeding discussion, consider
the lines x=1L,# 0 and y=L,+#0. The images of these lines
under the mapping (3.4.1) would be circles which are tangent
to the axes at the origin of the w-plane. If

' W=u-1v and z= x+1iy

then the mapping w =1/z would be
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u+-iv= _ 1 _ x - iy,
X1y x2+-y2

Therefore,
X __,u and -V _ 5 V.

X2+-y2 x2+y2
Also,
x2+-y2
hence,
u x and -V Ve
22 Z_ 2
u-+v u +v
So when x=1L, and y=1L,, then
U —_ L' and -V — Lzo (3.1+o7)
u2+ v2 u2+-v2

Upon completing the squares of the equations (3.4.7), the

following relationships develop. That is,
2 2

2 2 =0 | W+ viev =0
L,

w-1 Vv (LY W e Vo (L
2L 2T, 2T,) ~ \ 2L,

which are the images of the given 1ines.2 The given set of
lines and their images are shown in figure 10.

Mobius Transformation (3.5)

The Mobius tiransformation as defined in (3) can be

2Churchill, op. cit., p. 55.
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shown to be composed of the three transformations already
presented in this chapter. There are two cases according
as ¢c=0 or c¢c#0. In the first case,

w_ az+b
d

which reduces to

"(3.5.1)

W
= S2+

Q1g
Q{U

Obviously, (3.5.1) is a dilation and/or rotation followed by
a translation.
If ¢=0 the derivation is as follows,

W az+b
cz +d

_ alz+b/a
= —[z +d c]
l:z+b/a+d/c - d/_]

z +d/c

_ [1 b/a - dfc]
z+d/cC

ally _be - ad

c ac(z+d/c)

—a, bc - ad 1 (30502)
=ct (z d/c)'

n

c o2
The equation (3.5.2) should be considered as a product of
the simpler mappings. That is, let .
z, = z+d/c (translation) (3.5.2a)

z,=1/z, (reciprocation) | (3.5.2b)
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Z g=(DC_= ad) Z, (dilation and/or rotation) (3.5.2¢)

2
c

then
w=z3+a/c. (translation) (3.5.24)
The order of performing these mappings is important because

the elemcntary maprings are not commutative.

L,= —LZ‘ Y L,“é’ Li'Ji

L=~z

et B e e

FIGURE 10
RECIPROCATION



CHARTEZR IV
PROPERTILE OF LCBIUZ TRANZTOHMATIONG

In order to fully aprrecciate the usefulness of the
lobius transformation, its properties must be considered.
It has been established that this mapping transforms the
z-plane onto the w-plane in a one-to-one correspondence.

Group ({(L.1)

The set of Mobius transformations forms a group M.
It should be remembered that a group is an algebraic struc-
ture consisting of & set G of elements and a binary law of
combination (*) on G having the [following properties:
A) There exists an identity element Z in G, such
that a * E=L * g=a, where a 1s an element of G,
B) The operation * is associative in G. That is,
(a *b) *c=a * (b * c), where a, b and ¢ are
elements of G,
C) Every q in G has an inverse in G, denoted by q_l,
such that, gq * q-l: qQ * g= D
A subgroup of G is a subset of G that is also a group with
respect to the operation of G restricted to the subset, and

having the same identity clement.

The set M of elements used to define a transformatiocn

lMcCoy, op. cit., p. 167.



38
group will consist of all the transformations of the form

T(z)= w= az+b , where ad - bc#0.
cz+d

The functional notation is used as a convenience in verifying
the group properties. UWhen the argument of tﬁe function is
clearly understood, it is usually omitted. For example, in
the above relationship, it would ve satisfactory touuse

T _ az+ b,
T cz+d-

If R is another transformation of K, such that

w'=R(w),
then the definition for the binary operation, called multi-
plication is

wi= R[ 1(z}] = RT(2) =RT. (4.1.1)
It should be noted that RT is a single linear transformation
resulting from the application of two transformations. The
order of performance of the operation is from right to left.
In other words, first perform'the transformation T and then
operate with R on the image of T.

The identity element E of M is

T(z)=w=2 (4.1.2)

If three transformations of M are given, say R, S,
and T, then

R(ST) = (RS)T. (4.1.3)
The law of association is verified by direct substitution.

Finally, the inverse of T or T"'l is given by the
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transformation

T_l('z):—dw+b . (Lol.4)
CW -a

It has now been established that the set of all Mobius
transformations forms a group M.

There exists various subgroups of M. Obviougly, the
elementary transformations of rotation, dilation, aﬁd trans-
lation are subgroups of M. The transformations of the form
w=1/z do not form a subgroup of M because the set does not
contain the identity element. A special subgroup of M is
composed of all the Kobius transformations where the con-
stants have the relationship, ad-bc=1l. These transfor-
mations are said to be of normal form and are referred to
2

as the unimodular group.

Circle Preserving (4.2)

The straight line is sometimes considered to be a
special case of a circle. That is, a straight line is a
circle considered to have an infinite radius. It can then
be said that the Mobius transformation maps circles into

circles. This circle preserving vroperty can be established
from the fact that the three simple transformations that

compose the Mobius transformation carry circles and straight

2Constantin Caratheodory, Theory of Functions of a
Complex Variable (New York: Chelsea Publishing Company,
9514’ ’ p’ 50
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lines into circles and straight lines. To fully verify this
property it is necessary to develop the concept of cross
ratio.

