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INTRODUCTION
1.1 THE PROBLEM

The student of mathematics begins to find early in his
4 study that certain basic concepts seem to occur again and
again in every area of investigation. One of these concepts
of great universality in mathematics 1is tﬁe group.

Historically, groups arose and were used as:a tool in
the stﬁdy of the theory of equations. Groups were first used
by Augustin Louis Cauchy (1789-1857) and by Evariste Galois
(1811-1832) as a mapping of the roots of an equation onto
themselves [y;24]. The results of tneir work greatly en-
riched the study of polynomials and fields and furnished
incentive far further development of group theory.

The axiomatic formulation of an abstract group was
first given in 1870 by Leopold Kronecker (1823-1891) [L].;EL.'_—J.
Since that time the gfoup concept has undergone a consider-
able degree of sophistication.

Ls the study of mathematical concepts becomes more
abstract, problemé of communication arise for the student and
the teacher of mathematics. One of the areas of difficulty
in the theofy of groups is the small number of examples in

many textbooks. Both the teacher and the student find it



elprul when examples afe'provided wnich 1llustrate the con-
tent of a definition,

The realization that a part of the development of the
student of mathematics is the sbility to provide examples
for abstract definitions, has been the motivation for study
in this particular area.

The purpcose of this thesis i1s to present definitions
for and to provide examples of many of the more common types
of groups. In addition to the examples ppovided, theorems
are given so that the reader may provide examples for him-
self.

Iﬁ this thesis it is assumed that the reader has had
a course in abstract algebra. To present examples on tnis
level, all definitions and theorems are limited to finite
groups except in a few cases where a particular definition
or theorem may apply to both finite and infinite groups.
Cnapters II and III contain many definitions and terms which
are already well known to the student of abstract algebra.
They are llsted in these chapters to serve as a review and

for ease of reference.
1.2 ORGANIZATION OF THE THESIS

Chapter II contains the basic definitions of terms
used in the theslis, as well as a few coummon examples.
The simpler groups are deflned with examples in Chap-

ter III. Many of the groups given as examples in Chapter III



serve again as examples in later chapters. Chapter IV con-
tains a presentation of groups defined in terms of elements
of a group and powers. Groups with normal subgroups are pre-
sented in Chapter V.

The method of organization in this thesis follows a
pattern of definition, example or examples, theorems and more

examples.



CHAPTER 1I
DEFINITION OF TERMS
2.1 DEFINITION OF A GROU?

Definition. A nonempty set G with blnary operation "=" is a
group 1f and only 1f it satisfies the following properties:
(1) (closure) for a,beG there 1s a unique ceG
such that a¥b= c,

(11) (associativity) for a,b,cel, a%(b*c):a(a%b)*c,

(111i) (identity) there is an eecG such that if aeG
then ase= a,

(1v) (inverses) for ae G there is an a~te3 such that
awa™l= .

Since the abstract system called a group 1s delflined in
terms of a set and an operation on that set, it is often de-
noted as an ordered pair, (G,#), the first element of the
palr being the set G, the second being the operation "',
However, (G,s) will be denoted by G except in cases where
misunderstanding may occur,

The set G of a group may beleither finite or infinite.
The term order of a group refers to the number of elements
in G.

Definition. If G has n elements, where n is a positive
integer, (G,:) 1s said to have order n. If there exists no

such positive integer, (G,:) is sald to have infinite order.
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The operation "#" is customarily called addition or
multiplication although the operation as used in a particular
group may not be the same as the addition and multiplication
of arithmetic.

A number of easy theorems follow from the defining
provperties i-iv.

2.1.1 The identity of a group 1s unique [6;169].

2.1.2 Tne inverse of every element of a group 1s

unique [?;16%].

2.1.3 If a,b,ceG such that ab=ac, then b:c'Ea;léC)].

- 2.1.4 If a,b,ceG such that ba=ca, then b=c¢ E:;lég ’

2.1.5 For aeG, ea=za [é;i].

2.1.6 For aeG, a~lwa=e [P;é].

i lsV If a,beG then there exists xeG such that

aix=">b [é;i].

