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CHAPTER I
INTRODUCTION

The concepts of open set, closed set, functions,
continuity and sequences of functions are the backbone
of modern ahalysis. The purpose of this thesis is to
investigate a system of sets called the Borel sets and
a closely related system or classification of certain
real functions called the Baire functions,

The Borel sets are all the sets that can be ob-
tained from the closed and open sets by repéated appli-
cation of the set operations of union and intersection
of sets.

The Baire functions are classified according to the
nature.or form of limit functions of a sequence of func-
tions. The discussion begins with the somewhat familiar

continuous functions and sequences of such functions,

I. ORGANIZATION

The first chapter is devoted to the definition of a
few basic terms wused in the discussion as well as a brief
summary of several other more general topics., The two
ma jor areas of concern are those of ordinal numbers and

7

transfinite induction,



The topic of discussion in the second chapter is
the Borel sets, This section includes a definition of
the Borel sets followed by statements, in the form of
proven theorems,'describing the most basic properties of
these sets, Among the interesting results of this sec-
tion are the fact that all the Borel sets, like the closed
and open sets, are complements of one another, The system
of Borel sets also answers a big question about what kinds
of sets are obtained from closed or open sets, 7The major
conclusion of this chapter is that the Borel sets form the
smallest system of sets which contain all the open and
closed sets, and the union or intersection of any denumer-
able number of 'sets in the system is also in the system,
The discussion is limited to union and intersection of
denumerable numbers of sets,
- Chapter III is devoted to a discussion of the Baire
functions and some related topics., The early part of the
chapter includes a few definitions, theorems and comments
concerning continuity of functions, The definition and
properties of the Baire functions are the body of this
section., The properties of Baire functions that are
mentioned are shown to be generalizations of properties
commonly known about continuous functions,

Some of the relationships that are known to exist



between the Borel sets and the Baire functions are included
in the fourth chapter, The chapter includes the definition
of sets associated with a function and several theorems re-
lating these sets and functions, The two major theorems
of this chapter prove that a function of any prescribed
class is a Baire function of that class if and only if
all the sets associated with that funﬁtion are Borel sets
of the same finite Borel type.

The fifth and final chapter is devoted to a brief
summary of Chapters II, III, and IV; conclusions, and
some suggestions for further study., 1In addition, each
chapter includes a brief summary of the important items
of the chapter and some pertinent observations about the

work thus far,

II. DEFINITIONS

It is assumed that the reader has had some work
related to the concepts of sets, operations with sets,
functions, 1imifs, continuity, cardinal and ordinal
numbers and the properties of the real number system, Any
good course in analysis, topology or functions would pro-
vide the reader with a sufficient background in the above
areas,

Unless otherwise stated, it is to be assumed that



‘the domain and range of any function under discussion is
the set of real numbers., All sets considered will be sets
of real numbers,

It will be necessary on occasion to state addi-
tional definitions and introduce new concepts; however,

a few definitions are given here as a basic foundation,

Definition 1.1 7Two sets are said to be equivalent if and

only if there is a one-to-one correspondence between the

elements of the two sets.

Definition 1,2 A set S is said to be denumerable if and

only if it is equivalent to the set of positive integers.
An infinite set that is not denumerable is said to be

non-denumerable,

Definition 1.3 A neighborhood of a point P is an open

interval I such that Pé€ I.

Definition 1.4 A point P is an interior point of a set G

if and only if there is a neighborhood I of P such that

=g,

Definition 1.5 A set G is open if and only if every point

of G is an interior point.

Definition 1.6 A point P is said to be a limit point of

a set S if and only if every neighborhood of P contains a



point of S which is different from P.

o

Definition 1.7 A set H is said to be closed if and only if

it contains all of its limit points. A set is also closed

if its complement is open,

Definition 1,8 If S and T are sets and TC S, then the set

difference, S = T, is the set of all x such that x €S and
x#ﬁ

Definition 1.9 A set ECS is said to be open relative to

S if and only if every x€E has a neighborhood I such that
(1Ns)c(INE).

Definition 1,10 A set BCS is closed relative t S if and

only if every limit point of F which is in S is in F.
III. ORDINAL NUMBERS

It is neither necessary nor desireable to give a
thor&ugh treatment of ordinal nﬁmbers; however, a few con-
cepts and properties are needed. These concepts and pro-
perties are only mentioned here in order to give their use
more meaning at a later time. For a more adequate treat-

ment of ordinal numbers, cardinal numbers and well ordered



sets the following are suggested: Goffman,1 Wilder? or
Hobson.3
The property of ordinal numbetrs that is of primary
interest is that they form a well ordered set, This
well ordering property yields several important results
used in definitions and proofs throughout the course of
developement. The first of these is that every-subset
of ordinal numbers has a first element, 7The subset of
ordinals that is of interést here is the set of all or-
dinals with finite or denumerable cardinal number, The
smallest non-denumerable ordinal number wiii be denoted
by W, It is a limiting ordinal number in the sense that
it has no immediate predecessor, The order type or ordi-
nal number of the set of positive integers is the first
or smallest ordinal number with infinite cardinal number

and is also a limiting ordinal number, Another important

result of the well ordering of the ordinal numbers is the

Icasper Goffman, Real Functions (New York: Rinehart
& Company, Inc,.,, 1953), Chapter 2 and Chapter 10,

2Raymond L. Wilder, Introduction to the Fundamentals
of Mathematics (New York:. John Wiley and Sons, Inc,, 1960),
pp. 115-124,

SE. W. Hobson, Theory of Functions of a Real Variable
and Theory of Fourier's Series (Cambridge: Cambridge
University Press, 1907), Chapters 2-6.




fact that every element has an immediate successor which
gives the ordinals the induction property which follows in
‘Theorem 1.1,

The set of all ordinal numbers of finite or denum-
-erable cardinal numbcr will Dbe used frequently in the
definitions, theorems, proofs, and discussions which
follow, The set of all such ordinals will be used frequen-
tly as an index set in the treatment of Borel sets as well
as Baire functions, The set will normally be denoted by,

"the set of all w<W",
IV. TRANSFINITE INDUCTION

There are two forms or principles of finite induc-
tion for the positive integers. However, only the second

of these is of interest here,.

Definition 1.11 The Second Principle of Finite Induction

If S is a set of positive integers such that:
(1) 1€s |
(2) 1If all positive integers less than n are in
S implies that n is in S, then S is the set

of all positive integers,

As was mentioned earlier, the set of all ordinal
numbers form a well ordered set, As is shown in the fol-

lowing theorem, the second principle of finite induction



8
generalizes to any well ordered set and in particular to the

set of all ordinals less than a given ordinal w,

Theorem 1,1 If S is the set of all ordinal numbers less

than a given ordinal w, and T&S such that:

(1) The first ordinal, 1, is in T

(2) for all u<w, if all ordinals less than u

are in T implies u is in T

then S = T,
Proof: Suppose S # T, Since by hypothesis TC S, we may
assume that S - T is non-empty.- S - T being non-empty
‘implies there is some element a in S - T, Since S is a
well ordered set and S - T is a subset of S, S -~ T has a
first element., We have however that 1€ T by hypothesis;
hence a # 1, Now by part (2) of the hypothesis, if all
ordinals less than a are in T, then a is in T. This con-
tradiction to S - T being non-empty establishes the fact
that § = T.

This theorem is called the principle of transfinite
induction and applies to any well ordered 'set. This
principle will be used frequently both in definition
of Borel sets and Baire functions and in the proof of

many of the theorems.



CIIAPTER II
BOREL SETS

The Borel sets are all the sets that may be obtained
from the closed and open sets by repeatedly applying the
operations of union and intersection to denumerable numbers
of sets. 4

The closed sets are sets of type Fg. The union of a
denumerable number of sets of type Fg yields a set of type
F;i. The sets obtained by takimg the intersection of any
denumerable number of sets of type Fj are the sets of type
Fy. This process is continued to define sets of type Py,
for every u«w, The sets of type By are then defined as
the union or intersection of any denumerable number of sets
of type Fy, for u<w, The operation is union if w is odd
and intersection if w is even. Since the first ordinal, 1,
is odd and the ordinals are alternately even and odd, this
process defines the Borel sets for all w«aW. In the case
that w is the limiting ordinal it is designated as even,
thus every ordinal less than W is designated as even or odd,

For w = W no new sets of the type in question are

obtained. This means that every set of type Fy is of type

4Casper Goffman, Real Punctions ( New York: Rinehart
& Company, Inc., 1953), page 134.
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B, for some w<W, To see this consider any set S of type
Fy. Since W is even, being the limiting ordinal, S :nl_:;)'Sn,
where each Sp is of type wp and each wp is of type less
than W, By definition of the sets themselves, each wp is
of denumerable cardinal number, hence the least upper bound
of the set wnf n = 1,2,3,...} is of denumerable cardinal
number and S is of type Fy for some wa&W,

Thus by transfinite induction the sets of type Fy
‘are defined for all ordinals wiW,

An analogous system 'of sets are obtained by beginning
with the open sets which are said to be of type Gg. The
intersection of any denumerable number of sets of type Gg
is a set of type Gi. The sets of type G2 are obtained by
taking the union of any denumerable number of sets of type
Gi. If the sets of type G, have been defined for all uzw,
the sets of type GQ are formed by taking the union or inter-
section of a denumerable number of sets of type Gy for u<w,
The operation is union if w is even and intersection if w is
odd., By transfinite induction, the sets of type Gw are thus
defined for all w<W,

The sets of types Fpo, F1, F2yeeeByya..; for all weW
and those of types Gg, Gi, Ggf...,Gw,...; for all w4 W are
called the Borel sets.