Cross Ratio (4.3)

[

Consider four points A, B, C, and D on a given line L

as shown below,

A
Y

FIGURZ 11
LINE L
Suppose the line segment AB is divided by C to give the ratio
iC : CB, (4.2.1)
then divided by D to obtain the corresponding ratio,
AD : DB . (4.2.2)
Cross ratio, sometimes called anharmonic ratio, is the ratio

of (4.2.1) to (4.2.2). That is

— ——

(4C : CB) : (AD : DB),
The above relationship can also be written in the following
manner
AC ° DB (4.2.3)
AD <CB
Symbolically.(h.Z.B) is denoted by (AB,CD). Notice grouping

and order are essential. When the c¢ross ratio is to be

applied it is usually rewritten in the form
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(c-a) ° {(b-d), . (L.2.4)
(d=a) e {b=c)

where the small letters are the coordinates of the points.

The four points given in figure 11 have twenty-four
permutations, that is, different arrangements: Therefore,
there would be twenty-four cross ratios coi four poipts.

Some of the permutations have the same cross ratio Qalues.
In fact, there are only six distinct values of the cross
ratios. For example, all of the following have the same
value: .

(AB,CD); (BA,DC); (CD,AB); (DC,B4).

Relationship (4.2.3) is the ratio of products of line
segments. That is, the cross ratioc is the ratio of product
AC° DB to the product AD - CB. Since there exists four points,
these determine six different line segments. The line seg-
ments can be paired as above to form the products

AB = CD; AC «DB; 4D »BC . (4.2.5)
The cross ratio of four points now becomes the ratio of two
products {(4.2.5) along with a negative sign. If the values
of (4.2.5) are r, s, and t respectively, then the six dis-

tinct cross ratios are

- T - S -t

S t r
(L.2.6)

- S -t -

r S t

The above ratios are not independent but rather in recip-

rocal pairs and the product of each row it -1. Also,
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r+s+t=0. That is,

r+s+t=K§
iB

It can now be shown that if -r/s=K, then 1 - K is also a

cross ratio. Hence,

L _Lt_8_9
S S S
-rr_x_1
s s
_t=1,r
S S
__'E_z__l - K - (l+0207)
S

If —r/s::K, then (K - l)/K is another cross ratio. This
relationship is developed from

(-r/s)(~s/t)(~-s/r) -1. (4o2.8)
The value for -s/t in (4.2.7) becomes s/(s+r), therefore
(4.2.8) can be rewritten as

' (-r/s) [s/( s+r]( t/r)= -1

) -t/r=(s+r)/r

-t/r=s/r+1
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-t/r=-1/K+1
-t/r=(K - 1)/K (4.2.9)
The reciprocals for (4.2.7) and (4.2.9) are easily
found. Therefore if -r/s==K, then the cross ratios of
(L.2.5) can be represented as:
1 kel
1-K

(4.2.10)
1-K

== =

K
K-1

The cross ratios under consideration have been for
distinct finite points. If the value of one of the points
becomes infinite the cross ratio (4.2.3) reduces to a simple

ratio. For example, let D become infinite, then the cross

ratio
AC : AD
CB DB
becomes
.Jgi_: -1
CB

since AD and DB are equal in magnitude but opposite in
direction. Thus, (AB, C oo ) becomes AC : BC.

From (4.2.4) it can be seen that a line segment is
represented as. the difference of two coordinates. If two
images of a Mobius transformation are w{ and w;, then the
line segment used in the cross ratio would be wi; - wj.

Obviously,
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W, = W._ azi+ b az; + b

czi-+ d czy + d

il

acz¢zj +adzi+ bevs +bd ~(aczi z; + adz,; +bez; +bd)
(cz+djlcay+ d)

il

__acgy z;+adzitbezotbd —acz; 23 ~ada) -bcz., -bd
(Cm“}' K.A.)(CZJ+ O.)

adz;+ beczj~ adz; - vCai
(cz;+d)lczy+ )

1)

adziy - adz; - bezi+ besd
{cz;+ a)(czy+ d)

— ad(ze - 2s)

ZJ - ZJ)
(ch+

)

C(

- helzg
d, (czy+

QJ

ad - be

Le2.,11
=Toar+ SleaywdT (&~ %) ( )

Let i=3, j=1 and i=2, j=4 in (4.2.11) and then form the
rroduct. Thus,
(wy = wy ) (wy- w;)=Q(:~;3— z,) (2,= 24), (L.2.12)

where

C=(ad-bc)? .
(cz,+d) (cz,+ d) (czz+ d) (cz,+ d)

Since Q is a symmetrical relationship with respect to
2y , where (K=1,2,3,4), other values for i and j will
obtain the same Q. For example, let i= 4, j=1 and i=2, j= 3,
then form the product. Thus
(w4_- w,)(wz— Wy )= Q2o -2, ) (2,- 25). (L.2.13)
If the values for zg and w,, where (#=1,2,3,4) are finite

and distinct, the quotient ol (4.2.12) and (4.2.13) is
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) (Le2.14)

