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CHAPTER I
THE PROBLEM AND DEFINITIONS OF THE TERMS USED
Consistency i1a one of the most desirable properties
of any axiomatic system. The relative consistency of
plane Hyperbolic geometry 1s established by a comparative
proof. A proof showing Hyperbollec geometry to be consistent
was developed by Henri Poinoand.~ This proof will be used

i1n this paper.

I. THE PROBLEM

Statement of the problem., The purpose of this study

is to show that the set of axioms nf plane Hyperbolic
geometry are as consistent as the set of axioms of plane
Euclidean geometry.

Importance of the study. A baslc pattern 1s followed

in establishing an axlomatic system. In every axlomatioc
system there 1s a set of undeflned terms and a set of un-
defined relations between the undefined terms., It 1s
impossible to deflne every term without being cyclic.
That is, defining a word in terms of other words, which
in turn have definitions whlch use the original word

lEVes and. Newsom, An Introduction to the Foundations
and Fundamental Concepts of Mathematlos, (New York: Holt,
Rinehart and winston, 1965), 101,




being defined. All other technical terms are defined
using the undefined terms. A set of statements about the
undefined térms, teohnlcal terms, and the undefined re-
latione is aooépted wlithout proof, These statements are
called the axioms of the system, Statements which may be
derived from the set of axlioms by a system of logic such
such as Olassical (Aristotelian) logic are called theorems.
In this study, the system_ of logic used is Aristotelian
logic.
A fundamental property of any axlomatlic system 1is

that of coneistency. Without this property, contradictory

statements may be derived from the set of axioms. The

set of axioms would then be somewhat useless, at least
for purposes of application, Therefore, 1% is of impor-
tance to demonstrate that the system which establishes
plane Hyperbolioc geometry 1s consistent,

II. A DISCUSSION ON CONSISTENCY

Oonsistency. A set of axioms is said to be con-

sistent if and only if there are no contradiotions among
the axioms and theorems which can be derived from the
axioms. That 1s, there exists no statement and i1ts nega-
tion that are both true. Not all axiomatic systems may
be proved to be consistent by directly showing that there
are no contradictions. If no contradictions are found

in the axioms and the known theorems, then there is still
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the possibility of having contradlotions between two "un-

discovered"‘theorems. The usual method of establishing
the consiptenoy of a set of axiome 1s by the development
of & model of the set of axioms.

Model. Let S be a mathematiocal system conslsting
of sets of undefined terms Sy, Sz. see Sn together with
the undefined relations Rl' Rz. cees Hm between them.

Let M consist of sets S;,.Si. con SA of abstract or phy-
sloal elements with the undefined or physicel relations
Ria R;. >80 Rﬁ between them. M 18 seld to be a model of
8 if and only if there exlsts s one to one correspondence
between §; end By for all 1= 1, 2, ..., n euch that for
any relation Ri indiceted by the axloms between certaln
elements of Sq, 32’ cee Sn; R{ nolds between the cor-
responding elements of Si, Sé, I

Concrete Models. A model M is ssld to be concrete

if and only if M consilsts of objects and relations of
the real world,

Ideal Models., A model M is sald to be idesl if and

1
only if the sets si, Sé. cees Sé and relations R, Ré. cvas
Ry of M are the undefined terms and relations of another
axilomatio system.

With the two types of models, there are assoclated

two types of consistency.
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Abeolute Consistency. An axiomatic system 1s sald

Htp have absolute consistency 1f and only if the axiomatio
system has a concrete model. The word absolute 1s used
glnce any inconsistency in the set of axloms would appear
as a corresponding inconsistency in the real world, which
1s considered to be impossible.

It 18 not always possible to prove that an axiomatlo
system has absolute consistenocy. BSome axiometlo systems
have an infinite number of elements. A concrete model
of such a system would be lmpossible, since the real world
does not contain an infinite number of obJects, at least
- that 1s known. Therefore, a second type of consistenocy
18 needed.

Relative Conslstency. An axiomatic system is sald

to have relative consistency if and only 1f the axiomatio
system has an ideal model., Relative oconsistency estab-

lishes that one axlomatic system 18 as consistent as the
axiomatioc system the model is based on. This does not
resolve the question of the conslatenoy of the axlomatic
gystem. It Just puts the burden of proof on the axiometic
system of the model.

ITI. A FAMILIAR EXAMPLE OF A MODEL

Analytic geometry as a model of plane Euclidean

geometrx.z To establish an algebralc model of plane
Euoclidean geometry, the following must be shown: (1)

2Tbid., 107.
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that there exlsts one to one correspondences between the
gsets of undefined terms of plane Euclidean geometry &and
the defined terms of analytic geometry, (2) that there
exist one to one correspondences between the undefined
relations of plane Euclidean geometry and the relations
of analytic geometry, and (3) Ry 1s a relation between

certaln undefined elements S,, S ++vs Sy of plane

o
Euclidean geometry 1f. and only if Ri 18 a corresponding
relation between correesponding elements of Sl, S;. seed

SA for all 4=z1, 2, ...» mof analytic geometry. The
undefined elements of plane FEucllidean geometry based on

’ Hilbert's axioms are point and line. The undefined re-
lations are on, between, and congruent. The following
definitions will establish an analytioc model for Euclidean
geometry.

Definition I.1. A point 18 any ordered pair (x,y)

of real numbers., The real numbers are called the coordinates
of the point.

Definition I.2., A line is any equation in two vari-

ables x and y of the form ax+by+oc =0, where a, b, and

¢ are real numbers end a and b are not both zero. If two
or more linear equations in x and y have coefficients such
that when the coefficients of one linear equation are

multiplied by a constant nonzero factor, they equal the
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coefficients of the other linear equation, then the equa-
tions represent the same line,

Definltion I.3. A point is on a line if and only if

the coordinates of the point satisfy the equation of the
line.