It is seen from the definition that all the Borel
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sets are obtained ultimately from the closed and open sets.
In view of this definition it seems reasqnable to expect the
Borel sets to retain some of the properties of the closed
and open sets, This is indeed the case. 7The remainder of
this chapter is devoted to the investigation of these some-
what generalized properties.

One form of the definition of a closed set is that a
given set is closed if and only if its complement is open,
This property generalizes to all the Borel sets as is shown

by the following theorem,

Theorem 2.1 The complement of every set of type F,; is of

type Gy, and the complement of every set of type Gy is of
type Fy.

Proof: Use transfinite induction. Since by the definition
'the sets of type Fp and Gg are closed ahd open respectively,
the statement is true for w = O, Assume it holds for all
u<w and further that w is even. Let S be any set of type
Fy. From the definition of a set of type By for w being
even, S =ﬁ. Sp where each S, is of lower type than w, .(We
say lower t&pe and not preceeding type in view of the limit-
ing ordinal), DBy the induction hypothesis, the complement
of each S ( denoted by C(Sp)) is of type Gy, for u<w, But
c(S) =j2 C(Sn) by DeMorgan's Law, and therefore C(S) is of

type Gy, being the union of a denumerable number of sets of
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lower type. If w is odd, § = U S, and c(S) =[\ C(Sy) again
by DeMorgan's Law and C(S) is of type Gy, hence by transe
finite induction, for all w< W, the ¢complement of every set
of type Ry is of.type Gy.
Proof: (part 2) The complement of every set of type G, is
of type By, Now suppose that w is even and S is any set of
type Gy. By the definition of a set of type Gy for w even,
S ='$!Sn where again each S, is of type Gy for us«w, By the
induction hypothesis the complement of each Sp is of type Fy
and C(S) =Z§CKSH); hence, C(S) is of type R,, from the def-
inition of a set of type Ry for w even. If w is odd, as
above, replace union by intersection in the definition of S
and the.proof is similar. Hence the complement of every set
of type Gy is of type Ry, for all w4« W and the theorem is

established,

Before proceeding, a review of some of the properties
of union and intersection of denumerable sets are in order.
The union of a denumerable number of sets each of which is
denumerable is itself a denumerable set. This can be seen
by considering any denumerable sequence of denumerable sets;
.Al, A, A3,...,An,..., where each set contains a denumerable
number of elements., Then each set A; for 1 = 1,2,3,...,n0,...
may be written as: A{ = 231, 3i2,+e0y®jnyes» - <The familiar

diagonal process may be used to illustrate the denumerability
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of the union of the set of Aj's. A similar result holds
‘for the operation of intersection and follows readily from
the definition of interseetion of sets,

One property of open sets is that the union of any
number of open sets as well as.the intersection of any finite
number of open sets is open. The intersection of any number
as well as the union of any finite number of closed sets is
closed, is a familiar property of closed sets., The exten-
sion of these properties to all of the Borel sets is accom-

plished in the following theorem.

Theorem 2,2 If w«W is even, the intersection of any denum-
erable number of sets of type Ry is of typé Py, and the

union of any denumerable number of sets of type Gy is of

type Gy.

Proof: For the sets of type By if w is zero, the theorem
holds because of the property of closed sets cited immed~
iately predeeding the statement of the theorem., Let w be

even and let S be any set which is written, S = {|Sp where

n

each Sp is of type PFy. Then by the definition of sets of
type F, for w being even, each Sp is the intersection of a

denumerable number of sets of lower type which can be writ-
ag
ten as Sp = Snm, Where each Spm is of type Fy for udw,
mz]
o o0
Thus we have S = () ( Snm), as the intersection of a

ny w=i

denumerable number os sets, each denumerable and of lower
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type than w, and hence S is of type By by definition.
oo
Por sets of type Gy, let $ = L}Sn, where each Sp is
nat

[
of type Gy. Then each 5p = Snm, where eaech Spm 15 of type
o]

Gy for u<w, No{v S =,.D. (mq Spm), and since the union of a
denumerable number of sets each denumerable is denumerable,
S is the union of a denumerable number of sets of lower type
and is of type Gy by definition of a set of type G, for w

even,

As a companion to this theorem we have the following

one which states a similar result for odd ordinals.

Theorem 2.3 For all odd ordinals w<W, the union of any

denumerable number of sets of type By, is of type Ry, and the
intersection of a denumerable number of sets of type Gy is

-of type Gy.

(-
Proof: Let S = L}Sn, where each Sp is of type Fy. Then

nat

each Sp is the union of a denumerable number of sets of
o0

lower types; that is, Sp :JJ Snm, where each Spm is of type

Fy for u<w. Hence, as in the proof of Theorem 2.2, S =
o0 @
U (U Spm). Thus S, as the union of a denumerable number

net mzl
of sets of lower type, is of type B, by definition of a set
of that type.

The proof for sets of type G, is again similar., All

that is to be done is to replace even by odd and intersection
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by union and using the very same pattern that was used in

the proof of Theorem 2,2,

In view of the two preceeding theorems concerning the
set operations of union and intersection of Borel sets, the
question arises as to the conditions under which these oper-
“ations will always preserve the "type'" of the set. As might
be expected, the answer is very similar to that regarding

the open and closed sets,

Theorem 2.4 For all we¢W, the union and intersection of any
two sets of type Py is of type Fy,
Before proceeding with the proof, the following lemma

is needed,

Lemma 2,1 Por any set A and any denumerable collection of
sets; T1, T2, T3yeeesTnyeees (1) A/'\(U Tn) -U (AN Tn),
and (2) A U(ﬁ Tn) -ﬂ(AUTn)

Proof of lemma: Let x€A N (y Tn), then by the definition

-]

a
of the intersection of sets, x€ A and x¢ U Tn. If x€ UTn,
LI

n=

then x€ T; for some i, Now if x €A and xé¢ T{ for some i,

then x¢ A () T; for the same i, and hence xe (J (A/\ Tn).

=
e AaEt

Hence A /) ( GTH)C "Ul (A nTn).

.Y X] H

(-]
Now let x¢€ L) (A/W Tn), then xe Afj'Ti for some i,
]

ne

again by definition of union. It follows that x¢ A and

x € T;, and hence that xe¢ A ¢ LJTl). Therefore we have

Aol
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ao @xX
shown thatH (AN TR A ﬂ ( U Tp), and by set inclusion
both ways, part (1) of the lemma is established. The proof

for part (2) is very similar and is not given.

Proof of Theorem 2.4: The theorem holds for the closed sets

and hence for w = 0,- Now let w be odd and assume the state-
ment holds for all u<w, Let S and T be any two sets of
type Fy,. Then S =hg Spn and T =ij Tm, where each Sp and Ty
is of type u<w, Now sNT = (nQ Sn)n (MQ Tnm), and by
application of Lemma 2.1, st =J:/ (ﬂL? (Snﬂ Tm)). Now, Sn
and Tp, are both of type Fy for u<dw and by assumption the
intersection, Sp/) Tp, is of type F,. Hence s/W'r, as the
‘union of a denumerable number of sets of lower type, is of
type Fy by definition of such a set. Thus by transfinite
induction the intersection of two sets of type By is a set
of the same type for w being an odd ordinal, If w is even
the theorem reduces to a special case of Theorem 2.2,

The case for the union of two sets of type Fy for w
being even, SU T, is similar, The proof is accomplished by
' replacing union by intersection in each occurence and by
using part (2) of the lemma. The case for the odd ordinals
and the union of two sets reduces to a special case of

Theorem 2.3.