2= %4
2~ Z3)

s

I\

(ws=w, ) (wp= vie) _ {(34= 2z,
(wq"' W:)(Wz- Wg) (24" Z,)(

ISR IN

Each side of the relationship (4.2.1L) 1s the cross.
ratio of four finite distinct points. The-right hand side
can be designated by -

(z,,2,525,24). . (4.2.15)
Again there are twenty-four cross ratios of the four points,
but there exists only six distinct values. That is, all of
the following have the same value:

(z,,zz;z3,z4), (23,24;2,,z2), (zz,z,;z+,;;), (24,23;22,2,)_
If (4.2.14) exists then this relationship asserts that under
a Mobius transformation the cross ratio of four distinct
finite points 1s invariant il these points map into four
distinct finite points. The proof of the invariance property
is obtained by substituting w;= az+ b , as ((=1,2,3,4) in
(4.2.14) and reducing both sidescg%+£§e equation to identical
expressions.

If (z(,22;%5,% ) = N, then all the possible cross
ratio values can be obtained with respect to A as in (4.2.10).
The values are:

(21:22523324)=>‘

(2, ,25524,25) = l/}\,

(2, ,2532,,24) = 1 =2

(z,,25324,22) = 1/(1 -A)

(2, ,24323,%2) = A/(A-1)

(2) ,24325,25) = (A= 1)/

(4.2.16)
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The values for ) are.usually complex numbers as
seen from the definition, hence the cross ratios are points
on the complex plane. If 7 corresponds to circles in the
complex plane, then the values for the various ratios also
correspond to circles. If 7\ 1s the points in a region
bounded by circles, thien the other ratios are similarly
described.3

The definition of cross ratio can be extended to
include infinite points. 1f z,=<==, the ratio is denoted by
(00,2 ,525,24). "hen limit and continuity definitions are

used the value of A is obtained as shoan below.

A= limit (z3- 2, ) (2.~ Za)

z—>e° (24- 2,)(2,- 23)
=limit (z5/2, = 1)(z,- Z4)
z,—>° (24/2, =~ l)(z,- zsf

-_—limit (O - l)(Zz— Zq,.)
zj—= (0 - 1)(z,- 25)

—Zp= Zg - (4-2017)
Zl— Z3

In a similar manner the value for A can be obtained for .
Zp, Zz Or. Zg4 as these values approach infinity. Therefore,
the cross ratio of four distinct points is invariant under
a Mobius transformation.

The cross ratio can be expressed as a rloblus trans-'

formation, that is

3Townsend, op. cit., pp. 180-2.

e =
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2=AZI+B .
Cz,+ D’

where, A= z,-z,, B= 23(2,-24), C=23- 25, and D=z (25~ 3).
It can now be seen that three distinct voints determine one
and only one Mobius transformation, because the fourth point
2, assumes an arbitrary value in such a way that the cross
ratio equals'k.l Hence, for the cross ratio of foﬁf roints,
(z,,zl;z3,z¢), to have a unique value at least three of the
four points must be distinct.

If one of the points z,, z, or zz coincides with zg4,
the values for A becomne x‘=oo,)\z= 0, >L5= 1, respectively,
For a given cross ratio ) , there exists a unique fourth
point determined by three points, it is then easily verified
that

(1,e0; O,A)= X. (Le2.18)
The three points 1, @, and 0 all lie on the real axis. If
2 is a real number, the fourth noint also lies on the real
axis. It can now be said that four points z,, z,, 2z and z4
lie on the same circle Cx*, if and only if the value of the
cross ratio (z,,%,;25,24) is real.[P

It was mentioned earlier that as z,—> 2; the cross
ratio approached zero, consequently, Wy —r Vi, Similarly as

z,—> 2%, and z,— 2z, the images of these points as obtained

from the cross ratio are w, and wq respectively.

ACaratheodory, op. cit., p. 30.
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If C4 and Cy are circles on the z-plane and w-plane
respectively, then there exists a unicue Mobius transfor-
mation that will map Cz onto C,. The mapping is easily
obtained by choosing any three roints on Cg and any three
points on C,, then applying the cross ratio. Vhen the
cross ratio is solved for w, the desired transformation is

obtained.5

Conformality (L.4)

Another important property to be considered in this
chapter is that the Motius transformation is a conformal
mapping. Simply, a mapping is said to be conformal if it
preserves angles and se¢nse of direction. It seems obvious
that this would be a property of the riobius transformations
since rotation, translation, dilation and reciprocation are
conformal.

To prove that the ilobius transformation is a con=-
formal mapping it is necessary to use the following theorem,
at each point where a function f(z) is analytic and f'(z)% 0,
the mapping w=1f(z) is conformal.

The proof is made in two steps. First, it is necessary
to show the Mobius transformation 1s an analytic function,

and then show the derivative is not ecual to zero.

Churchill, op. cit., p. 60.

