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CHAPTER I 

THE PROBLEM AND DEFINITIONS OF THE TERMS USED 

Consistency is one of the most desirable properties 

of any axiomatic system. The relative consistency of 

plane Hyperbolic geometry is established by a comp~rative 

proof. A proof showing Hyperbolio geometry to be oonsistent 
1 was developed by Henri Poinoar.~. This proof will be used 

in this paper. 

I. THE PROBLEM 

~S~t_a~t~em~en~t _o_f _t_h_e problem. The purpose of this study 

1s to show that the set of axioms of plane Hyperbolio 

geometry are as oonsistent as the set of axioms of plane 

Euclidean geometry. 

Importance ~f ~~~ study. A basio pattern is followed 

in establishing an axiomatio eystem. In every axiomatio 

system there is a set of undefined terms and a set of un­

defined relations between the undefined terms. It is 

impossible to define every term without being oyolic. 

That is, defining a word in terms of other words, whioh 

in turn have definitions whioh use the or1ginal word 

1Eves and Newsom, An Introduction to the Foundations 
and Fundamental ConceptslDf Mathematios,~ew-York: Holt, 
Rinehart and W1nston, 1963T, 101. 
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being defined. All other teohnical terms are def1ned 

using the undefined terms. A set of statements about the 

undefined terms, teohn1cal terms, and the undefined re­

lations is aooepted without proof. These statements are 

called the axioms of the system. Statements which may be 

derived from the set of axioms by a system of logio such 

such as 01assical (Aristotelian) logio are oa11ed theorems. 

In this study, the system.of logio used. is Aristotelian 

logio. 

A fundamental property of any axiomatic system is 

that of consistenoy. Without this property, contradictory 

statements may be derived from the set of axioms. The 

set of axioms would then be somewhat useless, at least 

for purposes of application. Therefore, it is of impor­

tanoe to demonstrate that the system whioh establishes 

plane Hyperbo1io geometry is consistent, 

IIQ A DISCUSSION ON CONSISTENCY 

Oonsistenol. A set of axioms is said to be oon­

sistent if and only if there are no oontradiotions among 

the axioms and theorems which oan be derived from the 

aXioms. That is~ there exists no statement and its nega­

tion thnt are both true. Not all axiomatic systems may 

be proved to. be oonsistent by direotly shOWing that there 

are no contradiotions. If no contradiotions are found 

in the axioms and the known theorems, then there is still 
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the possibility of h~ving oontradiotions between two ftun­

discovered" theorems. The usual method of establishing 

the consistenoy of a set of a,nome is by the development 

of a model of the set of axioms. 

Model. Let 8 be a mathematioal system consisting 

of set a of undefined. terms 81' a2 , ••• , an togethe r ",i th 

the undefined relatione ~, ~, "0' R between them.m 
I I

Let M consist of a,ete 82." 8i' ... , Sn of abstract or phy­

oioal elementElWith the undefined or physical relations 
I t I

Rl , ~, ••• , p~ betlreen them. M is said to be a model of 

a if and only if there exists a one to one-correspondenoe 

bet'\o,een 8i and 8i
I 

tor all i = 1, 2, •• 0' n suoh that for 

any relation ~ indicated by the axioms between certain 
I 

elements of 81' 82 , 0" 0' an; ~ holds between the cor-
I'82 , Iresponding elements of 81 , ••• , an. 

Oonorete Models. A model M is said to be concrete 

if and only if M oonsists of objects and relations of 

the real world. 

Ideal Models. A model M is said to be ideal if and 
I I I I ,

only if the sete 81 , 82 , ••• , 8 and relations Rl' R2, ... ,n 

R~ of M are the undefined terms and relations of another 

axiomatio system. 

With the two tYPes of models, there are assooiated 

t"TO types of oonsistency. 
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Abeolute Consistency. An axiomatio system is said 

to have absolute oonsistenoy if and only if the axiomatio 

syetem has a oonorete model. The word absolute 19 used 

sinoe any inconsistenoy in the set of axioms would appear 

as a oorresponding inoonsistenoy in the real world, whioh 

is oonsidered to be impossible. 

It is not always possible to prove that an axiomatio 

system has absolute Qons1stenoy. Some aXiomatio systems 

have an infinite number of elements. A oonorete model 

of suoh a system would be impossible, sinoe the real ~~rld 

does not oontain an infinite number of obJects,at least 

that is known. Therefore, a second type of oonsistenoy 

18 needed. 

Relative Consisten0Y" An axiomatio system is said 

to have relative consistenoy if and only if the axiomatio 

system has an ideal model. Relative oonsistency estab­

lishes that one axiomatio system ie as oonsistent as the 

axiomatio system the model is based on. Thie doee not 

resolve the question of the oonsistenoy of the axiomatio 

system. It Just puts the burden of proof on the axiomatio 

system of the model. 

III.. A FAMILIAR EXAMPLE OF A MODEL 

Analytio geometry ~ ~ model of plane Euolidean 
2 

geometry. To establish an algebraio model of plane 

Euolidean geom·etry, the following must be shown: (1) 

2Ibid., 107. 
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that there exists one to one correspondences between the 

sets of undefined terms of plane Euo11dean geometry and 

the defined terms of analytio geometry, (2) that there 

exist one to one correspondences between the undefined 

relations of plane Euclidean geometry and the relations 

of analytic geometry, and (3) ~ is a relation between 

oertain undefined elements 81 , 8 .•• , 8 of plane2 , n 
I 

Euolidean geometry if. and only if ~ 1s a oorresponding 
I I 

relation between corresponding elements of 81 , 82 , •••• 

8 I for all 1 =1, 2, •••• 111 of analyti 0 geometry. Then 

undefined elements of plane Euolidean geometry baaed on 

Hilbert's axioms are point and line. The undefined re­

lations are on, between, and oongruent. The following 

definitions will establish an analytio .model for Euclidean 

geometry. 

~D~e~f~i~n~it~io~n~ I~J._ A point is any ordered pair (x,y) 

of real numbers. The real numbers are called the ooordinates 

of the point. 

Definitio~ I.2. A line is any equation in two vari­

ables x and y or the form axt-by+o :0. where a, b, and 

o are real numbers and a and b are not both zero. If two 

or more linear equations in x and y have ooeffioients suoh 

that when the ooeffioients of one linear equation are 

multiplied by a oonstant nonzero factor, they equal the 
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coefficients of the other l1near equat1on, then the equa­

t10ns represent the same line. 