2.1.8 If a,beG then there exists xeG such that

2.1.9 If asb=wse, then bz=a” [? i]
2.1.10 (a1} = w [? i]

2.2 POWERS OF ELEMENTS OF A GROUP

In the discussion of groups it 1s necessary to con=-
sider aﬁ element of a group raised to a power. Since the
exponent of a group element is an integer, the exponent 1is
quite often not an element of the group itself. It is

therefore helpful to define exponents in the following manner:



af=a,
an=(aB-l)s#a, and
a-N=(a=1)B, so that
af=e
al: Osxg
aB=glen
a3=32*a
.

al=(aP~1l)xa,
By induction:
all allzall+n apg (af)? = g™,
The elements of a set G in (G,#) have order, defined
in terms of exponents.
Definition., For ae€ G, a has order n if n is the smallest
positive integer sucn that a=e where e i1s the identity of

G. If no such integer n exists, a has infinite order.
2.3 EXAMPLES OF GROUPS

The set of integers with ":" as the usual operation
of addition forms a group of infinite order denoted (I,+).
The identity element is O and the inverse of a 1is =-a.

The set of rational numbers form a group under the

D

operation of addition. Tne inverse of g is = g and the

identity element is 1.



The set of positive rational numbers with "#" as the

usual arithmetic operation of multiplication forms a group

of infinite order denoted (+Ra,*). Each rational 8 nas an
inverse % and the identity element is 1.

The rational numbers of |0,1l) form a group where
addition is defined as at+b = ¢ where c<l, a+b= c-1 where c21.
The identity element of the group 1s O and the inverse of a
ig 1l-a.

The set {0,1,2,+..,n-1} with addition modulo n is &
finite group of order n with identity element O. This group
is referred to as the additive group 1/(n).

The set {1,2,3,...,0-1 with multiplication modulo n
wnere n is a prime, is a finite group of order n-l. The
identity element is 1. This group is referred to as the
multiplicative éroup I/(n). |

The following example of a multiplicative group I/(n)
1s given so as t¢ help in the illustration of some later
definitions.

The set {1,2,...,6} with multiplication modulo 7
forms a group of order 6. The operation table below shows
the identity element to be 1. Note that each of the elements
in the group has an inverse. (2=%l, 371=5, L~l-2, 5~1=3,

6=1= &, l-lzl)
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2., SUBGROUPS

Definition. If a subset H of G has elements whica satisfy
the properties of a group under the operation of G, then H
is said to be a subgroup of G.

The theorem of La Grange is stated here because it
will be of value later in the thesis in finding subgroups of
groups. "If G and a subgroup H have order m and n respec-
tively then n divides m" [%;lé].

Subgroups often have what might be termed "inheri-
tance properties", that is, if G is a certain type of group,

every subgroup H often is of that type.
2.5 EXAMPLES OF SUBGROUPS

For G, the multiplicative group I/(7), G has subsets

H= &42,h} and J= {1,6} whose elements satisfy the properties



of groups. Notice H and J have order 3 and 2 respectively,

both of which divide the order of G.

2.6 DEFINITION OF COSET

Definition., If E is a subgroup of G, then a right coset of

H in G is a subset S of G such that there exists xeG Ior

which S = Hx. A left coset of H in G 1s a subset S' of G

such that there exists xeG for which S'= xH.
2.7 EXA¥PLES OF COSETS

- For G, the multiplicative group 1/(7), H = {1,2,14.}
and J = {1,6} are subsets of G. To illustrate the definition

of coset, the right ccsets of H in G are determined below.

Bl = {1,2,4]1 = {1s, 2:1, L} = 1,2,4).
H2 = {1,2,4} 2 = {1w2, 22, L2} = {2,4,1} :
B3 = {1,2,4)3 = {123, 2:3, L3} = (3,6,5.
Hy = (1,2, 4 = {1, 2, L) = {L,2,43.
BS = {1,2,l}5 = {15, 225, L«5} = {5,3,6}.
Ho = {1,2,4}6 = {Lub, 226, L6} = 16,5,3}.

The right cosets of H in G are {1,2,14,} which is H it-
self and {3,5,6}. In this pa'rticular e)'cample the left cosets

of H in G are the same as the right cosets as shown below.

1H = 1{1,2,4} 1,2,4}.

1

{1 #1, 122, lal]

2H = 2{1,2,4} = {221, 2=2, 2:y = {2,4,1} .
3H = 3{1,2,4} = {3¢1, 32, 3:4} = (3,6,5].
ba o= 4b{1,2,4) = {1, Le2, bl = {(4,1,2f.
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si = 5{1,2,4} = {5¢, 5%2, Sul {5,3,6].
6H = 6{1,2,4} {621, bu2, 6ul] {6,5,3} .