6Ibid., p. 136.
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One way to show that a function is analytic is to
derive the derivative directly from the definition. If the
derivative exists in a two dimensional oren region, then the
function is said to be annivtic at =11l noints-of the region.
The definition of a derivative is

£1(z)=21imit f(zgnz) -~ f(3.) , ~here Az=2, -z.
Az—0 A7

The derivative of the sobius transiormation then becomes

[;A(z AT )+b]_[{»‘:.fzo+b
f1(z)= linit [c{zxaz)+ o C Zot+ d
Az—0 Az

=limit[a(zran)+ bl [esati] ~Taza 0]l c(ztaz) +d]
az—0 Azlc(z.toz) +] [/: Ze+d ]

_ lirit[azetroas +51 0+ - nze+r][ca +caz + d]
= Aaz—0 az{c(zo+azs)+ dJfcz+ d)
— Llimit aczf—‘— "f"T‘,A + b+ i, +adAz + bd
AZ—"O A [C u°+Au/+ u][buo CJ

acz + GCU AZF+ED.,d+bez.+becAZ+ D
azfc(z, 44835+ ][ ceafd]

.. 2 \ , .
= limit acaf42C2,4% + buZe+ado4adAz+ bd
Az—20 Azfcizgthdz)+ dj[cz,+d_]
9]
-ac¢zs— 2cz,Az - adg, - becug,- bcaz - bd

Az[c( z,,-f-AZ)-f— dJlczeatd]

= limit adAz - bcaw
Az—0 Az[clze+rAz) + d][czet+d]

= limit Az{ad - hc)
bz2=0 Az[c(zotaz) +df[ cze+a]

=limit ad - be
Az? 0 [c (Zot+AZ )+ d]Lc z;f-d]

£f1(z) — ad - be
(cz-s‘-d)2
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When Az =0, then z=2,. Therefore,

£1(z) = ﬂ_—_‘;j?

(cz+d
The derivative sxists at all points.except z=-d/c,
whers the function is undefined. hence, the transformation
is analytic except at the undefined point. Also the deriv-
ative 1s not eaual to zero because of the restriction
ab -bc70 included in the definition of the iioblus trans-
formation.

Invariant Points (4.5)

The final property to be considered is thne coinci-
dence of the points of the z-plane and the w-plane under
the Mobius transformation. The fixed points occur when

W= 2
hence,

Z.az+b
cz4+d

cz2+ dz =az +b

c22+dz -az -b=0

czZ-P(d -a)z -b=0. (L.5.1)
It is immediately observed that there exists at most, two
roots of (4.5.1). By applying the quadratic formula these

two roots &, ﬁz are obtained as

E - a=d+D (4L.5.2a)
' 2c

E:i-_d_-_'ﬁ (4.5.2b)
N <c
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1
where D==[(d-a)2+.hbé]3. “hen D=0 the two roots coincide.
hen ¢ =0 and as d there exists one finite root and an

infinite root. The finite root f , becomes

£= g_.’ ’ (Ll-o5-3)
-a

as mentioned in (3.3). In the case of pure translapion,
where ¢=0 and a=d, the invariant points coincide l-"it
infinity. This coincidence is usually r<ferred to as the
double root at infinity.

Therefore, every i.obius transformation, except the
identity, has two and only two invariant points. Hence,
if a Mobius transformation has more than two fixed points

the mapping must be the identity.



CHARTER V
CLASSIFICATION OF LIOBIUS TRaNSFOMMATIONS

The number of distinct invariant vpoints and the behav-
ior of the Mobius transformation with respect to these points
provides a useful basis for classification.

Introduction (5.1)

Any Mobius transformation can be classified to be
loxodromic or parabolic according to the invariant points
being distinct or coincident.

Consider the case where the mapning has two finite

fixed points f';‘ and fz, such that E,q’:flo Under the Mobius

transformation,
4
E———EL (5.1.1)

G(z) =’}= — Ez.,
'glis mapped to the origin of thegyﬁﬂane and Elis carried
to infinity. Therefore, the family of circles Y7(6), (2.4.8),
through g' and Elis mapped into the family of straight lines
through the origin. The family of circles _ﬂ_(ﬁ, Ez), (2.3.5),
is transformed into the family of concentric circles with
the origin as the center. If these families lie in the
z-plane, then the corresponding Ta2uily lies in the ;L-plane.

Similarly, if the families of circles are imagined

lHille, op. cit., p. 5%2.
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to be in the w-plane, then their corresponding families

would lie in the W-plane and

S W= (5.1.2)

The relationship for -\, written in functional notation, is

W= CTG l(?). (5.1.3)

Since (5.1.3) has O and oo as invariant poin%s, the
mapping is a rotation and/or dilution as defined in (3.2).
Thus, relation (5.1.3) reduces to the simpler form

W= K},, (5.1.4)
where K is a given complex number, commonly called the
multiplier. Consequently, (5.l1l.4) can be written in a

normal form

f,:gt 2 :Z* (5.1.5)

The value for K is obtained by use of the cross ratio.
Let 6' , EZ and == be carried into Z , é and a/c respect-
ively. Then the cross ratio

(V\T -W ) (Wz—W'g ) = (Z —Zl)(Zz"Zg)
(w —wz)(w,-wz) "~ (2 -2,){z,-23)

reduces to

(w =w, ) (wo=wy) (2 -2,) (5.1.6)
(w ~w, ) (wy =wz) (2 -22)

since Zz =0, Upon substitution of the known constants

(5.i.6) becomes

(w - E, )(E, -a/c)_z - B,
s £ g -a/cl "z - f,




XZ?:*@ = %_) (E__%J (5.1.7)

The above relationshin takes the norial form

- E 2%, (5.1.8)
W - E}_ zZ - Z;L :
whereK_____a-cg .