De!1n1t1on !JJ. A point 18 on a llne If and only tt 

the ooordinates of the point satiefy the equation of the 

line. 

Definit10n 1.4. A po1nt (x,y) 1e between the po1nts 

(xl' Yl) and (X2' Y2) if and only 1f there exists a real 

number t, greater than zero and less than one, suoh that 

X =(1 - t)· xl'" t ' x 2 and Y :II (1 - t)· Yl + t· y2. 

Def1n1tion 1.5._ A pair of po1nts (Xl' yl ), (x2 ' Y2) 

ie oongruent to the pa1r of points (XJ' y ), (X4' Y4) if
3

and only 1f 

2 2 2 2
(x2 - Xl) + (12 -Y1) -= (x4 - x3 ) + (Y4 -' YJ ) • 

_ 2 2The value of (x2 - Xl) + (Y2 -Yl ) is the square of the 

d1stanoe between the pointe (~, Yl) and (x2 ' Y2). 

Defin1t1on 1~6. An angle denoted by (x Y2)'
2

, 

(X ' y ), (~' Y~) ie oongruent to an angle (x2 
I 

' y 2
I 

),7 t
(xl' Yl)' (X ' Yj) if and only if

J 
(x2 - xl)· (~ - xl) + (y2 - Y1) • (yJ - Y1) 

::z 

2J(x2 - Xl) 2+ (12 - Y1) 2 J(") -Xl) 2+ (yJ - Y )
l 

I I I 1 I I 

(x~ - x{).(~ - xl )+ (Y2 - Y1)'(YJ - Yl ) 

J 1 

• 

12 I 12/1 .2 I 12 
(X2 - Xl) ... (12 - Y1) -4 (~ - x~) + (y) - Yl ) 
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Figure 1 

O..kle 

West 

It is easily seen that the set of axioms a~e satis­

fied. The model is an example of a cono~ete model. There­

fore, the aXiomatio system ~ has absolute consistenoy. 

In Chapter Two, Poinoar~ls model of plane Hyperbolic 

geometry will be develop,ed to show that the set of axioms 

of plane Hyperbolic geometry has relative consistency. 



CHAPTER II
 
I 

POINCARE I S MODEL OF HYPERBOLIC GEOMETRY 

The purpose of this chapter i8 to develop the model 
4devised by Henri POinoar~ of plane Hyperbolio geometry. 

The model uses obJeots and relatione of plane Euolidean 

geometry.. Therefore, an ideal model is developed for the 

axioms. 

1. THE GEOMETRY OF THE CIRCLES ORTHOGON.AL TO .A FIXED CIRCLE 

Consider any fixed oiroleE in the Euolidean plane 

EI.nd call it the fundamental oirole. The following defin1­

tions will be used to interprete a concept of plane Hyper­

bolio geometry into the terms of plane Euclidean geometry. 

Definition~. A point of the Hyperbolio plane 

is represented in ~he model by a point in the interior 

of 1J • 

_D_ef_i_n_i_t_i_o_n Il.2. A line of the Hyperbolio plane is 

represented in the model by the aro of any oirole orthogonal 

toE which is interior to E. Any diameter ofD is orthogonal 

to1J and will also represent a li~e of Hyperbolic geometry. 

Definition~. A point on a line in the Hyperbolic 

plane is represented in the model by a point interior to lJ 

and on an aro of a oircle orthogonal to lJ , where the 

relation "on" has the usual Euclidean interpretation. 

4Eves, ~. oit., p. 101. 

9 
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Definition II.4. A line through or containing a 
~ 

point of the Hyperbolio plane is represented in the model 

by an aro of a oirole orthogonal and interior to t through 

or oontaining a point,where the rela.tions "through and 

containing" have the usual Euclidean meaning. 

Definition II.5o. A point between two points in the 

Hyperbolic plane is represented in the mOdel by a point 

between two points on an arc or a oircle orthogonal and 

interior to £ , where the relation I!between" has the 

usual Euclidean meaning or a point between two points on 

an arc in the Euolidean plane. 

Definition II.6. A segment AB in the Hyperbolio 

plane is represented in the model by the points A and B 

and all points which are between A and B on the seme 

aro or a oircle orthogonal and interior to ~ • Points 

A and Bare oalled the endpoints of the segment. A 

point C is said to be on the segment AB if it is A or 

B or some point between A and B. 

Definition II.? The length of a segment AB in the 

Hyperbolio plane is defined in the model as the log (AT BS), 
~.~ 

where S and T are the points in which the aro oontaining 

aro AB interseots E and A is between 8 and B. The cross 
..-.

ratio is greater than one. Therefore, log (AT BS) is-
BT 

. 
AS-greater than zero. 
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Definition II.B. A pair of points (A, B) congruent 

to a pair of points (C, D) in the Hyperbolio plane is 

represented in the model by pairs of pointe (A, B) and 

(C, D) such that the pairs o~ points are endpoints of 

segments and 

log (AT BS) _ log (f\j 00).-.- - -.­
m AS DV 6U 

Definition. !L.2.. A segment AB oongruent to segment 

OD in the Hyperbolic plane is represented in the model by 

two aros AB and CD such that 

log (AT BS) _ log (ov nu). 
-"......., 

~.--.-,..... ­
....... ­HT AS DV CU 

Definition II.1Q. Interseoting lines or line seg­

ments in the Hyperbolic plane are represented in the model 

by two aros, a diameter, or an aro and a diameter, whioh 

are said to be intereeotlng if there is a point whioh is 

on both of them. 

Definition II. 11. A ray AB in the Hyperbolio plane 

is represented in the model by the set of all points con­

sisting ot those which are between A and B, the point B 

itself. and all points C such that B is between A and C. 

The ray AB is Baid to emanate from point A. 

Definition II.12. An angle in the Hyperbolio plane 

is represented in the model by a point (called the vertex 

of the angle) and two rays (oalled the sides of the angle) 

emanating from the point. 
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Definition 11.13. The measure of an angle between 

two interseoting lines in the Hyperbolic plane is defined 

in the model as the measure of the angle between the 

tangents to the intersecting arcs. 

Definition 11.14. Angle ABC congruent to angle DEF 

in the Hyperbolic plane is represented in the model by 

angles ABO and DEF, where the measure of the angle ·ABO 

is equal to the measure of angle DEF. 