Definition I.4., A point (x,y) 1s between the points

(xl, yl) and (x5, yz) Af and only if there exists a real
number t, greater than zero and less than one, such that
x=(1 - %) x4t x, and y=(1 - t) ¥y + 572,
Definition I.5. A pair of points (x;, yl), (xz, yz)

1s congruent to the pair of points (xj, yj). (xys yq) 1t
end only 1if
2
(xp = x) "+ (15 = ¥)%= (xy - x9)2%4 (3 - 302,
The value of (xz - x1)2+ (y2 -yl)z 18 the square of the

distance between the points (xl. yy) and (x,, yz).

Definition I.6. An angle denoted by (x,» ¥,)»

£,

(xl, yl)s (x?, ya) 18 congruent to an angle (xz, y;).
(xl’ Yl): (x » ¥3) Af and only if
(x, - xl) (xg = %) +(y, - ¥y)° (55 - 7))

Jixg - )% 5y - ¥ )2 (x, - x ) (v, - v))

. t ' ; J : " . ' :
(x5 = %)) (x5 = X))+ (v, - ¥)°(¥3 - ¥q)

! t 2 ' 12 ! t 2 ' )
J(xz - xl) + (yz - yl) J (13 - xl) + (y3 - yl)



qu’e
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It 18 easily seen thet the set of axlioms are satis-

fied. The model is an example of a conorete model. There-
fore, the axiomatic system T has absolute consistency.

In Chapter Two, Poincaré's model of plane Hyperbolic
geometry will be developed to show that the set of axioms

of plane Hyperbolic geometry has relative consistency.



CHAPTER II
POINCARE'S MODEL OF HYPERBOLIC GEOMETRY

The purpose of this chapter 1s to develop the model
devised by Henri Poinocaré of plane Hyperbolio geometry.u
The model uses objects and relatlons of plane Euclideen
geometry. Therefore, an ildeal model is developed for the
axloms.
l. THE GEOMETRY OF THE CIRCLES ORTHOGONAL TO A FIXED CIRCLE

Consider any fixed circle & in the Euclidean plane
end call it the fundamental ocircle, The following defini-
tions will be used to interprete a concept of plane Hyper-
bolic geometry into the termes of plane Euclidean geometry.

Definition IT.l. A point of the Hyperbolic plane

1s represented in the model by a point in the interilor
of X1 .
Definition II.2. A line of the Hyperbolic plane is

represented in the model by the arc of any oclrcle orthogonal

toXl which 1e interior to 3i . Any diameter ofXiis orthogonal

to 51 and will also represgent a line of Hyperbolic geometry.
Definition II.3. A point on a line in the Hyperbolic

plane is represented in the model by a point interior to X3
and on an arc of a circle orthogonal to Xi , where the

relation "on" has the usual Euclidean interpretation.

4Eves, op. oit., p. 101,
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Definition II.4. A line through or containing a

point of the Hyperbolic plane is represented in the quel
by an arc of a olrcle orthogonal and interior to ¥ through
or oontaining a point, where the relations "through and
contailning!" have the usgual Euélidean meaning.

Definition II.5. A point between two points in the

Hyperbolic piane 18 represented in the model by a point
between two points on an arc of a circle orthogonal and
interior to ¥ , where the relation "between" has the
usual Euclidean meaning of a point between two points on
an aro in the Euclidean plane.

Definition II.6. A segment AB in the Hyperbolio

| plane 18 represented in the model by the points A and B
and all points which are between A and B on the same
arc of a circle orthogonal and interior to X . Points
A and B are called the endpoints of the segment., A
point C 18 saeid to be on the segment AB 1f it is A or

B or some point between A and B.

Definition II.7. The length of a segment AB in the

Hyperbolic plane ie defined in the model as the log (éi.ﬁé).
where 8 and T are the points in which the aroc oontainj.ngA
arc AB interseocts & and A is between 8 and B. The cross
ratlo 1s greater than one. Therefore, log (A7 _ B3) 1s

greater than zero. a7 A8
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Definition II.8. A palr of points (A, B) congruent

to a palr of points (C, D) in the Hyperbolic plane is
represented in the model by pairs of points (A, B) and
(C, D) such that the palrs of points are endpoints of
segments and

log (AT B3) - log (EV 5O).
BT A8 v &U
Definition IT.9. A segment AB congruent to segment

0D in the Hyperbolic plane is represented in the model by
two arcs AB and CD such that

log (AT BS) — log (CV DU).
BT AS ov CU
Definition II.10. Intersecting lines or line seg-

ments in the Hyperbolic plane are represented in the model
by two arcs, a diameter, or an aro and a diameter, which
are sald to be interseoting 1f there 1s a point which is
on both of them.

Definltion II.,1ll. A ray AB in the Hyperbollo plane

18 represented in the model by the set of all points con-
s8lsting of those which are between A and B, the point B
itself, and all points C such that B is between A and C.
Thé ray AB 1s sald to emanate from point A.

Definition ITI,1l2. An angle in the Hyperbollc plane

is represented in the model by a point (called the vertex
of the angle) and two rays (called the sides of the angle)

emahating from the point.
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Definition II.1l3. The measure of an angle between

two interseoting lines in the Hyperbolic plane 1s defined
in the model as the measure of the angle between the
tangents to the intersecting arcs.

Definition II;14. Angle ABC congruent to angle DEF

in the Hyperbollc plane 1s represented in the model by
angles ABCO and DEF, where the measure of the angle .ABC
is equal to the measure of angle DEF,

Definition II.1l5. Let A, B, and C be three points

not on the same arc in 32 . Then the segments of triangle
ABC of the Hyperbollo plane are represented in the model
by the three segments AB, BO, and CA called the sides of
the triangle and the points A, B, and C called the vertlces
of the triangle.