It should be noted that z=-d/c and w=<> can be
used for points of the cross ratio, instead of z= c© and

w=a/c. In this case = SHCEa .
d+Ccg,

The value of K determines the character of the trans-
formation. The importance of using K is shown when writing
powers of K. That is, if (5.1.8) is to be repeated n times,

the mapping is written

v —:5 z .

W - EL Z Ez-

The loxodromic transformations are classified in
terms of K. By writing K with a modulus A () 0O) and
amplitude ©, the multiplier K becomes

K= 4el6,

Hyverbolic Transformation (5.2)

A transformation is called 2 hyperbolic transformation
when K=4, 0<A%#1, and 6=0. Thus, (5.1.4) reduces to

VVE:AZ%. (5.2.1)
The above relationship is a dilation from the origin as

discussed in (3.2).



It should be remembered that: 1) a straight line
through the origin is transformec into itself, 2) the half
plane on one side of a line through the origin is mapped
into itself, 3) a circle with center at the origin (the
family of circles orthoconal to the family of fixed lines
through the origin) is transforimed into some other member
of the family, and /) the voints O and oo are inverse
points with respect to any circle with center at the origin.

The hyperbolic transformation has the following
rroperties: 1) any circle through the fixed points is car-
ried into itself, 2) the interior of a circle through the
fixed noints is transformed into itselfl, 3) any circle
orthogonal to the circles through the fixed points is
mapped into some other circle orthogonal to the family of
circles through the fixed points, and 4) the fixed points
are inverse points with rcespect to each circle of (3).

An example of a hypverholic [Hobius transformation is

W—=32 =L . (5.2.2)

— L

~z+3
The fixed points ;;, ﬁ; are 2 and -2. That is, when
w=2, then

Z =37 =l
-2+ 3

-z22 +32 =3z ~4
22 —L, =0

therefore £, ﬁE; are 2 and -2 respectively.
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The calculation for K is easily obtained since,

The multiplier is a positive real nusber and therefore is
classified as a hyberbolic transiormation.
To 1llustrate the hyperbolic transformation, or in fact

~ a

any transformation that has two Tinite ITixed roints, it is

convenient to use four different planes. Let the planes be
z,;; ,2 W and w. The region to bz translormed is represented
in the z-plane. The best =xumprles for the hyperbolic trans-
formations are elements of families of circles 7”(@) and
NE,, Ez_). he circles C, and C, ice elements of Y'(O)

and Cz and C, are members of {2( s gl). The region of

!

the z-plane 1s shown .below.

c, L(z)

-

(3

12 3 _\ R@)

FIGURY 1

z->LailL

N
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Thé circles of the z-plane arc now transformed into
the Ty—plane by transformation {(5.1.1). It should bc remem=-
bercd that this mapping covries E; to 0 and E; to eo.
Thus, it is readily secn that the Tanily Y (9) is transformed
in the family of fixed lines pansing tarcugh the origin.
The family of circlesAIl('E’,'Ez) raps into the family of

r

concentric circles with the centors at tue origin. The
following figure shows the four circles of the z-plane

after the mapping (5.2.3).

I(z)

G

. R(z)

FIGUR=Z 13
?—PL%NE
In the hyperbolic transformation the rnultiplier is a
positive real number, so the image of the W plane is obtained
from the 7}-plane by a dilation whose factor is K: 1. Thus,
the transformation under consideration becomes
W:: 5?. (5.2.3)
This mapping carries straight lines through the origin into

themselves. Concentric circles with center at the origin go
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into other circles with center at the origin. The image of

the'hf-plane under (5.2.3) is chown in figure 14.

Iz
G Cq
C
> £@)
Cz
F‘T(NFUL?-A lL’!,

The final image nlane w is obtained from transfor-
mation (5.1.2). Transformation (5.1.2) maps O and <@ into
EE, and 5& respectively. Obviously, the straight lines
through the origin are carried into the original circles
1ﬂ(9). The concentric circles about the origin are mapped
into elements of the L) E', g, ) family. The final image
is shown below in the w-plane. '

I

(s
¢

R(z)

_

Cz

FIGURL 15
w=-PLANE
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All Mobius transformations have been graphically
represented as a region in one plane and its image in
another. Even though two planes nave becn used, it is
often convenient to think of the mapoping as effected in
one plane. In this manner it is possible to find the path
which any particular z-point makes in passing tc its cor-
responding image or w-point. The following figure shows
the hyperbolic transformation of Y'(8) and jl('g,, Ez)°
The regions are transformed in tne direction indicated by
the arrows. The arrows indicate what is often called

lines of flow.

A

N
S
\\\ ;\\Q\(\\\\\

FIGURZ 16

HYPERBOLIC TRaKSFORMATION
It should be mentioned that E:is sometimes thought of as a
repulsive fixed point, while ﬁ; ic considered to be an

attracting point.
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Elliptic Transformation (5.3)

When A =1 and 6%#2nw, where n is any integer, the
multiplier becomes
K=eig.

Thus the Mobius trensformation becomes

W - %_%ig z - €, . © (5.3.1)
2 .

W - z—ﬁL

By changing the variables relationship (5.1.4) becomes

w-_-elgzj,, (5.3.2)
which 1is a rotation about the origin of tie ép-plane. The
mapping written in the form (5.3.1) is krown as an elliptic
transformation. In this uwopeing tie role of straisght lines
and circles are just the opposite of th:: hyperbolic trans-
formation.