Definitlon 11.1:;,. Let A, B, and 0 be three points 

no t on the same arc) ln n. Then the segments of triangle 

ABO of the Hyperbolio plane are represented in the model 

by the three segments AB, BO, and CA called the sldes of 

the trlangle and the points A, B, and C oalled the vertices 

of the trlangle. 

Definition 11.16. The angles of triangle ABO of the 

Hyperbolio plane are represented in the model by the three 

angles BAC~ CBA, and AOB which are called the angles of 

triangle ABO. An angle BAC is said to be inoluded by the 

sides AB and AO of the triangle. 

Definition 11.17. A triangle ABO congruent to tri ­

angle AIBICI in the Hyperbolic plane is represented in the 

model by triangles ABO and A'BICI suoh that, sides AB, 

AO, and BO are oongruent to sides AIBI, AICI, and BIOI, 

respeotively; and the angles ABC, ACB, and BAC are oongruent 

to angles A'B'OI, AICIB', and BIAIO', respeotively. 
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Capttal letters will denote a concept of plane 

Hyperbolio geometry whioh is being represented in the 

model. 
I

II. PROOFS SHOUIHG THlIT THE POINCARE' HODEL ' 

SATISFIES THE AX10US OF PLANE HYPERBOLIC GEOMETRY 

Group 1: Postulatea Qf Conneotion. Hilbert1s 

axioms of plane Hyperbolio geometry may be found in the 

appendix. 

To verify Postulate 1-1 (See appendix.), it must be 

shown that given any two POINTS in D , there exists at 

least one LINE through the two given POINTS A and Band 

that this LINE is unique. 

Figure 2 

I 
I c::::: .....~L I ,,'" ,..J Q 

Proof: 

Let 0 be the oenter ofD with r the radiu8. (See 

figure 2.') Let POINTS A and B be any two distinot POINTS 

in IJ. Suppose that POINTS A, B, and.O are oollinear. 

Since L] is in the Euolidean plane, there exiets a unique 

diameter ot 1] which contains POINTS A, and B. This diameter 
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is orthogonal to 1J and is, therefore, a LINE oontaining 

the POINTS A and B. 

Suppose thBt poINTS A, B, ~Uld 0 lU"e not C10111nonr. 

Construot line OA; Using POINT 0 ae the oenter of in­

version and .n as the o1role of inversion, there exists 

2a point AI on line OA suoh that OA • OA' = r , where A' is 

the inverse of A. Suppose that the point' AI is in r: , 

then (in the Euolidean sense) the length of OAt is less 

than r. Likewise, the length of OA is less than r. 

Thus OA·OA' is less than r 2 , whioh is a oontradiotion. 

Therefore, AI is not in r:::. Through the points A, A', 

and B there passes one and only one oirole denoted by 

oirole II. 

To show that oirole II is orthogonal to LJ ~ let 

C be the oenter ot o1role II with r 2 the radius. Con­

struot line 00. Let the points of the interseotion ot 

OC and Circle II be oalled ~ and ~, where ~ is between 0 

and O. Construot lines AQ' and AIQ. Consider the triangles 

OAQI and OQAI. Angle AOQt is oongruent to angle AIO~. 

The measure of angle AA'Q=l m (aro AQ) and the measure 

of angle Q~IA = t m (arc A~), since they are insoribed 

angles subtended by the same aro of cirole II. Then 

angle OA'Q is oongruent to angle O~IA. Therefore, tri­

angle OA~' is similar to triangle OQAIJ Thus OAI_QR 
OQI-OA 
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2and OA • OA I ~ OQ, • OQ,'. Since OA OA' = r , thene-

OQ, ·0Q,I=r2 • Segment OQ=OC - r 2 and segment OQ'= 

00 + r 2• Thus r 2 == OA • OAI = OQ, • OQ,':: (00'- ~2) • 

(00 + r 2 ) =: 00 2 .- r~. Therefore, r 2+ r~ = OC 2 and circle 

II is orthogon~l to LJ. There is at lenst one LINE 

contained-in LJ passing through POINTS A and B. 

Let circle III be any circle which passes through. 
POINTS A and B and is orthogonal to IJ. Let oirole III 

have oenter D ~n~ radius r • Construot line OA. Call
J 

the point of the intersection of line OA and oirole III, 

AII. Since oirole III is orthogonal to r: , then OA • OA":; 

r 2 • Oonstruct line OD and oall the points of the inter­

section of line OD and cirole III, P and pi, with P be­

tween	 0 and D. 

Since circle III is orthogonal to n , r 2+ r~ =: OD2; 
2 2 2Then r =OD - r J =(OD - r

J
) • (OD+ r J )= OP . OPI = 

OA • OA". But OA . OAI = r 2 and OA • OAt = OA • OA". 

Thus OAI == OA" and A" concideB with AI. Therefore, 

oirole III coinoides with cirole II oonstruoted earlier 

and there is one and only one circle through A and B 

orthogonal to D. Postulate I-I has been 'verified. 

Every LINE in D is an aro of a circle in the Euclidean 

plane which contains an infinite number of distinct points. 

Therefore, every LINE ofLJ contains at least two distinot 

POINT8. 'Sinoe an aro of a oirole does not oontain all the 
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interior points of the circle, there is at least one 

point interior to LJ not on an arc of a cirole orthogonal 

to lJ. ThuB thero 16 Rt least one POIN~ NOT ON A LINE. 

(See appendix.") Th1s verified Postulate I-2. 

Group II: Postulates of order. Postulate II-l 

(See appendix.) is proved directly by the interpretation 

of a POINT BET'~EN ~ro POINTS, since the Euolidean inter­

pretation is· the order of pointe on an aro. This inter­

pretation impliee that if a point 0 is between A and B, 

then 0 is between Band Aj B is not between A and OJ and 

A is not between 0 and B. 

To verify Postulate I1-2, (See appendix.) consider 

any two distinot POINTS A and B in E. By Postulate I-l, 

there exists a LINE through A and B. Sinoe every LINE 

is an aro or a Euolidean cirole, there exiB~e a POINT 0 

between A and B and a POINT D such that B is between A 

and D. 

To prove Postulate II-3 (See appendix.), oonsider 

any three POINTS A, B, and 0 on the same LINE. Since 

this LINE ie an aro or an Euclidean oircle, then one of 

the pointe A, B, or a must be between the other two. 