Theorem 2.5 Por every w¢W, the union and intersection of

two sets of type Gy is a set of type Gy.
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Proof of Theorem 2.5: The theorem holds for the open sets

and hence for w = 0, Now consider the union of two sets of
type Gy, If w is even the theorem reduces to a special case
of Theorem 2.2. Assume that w is odd and further that the
statement holds for all u¢w., Let S and T be any two sets
of type Gw. Then S =fﬁ Sn and T ﬁjj Tm, where Sp and Tp are

N

of type Gy for u<w. Now SUT = (f\‘ Sn) U (“/j Tm). Again
by distribution of union over intersection, we get SUT as
the intersection of a denumerable number of sets each denum-
erable and hence is denumerable, Then S U T as the inter-
section of a denumerabie number of sets of lower type is of
type Gy by definition of sets of type Gy for w being an odd
ordinal, By transfinite induction the union of any two sets
of type Gy is a set of tye same type.

The case for the intersection is again similar to the
first part of the proof of Theorem 2.4, with R, replaced by

Gw, if w is even, If w is odd the theorem becomes a special

case of Theorem 2.3..

The two theorems above can easily be generalized to
the corresponding case for any finite number of sets by use
of finite induction., To state this precisely and to summar-

ize the above theorems, a single theorem may be stated.

Theorem 2,6 For all w4 W the union and intexsection of any

finite number of sets of type Fy (of type Gw) is a set of
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the same type.

The definition of open set as given in Chapter I
leads immediately to the conclusion that every open set of
real numbers is the union of a collection of open intervals,
To see that every open set can be written as the union of a
denumerable number of open intervais, it is only necessary
to assign to each rational number in the set an open inter-
val that contains it., Since the rational numbers are dense,
this collection of open intervals covers the open set,

Since the rational numbers are denumerable, these observa-
tions yield the result that every open set can be written as
the union of a denumerable number of open intervals. In
addition, every open interval may be written as the union of
a denumerable number of closed intervals, To justify this

it is only necessary to consider the open interval (a,b),
where a<b, This interval can be written as the union of the
closed intervals [a +1, b - l] where n = 1,2,3,..., and
where n> 2 . Clear?y thesg closed intervals are denum-
erable inbn;m%er and their union will be (a;b).

The properties of open sets in the above paragraph,
and the definition of Borel sets gives rise to the question
of whether or not all of these sets are distinct or even

needed., In the above arguments it was shown that every set

of type Gg could be written as a set of type Fj. Does this
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observation or a generalization of it.hold for all of the
Borel sets? It does, as is shown in the following theorem
which shows that all the Borel sets are identical to the

sets of types F, only, or those of types Gy only.

Theorem 2,7 PFor all wa W, (1) every set of type Gy is of

type Fy41, and (2) every set of type Fy is of type Gy+1.

Proof, part (1): Since every open set can be written as the

union of a denumerable number of closed sets the theorem
holds for w = 0, Now let w be odd and assume that the state-
ment holds for all u<w, Let S be any set of type Gy. Then
S = ﬁsn where each Sp is of type Gy for u4w, By hypothesis
each set Sp is of type Fy+1 for (u+l) < {w+l), Since w is by
assumption odd, w + 1 is even and Ry+1 =£3.F(u+l)n by dif_
inition of sets of type Fy for w being even, Thus S =Jn Sn
=f§ F(u+l)p is of type By+1. If w is even the proof is very
similar, Observe that if w is even and S is a set of type
Pw, then w + 1 is odd and Ry4+1 is written as the union of a
denumerable number of sets of lower type, which is precisely
the way S is written. llence by transfinite induction every:

set of type G, is of type Fy+1.

Proof, part (2): The proof is very similar to that of part

(1) except for showing that every set of type Fg is of type
G1. This follows by observing that every set of type Go is

of type Fj and that the complement of a set of type Gg is a
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set of type Fg and the complement of any set of type By is

a set of type Gj.

In working with open sets, closed sets, union and
intersection of sets, the results of these operations do
not always yield a set of the same "kind". Por example,
the intersection of the set of open intervals of the form
(.1, 1) for all positive intepgers n, yields a closed set,
thg pgint 0. In the preceeding paragraphs it was shown that
the union of a number of closed sets was an open set, Thus
the question arises concerning the structure of a system of
sets, namely, under what conditions will a system of sets be
"closed" with respect to the operations of union, intersec=-
tion and complementation. In other words, when will the
union or intersection of sets in the system of sets always
yield another set of the same system. The answer lies in
the system of Borel sets., This very important result, or

property of the Borel sets, is summarized in the following

form.

Theorem 2.8 The Borel sets form the smallest system of sets

such that:
(1) All the open and closed sets are in the system
(2) The union and intersection of any denumerable
number of sets in the system is a set of the

same system,
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Proof of Theorem 2.8 Let S be any system of sets which

satisfies these two conditions, It will be shown that all
of the Borel sets are in the system S, By part (1) of the
lhypothesis, all the sets of types FQ and Go are in S,
Assume that the sets of types Fy for all u<w are in the
.system. Suppose w is even and let T be any set of type Ry.

aQ
By definition then, T =11 T, where each Ty is of lower type

than Ry. By part (2) of the hypothesis,jj'rn and hence T,
which is of type B, is in the system,

If w is odd and T is any set of type F,, then by
definition of Ry, T =J2'Tn where each Tp is of lower type
than By, Since each Tp is in the system by hypothesis or
assumption and S?Th is in the system by part (2) of the hypo-
thesis, T and hence Fy is in the system. Thus by transfinite
induction all the sets of type Ry, are in the system for all
w<W,

Since by Theorem 2.7 all .the Borel sets are identical

to the sets of types Pg, F1, F2yeeeyPyyee. , for all weW,

all the Borel sets are in the system S.

This theorem shows that any system of sets which is
"self contained™ with regard to the closed and open sets,
with the operations of union and intersection on denumerable
numbers of sets, must contain 2all the Borel sets and hence
shows that the Borel sets from the smallest system of sets

which satisfies those two properties.
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The Borel sets are seen to be a very interesting
system of sets, They are obtained by beginning with the
open and closed sets, which are complements of one another,
and be performing the set operations of union and intersec-
tion alternately to denumerable numbets of sets, The end
result is a system of sets which behave very much like the
sets from which they were obtained.

In the work that follows, the Borel sets will be
shown generally to be related to the Baire functions in
much the same manner as the closed and open sets are related

to the continuous functions,



CHAPTER III
BAIRE FUNCTIONS

The propefties of Baire functions as presented in
this chapter are generally considered to be extensions or
generalizations of pfoperties of continuous functions,

No effort is made here to give a thorough treatment
of continuous functions; however, a foundation of work with
continuous functions is necessary. The material presented
in the first section of this chapter serves only as a review
for the reader and a gathering place for material needed at

a later time.
1. CONTINUOUS FUNCTIONS

The work of this section depends very heavily on sev-
eral concepts related to functions and in particular to the
continuous functions. The most basic of these is the concept

of a sequence.

Definition 3.1 A sequence, S = {anz, of real numbers is a

function which maps the set of positive integers into the
set of real numbers, The n-th term of the sequence is the

image of the integer n under the function,

Definition 3.2 A sequence of real numbers, [an}, converges

to a real number A if and only if given any real number e >0



24
there is an integer N such that if n> N, then lan - AJ e,
The number A is called the limit of the sequence, The

standard notation for this is lim ap = A,

If the function in the above definition has a set of
functions as its range, then the sequence is called a sequence
of functions. Thus for every real number a, the sequence is

just a sequence of real numbers, {fn(a)} ”

Definition 3.3 A sequence of functions, {fn(x)f, is said to
be convergent at a point a if and énly if the sequence of

real numbers [fn(a)} ié convergent, The sequence converges
"pointwise" on a set S if and only if it converges for every

aé€s,

The continuous real functions or a real variable are
of primary interest to those studying Calculus or analysis,
Among the definitions of continuous functions that appear in

textbooks are these:

Definition 3.4 A function f(x) is continuous at & point a,

of a set S, if and only if for every e >0, there is a d>» 0

such that whenever |x - al|&d, then if(x) - f(a)!L e.

Definition 3.5 A function f(x) is continuous at a point a,

of a set S, if and only if for every sequence {an}‘which

converges to a, then the sequence {f(an)} converges to f(a),
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Definition 3.6 A function f(x) is continuous at a point a,

of a set S, if and only if for every open set G containing
f{(a) there is an open set I containing & suech that whenever

Xx€H and x is in the domain of f, then f(x)C G,

Definition 3.7 1In each case above the function f(x) is con-

tinuous on a set S if and only if it is continuous at. every

—— s —

point of S.

Definition 3.8 A function f(x) is continuous on a set S if

and only if for every open set G in the range of f, then

f—l(G) is open.

It can be shown that Definitions 3.4, 3.5, 3.6 and
3.8 are equivalent for the real functions. Definitions 3.4
and 3.5 are shown to be equivalent in Goffman.5 For the
equivalenée of 3,6 and 3.8 see Hall and Spencei_:.6 Definitions
3.5 and 3,6 are also shown to be equivalent in Haii”and
Spencer.7

The properties of the continuous functions are many
and varied, It is for this reason that the continuous func-

tions are so important. Some of the elementary properties

SCasper Goffman, Real Functions (New York: Rinehart &
Co., Inc. 1953), page 82.