Definition IT.1l6. The angles of triangle ABC of the

Hyperbollo plane are represented In the model by the three
angles BAC, CBA, and ACB which are called the angles of
triangle ABC. An angle BAC 1s sald to be inocluded by the
sldes AB and AC of the triangle.

Definition IT.17. A triangle ABO congruent to tri-

angle A!'B!C! in the Hyperbollc plane 1s represented in the
model by triangles ABC and A'B!C' such that, sides AB,

AC, and BC are ocongruent to sides A'B', A'C', and B!(Q!,
respeotively; and the angles ABC, ACB, and BAC are congruent
to angles A'B'C', A!'C'B!', and B!'A'C', respectively.
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Capital letters will denote a concept of plane
Hyperbolio.geometry whioh 1s being represented in the
model.
II. PROOFS SHOVING THAT THE POINCARﬁ MODEL -~
SATISFIES THE AXIOMS OF PLANE HYPERBOLIC GEOMETRY

Group 1: Postulates of Connection. Hilbert's

axioms of plane Hyperbollic geometry may be found in the
appendix, '

To verify Postulate I-1 (See appendix.), it must be
shown that given any two POINTS in I , there exists at
least one LINE through the two given POINTS A and B and
that this LINE is unique.

Figure 2

Proof:
Let O be the center of ¥J with r the radius. (See
figure 2.) Let POINTS A and B be any two distinot POINTS
in Y3 . Buppose that POINTS A, B, and.O are collinear.
S8ince 21 18 in the Euclidean plane, there exists a unique
dlameter of 2 which contains POINTS A.and B, This diameter
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1s orthogonal to £ and is, therefore, a LINE containing .

the POINTS A and B.

Suppose that POINTS A, B, and 0 are not collinear,

Construct line OA. Using POINT O as the center of in-
version and £} as the circle of inversion, there exists
a point AV on line 0OA such that OA . OA! = r2, where A! 1is
the inverse of A. Suppose that the point A' is in & ,
then (in the Euélidean sense) the length of OA' is less
than r. Likewlse, the length of OA is less than r.
Thus OA-OA' is less than r2, which is a contradiction.
Therefore, A' is not in 53 . Through the points A, A!,
and B there passes one and only one ocircle denoted by
circle II. .

To show that oirole II is orthogonal to 23 , let
C be the center of circle II with r, the radius. Con-
struct line 00. Let the points of the intersection of
OC and Circle ITI be called Q and Q' where Q is between O
and CG. Construct lines AQ' and A'Q. Consider the triangles
0AQ' and OQA', Angle AOQ! is congruent to angle A'0Q.
The measure of angle AA'Q =% m (arc AQ) and the measure
of angle QQ'A = % m (aro AQ), since they are inscribed
angles subtended by the same arc of circle II. Then
angle OA!Q is congruent to angle OQ'A., Therefore, tri-

angle OAQ! is similar to triangle OQA'. Thus OA' 00
0Q' OA
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and OA ° OA'=0Q * 0Q'. Since OA « OA'= r?, then

0Q * 0Q'=r?, Segment 0Q=0C - r, and segment OQ'=

2
00 + rp. Thus %= OA + OA' = 0Q * 0Q'= (00 = ) -

(00+r2)=002 - rg. Therefore, r2+ rg

= 002 and circle
II is orthogonal to 21, There is at least one LINE
contained in 21 passing through POINTS A and B,

Let ci‘rdle III be any circle which passes through
POINTS A and B and is orthogonal to $¥1 . Let ocircle III

have center D and radius r Construct line OA. Call

3.
the point of the intersection of line OA and circle III,
A", Since cirole III 1s orthogonal to XJ , then OA * OAlz

rz. Gonstruct 1line OD and call the points of the inter-
section of line OD and circle III, P and P', with P be-

tween O and D.

Since circle III is orthogonal to 20, r2+ rg = 0D2.‘
Then r< — OD2 - r§ = (0D - rB) * (OD + r3)= OP * OP'=

OA * OA". But OA * OA! — r2 and OA * OA' = OA * OA".

Thus OA' = OA" and A" concides with A', Therefors,
circle III colnocides with circle II constructed earlier
and there is one and only one ocircle through A and B

orthogonal to 2., Postulate I-1 has been verified.
Every LINE in 33 1s an aro of a circle in the Euclidean

plane which contains an infinite number of distinct points,
Therefore, every LINE of & contains at least two distinoct

POINTS8. 'Since an aroc of a cirole does not contain all the
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interior points of the circle, there 1s at least one
point interior to 23 not on an arc of a circle orthogonal
to & . Thus thers is at least ans POINT NOT ON A LINE,
(See appendix.) This verified Postulate I-2.

Group II: Postulates of order. Postulate II-1

(See appendix.) is proved directly by the interpretation
of a POINT BETWEEN TWO POINTS, since the Euclidean inter-
pretation 1s the order of pointe on an arc., This inter-
pretation implies that if a point C is between A and B,
then C 18 between B and A; B 18 not between A and C; and
A 18 not between C and B,

To verify Postulate II-2, (See appendix.) consider
any two distinoct POINTS A and B in Xl , By Postulate I-1,
there exlists a LINE through A and B, Since every LINE
is an arc of a Eucllidean cirocle, there existe a POINT C
between A and B and a POINT D such that B is between A
and D,

To prove Postulate II-3 (See appendix.), consider
any three POINTS A, B, and C on the same LINE. Since
this LINE is an aro of an Eucllidean circle, then one of
the points A, B, or C must be between the other two.