To verify Postulate II-4, (Pasoh's Postulate), it 

must be shown that a distinct LINE which intersects one 

side of a TRIANGLE but does not pass through any or the 

vertioes of the TRIANGLE must interseot one other side or 

the TRIANGLE. 
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Figure 3 

17 

Let TRIANGLE ABC (See figure J') be any TRIANGLE of n 
'\'Iri th DE intersecting side BC at POINT E. Let LINE DE be 

an aro of circle I which intersects t at points Sand T. 

Let LINE .Be be an aro of cirole II. Since the two oircles 

I and II are orthogonal to a third circle,~ , and inter­

seoting inE J then the seoond point of intersection H 
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must be in the exterior of 1] • Either the POINT B or a 
is in the interior of circle I since POlIn E is between 

POINTS Band C. Consider the POINT B i9 in the interior 

of circle I. This would imply that the POINT C i8 in the 

exterior of cirole I, since the LINE DE of oircle I inter­

seots LINE BC betHeen the POINTS Band C. The POINT A 

is not on circle I since DE does not pass thru a vertex 

of TRIANGLE ABC. Thus the POINT A is 1n the interior of 

circle I or the POINT A is in the ~xterior of cirole I. 

Suppose that the POINT' A is in the interior of oirole I. 

The LINE AC must interseot LINE DE between A and C sinoe 

A is interior and a is exterior to oirole I. Suppose 

that the POINT A 18 in the exterior of oirole'I. Then 

the LINE AB must interseot LINE DE bet,"een A and B sinoe 

A is exterior and B is interior to oir,cle I. Thus Postu­

late II-4 has been verified. 

Group III: ~stulates of Congruence. The proof of 

Postulate I11-1 (See appendix.) follows from the defini­

tion of the LENGTH OF A LINE SEGMENT. 

Figure 4 
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Proof: 

Let A and B (See figure 4.) be any two POINTS orn • 

I	 Then by Postulate I-l, there exists a LINE j .• through 

POINTS A and B. Let points Sand T denote the points of 

the intersection of LINE) and n. The POINTS A, B, 

and points a, T are fixed points. Let LINE) 2 be any 

LINE in ~ distinct from LINE j . Choose any POINT AI 

on LINE) 2•. Let points 8 1 and TI denote the points of 

the intersection of LINE,) 2 and n . The point s Ar, 8 r , 

and T' are fixed points. 

It must be shDwn that there exists a POINT X on 

J 2 such that the distanoe bet'\o'sen A I and X on an arc 

-. ­oan tAke on any value from a to 00 • Let AITI ::: 0, XSI:::: 
~ 

d, and SITI::; q. Oonalder the continuous funotion- .......t(X) ;:: log (AIT' • XS' ) 
- .XTt 1'i'Bi 

= l~g ( c, .. d ) .. 
q - d q - 0 

Since log X is a continuous funotion, then the 

lim f(X) =lim ~Og (~ • d j 
X-iIOT d~q q - 0 q - d~ 

= log • flim
(q : 0 Ld -+ 'I. ('I. ~ ~) 

:: log ( 0 o 00) 
q - 0 

OC= log 

- 0t0- • 
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This shows that A'X can be made as large as necessary. 

Likewise, 

11m reX) -= log rc 0 • _ 0 .~
 
X --)0 A [q - d q - 0]
 

d -+ (q - 0)
 

; log [ c. 11m ( d J 
q-o q-d 

d~ (q - C 

.: log ( 0 " 9-::. 0) 
q - c 0 

:: log 1 

- O. 

Thus A'X can be made as small ae necessary. 
,-. 

The LENGTH OF AB = log (AT . BS) by definition 11.7. 
Bf 18 

Let r = log (g "~)' ,,,here r i8 a real number v A POINT 

B! Can be found by solving the equation 

r :: log (£iT' . XS'I ) for X. 
XfI 1i1il 

This POINT BI will between Al and TI on LINEj 2" Similarly, 

a seoond POINT an oan be found by solving the equat10n 
..-...... ./""'.

log (~ • XT' ) for X.r == xsr ]\iTT 

The second POINT B" will between S' and AI on LINE J 2' 

S1nce the POINT BI 1s between AI and TI, the POINT BII 1s 

between 51 and A', and the POINT AI 1s between 8' and TI, 

then AI is between BI and B". 

Two unique POINTS BI and Bil oan now be found suoh 
-,,- ........ 

that LENGTH .AB == LENGTH AIE' and the LENGTH AB = LENGTH 
...-.....
AIB". Therefore, by def1n1tion 11.8, the pa1r of POINTS 
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AI, BI i8 congruent to the pair A, B. Likewise, the pair 

of POINTS AI, B" is congruent to the pair A, B. 

To prove Postulate 1II-2 (See appendix.), let the 

pair of POINTS Ap B be congruent to the pair AI, BI. 

Let the pair of POINTS A, B be oongruent to the pair A", 

B". Then by 4efinition II.8, the pairs of POINTS (A, B), 

(AI, Bt), and (A", BII) are endpoints of segments and 

. log (~. BS) = log (R~.. B~ I ) 

BT AS fiSrI 

"'" ,-...and log (AT. BS) log ( £iiT II . B'iiS II) • 
..-­BT AS 

': 

B"TII AilS"-
Then ,.-..

log (fiT I • ~~ I) (AIITlI . '"""' - log BIISII).
ifilI AISI - B'ii'T II fit Se II 

Therefore, the pair of POINTS AI p Bl, ie congruent to the 

pair A", B" by definition II.8. 

To verify Postulate III-J (See appendix.), let AB 

be any SEG}~NT IN I] with POINT C any POINT between A and 

B. Let.A' BI be a BEGHENT in n l·ti th C' between AI and BI 

euch that the pair of POINTS A, 0 is CONGRUENT to the pair 

AI~ 01, and the pair of POINTS C, B is aONGRUENT to the 

pair a', BI. (See figure S~) 



22 

IJFigure 5 

Proof: 

By def1n1t1on TI.8, 

log (~ .Rl - log ( AIT\ • CiS') and- dTTi 1t"§i 

Ofil: (,aT • BS) - log ( CiT I .BISI).-B¥ M3 ~ cmrr 

the LENGTH AC = LENGTH .Aiel 
..- -...

the LEl'~GTH GB = CI B I • ierefore, the LENGTH AC + 
- -I;ENGTH CB::: A'---0 1 + NGTH 

--..
'B r • 

Then by deflni t10n II. 7, 
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Then the 

LENGTH AC + LENGTH 6B = log (AT • CS)-t log (aT • M) 
~ rg ~ OS. 