The important properties of the rotation mapping as
discussed in (3.2) are: 1) a circle with its center at the
origin is mapped into itself, 2) the interior of the circles
in (1) are transformed into themselves, 3) the points O andec
are inverse with respect to sach fixed circle, 4) a line
through the origin is transformed into a line through the
origin that makes an angle © with the first.

The elliptic transformation has the following prop-
erties: 1) an arc of a circle joining the fixed points is

transformed into an arc of a circle making an angle © with

the first arc, 2) each circle of QU{ ¥, EL) is carried
’
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into itself, 3) the interior -of each circle of () ( E Ez)
is mapped into itself, and 4) the fixed points are inverse
points with respect to the circles of () ( 5:’,;; ).

The Mobius transiormation

w o (2+V2+V2 i)z+ ) -2¥2 ~240 i (5.3.3)
(2 N7 -2 1)z (N2 +2+21)
2 e

is an elliptic transformation. Zettinz (5.3.3) equal to z,
the fixed points Zi and ;;’are 2 and -2 respectively.
Also the multiplier takes the value

K-Y2 2 i,
2

which is a pure rotation of 45° about the origin.

By using the same circles as in the hyperbolic
transformation, it is possible to observe the motions under
an elliptic transformation. The transformation (5.1.1)
maps the regions into the same imagres as showm in figure 12.
Transformation (5.1.4) becomes a rotation and the family of
fixed lines is rotated about the origin through 45°, The
family of orthogonal circles is left invariant. It can now
be seen that in this particular marpings the roles of lines
and circles are interchanged in relation to their roles in
the hyperbolic transformation.

The transformation (5.1.2) maos O aﬁd <o back into
the fixed points. It should be emphasized that the elliptic

transformation transforms the family of circles orthogonal
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to the family of circles turougi the fixed points into
itself and the elements of the family Y'(9) permute among
themselves.

The character of the transfornation 1s shown in the
following figure. The shaded regions are transferred in

the direction shown by the flow of arrows. Notice ‘that

the fixed points are neither revulsive ncr attractive.

FIGURE 17

ELLIPTIC TRANSFOR:ATION
The elliptic transformations are the only Mobius
transformations that can be periodic. It © is commensurable
with 277, then there will exist integers m and n, such that
no=2m77. Thérefore, when a transformation is applied n
timeé the multiplier becomes K= ezmﬂ_i:;l, and obviously
the transformation takes each point into itself. The trans-

formation is said to be of period n. For example if =77,



then the period of the transformation is 2.

Loxodromic Transformation (5.4)

The loxcdromic transformation is & combination of
(5.2) and (5.3). That is, %he maitines is a Lobius trans-
formation with twe distinct invarizat points that occur
when the multiplier K has OLA#1 and #2207 . Thus the
transformation takes the fora:

W:Aeig}, (5-/4--1)
The relationship (5.4.1) can be taouzht of as twe successive
mappinges. That Iis,

leA/é,- . (5.[;,.2)

W=e "” (5.4.3)
The first transformation 1s a stretching from the origin,
Then a rotation about the origin occurs on the image of
(5.4.2). Obviously, this mapvine is a combination of the
hyperbolic and elliptic trenzformations.

The images in "W in relation to ?} under the mapping
(5.4.1) will be: 1) the family of concentric circles about
the origin are carried into other circles ol the same family,
2) each line through the origin will be transformed into a
line through the origin mzking an angle 6 with the first line.

It caﬁlthen be seen that the loxodromic transforma-
tion takes each circular arc joining the fixed voints and
carries it into another such arc making angle © with the

first. The circles orthogonal to the circles through the
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fixed points are permuted among themselves,.

The loxodroric iapring has no fixed circles. There

iy

il )

is one exception that is sometilises clussified as an improper

hyperbolic.2

The exception occurs viien =T and any
circular arc joining the fixed roints is transformed into
a circular arc making an angle © with the firzst arc. Thus

the circle formed by two arcs through the fixed points is

W

carried into itself except that the interior 1is mapped to
the exterior. The loxodromic trancformation does have as
fixed curves certain logrithmnic spirals.3 The spirals are
sormmetimes referred to as loxodromes. A loxodrome is a
navigational term used to denote a ship's course which
cuts successive meridians at a constant angle.4 It is
from this usage that the transformation under consideration
receives its name.

A combination of figures 16 and 17 can be imagined
as the loxodromic transformation.

The linear transformation as discussed in (3.3) is

a special case of the loxodromic transformation. A mapping,

w= % z+% ) (5.4.4)

2 , s
Hans Schwerdtfeger, Geometry of Cownlex Numbers

(Toronto: University of Toronto :ress, 1G02), ». &5.

3Ibid., p. 73.

4Townsend, op. cit., p. 137.
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has the invariant points f'aﬁd infinity, where

E=aos
The relationship (5.4.4) can be written in normal form.
That is, |

w -E=K(z -E), (5.4.5)
where K=a/d. )

The variables of (5.4.5) can be changed to

G(z)==z};=z -E (5.4.6)
G(W)S =W -;f (5.4.7)

so that the relationship can be rewritten as
”VV3=I{§5. (5.4.8)

Fal
Ao

Now that the special case of the loxodromic transformation ’
can be written in the form (5.4.&), it can be classified

into a particular type demendinz con the value of the complex
number K. The classificaticn is the same as described for
Mobius transformations with two finite roots. The character-
istics of this mapping are essentially the same as discussed

in (3.2).