To verify Postulate II-4, (Pasch's Postulate), it
must be shown that a distinct LINE which intersects one
glde of a TRIANGLE but does not pass through any of the
vertices of the TRIANGLE must intersect one other side of
the TRIANGLE.
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Let TRIANGLE ABC (See figure 3) be any TRIANGLE of 5
vith DE intersecting side BC at POINT E. Let LINE DE be
an aroc of circle I which intersects L& at points S and T.
Let LINE BC be an arc of circle II. Since the two oircles
I and II are orthogonal to a third circle, ), , and inter-

secting 1n )} , then the second point of intersection H
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must be in the exterior of 37 . Either the POINT B or C
1s 1in the interior of circle I since POINT E is between
POINTS B and C. Consider the POINT B is in the interlor
of circle I. This would imply that the POINT C is in the
exterior of circle I, since the LINE DE of circle I inter-
seocts LINE BC between the POINTS B end C. The POINT A
is not on circle I since DE does not pass thru a vertex
of TRIANGLE ABC. Thus the POINT A 1s in the interior of
circle I or the POINT A is in the exterior of circle I.
Suppohe that the POINT A 1s in the interlor of circle I.
The LINE AC must interseot LINE DE between A and C since
A is interior and O 1g exterior to circle I. Suppose
that the POINT A 1s in the exterior of circle I. Then
the LINE AB must intersect LINE DE between A and B sinoce
A 18 exterior and B 1s interlor to circle I. Thus Postu-
late ITI-4 has been verified.

Group III: Postulates of Congruence. The proof of

Postulate ITXI-1 (See appendix.) follows from the defini-
tion of the LENGTH OF A LINE SEGMENT.

Figure 4
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Proorf:

Let A and B (See figure 4.) be any two POINTS of X .
Then by Postulate I-1, there exists a LINE f , through
POINTS A and B. Let -DOlI‘ltB S end T denote the points of
the intersection of LINE,? and 2 . The POINTS A, B,
and points §, T are fixed points. Let LINE ,Pz be any
LINE in & dlstinot from LINE #/ . Choose any POINT A!
on LINEJ 2+ * Let points 8! and T! denote the polnts. of
the intersection of LINE f , and 51 . The points A!, 81,
and T! are flxed polnts.

It must be shown that there exlsts a POINT X on
A , such that the distance between A' and X on an arc
can take on any ‘Value from O to 2@ ., let Aﬁ' = c; ﬁ'=
d, and ﬂ': q. Oonsider the continuous function

£(X) = log <A’-"?a .fé'?'l)

._.lo_g(o‘ o d)‘.
q- 4 q-2c

Since log X 1s a contlinuous function, then the

lim £(X) = 1im Eog (o . . _4d )
X—>T a —>» q qa c q d
log c . 1im ( a
(q—e [d—vq Q-E])
=log ( o . OO )
q- 0
= log ©©

= (= 4]
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This shows that A'X can be made as large as necessary.

Likewise,

lim £(X) = lim log (8 ' o )
X— A gq~-~d gq-2o

d ~=>» (q - o)

= log S 4 N R
q-o0 q-d
d=¥(q - ¢
=1log (06 .q-o0)
q-2¢ o
=1log 1
=0,

Thus A'X can be made as small as necessary.

The LENGTH OF AB = log (% : %) by definition 11.7.

Let r = log (é% ﬁ)p where r 18 a real number. A POINT
BY can be found by solving the equation

r =~ log (A’r’f' . XS ) for X.
] AI§

This POINT B! will between A' and T! on LINE f ,. Similerly,

a seocond POINT B" can be found by solving the equation
r = log (Q'S' XT' ) for X.

The second POINT B" will between S' and A' on LINE J .
gince the POINT B! is between A! and T', the POINT B" 1is
between 5% and A!, and the POINT A' 1s between 8! and T!,
then A' 1s between B! and BY,

Two unique POINTS B! and B" can now be found such
that LENGTH AB = LENGTH A'B' and the LENGTH AB = LENGTH
ﬁ". Therefore, by definition 11.8;, the palr of POINTS
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A', B! i congruent to the pair A, B. Likewlse, the pair
of POINTS A', B'" is congrusnt to the pair A, B.

To prove Postulate III-2 (See appendix.), let the

pair of POINTS A, B be congruent to the pair A', B!.
Let the palr of POINTS A, B be congruent to the pair A",
B*, Then by definition II.8, the pairs of POINTS (A, B),
(A', B'), and (A", B") are endpoints of segments and

«1 (AF . BS) . 1 ( Ar B:'g')
S5 %’f 15 - °e BEVvET G

~ 7~ —

and log (AT . BS) - log ( A'Tn . gugn),
BY 45 Eumn  Ang
Then —_ - .
log (4701 . ERY) - log (A . BB,
L1 AT Buge  gugn

Therefore, the palr of POINTS A!, B', is congruent to the
~ pair A", B" by definition II.8.

To verify Postulate III-3 (See appendix.), let AB
be any SEGMENT IN 23 with POINT ¢ any POINT between A and
B, Let A'B' be a BEGMENT in Jlwith C' between A' and B!
suoh that the palr of POINTS A, C 1a CONGRUENT to the palr
A', C0', and the palr of POINTS C, B 1s CONGRUENT toc the
pair O', B!, (See figure 5.)
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Filgure 5

Proof:
By definition II.8,
log (A . G8) — 1log ( A1t , §181) and
& B T
log ( C'70 , BISt),
gTrr QT8

log (6% . B8) —
BT @

Then by definition II.7, the LEVGTH AG = LENGTH A'0' and
Therefore, the LENGTH EE “+

the LENGTH 0B = LENGTE G'B!.
LENGTH §B = LENGTH £10' 4+ LENaTH §'B',
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Then the
LENGTH AC 4 LENGTH 0B = log (%.%ng (36"%.%?
c g (BB .G . B
e B B &

= log (&7 , BJ)
Bt £
= LENGTH AB.
Likewise, 1t oan be shown that the LENGTH A'G'!<+ LENGTH -
CTB' = LENGTH A'B!'. Thus, the LENGTH AB = LENGTH A'B'.
Therefore, the palr of POINTS A, B is CONGRUENT to the
pair A', B! by definition II.S8.
Before Postulate ITI-4 (See appendix.) can be veri-
fied, the following theorem must be proved.