• BS) 
6T 1J3 ~ 6§"

:: log (AT • 6S • CT- ­
= log (AT • BS) 

BT ~ 

- LENGTH fJJ. 

Likewi se, 1t oan be shown that the LENGTH A'iC I + LENGTH - ,-..",.fiB I = LENGTH .AiB I, • Thus, the LENGTH AB = LENGTH A'BI. 

Therefore, the pair ot POINTS A, B is CONGRUENT to the 

pair AI, BI by definition II.8. 

Before Postulate 1II-4 (See appendix.) oan be verl ­

fied, the follow1ng theorem must be proved. 

Theorem II.l. There exists a unique oirole ortho­

gonal to n and tangent to a g1ven l1ne i at a POINT A 

of J not on 11 • 

IFigure 6 
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Proof: 

Let 0 (See figure 6.) be the center of.o. Let ; 

'be &ny ·line paea1ns through .D '11th A any point on i where 

A is in lJ. Construct on the line OA, a point AI, the 

inverse of A. Therefore, OA • OAt = r 2 , where r is the 

radius of C. Construct' the perpendioular biseotor PQ, 

of segment AA' with P on segment AAI. Construot line AD 

perpendicular to line ~ • Let the point of intersection 

of line AD and line PQ be called O. ConAtruot ciro1e I 

with center C and radius equal to the length of AC. Cirole 

I is tangent to line 1 at A since the oenter of circle I 

is on the perpendiou1ar line to i at A. By using the 

BaIne method whioh was e,stab1ished in proving Postulate 

1-1. oirc1e I can be ShO'fll to be orthogonal to D. Cirole 

I is unique sinoe any other cirole passing through A and 

A' oou1d not be tangent to line) and orthogonal to 1J on 

the same aide 0 f line ~ • 

Postulate 1II-4 oan now be verified. 
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Figure 7 

·Proof: 

Oonsider any ANGLE BAC and any two dis.tinct POINTS 

AI and BI. (See figure 7.) By Postulate I-I (See appen­

dix.), there eXists a unique LINE J through AI' and BI. 

Let m equal the measure of ANGLE BAC. Oonstruot the tangent 

AID to j at AI • Since D is in the Euclidean plane, then 

there exiets two distinot lines AlE and AIF suoh that the 

measure of angle EAID ie equal to m and the measure of 

angle FArD is equal to m. Then by theorem II.I, there 

exists a unique oircle II orthogonal to n passing through 

AI and tangent to AlE. Likewise, there exists a unique 

cirole III orthogonal to n and tangent to AIF at Ar. 

Note that in the half-planes determined by line AID, 

the points E and F are not oontained in the same ha1f­

plane. Let 0 1 and a" denote POINTS on cirole II and 
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cirole III, respeotively, such that the POINT 0 1 is the 

same half-plane determined by AID as E and the POINT 0" 

is in the same half-plane as F. Then ANGLE BAC is CaN­
t 

GRUENT to ANGLE BIAICI and ANGLE BAC is OONGRUENT to 

ANGLE BIAlon by definition II.14. Let DI and D" be any 

t"ro POINTS On RAYS AICI and AIC n, respaotively. Sinoe 

CI and C" arel~ not oontained in the same half-plene de­

termined by li?e AID, then this implies that either C' 

or on ls contafned in the interior of i. Suppose that 

on is contained in the interlor of ). Then all the POINTS 

on RAY A'Oll are interior to i. Likewise, 0 1 is in the 

exterlor of ,f and all the POINTS on RAY A' CII are exterior 

to ~ • By Postulate I-I, there exists a unique LINE 

~ 2 passing through D' and pll and orthogonal to D • S inoe 

D" ls an interior POINT of land DI ls an exterior POINT 

of ,i , then LINE j 2 must interseot,/ whioh is LINE AIBI. 

Postulate 1II-5 (See appendix.) is verified by defi­

nitions II.13 and II.14. 

The following two theorems must be proved before 

Postulate 1II-6 oan be verified. 

Theorem II.2. Inversion is a oonformal transforma­

tion, 1.e., in an inversion the angle between two inter­

seoting ourves is equal to the oorresponding angle between 

the two inverse ourves. 
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Figure 8 

Proofz 

Consider any angle ABO and a point 0 (See figure 8.) 

such that the pointe A, 0, and 0 are oollinear. Let 0 

be the oenter of circle I with radius r. Let angle ABO be 

oonta1ned 1n/c1role I. Using 0 ae the center of inversion, 

there exists points A', B', and C' which are the inverse 

points of A, B, and C, respectively. Then r 2 = OA • OAt = 
OB • OBi =00 • oCt. Construot lines AIBI and B'C'. It 

can easily be shown by using similar triangles that m (angle 

OBO) = m (angle B'C '0), m (angle BOO) =m (angle AlB 10) + 
m (angle AlBIC'), m (angle AIB'O) =m (angle BAO) and m 

(angle CBO) + m (angle ABO) = m (angle BIA'O), where 

m means the measure of the angle. S1noe, m (angle CBO):: 

m (angle BIO'O) and 
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m (angle CBO) + ru (angle ABC) == m (angle BIAIO) 

then 

(1) ED (angl, BIOIO) + m (anglo Ai,e.) 'Z m (angle, BIA10). 

The m (angle BIAta):: 180 - m (angle BIAle!). Then (1) 
I 

beoomes m (angle BICIO) + m (angle ABC)::: 180 - m (angle 

BIAIOI) and . m .(angle ABC) =180 - m (angle BIAIC') ­

m (angle BI 0'0'). Then m (angle ABO) = 180 - [m (angle 

B'AIC!) + m (angle BICIOn,. In triangle AlBIC', m (angle 

A I B ' CI) =180 :.. ~ (angle B I A10 I) + m (angle B I C I A I il . 
Thus, 

m (angle ABC):= m (angle AlBIC!). 

The measure of an angle i8 invariant under inversion. 

Theore~ II.~. LENGTH PQ- is invariant under inversion 

in any oirole or·thogonal to n . 