The left cosets of J in G are determined below. It

t

can easily be seen that the right cosets of J in G are ecual

to the left cosets.

17 = 14,6y = {1,604
23 = 2{1,6} = {2,5}.
37 = 3{1,6} = {3..
ho= 4{1,6} = {4,3}.
53 = 5{1,6} = {5,2}.
67 = 6{1,6} = {6,1}.

The left cosets of J in G are {1,6}, {2,5}, and {3,&}.
2.8 OPERATIONS ON COSETS

For a subgroup H of G, if 4, the set of right cosets
of H in G, is equal to B, the set of left cosets of H in G,
an operation can be defined on A such that A forms a group
under that operation. Let A Al, Ao, 33,.,.,Ak « The
product of any two cosets of 4, AioAj, with m and n elements
respectively is

As*A; = a4 <a a- #*a oo pB, e a~ ia
- 3 j {:1i lj’ 21 1j’ ’ mi 1-’ 21 2-’

J J
seey & Ha a, a a, ¥a eeey B4 A
mi 2j, li Bj, 21 BJ’ ’ 1i nj,
a '::'a o s @ a '::'a . .

The operation just defined on cosets will be referred

to as multiplication of cosets.
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2.9 DEFINITION OF FACTOR GROUP

From section 2.7, A, the set of right cosets of H in
G, is equal to the set of left cosets of H in G.
Definition. The set of ccsets A of H in G under the oper-
ation "multiplication of cosets™ is a group called the

factor group of H in G, denoted G/H.

Using the set of cosets A = [{1,2,14.}, {3,5,6}] and the
operation "multiplication of cosets" defined in 2.7, the

following example of a facter group is given.

{124 - {3,5.6]
156, 20, 4*6}
(2l - (2l
1y, 24, Lok
(.56 - 2,13

{1-;:-3, 23, u¥3, 1u5, 25, L#g,
{3,6,5,5,3,6,6,5,3] = {3,5,6}
{1-::-1, 21, L1, 1wm2, 2%2, L=2,
L,2,b,2,4,1,0,2,28 = {1,2,43
{31, 5il, bul, 3u2, Su2, b%2,

3uly, Sul, Sul] {3’5:6,6:3’59596’3} = {},5,6}
{3,5,6] * [3,5,6} = {3u3, 5%3, 6u3, 345, 5u5, 65,

3ub, Sub, 6wb] = {2,1,4,1,1;,2,1;,2,1} = {2,1,4

TABLE IT
A FACTOR GROUP OF ORDER 2

- | {1r2»1+} {3:5:6§

1,2,18 | 1,2,  {3,5,6}
3,5,60 | 3,5,6) 1.2,




2.10 ISCMORPEISH

Two groups of the same order may be found upon exami-
nation to have exactly the same properties so that the only
way in whicn they differ is in the cholce of symbols used to
represent the elements of each group. Accordingly, such
groups are sald to be isomorphic.

Definition. A 1-1 mapping of a group G onto a group gl 1s

called an isomorphism if the operation is preserved under

this mapping; that is, if for arbltrary elements a,b of G:
a#b maps into al#bl, If there exists an isomorpnism of G

onto Gl, G is isomorphic to Gt.



CHAPTER III1
COMMON GROUPS OF ABSTRACT ALGEBRA
3.1 PERMUTATION AND SYMMETRIC GROUPS

Definition. Let S be a set of elements. A permutation P on

the set S is'a 1-1 mapping of S5 onto itself.

The number of possible permutations of a set S onto
itself 1s, of course, dependent upon the number of elements
in S. It can be shown that if a set has n elements, there
are n! permutations on that set.

Let S be a set of n elements. Sn::{Pl’P2""’PnJ} is
the set of permutations on & set S of n elements.

The set S, of all permutations on a set of n elements
forms a group under the operation of composition.
Definition. The group of all permutations of a set of n

elements is called the symmetric zZroup on n symbols and 1is

denoted "Sp,".
Definition. Any group whose elements are permutations 1is

called a permutation grouv.

In the following examples, permutations P, on a set
S are denoted by listing the elements of S on two rows.
Irmediately below an element of the top row is listed its
image under the particular mapping Pj.