Opick W. Iall and Guilford L. SpencerKII, Blementary
Topology (New York: John Wiley & Sons, Inc., 1955), page 48,

7 Ibid., p. 47.
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of continuous functions are: If f{x) and g(x) are both
continuous and defined on the same domain, then the sum and
product of the two functions is also continuous, If, in
addition, g(x) is never zero, then the quotient, f(x)/g(x),
is also continuous. Under the added condition that the range
of g agrees with the domain of f, the composition function,
f(g(x)), is also continuous., The proofs of these properties

may be found in any textbook on elementary calculus,

Definition 3,9 A sequence {fn(x)z of functions converges

uniformly on a set S if and only if for every e >0 there is
an N such that for all m,n> N and for every x€¢ S, it is true

that |fp(x) - fr(x)| ¢ e.

Is the 1imit function of a sequence of continuous
functions continuous? Not necessarily, as is shown by the

following example,

Example 3.1 The function f(x) defined on (0,00) as:

f(x) = 0 if x = 0, and £f(x) =1 if x% 0 may be used to illus-
trate this point. The sequence {fn(x)} of functions defined
by: fp(x) =1 if x21, and {f(x) = nx if x 41 is continuous
on (0,00), Also, %iﬂ?fn(X) = f(x). However,nthe function
f(x) is not continuous at the point x = 0., Thus there is a

sequence of continuous functions which converges to a func-

tion which is not continuous,
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Definition 3.9 on the previous page may also be

stated without using the Cauchy condition,

Definition 3.10 A sequence {fn(x)} of functions converges

uniformly on a set S if and only if there exists a function

f(x) in which for every e > 0 there is an N such that for all

n>N, and for all xe 8, |[f,(x) - £(x)] < e.

- From the above definitions of pointwise convergence
and uniform convergence, it is obvious that uniform conver-
gence implies pointwise or ordinary coﬁvergence.

In contrast to %he example on the previous page, it
will be shown that if the sequence of continuous .functions
converges uniformly, the limit function will indeed be a

continuous function.,

Theorem 3.1 If {fn(x)} is a sequence of functions, contin-

uous at every aé€ S, and uniformly convergent on S to f(x),
then £(x) = lim fn(x) is continuous at ae€ S,

Proof: Let e >»0. Since{fn(x)} is uniformly convergent,
there is an N for which [f(x) - fn(x)lL.%, for all n>N and
for all x, Since fp(x) is continuous at a, for every n>N
there is 2 d >0 such that if z €S and [z - al 2 d, then
lfn(z) - fn(a)l( e. Now suppose fz - aIL-d and z¢é S, Then
|f(z) - f(a)|= |£(z) - £n(2) + £4(2) - £4(a) + fy(a) - £(a)

£ |£z) - fn(2)| + [fnt2) - fpead| + |fpl@) - f@leg + ¢

e

(9%}
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= e, Thus for every point z € S such that |z - a|<d,

lf(z) - f(a)| ¢ e and f(x) is continuous at the point a¢€ S,

Much of the material that follows depends on the

concepts of a nowhere dense set and a set of the first cate-

GOy

Definition 3,12 A set S is said to be nowhere dense if and

only if its closure contains no open interval I, such that

ICS,

Definition 3.13 A set S is said to be of the first category

if and only if it is the union of a finite or denumerable
number of nowhere dense sets. If a set is not of the first

category, then it is said to be of the second category.

Theorem 3.2 The union of a finite or denumerable number of

sets of the first category, is a set of the first category.
[

Proof: Consider S = L/Sn where each Sp is of the first

£L007 n

category., Then for each n, Sy = U

m

Spm where each Spp is

]

nowhere dense by definition of a set of the first category.

-]
Now, S = U (U Spp) is the union of a denumerable number of
A=t m=)
denumerable unions which is the union of a denumerable num-
ber of sets. Since each set is nowhere dense, S is then by

definition a set of the first category.

Theorem 3.3 Any set of type Fi is either of the first
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category or it contains an interval as a subset,
Egggiz If S is any set of type Fj, then S =iz Sp where
each Sp is clésed. (See the definition of Borel sets as
given in Chapter'II). If every Sp is nowhere dense, then
S is of the first category by definition and the theorem
is proven. If some one of the S, is not nowhere dense, then
there is a point x of Sp such that there is a neighborhood
of X containing no points of Sp. (This is from the defini-
tion of a nowhere dense set). By the definition of a closed
set then, x is not a point of Sy, and thus Sp contains an
interval, Hence if some Spn is not nowhere dense, Sp contains
an interval and so does S = ..L?. Sn. Thus if all the S, are
nowhere dense, S is of the first category, and if some one

of them is not nowhere dense, S contains an interval and

the theorem is established,

Theorem 3,4 If f(x) is any function defined on the real

line, the set of points of discontinuity of f(x) is of type
Fq.

Proof: Let D(f) be the set of points of discontinuity of
f(x). Introduce the sets D (f) for n = 1,2,3,+¢¢, Let

z €Dn(f) if and only if, for every neighborhood I of z,
there exist x,y, elements of I, such that lf(x) - f(y)|3 1.

” n
There are then two things to show: (1) D(f) = U D,(f) and

nat

(2) Dp(f) is closed for every n.
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Proof of (1): Let ze U Dy(f), then there is an n
such that z &€ Dp(f), by definition of union, So for every
d >0 there exiéts an'x and a y such that |x - z| ¢ d,
ly - zl ¢ d and ]f(x) - f(y)l2 1. Thus there is a w such
that |w - Z'L d and ,f(w) - f(;)|>_£_. Hence f(x) is not
continuous at z and thus z € D(f). >

If x€D(f) there is an e » 0 such that for every d >0
there is an x with |x - z|4 d and If(x) - f(z)[:’e. There

is an n such that e>1l. Let I be any neighborhood of z.

n

There is an x &I such that \f(x) - f(z)‘ >e>1. So xé Du(f),
K ’ n

and x¢ }/ Dn(f). As a result of the two precceding para-

o0

graphs by set inclusion both ways, D(f) =£{,Dn(f)-

Proof of (2): Let n be some positive integer and
let z be a limit point of Dp(f). There is by definition of
limit point a sequence [zm}, where each zp is in Dp(f) and
&32 Zm = z. Let I be any neighborhood of z. There is an m
such that zp €I, so that I is a neighborhood of zp, Since
zm€ Dp(f), there are points x,y € I such that |f(x) - f(y)|zg,
Now since I is an arbitrary neighborhood of z, it follows ’
that z € Dn(f), and hence that Dnh(f) is closed since it must
contain all of its limit points, Thus it has béen shown

that D(f) is the union of a finite or denumerable number of

closed sets and is of type Fj by definition,

Definition 3,14 A sequence of functions [fn(x)} is said to
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converge uniformly at a point z if and only if for every

e >0 there is a d »0 and an N such that if n,m» N and

Ix - zl¢d, tuen [fp(x) - fp(x)] ¢e.

This definition says, in effect, that a sequence of
functions converges uniformly at a point if and only if

-

there is a neighborhood I of point z such that the sequence

converges for all points x of I,

Theorem 3.5 If a sequence fp(x) of continuous functions

converges to f{(x) on an open interval (a,b), it converges
uniformly to f(x) at some point z €& (a,b).

Proof: If zé€ (a,b), there is an N such that for every

n,m >N, lfn\z)‘- fmiz)| £ e. Let Ey be the set of points of
(a,b) for which this condition holds for N and e. Then
(a,b) =J§ZEN. By a theorem which will be proven later,
Theorem 4.2, for every n,m the set of points z for which
‘fn(Z) - fm(z)|£ e is a closed set since \fn(z) - fm(z)f,
being the sum of two continuous functions is continuous,
Thus Ey is a closed set. But there is an N for which Ey is
not nowhere dense; for, otherwise (a,b) =)2 Ey would be of
the first category which is not possible by Theorems 3.3
and 3,4. Since By is not nowhere dense it contains a closed
interval., It has thus been shown that for every e > 0 there
js an N and a closed subinterval [a',b']c:(a,b) such that

for every zé¢ [a’,bﬂ and n,m >N, }fn(z) - fm(z)|£ e.
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Now there is an [al,bi]C:(a,b) and an Nj such that
for n,m >Ny and x¢€ [a1,b,], (fn(x) - fm(x)|£l, There is
an [ap,bp]c (a3,by) and an N, such that for every n,m>Nj
and zé€ [az,sz, ]fn(z) - fm(z)lj %. Proceeding in this way,
a sequence of closed intervals is obtained each of which is
in the open interval obtained by deleting the end points of
its predecessor, and a sequence of positive integers Nl' Ng,

N3y...,N, such that for every k, for every z€ (ay,by) and

Ik
for every n,m >N, |fn(z) - fm(z)lf,l. But there is an

L) s 8
xe!] [a), ] so that xe fi (ay,b ). The sequence {fn(x)}
converges uniformly to f(x) at point X. To see this, 1let
e >0, There is a k such that 1 <e and x¢€ (ak,bk). For

every x € (ay,b ) and n,m >Ny, Ifn(x) - fm(X)\ ¢ %(6.8

Theorem 3,6 The set of points of discontinuity of a func-

tion which is the 1limit of a convergent sequence of con-
tinuous functions is of the first category.