Figul~e 9 
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Proof: 

Let oirole II (See figure 9.) be the oirole of 

inversion with oenter 0 and let oirole II be orthogonal 

to I: • Let r denote the radius of cirole II. Let	 points 

Band T be on rl 
, 

and oontained in oirole II. Let 51	 and 

2Tf denote the inverses of 5 and T. Then OS • OSf = r , 

ainoe I1 is orthogonal to o1role II. Consider any POINT 

R on line as suoh that R is oontained in the interior of 

1] and oirole II. Thus the length OR is greater than 

the length OS. Suppose that RI, the inverse of R with 

re spe ot to cirole II', is not contained in E. This im­

plies that the length ORI is greater than the length OSf. 

2	 2But since as • OS' =r , then OR • OR' 1e greater than r 

which oontradicts that RI 1s the inverse of R. Therefore, 

R' is contained in 1] • 

Let POINTS P and Q be In the interior of}]. By 

Postulate I-I. there exists a unique oirole p~ssing through 

the POINTS P and Q and orthogonal to n. The POINTS pi 

and QI, the inverses of P and Q with respect to cirole 

II. are oontained 1n E. Since the measures of angles 

are preserved under inversion by theorem II.2, then the 

cirole passing through POINTS pI, QI and points 51, TI 

will be orthogonal to I1 • Firat, it will be shown that 
,--..

1 2 QITI • r 2 ,PT - 8 • r 1 'iT= 
OP' • OT' OQI • OTI 
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PS _ PiS I • r 2 , and @ QiS'. r 2 • 
- OPI • OSI ::r OQ.! • OS'" 

These relationships will later be used to prove LENGTH 

PQ :;:: LENGTH PiQ'. 
In order to show this, 8uppose that points 0, pi, 

and T' are not oollinear. Consider the triangles OPT 

and OP'TI. Since r 2 = OP • Opf = OT • OT', then	 OP _ OTt. 
OT - C5Pi 

Also since angle, POT is congruent to angle P'OTI, then
 

triangle OPT is sim11ar to triangle OP'TI.
 

Therefore,
 

PT OT' _ OT OT' _ r 2 • 
P"""fT'I: opT - OPT" OT I - OP , • OT' 

.-... - 2Then PT _ PITI • r • 
- OPI • OT' 

Suppose that the points 0, pi, and TI are oollinear. 

Bince OP • OP' : OT • OTI, then (OT' - PITI) • OP ~ OT' 

• (OP - PT) and 

(OT I • Op) (p IT I • 0P) := ( 0 T I • 0 P) - (0TI • PT). 

Thus 

(piTt. OP) :: .. (OT' • PT). 

MUltiplying by -1, 

PIT I • OP = OT I • PT 

and 
2PT OP _ OP. OP'_ r • 

P ''T'I -; OT I - OTT OP I- OT I • OP' 

Bince the measure ot angles are preserved under inversion,
• 

then m (angle QTP) = m (angle Q,'Tlp,), m (angle Q?T) = m 

(angle QIPITI). 
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Thus 

-- _ PTPT
 
i?tirr,- PiT'
 

Then 
......... ........ ....­PT _ r 

2 
and PT FITI . r 2 

•-P~I- aT' • OP I • optaT' 

Likewise, it eDn be shown that 
,-.,......-..., 2 --. -- 2 ,,-....---... 2 
QT_~VTI • r , PS _ piS I • r ,and QS _ Q I S I • r •- - --"-...:..::-._.:.......- ­

OQ I • aT I Opt. OSI OQ,' • OS' 

By definition II.?, the
 
,,-..... ...-.. ­

LENGTH PQ - log (PT . QS) 
- iI:?i~'

• 
Since 

,.....- .--... 2PT == P 'T I • r Q,T _ 

aT t • OP' 
2.-- -- 2 

2 

,.-...
PISt • r JQS = '1'SI • r. J and 

0'11 • OS' OP' • OS' 
~ 

the L~TGTH PQ beoom~s 

"... ~ 

log (PT •--QS) 
~QT PS 

=log 

log ( 0T . 1'2- ' 
OP' • aT' 

"....... ..,--....
 
log (?lTI 
~ ~) 
'l'T' P'S' 

,.--...
=LENGTH P IQ I
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by def1nition 11.7. Thus the LENGTH Pq is inVari&nt under 

inversion in any circle orthogo to L: • 

Postulate 111-6 (See appendix.) can now be proved. 

Figure 10 

TIl: 

T 
.L. 

Proof: 

Consider Rny TRIANGLE ABC in r:::. (See figure 10.) 

Let 0 be the center of D and let r denote the racl1us of 

D. Let SIDE AB be on oircle I, DE AO on c1~cle II, 

and SIDE Be on circle III. Construct line 00. Since 

circle II and. III are orthogon&\l to L: and intersect in 

rJ , then their second point of intersection C~ 1s in the 

exterior of LJ. C I is the inverse of C w respect to 

~. Construot circle IV wi th cent er C· l:U'ld ro.di us r4 J 



33
 

where r~ = (00 1 )2 - r 2 • Then Il is orthogonal to oirole
 

IV. The point C' can be used to invert £ into itself.
 

Let 0" be the ~nverse of C with respect to IV. Since
 

oircles II an~ III pass through C' the center of inversion,
 

. then they inv~rt into straight lines cr'AI and aliBI. The 

inverses of circles II and III with respeot to oircle IV 

will be orthogonal to D , sinoe n inverts into i teel! and 

the measures of angles are presorved under inversion. 

Sinoe straight ,lines cnA I, and 0 I1B I are orthogonal to D , 

they are diameters of Il , and pass through O. Therefore, 

a" ooincides with the POINT o. Th~n by definition II.2,· 

LINES OAI and OB' are orthogonal to 11. Since circle I 

does not pass through CI, it inverts into a cirole through 

POINTS AI and BI whioh io orthogonal toJ:. Consider the 

TRIANGLES ABC and A'B'O. SIDE AB inverts into SIDE A'B' , 

SIDE AC inverts into SIDE AIO, end SIDE BO inverts into 

SIDE BIO. The measures of ANGLES and the LENGTH OF SEG­

MENTS are preserved under inversion by theorems II.2 and 

II.3, respectively. Therefore, TRIANGLE ABC is CONGRUENT 

to TRIANGLE A'BIO by definition II.l? 