Theorem II.l. There exlsts a unique cirole ortho-

gonal to & and tangent to a given line { at a POINT A
"of f noton BB .

Figure 6
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Proof: -

Let O (See filgure 6.) be the center of & . Let A
be any.line passing through & with A any point on { where
A 1s in I . Construct on the line OA, a point A', the
inverse of A. Therefore, OA * OA' = rz, where r 1as the
radius of 1 . Construct the perpendlcular blsector PQ
of gegment AA' with P on segment AA', Construct line AD
perpendiculag to 1ine A . Let the point of intersection
of line AD and line PQ be called C. Construct circle I
with center C and radlus equal to the length of AC. Clrocle
T 1s tangent to 1ine £ at A since the center of circle I
' 18 on the perpendioulaf line to f at A, By using the
gsame method whioh was established in proving Postulate
I-1, oclrcle I can be shown to be orthogonal to 21 . Circle
I 1s unique since any other cirole passging through A and
A' oould not be tangent to line A and orthogonal to & on
the same slde of line f .

Postulate III-4 oan now be verified,



Figure 7

‘Proof:
Oonsider any ANGLE BAC and any two distinct POINTS

A' and B', (See figure 7.) By Postulate I-1 (See appen-

dix.), there exists a unique LINE £ through A' and B!,

Let m equal the measure of ANGLE BAC. Oonstruct the tangent

A'D to Q@ at A'. Since XJ 1is in the Euclidean plane, then

there exiets two distinct lines A'E and A'F such that the

measure of angle EA'D 1e equal to m and the measure of

angle FA'D is equal to m, Then by theorem II.1, there

exists a unique oircle II orthogonal to X! passing through

A' and tangent to A'E. Lilkewise, there exists a unique

clrole III orthogonal to & and tangent to A'F at A'.

Note that 1n the half-planes determined by line A'D,

the points E and F are not contained in the same.half-

plane. Let ¢! and O" denote POINTS on circle II and
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circle III, respectively, such that the POINT 0! is the
same half-plane determined by A!'D as E and the POINT O"
is in the same Qalf-plane as F. Then ANGLE BAC 1s CON=-
GRUENT to ANGLE B!'A'C! and ANGLE BAC is OONGRUENT to
ANGLE B'A'0" by definition II.14. Let D! and D" be any
two POINT3 ON RAYS A'G'~and A'CH, respeotively. Since
C! and C" are not contained in the same half-plane de-
termined by line A'D, then this implies that either C!
or O" is contained in the interior of £ . Suppose that
0" 18 contained in the interior of { . Then all the POINTS
on RAY A'C" are interior to f . ILikewlse, 0! is in the
exterior of f{ and all the POINTS on RAY A'C" are exterior
to A . By Postulate I-l,.there exlsts a unique LINE
Xz passing through D! and D" and orthogonal to 23 . Since
D¥ 1g an interior POINT of,f and D! is an exterior POINT
ot f , then LINE f, must interseot / which is LINE A'B!.

Postulate III-5 (See appendix.) is verified by defi-
| nitions II.13 and II.1l4,

The following two theorems must be proved before
Pogtulate III-6 can be verified. |

Theorem II.2., Inversion i1s a conformal transforma-

tion, 1.e., in an inversion the angle between two inter-
secting curves 1s equal to the corresponding angle between

the two inverse curves,
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Proof

Consilder any angle ABCO and a point O (See figure 8.)
such that the points A, C, and O are collinear. Let O
be the center of circle I with radius r. Let angle ABO be
contained in circle I. Using O as the center of inversion,
there exists points A'y, B', and C! which are the inverse
points of A, B, and C, respectively. Then rz'—“- dA * OA' =
OB * OB!'= 00 * 0C', (Construct lines A!'B! and B!C', It
can easily be shown by using similar triangles that m (angle
0BO) = m (angle B'C'0), m (angle BOO) = m (angle A'B!0) +
m (angle A'B!'C'), m (angle A'B'0) = m (angle BAO) and m
(angle CBO) + m (angle ABC) = m (angle B'A'0), where
m meane the measure of the angle. Since, m (angle CBO)=

m (angle B'C!'0) and
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m (angle CBO) + m (angle ABC) = m (angle BIA10)
then
(1) m (angle B'C'0) + ﬁl (angle ARQ) = m (angle B!'A'0).
The m (angle B'A'0) = 180 - m (angle B'A'CG'). Then (1)
becomes m (angle; B1C'0) + m (angle ABC) = 180 - m (angle
BY'A'C!') and - m .(angle ABC) = 180 - m (angle B'A'C!) -
mn (angle B'C!'0)s Then m (angle ABC) = 180 - [m (angle
B'A'C') + m (angle B'C'0)] . In triangle A'BIC', m (angle
A'BI1C!) = 180 '-En (angle B'A!'Q!') + m (angle B'C'A')] .
Thus,

m (angle ABC) = m (angle A'BI'C!).

The measure of an angle 1s invariant under inversion,

Theorem II.3. LENGTH f&l is invariant under inversion

in any circle orthogonal to I .

Figure 9
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Proof:

Let olrocle II (See figure 9.) be the circle of
inversion with center O and let ocircle II be orthogonal
to & . Let r denote the radius of circle II. Let points
5 and T be on L and contained in oirole IT. Let 8' and
T! denote the inverses of 8 and T. Then 08 * 03! = r?,
since ¥ 18 orthogonal to ocirole II. Consider any POINT
R on 1line 0S8 guch that R is contalned in the interlor of
2l and olrcle II. Thus the length OR 1s greater than
the length 03. Suppose that R', the inverse of R wilth
respect to cirole II, is not contained inZi , This im-
plies that the length OR! 1g greater than the length 08!,
But since 0S ¢ 08t ='r2, then OR * OR'! is greater than re
vhich contredictse that R! is the inverse of R, Therefors,
R! is contalned in X .