Proof: By Theorem 3.4 the set of points of discontinuity of
such a function is of type F,;. By Theorem 3.3 any set of
type Fy is either of the first category or it contains an
interval. Since the limit function of a uniformly conver-

gent sequence of continuous functions is continuous, by

8Casper Goffman, Real Functions (New York: Rinehart
& Co., Inc., 1953), pp. 1CE-1CO,




23
heorem 3,5 the limit function has a point of continuity in
every interval, Hence the set of points of discontinuity
contains no interval, and is again by Theorem 3.3 of the-

first category.
II. BAIRE FUNCTIONS

The continuous functions are put into a classifica-
tion of Baire class 0, which will be denoted by f;. Func-
tions which are limits of convergent sequences of continuous
functions are of Baire class 1 or f;. Functions which are
limits of convergent sequences of functions of type fq1, are
of Baire class 2 or f,, This process is continued to define
the Baire functions of Baire class w for all wew, If for
all u<w the functions of Baire class u have been defined,
the functions of type or class w are defined as limits of
convergent sequences of functions of type f, for ucw. By
transfinite induction, this defines the Baire functions of
every type or class w for all w<W,

The functions defined above are called the Baire
functions, It should be noted that these Daire classes
need not be disjoint in view of the way in which they were
defined. |

It has been proven by lLebesgue in Sur les Functions

Representables Analytiquement that functions of each of the
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Baire classes exist in the sense that it is possible to

9

define a function of any prescribed Baire class, In con~

trast it is also known that there do exist funetions which
do not belong toAany Bajre class.tV

The statements and theorems that follow are a partial
investigation 6f the properties of Baire functions. It will
be seen that these properties follow quite closely those of
continuous functions in a sense. The proofs of many of
these properties depend rather heavily on the theory of lim-
its which can Le found in most textbooks in calculus, analy-
sis, or topology. .The proofs utilize the theory of trans-
finite induction and the first ordinal with nondenumerable

cardinal number, W,

Theorem 3,7 For every w& W, the sum and product of two

functions of type f,, is of type f

Proof: 1In view of the properties on continuous functions
the theorem holds for w = 0, Consider w< W and assume the
theorem holds for all vew, Let f(x) and g(x) be any two

functions of type fy. Then by definition f(x} = lim f,(x
n

0. . '
“Z. W, Hobson, heory of

of Functions of a Real Variable
and the Theory of Fourier's Scries (Cambridge: Cambridge
University Press, 90_) page 532. o

lOE J. Townsend, Functions of Real Variables (New
York: llenry Holt and Company, 15287, page 14
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and g(x) = lim gn(x), where for every n, f;(x) and g,(x)
are of type fy, for ve¢w, Now, [fn(x) + gn(x)J and
[fn(x) . gn(xl] are of type f,, since the limit of the sum
equals the sum of the limits and similarly for products.
By definition then, f(x) + g(x) = lim [fn(x) + gn(x)} and
since f(x) + gp(x) is of type fy by assumption for every
n; f(x) + g(x) is the limit of a convergent sequence of
functions of lower type and is pf type fiy by definition,
The argument for the product, f(x) . g(x) is very similar,

By transfinite induction the theorem is now proven,

‘Theorem 3.8 For every w<W, if f(x) is of type w, and f(x)

is never 0, then 1_is of type f.

Proof: 1In view of t:e properties of continuous functions
the theorem holds for w = 0, as a special case of the quo=-
tient rule for such functions. Let f(x) be any function

of type fyw. Then f(x) = lim fp(x), where f,(x) is of type
n-» oo

vew for every n. Now, 1 = 1lim { 1 ] where each
4 TGy a-roo TETﬁT
1 is of type fv for v4w by assumption. Hence 1 |,
Th(x) T (x)

as the 1imit of a convergent sequence of functions of lower
type, is of type fy;, by definition of a function of type fy.

By transfinite induction the proof is complete.

The properties of continuous functions may be used to
suggest several other properties of functions of Baire class

w for all we< W, Two of the most obvious properties deal
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with a real multiple of a Paire function and the absolute
value of such functions, The next two theorams are given
without proof, as théy depend only on a small amount of
algebraic manipuiation of limits and simple application of

transfinite induction.

Theorem 3.9 If f(x) is any function of type f_, then cf(x)

is of type fy;,, where w<W and ¢ is any non-zero real number.

Theorem 3.10 For every w<4W, if f(x) is of type f,, then

[f(x)] is of type fy.

Theorem 3.11 For every we W, if f(x) and g(x) are of type

fy, then the maximum ( f(x), g(x) ) and the minimum

( f(x), g(x) ) are of type fy.

Proof: The functions f(x) + g(x) and f(x) - g(x) are

of type f,, in view of Theorems 3.7 and 3,10, Thus the
functions max(f(x), g(x)) = 3(f(x) + g(x)) + 3(f(x) - g(x))
and min(f(x), g(x)) = 3(f(x) + g(x)) - $(f(x) - g(x) are

of type fy, by using the above mentioned theorems along with

Theorem 3.9,

The next concept is an extension of Theorem 3.1.
This theorem states that the limit function of a uniformly
convergent sequence of continuous functions is continuous.
The theorem that follows here generalizesS an analogous

result for all Baire classes of functions.
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Theorem 3,12 For every w< W, the 1limit function of a uni=-

formly convergent sequence of functions of type fy, is of

type fy.

The proof of this theorem depends on the following

lemma which deals with bounded Baire functioms.

Lemma 3.1 For every w< W, if f(x) is of type fy and
|f(x)] £ kx for every x, where k >0; then f(x) = lim fr(x)
where each fp(x) is of type fy for usw, and |fp(x)| ¢k
for every Xx.

Proof of lemma: Since f(x) is of type fy, there is, by the

definition of a function of that type, a sequence {gn(x)g
such that &ig gn(x) = f(x) where gn(x) is of type fy for
u<w, Let hp = min(gp(x), k) and f(x) = max(hp(x), -k).
By Theorem 3.11, each fj(x) is of type u for u<w, The

process used to define fp(x) shows that f(x) = nigﬂfn(x).

Thus, also, lfn(x)lé k and the lemma is proven.

Proof of Theorem 3.i2: 1In view of the similar property for

continuous functions, Theorem 3.1, tihe theorem holds for

w = 0., Suppose it holas for ali u<w, Let {fn(x)f be a
uniformly convergent sequence of functions of type fy, and

let £(x) = lim fn(x). Now, f(x) = ;;(fn+1(x) - fnx)) + f1ix)
where the series converges uniformly to fi(x). Ilence there

od
is 2 convergent series 3 kp of positive integers such that

n=



for every n and x |fp4+1(x) - fn(x)[f kn.

For every n the function (f,;1(x) - fh(x)) is of
type fu. Hence there is a sequence {fnm(x)} of functions
of lower type than fu which converges to each function
(fn+1(x) - fp(x), such that for every m and every x,
Ifnm(X)Lfkn by Lemma 3.1. Consider the sequence {gn(x)}
defined by: gi1(x) = f13(x), go(x) = f1p(x) » fyr(x), **-,
Bn(x) = f1,(x) + fop(x) + " + fpu(x), *--. For every n,
gn(x) is of lower type than f,.

Next we show that f(x) = lim g, (x), thus proving the
theorem. Let e >0, There is an N such that % Kn z_%.
llence for every x,’f(x) - f1(x) - El\fn+1\x) - fn(x))lt.%.
Now fix x. There is an N' such that for every n>»N and m »N',

]kfn+1(x) - fr(x)) - fnm(x)'L e, Let m = max(N,N')., Then

N
|0 - guool £ [fx) = £100 A5 XCAPICOIE SCO DI
}Ekfn+l(x) - fp(x)) - fnm(x)l + jg[fnm(x)L(e + th + % = e,
nhZt nzMe|
Thus |f(x) - gm(x)|z.e and f(x) = ;}Q gm(x). Since each of

the gm(x) is of type fy for udw, the theorem is proven.ll

Earlier in this chapter it was shown that every func-
tion which is the limit of a convergent sequence of contin-
uous functions has as its set of points of discontinuity a

set of the first category. Since the concept of continuity

11Casper Goffman, Real Functions (New York: Rinehart
& Co., Inc, 1953), pp. 138-139
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is of such interest in the study of functions, it seems
reasonable to ask whether the Baire functions in general
are continuous in any sense or on any set. It is not
possible to generalize on Theorem 3,6 for all Baire func-

tions, as the following example illustrates.