Consider TRIANGLES ABC and A1B1C l , (See figure 11.) 

where SIDE AO io CONGRUENT to SIDE A1C1' ANGLE ACB is 

CONGRUENT to ANGLE A1C1Bl , and SIDE BC io CONGRUENT to 

BIDE B10l. 





l 

·.3·5 

TRIANGLE ABC is CONGRUENT to a TRIANGLE A'iPO by the above 

paragraph. Likewise, it can_ be shown that TRIANGLE AIBIC

is CONGRUENT to a TRIANGLE AlBiO by the same method. Thus 

SIDE AC i8 CONGRUENT to SIDE AI 0, ANGLE ACB is CQ1I!GRUENT to 

ANGLE AIOB', SIDE BO is CONGRUENT to SIDE B·O, SIDE A1Clia 

CONGRUENT to SIDE A{O, ANGLE Al C is CONGRUENT to ANGLEl Bl 
AiOBi,and SIDE BlOl is CONGRUENT to SIDE BiO. Then SIDE 

AIO is CONGRUENT' to SIDE AiO' ANGLE AIOBI il3 OONGRUENT 

to ANGLE AiOB!i and SIDE BI,O 1s CONGRUENT to SIDE Bio. 

Angle A'OBI is congruent to angle AiOBi. By definition 

II.9, LENGTH A'O =LENGTH AIO and 

log (~T1'. 'A9~:)= log (AiTi • OSi) 
OT' • A'S.111 

where (TI I 8 1 ) and (T'. 8 1 ) are endpoints of diameters 
1 1 

of n t respectively. Alsot LENGTH BIO == LENGTH B].o and 

log B'U""· OV.. BIUI • OVI
(nrn' • t:lt~JI ) = log ( 1 1 1 ) 
~ 

where (UI , VI) and (U1, Vi) are endpoints of diameters 

of ~.' respectively. Since the diameters of..n are of 

equal length, this implies that length AIO =length AiO 

and length BIO = length BiO. There exists a unique oirole 

passing through POINTS AI and BI which is orthogonal to ~ • 

Likewise, there exists a unique oirole passing through 

POINTS Ai and Bf which is orthogonal to n . 
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Consider the rigid motion (rotation and line re­

flection) that maps AI ---+ AI' 0 ~ 0, and BI ~ Bi. Then 

SIDE AtO ooinoides with SIDE AiO and SIDE BIO _ooinoides 

with SIDE BiO. Suppose that AlB I does not coincide under 

rigid motion with AiBi......-- Sinoe AtBI-- are onthe and AiB{ 
oiroles orthogonal to n , this implies that there exists 

two distinct circles pass1ng through POINTS A1 and B1, 
which are orthogonal to, D.~ This is a oontradiotion of 

,.-- ---.-...
Postulate I-I. Thus AlB I oolncio.es with AiBl and AIBI 

is oongruent to AiBI. Then the figure AtBIO is congruent 

to figure AiBiO. Thus the Euolidean angle OAIBI at AI 

is oongruent to the angle OAfB! at Ai and from definition 

11.14, they are CONGRUEN'T. L1kewise, the Euclidean angle 

OBIAI at Bt 1s oongruent to the angle OBiA{ at Bi' and 

trom definition II.14, they are CONGRUENT • 

-

....- ­It remains to show the LENGTH A:l.Bi = LENGTH AI B' • 

Observe that under the rigid motion desoribed above that 

length s111 ~ length SIAl and length BIT! =length BIT,.- ,.-....Thus it oan be shown that LENGTH AiBI = LENGTH AIBI. 

Then TRIANGLE AIBIO 1s OONGRUENT to TRIANGLE AiBiO. 
Since TRIANGLE ABO is OONGRUENT to TRIANGLE AIBIO whioh 

is OONGRUENT to TRIANGLE AiBiO and TRIANGIE A:l.BiO is 

. OONGRUENT to TRIANGLE 'Al Bl 01 , then TRIANGLE ABO is CON­

GRUENT to TRIANGLE A1Bl Cl • 
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Group IV: Postulate of Parallel~. 

The Lobaohevskian parallel postulate, Postulate 

IV'-l, oan now be proved. 

Figure 12 

Consider any LINE m (See figure 12. F·,and any POINT 

A not on LINE m in E. Let·S and T denote the pointe 

where circle m interseotsD. There exists a unique 

oirole I passing through points 8 and A which is ortho­

gonal to Ii. Likewise, there exists a unique oircle II' 

passing through pointe T and A which is orthogonal to~ • 

The two cirole I and II are t~~gent to oirole m at 8 and 

T, respeotively. Thus the oircles I and II are distinct. 

Since the points Sand T are on n , they are not considered 

to be points of the model. Thus t~rough a given POINT A 

not on a given LINE mf there pasS at least two distinot 

LINES which do not interseot LINE m. 

Group V: Postulat~ of Continuity 

The proof of Postulate V-I (See appendix.) follows 

from the definition of the LENGTH of a SEGMENT and 



38 

Postula.te III-I. 

Figure U 

o. 

.. 

Proof: 

Consider any four distinot POINTS A, B, C, and D 

in E. (See figure 13) By Postulate I-I, there exists 

, -uniqus LINES	 AB and CD orthogonal to n . The LENGTH AB :: 

log (~ • ~) and LENGTH 50 = log (CU- DV)- by definition 
DU OV

11.7.	 Let 

r ~ log (AT • BEn and q ~ log (au . DV),m- A!r	 i5TJ ~ 

where rand q ar~ real numbers. Then from Postulate 

III-I, ther~	 exists a distinot POINT Al on RAY AB such 

that the distance between A and Al ia equal to q. By 

Postulate III-I, there exists a distinot POINT A2 on RAY 

AlB auch that t~e distance between Al and A2 is equal to 
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q. Suppose that there exists distinot POINTS AI' A2 , 

-• • ., A _ such that LENGTH AA1 ; LENGTH A:;A2= LENGTH n 1 
...-- --...A2A').;: '•• " = LENGTH A 2A l' Sinoe the LENGTH AA 1 = 

J n- n- n­
(n-l) • q;f oq ,then there exists a distinot POINT An
 

suoh that the distance bet,~een ~-l and An is equal to 

q.	 Thus there exists a f'ini te set or POINTS AI' A2 ,- ...­••• , An such t ha t LENGTH	 AA1 ,.;: LENGTH Al A2 ::: ••• =: 

---. 
LENGTH ~-l An' The pair of POINTS A, All AI' A2; ... ., 
An_I' An are CONGRUENT to the pair 0, D. 