Parabolic (5.5)

When the fixed points coincide, the :iiobius transfor-
mation is considered to be parabolic. If c# 0, the fixed
point is

E_.:. a -d. (5.5.1)
2C

Obviously, the multiplier K is equal to 1. To obtain the
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normal form it is necessary to set ur the cross ratio and
. ) / 5 . .
map oo, g’ and -d/c irnto a/c, g’, and e respectively. Since
z, and wzy become infinite in the crocs ratio, the ratio

simplifies to

W= _ Z3=%p (5.5.2)
W =Wz 2 —Zg

By substituting the constants, (5.5.2) becomes

w -a/c.-d/c =€ .
W - E z - E
Subtract 1 from both sides, thus

w —a/c -w+E _ -i/c -B 1
w - Ej 2 =€

f:g/cz ~0/c éf?’ 1. (5.5.3)

Since fa-(a - d)/2c,

E-a/c=-{a Ecd) _ %

g- a/c =-(at+d)/2c . (5.504)
Likewise,

-d/c —f= -(a+d)/2c. (5.5.5)

The relationship (5.5.3) now becones,

-(a+d)/2¢ — -(a+ d)/2c, which simplifies to
Wo- g’ 7 —ZS
- 1 4 _2c . (5.5.6)

1
W —E .z E: a+d

Sometimes the value c/(a - ch) ic used az an equivalent form

of 2¢c/(a+d). The variables can be chanjed by letting,

3

}:l/(z -E) (5.5.7)



W=1/(w -%) . (5.5.8)

B = 2¢/(a+d) (5.5.9)
With the above change in variasbles (5.5.0) can be written as

W—-—%#—B : (5.5.10)

The relationshivo (5.5.10) is & translation. The
following facts about translatlion sinould be recalled:from
(3.1). That is, 1) The eatire plane is transformed parallel
to a vector B, 2) any line parallsl to vector B is carried
into itself, and 3) a line nct parailel to vector B is
carried into a line naraliel to the given line.

To fully apprecizte the perabolic transformation,
it is helpful to study the transforwmaticns that constitute
(5.5.10) one at a time. Concsider the families of circles
through 6?. In particular, the Iamily of circles with a
common tengent at if. The transformation (5.5.7) is a
translation followed by a reciprocation mapping as discussed
in (3.3). Therefore, ;f is translated to the origin and
then to its inverse point, @ . fimilarly, all of the circles
through ;f are mapped into a system of lines that intersect
at «©. Hence, the imaze of 2z in 7%—is a system of parallel
lines.

The transformation (5.5.10) carries the family of
parallel lines into itself, since W and 2% are mapped

linearly on each other bty B. In other words, the elenments

permute among themselves. Finally, mapping (5.5.8) carries
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the family of parallel lines bacik into the family of tuagent
circles.

A parabolic trunsformation nas the following proper-
ties that should be observed: 1) a circle through the fixed
point is transformed into a tangent circle through the fixed
noint, 2) each family of circles tancent to Ef is carried
into itself, and 3) the interior of each transformed circle
is manped into itself.

The following figure shows tne lines of flow of the
varabolic transformation on the family of circles with a
common tangent. This confizuration ie often called the

degenerate Stiener circles.?

“/£’<;/iﬁjh% Zs /

; Y %
i /

v J

I'IGURE 18

Translation is considered to be a special case of the

parabolic transformation, since its fixed points coincide at

5

Ahlfors, op. cit., p. 34.
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infirity.

It has now been e¢stablished that cvery robius trans-

»ls

formation can be classified to be ~arabolic or loxodrowmic

(

as to whether its fixed roirtw clivciis o ot

~

Loxodromic Transforustiza Treur (5.0

The set of all Iciodromic nobius vransformations
having the same invariant roivts lor. a sroup as defined in
(L.1). The loxodromic trans orwaes. . i rave three essential
paremeters--K, any non-zero Couplex nnrLIr, ‘5' and ﬁz. , the
fixed points. Each transformcztion <f the set can be denoted
by

T(X: €, s E ). (5.6.1)

} Z
Consider any other element of tho sot, say
gl ? Fz)

then the operational law of combination is deflined as
\ mi. ™o .
El , El o Dbt gl s 52- )° T(L\ &, g
The identity element would be

M1 E,, B, (5.6.3)

end the inverse element hags the form

(K B, B (5.

The elements of the set ars associative gince the fiel

L)

C>

of

[oF

complex numbers is associzative with respect to multinlication.
Therefore, the set of loxodrowmic transformations forms group,

GL(K: €, , E,). (5.6.5)
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This group car be considered a one-parameter group since

'g' and 'gz are fixed. It should also be mentioned that
~
- . N O m : o >
(5.6.5) is a subgroun of .. Ihe loyodrcmic transformation

is a generalization of thec rotztion and dilation transfor-

4

mations discussed ia (3.

48]

.
The sets of hyperbolic and eiliptic transformations
with fixed points g and g, form subsroups of GL( ;‘ ) .