Example 3,2 The function f(x) = 1 for all x rational, and

f(x) = 0 for x irrational is of type f5, but is discontin-
uous everywhere, This can be shown in the following way:
If z is any irrational number, then z is the limit of a
sequence of rational numbers, {an- Hence %i%,zn = z, but
lim f(zn) = 1 and f(z) = 0, Thus f(x) is not continuous
at any irrational ﬂumber, and similarly, it is not contin-

uous at any rational.

It is possible; however,‘to retain some form of
continuity for all the Baire functions. The restrictions
necessary to retain this continuity are given in this next

theorem.,

Theorem 3,13 For any w« W, if f{(x) is of Baire class f,

there is a set, whose complement is of the first category,

such that f(x) is continuous on S relative to S.

Proof: As a direct result of Theorem 3.6, the theorem is
true for w = 0, Let weW, and suppose it is true for all

uzzw, Then f(x) = %iﬂ,fn\X) where each fpux) is of type
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fy for uew, DBy assumption, for every n there is a set Sp,
whose complement is of the first category, such that fpuxJ
is continuous on Sp relative to Sp. Let 8 =f_‘) Sy.  Then
by DeMorgan's liw, c(s) =jg|C(Sn), and the complement of S
is of the first category since the union of any number of
sets of the first category is of the first category by
Theorem 3.2. Also, fp(x) is continuous on S relative to
S for every n. As a special case of Theorem 3.6, the
function f(x) = lim fn(x) is continuous on a subset T of S
relative to T, where the complement of T, relative to S,
is of the first category relative to S. But the set S - T
is of the first category relative to the set of all real
numbers, Thus the complement of T, as the union of two sets
of the first category, is of the first category. Hence,
f(x) is continuous on T whose complement is of the first
category, and by transfinite induction, the theorem holds

for all w<Ww,

It is generally known that the number of real func=-
tions is greater than ¢, the cardinality of the real numbers.
However, it can be shown that there are only ¢ Baire func-
tions. This result is given as the final theorem on the
properties of Baire functions. The proof of the theorem
depends on the theory of the arithmetic of transfinite

cardinal numbers, and on the set ZA which is the cardinal
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number of all functions on set A with values O or 1.

Theorem 3,14 The Baire functions are ¢ in number,

Proof: The functions of the form f(x) = a are continuous
functions for all real numbers a. Thus there are at least
c Baire functions, It must be shown that there are no more
than ¢ Baire functions. This can be done by transfinite
induction.

Since there are c continuous functions, the functions
of type fg are ¢ in number. Assume there are ¢ or fewer
functions of each type f, for every u<w, where weW. The
class of all functioqs whose type is less than w has cardinal
number c+Xe= c, since there are c functions in each of
classes. But every function of type f,, is, by definition,
the 1imit of a convergent sequence of functions of lower
type. Thus the number of functions of type f,;, is no more
than gf' = ¢, since there are ¢ choices for each of Xo
functions, By transfinite induction, it holds that every

class of Baire functions contains ¢ or fewer functions;

therefore, there are no more than c X;= ¢ Baire functions,

The Baire functions are seen to form a collection of
functions which have many properties in common with the
continuous functions. There exists a close relationship

between the open sets and the continuous functions. Since
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the Borel sets posses many properties of the open sets and
the Baire functions retain many properties of the continuous
functions, it is to be expected that there is Some connec«
tion between the Borel sets and Baire functions. This is
indeed true, and is the topic for discussion in the next

chapter,



CIHAPTER IV

RELATIONSIIIPS BETWEEN BOREL SETS
AND BAIRE FUNCTIONS

In the study of functions in calculus and analysis,

a close relationship is seen to exist between open sets and
continuous functions, and between closed sets and continuous
functions., In view of the definition of the Borel sets and
the Baire functions, together with the properties of both,
it seems reasonable to expect some relationship to exist
between these two concepts. The purpose of this chapter is
to show that this is indeed the case, and to give a few
interesting examples of this relationship.

To avoid the necessity of undo complication in the
proofs, and thus to facilitate the discussion at hand, the
theorems, proofs, and illustrations will be limited to the
finite ordinals.

In the preceeding chapter, some of the relationships
between continuous functions and sets, both open and closed,
were given in Definition 3.4, Definition 3.6 and in the
statement and proof of Theorem 3.4. A generalization of
the association of continuous functions with open sets can

be given in thne form of sets associated with a function,

Definition 4.1 Associated with any real function are a




CHAPTER 1V

RELATIONSHIPS BETWEEN BOREL SETS

AND BAIRE FUNCTIONS

In the study of functions in calculus and analysis,

a close relationship is seen to exist between open sets and
continuous functions, and between closed sets and continuous
functions. In view of the definition of the Dorel sets and
the Baire functions, together with the properties of both,
it seems reasonable to expect some relationship to exist
between these two concepts. The purpose of this chapter is
to show that this is indeed the case, and to give a few
interesting examples of this relationship.

To avoid the necessity of undo complication in the
proofs, and thus to facilitate the discussion at hand, the
theorems, proofs, and illustrations will be limited to the
finite ordinals.

In the preceeding chapter, some of the relationships
between continuous functions and sets, both open and closed,
were given in Definition 3.4, Definition 3.6 and in the
statement and proof of Theorem 3.4. A generalization of
the association of continuous functions with open sets can

be given in the form of sets associatea with a function,

UDefinition 4.1 Associated with any real function are a
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number of sets, among these sets are the foilowing: For

any real number k, {xl f(x)« k}, (x[ f(x);]&], {xl f(x) £ k},
{x lf(x)z‘k}, {xl -k «f(x)« k}, and many others. These sets
will be denoted by: E Ef(x)<lg}, B [f(x)>-k}, E [f(x)f k],

and so on,

The following theorem relates the sets associated

with a function specifically to the continuous functions,

Theorem 4,1 A function f(x) defined on a set $ is contin-~

uous on S relative to S if and only if, for every real
number k, the sets E [f(x) L-k_], and E [f(x)>k], are open
relative to S. |

Proof: Suppose‘f(xj is continuous on S relative to S, Let
a6 S be such that f(a)>» k. There is an e» 0 such that

f(a) -« e»k by the density property of the real numbers,
Since f(x) is continuous at a relative to S, there is a

d »0 such that if x €S and

x - alzd, then [f(x) - fa)| ¢ e.
Hence there is a neighborhood I, of a, such that for all
xeIMN S, f(x)>»f(a) - e»k. Thus E [f(x))k] is open
relative to S by definition., Similarly with f(a) + e, we
have E [f(x)< k] is open relative to S.

Conversly, assume the sets E Ef(x))'kj, and E [f(x)tlg
are open relative to S for every real number k., Let aé€ S

and e »0, Since E [f(x))f(a) - e:] is open relative to S,
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there is a neighborhood Iy of a such that for every xé€ I11/1S,
f(x)>£(a) - e. Also since E [f(x) ¢f(a) + e] is open rel-
ative to S, there is a neighborhood Iy of a such that for
every x6 15118, f(x)< f(a) + e. Now by definition the
intersection, I;(] I, is a neighborhood of a, Call it I,
Thus for every xe I/ S, f(x)¢ f(a) + e and f(x) »f(a) - e,
and hence |f(x) - f(a)| ¢ e. By definition, then, f(x) is

continuous at a relative to S,

in view of the definition of sets associated with =a
function, it is quite obvious that the set E [f(x)l E] is
the complement of E [f(x)t K}, and E [f(x)! k] is the comple=-
ment of B [f(x)> k}. This observation yields the following

immediate consequence of Theorem 4,1

Theorem 4.2 A function f(x) is continuous on S relative S

if and only if the sets E [f(x): RI and E [f(x)s k] are

closed relative to S for every real number k.,

The Borel sets as defined in Chapter II are all the
sets that ﬁay be obtained from the closed and open sets by
repeated application of the operations of union and inter-
section of sets., Theorem 4.1 shows the connection between
the open sets and the continuocus functions.

The continuation of the discussion will be facilitated

by a slight change in terminology in the form of a more
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useable definition of sets ascociated with a function, This
definition also employs the use of indexing with the ordinal
numbers in order to parallel the discussion of Borel sets

and that of the Baire functions,

Definition 4.2 For every wdW, a set 3 is said to be of

type Ay if and only if there is a function f(x), of type f,

and a real number k such that S = E [f(x))-kJ, and a set S
will be said to be of type By if and only if there is a
function f(x), of type fy, and a real number k such that

S =E [f(x)&lﬂ.