Let POINTS P and Q be in the interior of 2 . By
Postulate I-1, there exlets a unlique clrole pasging through
the POINTS P and Q and orthogonal to 31 . The POINTS P!
and Q', the lnverses of P and Q wlth respect to circle
II, are oontained in & . Since the measures of angles

are preserved under inversion by theorem II.2, then the

cirole passing through POINTS P!, Q' and points 8t', T!
will be orthogonal to & . First, it will be shown that -

’P—i‘____ Pliisl ® rz ’ @: ml . rz 5

OP!' - oT!? oQ' . oT!




_m'-rz,and@g p"r.

= OP' . 087 J—T—.‘?;s‘r
These relationships ;111 later be used to prove LENGTH
$4 = LENGTH P'q!.
In order to show this, suppose that points 0, P!,
and T' are not oollinear. Consider the triangles OPT

and OP!T!. Since r°= OP + OP! = OT ¢ OT!, then op oT!.

OFI
Also since angle POT is congruent to angle P'OT!, then
triangle OPT 1s similar to trlangle OPITY,

Therefore;
PT_ OT . OT OT' _ r2 .
PITT = 0P OP' OT' ~ OPT - OT!
Then PR - Pige « p2
oP' . om!

Buppose that the points O, P!, and T' are collinear.
S8ince OP * OP' = OT * OT', then (OT!' - PIT!) « OP = OT!
* (OP - PT) and
(oT' « OP) - (PtT! - OP) = (OT*! . OP) -~ (OT' - PT).
Thus
(prmr - OP) = ~(OT' * PT).
Multiplying by -1,
P!Tt - OP = OT! « PT
and

PT _ OP . OP . OP! 2.
= ofr "OP!'~ OTV - OP!

PYTT = BTV
Bince the measure of angles’are preserved under inversion,
then m (angle QTP) = m (angle Q!'T'P'), m (angle QPT) =