Sinoe rand q are real numbers. then r < q, r:: q, _. 

or r , q. Suppose that r < q. Since the distanoe between 

A and Al ~s q, then B is between A and AI' Suppose that 

r : q. Then the POINT Al ~s the POINT B, sinoe the dis­

tanoe between A and Al is, q. Thus the POINT B will be 

between the POINTS A and A2" Suppose that r > q, then 

there exists by the Arohimedes principle of the real 

number system, a positive integer n suoh that q.n ~ r. 

Thus there exists a POINT An suoh that the distance be­

tween A and An is greater than r. ' Therefore, the POINT 

B is bet"re en A and An' 
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III. SUMMARY 

,
It has been shovm that the model of Poincare satis­

fies the axioms of plane Hyperbolio geometry. Thus plane 

Hyperbolio geometry is as oonsistent as plane Euolidean 

geometry. For, should there be any inconsistenoy in 

plane Hyperbolio geometry, there would have been a oorres­

ponding inconsistenoy in the plane Euclidean geometry of 

the Poinoare model. Therefore, plane Hyperbolio geometry 

has relative oonsistency. 

It can be noted that, sinoe plane Euolidean geometry 
\

is as oonsistent as the real'number system, plane Hyper­

bolio geometry is as oons1Atent as the real number syste~. 
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A, B, a, are all on the same line, and C ie between Band 

A, ena B is not between a and A, and A is not between 

a and B. 

1I-2. For any two distinct pointe A and B there ia 

alwaya a point C which is between A and B, and a point D 

such that B is between A and D. 

II-J. If A, B, and 0 are three distinot points on 

the same line, then one of the points is between the other 

t~. 

Definition ~~l. By the segment AB is meant the points 

A and B and all points which are between A and B. Points 

A and B are called the ~nd ppints of the segment. A point 

o is said to be Q.!l the segment AB if it is A or B or some 

point between A and B. 

Definition ~~~~ Two lines. a line segment, or two 

segments. are said to interseot if there is a point whioh 

is on both of them. 

Definition 2-3. Let A. B. 0 be three points not on 

the same line. Then by the triangle ABO is meant the three 

segments AB. BO. CA are called the sides of the triangle, 

end the points A. B. C are called the vertices of the tri­

angle. 

1I-4. (Paach l s postulate>' A line which intersects 

one side of a triangle but does not pasa through any of the 

vertioes of the triangle must alao interseot another side of 

the triangle. 
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GROUP III: Postulates or congruenoe 

III-l. If A and Bare d1stinot points and if AI is 

a point on a line m, then there are two and only two distinot 

points B' and Bn on m suoh that the pair of points AI, B' 

is oongruent to A, B and, the p~ir of points A', B" is 

oongruent to the pair A, B; moreover, AI is between BI 

and Bn. 

III-2. If ;two pair o,f points are oongruent to the 

same pair of points, then they are congruent to each other. 
r 

III-l. If point C is between A and Band point.C' 

is between points A' and B', and if the pair of pOints 

A, C is oongruent to the pair AI, Ct and the pair of 

points C, B is congruent to the pair CI, BI, then the pair 

of points A, B is oongruent to the pair AI, Bt. 

Definition 2-4. Two segments are said to be oongru­

Def1n1 t10n 2-6. By angl,e. is' meant a pOint (oalled 

the vertex of the angle) and ti~TO rays (oalled the sides 
, 

of the angle) eminut1ng from the point. It' the vertex 
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of the angle is A and if Band C ere any two points other 

than A of the two sides of the angle, then angle BAC ~ 

angle CAB. 

Definition 2-7. It ABC is a triangle, then the three 

angles BAC, CBA, ACB are oalled a,ngles of the triangle. 

Angle BAC is said to be ~noluded by the sides AS and AC 

of the triangle. 

1II-4.'> If BA.C is an angle whose sides do not lie 

in the same line, and if AI e.nd Bl are two d1st1not points, 

then there are two and only two dist1not rays, Alai and 

AIC", suoh that angle BIAICI is oongruent to angle BAC 

and angle BIAIC" is congruent to angle BAC; moreover, it 

DI is Rny point on the ray AICI and D" is any point on 

ray AIC", then the segment DIDn interseots the line de­

termined by AI Rnd BI. 

1II-5. Every angle is congruent to itself. 

III-6. If two sides and the 1noluded angle of one 

triangle are oongruent, respeot1vely, to t\ro sides and 

the 1noluded angle of another triangle, then each of the 

remaining angles of the first tr1a ngle is oongruent to 

the oorresponding angle of the seoond triangle. 

GROUP IV: Postulate of parallels 

lVI-I. Through a Given point not on aline m there 

passes at least two lines wh10h do not 1nterseot line m. 

GROUP V: PostUlate of oontinuity-
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V-i. (Postulate of Arohimedes) If A, B, C, Dare 

four distinot points, then there is, on the ray AB, a 

finite Bet of distinot points AI' A2, ••• , An such that 

(1) each of the pairs A, AI; Ai' A2; ••• ; An_I' An is 

oongruent to the pair C, D and (2) B is between A and Ane 

All theorems of plane Euclidean geometry which 

are not based on the Fifth Postulote of Euclid's Elements, 

may be used as theorems in plane Hyperbolio geometry. 

The following list of theorems are all e~uivalent to 

postulate IVI-l of plane Hyperbolic geometry. 

Theorem 2-1. The Bum of the three angles of a 

triangle is always leus than two right angles. 

Theorem~. There does not eXist a pair of similar 

noncongruent triangles. 

Theorem 2-3. There exists a quadrilateral in whioh 

a pair of opposite sides are equal and the angles adJaoent 

to a th11~ side are right angles and the other two angles 

are equal and acute. 

Theorem 2-4. In a quadrilateral with three right
~ 

angles the fourth angle is aoutee 

Theorem 2-2e There eXists three noncollinear points 

8uoh that no circle can pASS through the three pointse 

Theorem 2-6. There is an upper limit to the area 

of a triangle. 
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Theore~ 2-7. There exists two straight lines which 

are parallel and they are not symmetrioal to one another 

with respeot to the midpoints of all their transversal 

segments. 