Next it will be shown that all of the sets associated
with a Baire function of any prescribed finite class, are
Borel sets of tﬁe,same finite class; and that every Borel
set of a prescribed finite type, is one of the sets associ-
ated with a Baire function of the same finite Baire class,

Before proceeding with these results, the following
lemma is needed. It states specifically how the sets that
are associated with a limit function are rela ted to the

sets associated with the functions of the sequence,

Lemma 4.1 If f(x) = lim fy(x), then B [f(x); ] =

OUR = [fnt2 1+ 1].

Proof: Suppose x€ E [f(x)> k], then there exists an m such

that f(x)>k + 1, Since f(x) = lim fn(x), there is an r
m n>e
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such that for all n>r, fo(x)2X% + 1, hence from the def-
oo

® ® m
inition of union, x€ U LJ /] Elfpx) 2k + Q; therefore,
s = I\

miy

B[fx)rx]a U UU A = EE ()2 + 1]

mI; I oAl

Now suppose XxE€ L)

mzg 3 ll

fp(x)2k + 1 By
5 [ L.
definition of union, there is an m such that xGlJ L E [fn(x)
2k + 1], Also, there is an r such that xE/WZE [fn(x)z k + l]
. m e i
and since f(x) = lim fn(x), for all n>r | f(x) - fn(x)|£

—3 0o
and xe[f(x)2>k]. Thus by set inc1usion both ways, we have

the result that E [ f(x)>1k] = UUNe [fn00) 2K + 1],
m

mz{ rJl A3T

This lemma is needed in the proof of the following

theorem, the content of which was outlined above,

Theorem 4,3 For every finite ordinal w, every set of type

Aw is of type Gy and every set of type By is of type F, if
w is even, If W is odd, every set of type Ay is of type Fy
and every set of type By is of type Gy.
Proof: By Theorems 4.1 and 4,2, the theorem holds for w = 0.
Use finite induction and suppose the theorem holds for all
usw, and that w is even, Let S be any set of type A,.
Then there is by definition a function f(x) of type fy, and
2 real number k such that S = E [f(x})-k]. Now f(x) = lim fa(x)
where the fn(x) are Baire functions of lower type. By Lemma
4,1 S =m' U (] [fn(x)z'k + é]. But, by assumption, each
E [fn(x)31c+-l] is of type Gy-1. Since w is even, w - 1

m

is odd, and the intersection of a denumerable number of sets
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of type Gy_31 is of type G,_;. Ilence also S is the union of |
a denumerable number of sets of type Gy.1 and is of type Gy
by definition,

Now suppose S is of type B,. Then there is a function
f(x) of type f,;, and a real number k such that S = E [f(x)z @}.
Since -f(x) is also of type fy, C(S) is of type G, by the
argument in the above paragraph, and since the complement of
every set of type Gy is of type F,, S is of type Fy. Hence
by finite induction every set of type A, is of type G,, and
every set of type B, is of type F, if w is even,

In view of the results obtainei concerning Borel sets
in Chapter II, the proof for the case when w is odd is simi-
lar,

The next theorem states a rathner surprising result,
namely that every Borel Set is one of the sets associated
with a Baire Function of the same type or class. Once again
a Lemma is given with a proof which is very helpful in the

proof of the theorem,

Lemma 4,2 Por every finite ordinal w, if S is any set of
type A, or B, there is a function f(x) of type f 41 such
that f(x) = 1 for every x€ S and f(x) = 0 for all x€ C(S).
Proof: Assume S is of type A,. Then there is a function
g(x) of type fy such that S = E [g(x)>0]. Let h(x) =

max(g(x), 0).  Then h(x) is also of. type fy by Theorem 3.11,
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For every positive integer n, let f,(x) = min [nh(x),l] .
the functions f,(x) are again of type f,. This sequence
converges everywhere and lim £ (x) =1, for xe¢S and O for
x€ C(S) and is of type Fy+1 by definition of a function of
type fy+1.

Suppose S is of type By. Then C(S) is of type Ay.
Hence, by the preceeding paragraph, there is a function
f(x) of type f,,,1 such that f(x) = 1 for all x€ C(S) and
f(x) = 0 for all xe S, The function 1 - f(x) is of type
fiy+1 and has value 1 on S and value 0 on C(S), Thus by

finite induction the theorem is established,

Theorem 4.4 For every finite ordinal w, every set of type

Gw is of type Ay and every set of type Ry is of type By if
w is even, and every set of type Ry is of type Ay and every
set of type Gy is of type By if w is odd,

Proof: Again by Theorems 4,1 and 4,2, the theorem holds
for w = 0, Suppose w is odd, and that the statement holds
for w - 1, Let S be any set of type By,. Then S =}§:§1
where each S, is of type Fy.i. Since by assumption every
set of type Ry.j is of type By.1, w - 1 is even, there is
by Lemma 4,2 a function fp(x) of type fy for every n, such
that fu(x) = lnfor every x€ Sp, and fp(x) = 0 for every

x € C(Sp). Noﬁ f(x) = %fn(x) is of type f,, since the scries

L3}

converges uniformly to f(x) and uniform convergence preserves
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the class of the limit function., But S. = B [f(x)>'0] so S
is of type Ay by definition of a set of that type., If S is
any set of type Gy and w is even, the proof is very much
the same except for replacing even by odd and Fy by Gy.

Now suppose w is even and the theorem holds for
w ~ 1., Let S be any set of type Fy, then C(S) is of type
Gw. By following the same argument as above, we obtain
eventually that C(S) = B [f(x)>0] = E [-f(x) & of, ana

hence S = E [--f(x)_> 0]. Thus S is of type By by definition,

Theorems 4,3 and 4,4 can be summarized very briefly
to say that for finite ordinals the sets associated with a
fuhction of any prescribed Baire class are identical with
the Borel sets as defined in Chapter IXI., For later refer-

ence, these results are combined into a theorem,

Theorem 4,5 For all finite ordinals w, a set S is of ‘type

Aw if and only if it is of type By, and it is of type By
if and only if it is of type G, whenever w is odd., If w
is even the sets of types Ay and By are of types Gy and Ky,

respectively,

The next two theorems now relate the Borel sets to
the Baire functions, By using the definition of sets of
types Ay and By as given in Definition 4.2, one of these

relationships has already besen shown; namely, that for any
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finite ordinal w, if f(x) is of type f,, the sets associated

with the function are Borel sets of types R, and Gy,

Theorem 4.6 If f(x) is any function of type f, where w is

a finite ordinal number, then for every real number k, the
sets E [f(x))k] and E [f(x).’k] are of types Fy and Gy,
respectively,~if w is odd, and of types Gy and By, respec-
tively, if w is even.

Proof: By Definition 4.2, a set S is of type A, if and only
if there exists a function f(x) of tyée f,y and a real number
k such that S = E [f(x))-k], and S is of type By if and only
if there is a function f(x) of type fy and a real number k

such that S

E [f(x)?lc]. By replacing A, and By, accord-

ingly, in Theorem 4.5; the theorem is established.

The converse of Theorem 4.6, which will be proven
next, states that if the sets associsted with a function
are of a certaiﬂ finite Borel tipe gr class, then the func-
tion is of the same finite ilaire class,

The existence of a certain type of Baire function
defined on two disjoint sets is needed for the proof of the
theorem, and is established with the statement and proof of

the following lemma.

Lemma 4,3 If w is a finite ordinal and S and T are two

disjoint sets of type By, there is a function g(x) of type
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f; such that g(x) = 1 for all x in S, g(x) = 0 for all x in
T, and 0 £ g(x) 41 elsewhere,
Proof: By the definition of sets of type B, and the pre-
ceeding results of this section, there is a function fq(x)
of type f, such that E [fl(x)f'O] =S, and an-fz(x) of type
f,, such that E [fz(x).?OJ = T. Let gyj(x) = max (f1(x),0),
and go(x) = max (f2(x),0). Then gj(x) and go(x) are of type
f, by Theorem 3,11, and gq(x) = 0 on S, g;(x) >0 on C(S);
go(x) = 0 on T, and go(x) >0 on C(T). The function gy(x) +

gz(x) is never 0 and is of type f, by Theorem 3.7. Now let

g(x) = g2 (x) , thus g(x) is of type fy; by Theorenm
] g1(x) + go(x)
3.8; and g(x) = 1 for every x€S, g(x) = 0 for every x€T,

and 04 g(x)42 1 for every other x,

Theorem 4.7 If w is a finite odd ordinal and f(x) is such

that for every real number k the sets E rf(x):>kJ and

E [f(x).?k] are of type Fy and Gy, respectively, then f(x)
is a function of type fw. If w is even and the sets are of
type Gy and R, respectively, then f(x) is of type f.
Proof: In view of Theorem 4.6, and the comments preceeding
it concerning sets of type A, and By, the proof reduces to
showing that if the sets E [f(x)) k] and B [f(x)! k] are of
type Ay and By, respectively, then f(x) is of type fy.