(angle Q'P'TY),



Thus
BT _pr .
EITI PITI
Then
56 — rz and 5%,_ §T?' " r2 .
Pt OT! . OP! OT! * OP!
Likewlce, 1t can be shown that
~ N 2 — ~—~ 2 e B 2
QT:Q'Tl . IP » PS o PR . r” , and QS_Q'38! . r-.,
oQ'! . OT¢ OPt . 08! oQ' - 08!
By definition II.7, the
~~~ g i —
LENGTH P& = log (PT . QS),
5 PS5
Since
~~ —— 2 ~ P i, Y 2
PT AN 22" , QT _ g3 = 2 y
oTt - OP! ot . o
Q8 _ 'St . r~ , and PS_ P!'S' . rc ,
oQ! . 08! opt¢ , Ost

the LENGTH 5& beoomes

Log (2L . &8
QT PS n
= 26 (F\ . 22/ §T rz} . {"a L 22/ $igr L 2

§OP' . OT' CGQY . OT! ony . 0SY QP! - OS'j

—~ S~ 2
- log (P'T' . p2 ., 0Q' - OTt . 151 . »2 , OD! . OSZ)

OP! -+ OT' Ggift -p2 o' . 08t Pi1gte p<
~ ~~

= log (2'T' . QlSty
QT pigt

N
= LENGTH P!'Q!




32

- N
by definition II.?7. Thus the LENGTH P0 is invariant under
inversion in any circle orthogonal to 3, .

Postulate III-6 (See appendix.) can now be proved,

Proof:

Consider any TRIANGLE ABC inJ.. (See figure 10.)
Let O be the center of 22 and let r denote the radiug of
23 . Let SIDE AB be on ocircle I, SIDE AC on circle II,
and SIDE BC on circle III. Construct line 0C., Since
circle II and III are orthogonal to Zi and intersect in
23 , then their second point of intersection C¥ is in the
exterior of 21. (! is the inverse of C with respect %o

32 . Construct circle IV with center C' and radius ry,
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where rE = (001)2 - r2, Then £ 1s orthogonal to olirocle

IV. The point C' can be used to invert Il into 1tself,

Let O" be the inverse of C with respect to IV. Since
circles II an& IIT pass through C! the center of inversion,
"then they 1ﬁvqrt into straight lines C"A!' and 0"B', The
inverses of cilrcles II and III with respeot to circle IV
will be ofthogonal to & , since & inverts into itself and
the measures of angles sre preserved under inversion.
Since straight lines C"A' and O"B! are orthogonal to &,
they are diameters of 21 , and pass through 0. Therefore,
g" ocoincides with the POINT O. Then by definition II.Z2,
LINES OA' and OB!' are orthogonal to & . Since circle I
does not pass through C!, it inverts into a cirocle through
POINTS A' and B! whioch 18 orthogonal to & . Consider the
TRIANGIES ABC and A'B'O., SIDE AB inverts into SIDE A'B!,
SIDE AC Ainverts into SIDE A'0, and SIDE BC inverts into
SIDE B'0O. The measures of ANGLES and the LENGTH OF SEG-
MENTS are preserved under inversion by theorems II.2 and
II.3, respectively. Therefore, TRIANGLE ABC is CONGRUENT
to TRIANGLE A'B'O by definition II.1l7.

Consider TRIANGLES ABC and A}BC;y, (See figure 11.)
where SIDE AC is CONGRUENT to SIDE AqCy, ANGLE ACB 1s
CONGRUENT to ANGLE A9CqB,, and SIDE BC ie CONGRUENT to
BIDE B1C1.
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TRIANGLE ABC 1s CONGRUENT to a TRIANGLE A'B'0 by the above

paragraph. Likewlse, it can be shown that TRIANGLE AlBlcl

1 s CONGRUENT to a TRIANGLE A!B!O by the same method. Thus

11
SIDE AC 1s CONGRUENT to SIDE A'O, ANGLE ACB 1is CONGRUENT to

ANGLE A'OB', SIDE BO is CONGRUENT to SIDE B!'O, SIDE Alclis

CONGRUENT to SIDE AiO. ANGIE AlclBl 1s CONGRUENT to ANGLE

AiOBi,and SIDE Blcl 1s CONGRUENT to SIDE BiO. Then SIDE

A'O 1s CONGRUENT to SIDE AiO, ANGILE A'OB!' is CONGRUENT

to ANGLE AiOBi; and SIDE B'0 1s CONGRUENT to SIDE BiO.

Angle A'OB! is congruent to angle AiOB'. By definition

10 and

IT.9, LENGTH A'0 = LENGTH A

log (ngl -Aogl)= log (AiTi . OSi)
3 oT}

TV ik . Algl

1 171

where (T!, S') and (Ti, Si) are endpoints of dlameters
of Y1 , respectively. Also, LENGTH B'0 = LENGTH Bio and

lo B'TU' - OV BIU! , oV
g (EU' e BIv? )"'—'—" log (Oé 1 1 )

where (U!, V') and (Ui, Vi) are endpoints of dlameters
of Zl, respectively. Since the dlameters of JI are of
equal length, this implies that length A'0 = length A{0
and length B'0 = length Bio. There exlsts a unique oircle
passing through POINTS A' and B! which is orthogonal to Il .
Likewise, there exists a unique ocirole passing through

POINTS A} and B which is orthogonal to .
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Conslder the rigid motion (rotation and line re-
flection) that maps A! _)A?'L’ 0— 0, and B!'— B:'L. Then
SIDE A'0 coincides with SIDE AiO and SIDE B!O coinocldes

with SIDE BIO. BSuppose that A"B' does not coincide under

] ——— —
the rigid motion with AiBi. Since A'B! and AiBi are on
oircles orthogonal to &I, this implies that there exlste

two dietinct circles passing through POINTS Ai and Bi,

which aere orthogonal toZl. This is a contradiotion of

: o~ ~—~— <
Postulate I-1l. Thus A!B! ocoincides with AiBi and A'B!

is congruent to ﬁiﬁi. Then the figure A'B'O is congruent

to figure AiBiO. Thus the Euclidean angle OA'B! at A?

18 congruent to the angle OAiBi at Ai and from definition
II.14, they are CONGRUENT. Likewise, the Eucllidean angle
OB'A' at B! is congruent to the angle OBiAi at B!, and
from definition II.1l4, they are CONGRUENT.

P P
It remains to show the LENGTH AiBi = LENGTH A‘'R',

Observe that under the rigld motion described above that

length é}li = length §'A' and length ﬁ{ﬁi = length BIT!,

Thus 1t cen be shown that LENGTH AIBi = LENGTH A'B!.

Then TRIANGLE A'B!0O is CONGRUENT to TRIANGLE AiBiO.

Since TRIANGLE ABC is CONGRUENT to TRIANGLE A'E'O which
i s CONGRUENT to TRIANGLE AiBiO and TRIANGLE AiBiO is
- CONGRUENT to TRIANGLE'AIBIGI, then TRIANGLE ABC is CON-

GRUENT to TRIANGLE_AIBICI°
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Group IV: Postulate of Parallels.

The lLobachevsklan parallel postulate, Postulate

IVi-1l, can now be proved, ,

Figure 12

7>

S

Consgider any LINE m (See figure 12.)-.and any POINT
A not on LINE m 4n 3l . Let 8 and T denote the points
where circle m intersects 31 . There exlists a unique
cirocle I passing through points 8 and A which is ortho-
gonal to £ . Likewise, there exists a unique ocircle II"
passing through pointe T and A which is orthogonal to X ,
The two circle I and II are tangent to ocircle m at S and
T, respectively. Thus the olrcles I and II are distinct.

Bince the points S and T are on Xl , they are not considered

to be points of the model. Thus through a given POINT A
not on a given LINE m, there pass at least two distinot
LINES which do not intersect LINE m,

Group V: Postulate of Continulty

The proof of Postulate V-1 (See appendix.) follows

from the definition of the LENGTH of a SEGMENT and
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Postulate III-1,

Figure 13

Proof':

Conslder any four distinoet POINTS A, B, C, and D
in X . (See figure 13) By Postulate I-1, there exists
unique LINES AB and GD orthogonal to ¥} . The LENGTH AB =
log (é% " %%) and LENGTH GD = log (ég . éi) by definition
IT1.7. Let by dx

r = log (é% ._%%) and q = log (gg . gg),

where r and q are real numbers. Then from Postulate
ITI-1, therp exists a distinot POINT A, on RAY AB such
that the distance between A and Al i1s equel to q. By
Postulate III-1, thers exists a distinct POINT A, on RAY
AlB such that tne distance between Al and A2 1s squal to