The hyperbolic trronsfor.iitbion is 2 genceralization of the

wure dilation transformations, and the elliptic transfor-
mation is a generalizatvion of the »ure rotation transflor-

mations.

Farabolic Transformation Group (5.7)

The set of all parabolic transformations with fixed
point 3§ form a group dencted by

Grie<, ¢ ), (5.7.1)
where &« is any complex number th'g is the fixed point.
“hen T(e<, -g ) and T( 75 , ? ) are anv two elements of
(5.7.1), the binary operation of combination is defined as

(=, VTS5, E ] TL+p , & ). (5.7.2)
Since addition 1s associative in the field of complex numbers,
the associative law of combination is applicable in this
group. The identity is represented by

(1, € ) (5.7.3)

S4ille, op. cit.

3
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and the inverse elcmzant oi any =lement T(c(,"é’) would be
T(- ¢, 7§). (5.7.4)
Thus, the group procerties hnve Leen ecibudbliched. It should
also be menticned that thic srour is 1 generalization of tlie
translation transformation as pressnted in (3.1).

Commutative Property (5..)

Theorem 5.8 - Two licbius transformations commute if

they have the sesume fixed points.

The proof of the above thnecorem can be established by con-

cidering the general cases of the parabolic and loxodromic

transformations. An alternative proof is presented below.
Let two liobius transformations be

w= 2% Db, (5.8.1)
cz+d
where ad - bc¥ 0, and

"Yﬂr— AZ+B) (5.8.2)
Cz+ D

where AD - BC#0. Given (5.5.1) and (5.5.2), then the fol-

lowing relations must exist if well= 'Jeyr,
al+ bC =Aa+ Bc (5.8.34)
aB+ bD = Ab+ Bd (5.8.3b)
cA+dC= Ca+ Dc (5.8.3¢)
CB'kdb=;Cb4‘Dd. (5.8.3d)

The equations used to obtain the invariant points

of (5.8.1) and (5.8.2) are
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0O .and (5.8.4)
0 (5.8.5)

respectively.7 If these two equations have the same roots

o’

czf+ (d -~ a)z -

CZ2+ (D - A)z = I

1

Il

14
\

then a relationship betwecn (5.8.4) and (5.8.5) can be

-l
P

established using the quadratic formula. That is,

c_d=-a_b © (5.8.6)
c D -a~3T°

Equations (5.8.3a) and (5.8.3d) reduce to bl =3Bc.
This relationship can be exoressed in the form

b

B

(5.8.7)

olo
o

4

By use of elementary alpsbraic operaivions, equations (5.8.3b)

-

and (5.8.3c) have the followin, rezlotionships

B D - A
_g__ d - 3 (5.8.9)
CT D -4

respectively. It now becomes obvious thist the equations of
(5.8.3) can be related by the expression

(5.8.10)

Il

U [oF
|

I
;b <&
i
of o

oo

Therefore, two lobius transformations commute if they have
the same fixed roints.
;ary condition when con-

25 3

Theorem 5.8 is also a nece

Q)]

>

sidering the parabolic transforamction. The .roof of the

Olga Taussky and John Todd, "Somwutiny Bilinea
Tran sformaulons and gauwlccs“ (m1~r;l U the shiin

)

(.

Academy of Fcience, 46:374, 1,50.
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sity is obtainad by Ilir=ct calcula’ion. That is

]

ece:

)

s

U

W
=
jan

vonoany two paratolic vraacforniitions, T, (e<,E )
T (B, §) such that E, # E, th

m o om o
-|l2$ Lz

i~

P .

a

Theoram 5.8 is only = cicet cowndition for Mobius

transformations of the low v . The theorem 1is

not the necessity becausc thiore izt 2 set of invoelutionary
transformations whoce involuclen coaes the orcer of the
fixed noiats. The involulionary se¢t with two [ixed voints E:

and g, and the set of iobius trwnsiormations, (X:5,E )

are commutative.



CiigPTon VI

SUsicitY

The Mmobius transformation is a very important one-
to-one conformal manning of the corn.lex plane onto itself.
The set of all dobius transformations is an abstract group
and certain subsets of tne mappins Torm sutgroups. Since
the mapping transforms circles and straisht lines into

circles and straight lines, it is considered to be a circle

Ut

preserving transfor-:ation. That i1s, a itransformation can

.11 map a given

L.

be obtained by use of thz cross ratic that w

N

circle into another specified circle. It should be remem-
bered that straight lines arc considered to be a special
case of the circle. '

Those points that rowmain fixed under a Mobius trans-
formation are used as a vasis for classification. The set
of all mearvpings of one particular class forms a commutative
group. - ithin each mroup of classified :obius transforma-
tion there exists certain subgroups that ars generalizations
of the simple transforumations that constitute the relation-
ship defined by the Liobius transformation.

The Motius transforuation czan be very beneficial to

the investigation of regions of the complex rlane. Other

aprilcations of this mapping are found in projective



geometry and physical science.

The topic of iobius transiormations can be ilnves-
tigated further. For exemple, the maynins can be lzveloved
in an analogous manner usin’; epherical coordinates and the
sphnere, rather that points and t.i:z complex plane. Also
a similar relationship in the area of functions of f:ore
than one complex variable might be developed. Finally, an

investigation of all the aprlications of the i.obius trans-

Ba

(S

formation is a possible area to consider.
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