By Theorem 4,1, the theorem holds for w = 0, For

every real number k, suppose the sets E [f(x))-k} and
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E [f(x)? k] are of type A, and By. Then the sets E [f(x)!-@L
as complements of sets of type Ay, are of type By, This is
because every set of type Ay is of type B, or G,, and every
set of type Fy is the complement of a set of type Gy by
Theorem 2.1,

Suppose, for now, that 0<f(x)<1 for every x. Let
n be a positive integer. For every m = 0,1,2,...,0-1, the
sets E [f(x): %] and E [f(x)j‘g_i_ij are of type By.

n

Jlence by Lemma 4.3 there is a gp(x) of type f,; such that

n
x€¢ B | f(x) < m], and 04 gp(x)< 1 for all other values of x.
n

gn(x) = 0 for all xe E[f(x)2m + ;], Zn(x) = 1 for all

Let g(x) = 1 [go(x) 4+ g1(x) +1k=p * gn_l(xi]. Suppose that
n

$f(x)¢m + 1, Then go(x) = gy(x) = ==« = g, 1(x) =1,
n

=Tk

0 £gm(x) %1, and gp(x) = 0 for every r>m. As a résult of
these arguments, [£(x) - g(x)]t 1 for every x. Now g(x),
as the sum of & finite number ofnfunctions of type fy, is
itself of type fyw by Theorem 3.7. Thus f(x), as the 1limit

of a uniformly convergent sequence of functions of type fy,

by Theorem 3.12 is itself of type fi,12

1ZCasper Goffman, Real Funciions (New York: Rinehart
& Company, Inc., 1953), page 143.
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There are other relationships which exist between the

Borel sets and the Baire functions. It is not practical to
investigate them all, However, one last such relationship
will be given, Further statements relating these two con-

cepts may be found in the final chapter.

Theorem 4.8 7The characteristic function of every Borel set

is a Baire function.

Proof: By Lemma 4.2, for every set S of type A, or B there
is a Baire function of type f,4q such that f(x) has value 1
for all x€ S and value 0 for all x& S, Theorems 4,4 and 4,5
can be combined to state that a given set is of type Ay or
B, if and only if it is of type B, or G, if w is odd and of
type G, or R, if w is even. Thus a set is of type A, or B,
'if and only if it is a Borel set. IHence for every Borel set

of type By or G, there is a function f(x) of type £, 4 such

that f(x) is the characteristic function of the given set,

In summary, here are several important results of
this chapter. Associated with every function are a large
number of sets which were defined as being sets of type Ay
or B, depending on the relation of the function values with
real numbers. In this way al! (he values in the Gomain .of
the function are clarsified into sets associated with a

function., It was shown that t'ese sets can be classified

into types or categories depending on the type or class of
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tlie Baire function with which they are associated. The next
two theorems iliustrated tine fact that the sets associated
withi a function are indeed Borel sets. The major result of
the section, and one of the most striking of the entire
project, was the fact that a iven function is a Baire
‘function of a finite Baire type if and only if all the sets
'associatéd with the function are Borel sets of the same

finite type or class,



CHAPTER V

SUMMARY, CONCLUSIONS, AND

SUGGESTIONS FOR FURTIIUR STUDY
I. SUMMARY

The significance of the Borel Sets is best stated
in the final theorem of Chapter II. The Borel sets, from
their properties, answer a number of questions which nor-
mally arise in working with the open and closed sets of
real numbers. The Borel sets form the smallest system of
sets which contains all the open and closed sets and also
contains all the sets that can be obtained from the closed
and open sets by taking the union or intersection of any
finite or denumerable number of sets that are in the sysiem,
This answers the question, for example, of what kind of set
"is obtained from taking the denumerably infinite union of a
collection of closed sets, or the intersection of any number
of open sets,

The Baire functions have much value in the properties
that they possess that are extensions of properties of con-
tinuous functions, In almost all work in analysis the con-
tinuous functions capture the spotlight, It is very inter-
esting and informative to find other functions which have

interesting properties that are not continuous functions,



57

This classification of discontinuous functions discussed
here was first introduced by Rene Louis Baire (1874 ~-1932)
in the year 1899,13

As this thesis unfolded it became quite evident, from
the work encountered in regard to open and closed sets as
related to continuous functions:and from the definition of
Borel sets and Baire functions, that there must exist some
connection between the Borel sets and the Baire functions.
This actual relationship is specifically stated in the
final theorem of Chapter IV. The theorem states that: A
function is of a prescribed finite Baire Class if and only
if all the sets associated with the function are of the

same finite Borel type or class.
IX, CONCLUSIONS

The closed sets and the open sets, as complements of
one another, are not the only sets of real numbers that
possess useful properties and intricate relationships to
functions. The most commonly known properties of closed

and open sets generalize to a systzm of sets, the Borel

13Lawrence M, Graves, Theory of Functions of a Real
Variable (New York, Toronto, London: McGraw Hill Book Co.,

1956), page 127.
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sets, which are far more inclusive, Another surprising
result is that all the Borel sets may be obtained from the
closed sets or the open sets only, It is also noteworthy
that the Borel sets can be defined by beginning with only
compact sets, or by beginning with the open and bounded
sets.1% These observations naturally give rise to the
question of how much real difference exists between these
types of sets.

| The properties of continuous real functions serve to
‘classify all real functions into two disjoint classes, those
that are continuous and those that are not, The definition
of Baire functions makes it obvious that many functions
which are not continuous do possess properties which s
facilitate a classification of those functions by some
'.standard. The fact that there are functions which do not
belong to any Baire class leaves at least one avenue of
investigation wide open, |

In undergraduate work with continuous functions many
properties of these functions are given which are not essen-
tial to the concept of continuity. As a result, in the mind
of the undergraduate, frequent misconceptions occur con-

cerning the properties that are unique to continuous functions.

14gqward J. MeShane and Truman R. Botts, Real
Analysis (Princeton:- E, Van Norstrand Co., Inc., 1959),

page p R
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The propertiés referred to here are those concerning the
sum, product, qguotient, etc., of continuous functions.

The observation that the Baire functions in general
possess many of fhe properties that have been traditionally
attributed to continuous functions, at least to the immature
mathematical mind, naturally gives a person a clearer pic-
ture of the properties essential to continuity itself.

The study of Baire functions seems to be the first
step in a vast investigation of non-continuous functions,
This study will obviously have as an end result a much
clearer and more precise intuitive feeling for continuity,

In any academic pursuit in the area of analysis a
reference is made, and a partial investigation given, to the
relationships that exist between continuous functions and
open sets. Once again it is refreshing to discover that
this type of relationship is not one that is unique to the
open sets or to the continuous functions, Under the condi-
tion of the proper classification of functions and the pro=-
per structure of a set, an analogous result generalizes to
all finite types of Baire functions in relationship to the

same class of Borel sets.
111, SUGGESTIONS FOR FURTHUR STUDY

The vast majority of current works or writings in

the area of analysis emphasize very strongly the usefulness
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and necessity of measure theory as arplied to sets and func-
tions, There are a large number of types of measure that
are used, but most are very similar in the original content.

The relationships that exist between the measureability
of sets of real numbers and real valued functions, according
to several definitions of such measures, can be found in
most textbooks dealing with real analysis or measure theory.

This approach could be used very effectively as an
alternate method of investigation of the Borel sets, the
Baire functions and their relationships to one another. It
has been proven, for example, that all Borel sets are meas-
ureable sets.ld Also, if sets of measure zero are neglected,
the Borel sets are all of the measureable sets of real num-
bers.16 It is also easily established that all continuous
functions are measureable functions.?

.The results of the preceeding paragraph can be com-
bined with the fact that: every function which is a limit

of a convergent sequence of measureable functions is itself

15paul R, Halmos, ieasure Theory (Toronto, New Yark,
London: D. Van Nostrand Co,, Inc., 1950), page 62.

16Casper Goffman, Real Functions (New York;
Rinehart & Co., Inc., 1953), page 64.

17Richard R, Goldberg, Methods of Real Analysis
(New York, Toronto, London: BIaisdell PubIishing Co.,
1964), page 283,
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a measureable function, to produce the following general
results: (1) all Baire functions are measureable, and
(2) all the sets associated with a function are measureable
if and only if fﬁe function is a Baire function,l® This
last result follows immediately from Theorem 4,7 of
Chapter IV, It is worthy of notation that this last result
relating sets to functions is not limited to the finite
classes of Baire functions as is the discussion contained

in Chapter IV of this paper.

181bid., page 287,
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