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4. BSuppose that there exlsts distinect POINTS Ay, Ay

+ves A, such that LENGTH AA; = LENGTH A A, = LENGTH
aom— . — P —— e -
Kphy = ... =LENGTH A "R .. Sinoe the LENGTH AA__,

(n-1) - g # ° , then there exlsts a distinct POINT A,
such that the dlstance between An-l and An 1s equal to
dq. Thus there exlsts a finite set of POINTS Ay Aza
vee» By such that LENGTH AAy = LENGTH AjA, = ... =
LENGTH A, A.. The pair of POINTS A, Ay} Ay Ay e j
A,_1» A, ere CONGRUENT to the pair C, D.

S8ince r and q are real numbers, then r < q, r= q, -
or r > q. Suppose that r < q. Since the dietanoe’between
A and Al 1e q, then B 1s between A and A;. Suppose that
r =q. Then the POINT Ay is the POINT B, since the dis-
tance between A and Ay 1s q. Thus the POINT B will be
between the POINTS A and A2' Suppose that r > q, then
there exlsts by the Archimedes principle of the real |
number system, a positive integer n such that q:n> r.
Thus there exlists a POINT A, such that the distance be-
tween A and A, 1s greater than r. ' Therefore, the POINT
B 18 between A and A,.
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ITI. SUMMARY

It has been shown that the model of Polncaré satis-
fiee the axloms of plane Hyperbollic geometry. Thus plane
Hyperbolic geometry 18 as conslstent as plane Euclidean
geometry. For, should there be any inconsiestency in
plane Hyperbolic geometry, there would have been a corres-
ponding incbnsistency in the plane Eucllidean geometry of
the Poincaré model. Therefore, plane Hyperbolioc geometry
hgs relative consistency.

It can be noted that, since plane Euclidean geometry
is as consistent as the real number system, plane Hyper-

bolic geometry i1s as conslstent as the real number systen,
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A, B, 0, are all on the same line, and C 1s between B and
A, and B 18 not bhetween 0 and A, and A 1s not between
C and B,

II-2. For any two distinct points A and B there 1s
always a point C which 1s between A and B, and a point D
such that B 1s between A and D.

Ilil. If A, B, and C are three distinet points on
the same line, then one of the points is between the other
two. .

Definition 2-1. By the segment AB is meant the points

A and B and all points which are between A and B. Polints

A and B are called the end points of the segment. A point

C 1s sald to be on the segment AB 1f 1%t 1s A or B or some
point between A and B.

Definition 2-2. Two lines, a line segment, or two

segments, sre sald to interseot if there is a point which
is on both of them.
Definition 2-3. Let A, B, C be three points not on

the same line. Then by the triangle ABC i1s meant the three
segments AB, BO, CA are called the sides of the triangle,
and the points A, R, C are called the vertices of the tri-
angle.

TII-4. (Pasch's Postulate) A line which intersects

one side of a triangle but does not pass through any of the
vertices of the triangle must also intersect another side of

the triangle.
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GROUP III: Postulates of congruence

III-1, If A and B are distinct points and if A' 1is
a point on a 1line m, then there are two and only two dlstinct
points B! and B" on m such that the pair of points A', B!
1s congruent to A, B and the palr of points A', B'" is
oéngruent to the pair A, B; moreover, A' 1s between B!
and B",

ITII-2. If two palr of points are congruent to the
same palr of points, then they are congruent fto each other.

ITI-3. If point C is between A and B and point.C!
is between points A! and B!, and 1if the‘pair of péints
A, C 1s congruent to the pair At', C! and the palr of
points C, B is congruent to the palr C!, B!, then the palr
of points A, B 1s congruent to the pair A', B!,

Definition 2-4. Two segments are sald to be congru-

ent 1f the end points of the segmente are congruent palrs
of points.
Definition 2-5. By the ray AB 1s meant the set of

all points consisting of those which are between A and B,
the point B itself, and all pointe O such that B is between

A and C. The ray AB is sald to emanate from the point A,
Definition 2-6. By angle is meant a point (called

the vertex of the angle) and two rays (called the sides

of the anglé) eminating from the point. TIf the vertex
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of the angle 1s A and if B and C sre any two points other
than A of the two sides of the angle, then angle BAC =
angle CAB. '
Definition 2-7. If ABC is a triangle, then the three

anglas BAC, CBA, ACB are called angles of the triangle.
Angle BAC 1s sald to be included by the sides AB and AC
of the triangle.

ITII-4,> If BAC 1s an angle whose sides do not lie
in the same liné, and if A' end B' are two dlstinct polints,
then there are two and only two distinct rays, A'C' and
A'C", such that angle B'A'C! 1s congruent to angle BAC
and angle B'A'C" 18 congruent to angle BAC; moreover, if
D! 18 any point on the ray A'C' and D" 1s any hoint on
ray A'C", then the segment D!D" intersects the line de-
termined by A' and B!,

III-5. Every angle 1s congruent to itself.

IIT-6. If two sides and the 1ncluded angle of one

triangle are congruent, respectively, to two sides and
the included angle of another triangle, then each of the
remaining angles of the first triangle 1s congruent to
the corresponding angle of the second triangle.

GROUP IV: Postulate of parallels

IVi-1. Through a given point not on a 1line m there

passes at least two lines which do not intersect line m.

GROUP V: Postulate of continuity
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V-1, (Postulate of Archimedes) If A, B, C, D are
four distinot points, then there 1s, on the ray AB, a
finlte set of dlstinet points Al’ Asr vee An guch that
(1) each of the pairs 4, Ay Ay Az; — An—l' A 1is
congruent to the pair C, D and (2) B 1s between A and Aj.
All theoreﬁs of plane Euclidean geometry which
are not based on the Fifth Postulate of Eucllid's Elements,
may be used as theorems in plane Hyperbolioc geometry,
The following 1list of theorems are all equivalent to
postulate IV!-1 of plane Hyperbolic geometry.

Theorem 2-1, The sum of the three angles of a

triangle 1s always less than two right angles.

Theorem 2-2. There does not exist a palr of similar

noncongruent triangles.

Theorem 2-3. There exists a quadrilateral in whioch

a palr of opposlte sides are equal and the angles adjacent
to a third side are right angles and the other two angles
are equal and acute,

Theorem 2-4. In a quadrilateral with three right

angles the fourth angle is acute.

Theorem 2-5. There exists three noncollinear points

such that no circle can pass through the three points.

Theorem 2-6. There is an upper limit to the area

of a triangle.
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Theorem 2-7. There exists two straight lines which

are parallel and they are not symmetriocal to one another
with respeot to the midpoints of all thelr transversal

segments.,