For the first example let S=={a,b,c}. The set

53::{P1,P2,P3,P4,P5,P6} is the set of permutations on
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the set 5 of 3 elements. The permutations Py,...,Pg are

identified by their row representatious.

a.
C

(
7 (3
5

Po o0 OU U ou
oo
~—
.

(i
5= (5
P67 (3 a o).

Since P7,...,P4 are all 1-1 functions, the composition

® o
Qo

of those functions will &also e 1-1l. Using the operaticn

composition of functions, the following table is constructed.

TABLE III

THE SYMMETRIC GROUP S3

% P1 P2 P3 PH PS P6
Py P, P, PB Ph P5 Pe
P, | Py Py Pg Pg Py By
Py | Py Pu P, P, Py Pg
Pﬁ Ph P3 Pg 5 Py P2
PS P5 P6 P2 P1 Ph P3
Py Py P5 ?h .P3 P2 Py

Other examples of symmetric groups are Su, the set of
permutations on L elements of order 2; Sg, the set of permu-

T

tations on 5 elements of order 120.
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An important theorem of group theory is Cayleys Theorem
which states, "Any group is isomorphic to a group of permu-
tations" [9;14.7:] .

Any element of a set of permutations can be expressed
in terms of what is termed cycle notation. A cycle 1s a set
of ordered n-tuples (al,a2,33,...,an) of elements of a group.
The n-tuple (31’32’33’°"’an) represents the permutations

a
=9

which maps each ay onto a;,q and a, onto aq. Pu=(' i B 4

n b c a
Sy 1s represented by the cycle (a b c). P;:(a b oy o 83

cab
is represented by the cycle (a ¢ b). '

If a particular permutation maps an element into it-
self that element is omitted from the cycle representing that

a b e

vermutation. In P2= s B

of 83, a is mapped into itself
and is omitted from the cycle. P, would be represented by
the cycle (b e¢). Py and Py of 35 are represented by (a c¢)
~and (a b). Py of S, maps every element into itself so that
all elements are omitted from the cycle. The permutation
which maps every element of a group onto itself 1s denoted
I,

In permutation groups larger than 53, some permuta-
tions require two or more cycles for their representation.

The permutation (% 2 3 g) of §), would be represented by the

two cycles (a b) (c 4a).
3.2 ALTERNATING GROUPS

An alternating group is a subgroup of a symmetric
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group. In order to see exactly what type of subgroup, 1t is
necessary to introduce the idea of a transposition and an
even permutation.

Definition. If the elements of a set S are written as an

ordered n~tuple (xl,xg,x3,...,xn), a transpositicn on S is a

vermutation which exchanges the position of any 2 elements.

Definition. A permutation is called an even permutation if

it can be expressed as the vroduct of an even number of
transpositions.
It is possible to write a definition for odd permuta-
tions-but it is not given here because it will not be needed.
It can be shown that the set of all even permutations
of the symmetric group S, is a subgroup of S, of order ni/2.
Definition. The subgroup of all even permutations of a

symmetric group of n elements is'called the slternating

group on n symbols and is denoted "A3".

For the example of alternating groups the elements of
S3 are listed, showing that 3 of them are transpositions and
3 are the product of an even number of transpositions. The
3 elemsnts which are products of an even number of trans-
positions are the elements of A3, the alternating group on
3 elements.

There are 3 elements of S3 wnich are transpositions.

5o o= B B &
Po

L b) exchanges the position of b and c. P3= (a b &

c b a

ab 0)

exchanges the position of a and c. Pézz(b =y

exchanges

the position of a and b.
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From Table III it 1s obvious that Py, Pu and P5 can be

expressed as the product of an even number of transpositions
anéd are the even permutations of 53.

The operation table of A3 is listed below.

TABLE IV

THE ALTERNATING GROUP A3

3 Pq Pu Pg
Py Py Ph P
Ph Ph PS Py
PS PS Py Pu

The other examples of alternating groups are A2,'Ah,

AS,O..,An Of Order 1’12,60,...,n1/2.
3.3 CYCLIC GROUPS

Each element of a cyclic group can be expressed as a
power of a single element of the group.
Definition. If a group G contains an element a such that
every element of G is of the form a™ for some integer n, then

el

G is a cyclic group and is said to be generated by a or a is

2 generator of G.

The set of integers under the operation addition is an
infinite cyclic group. 1 is the generator of this group
since 1+1=2, 1+1+l1 =3,...and is of infinite order.

The multiplicative group of integers I/(5) is cyclic.

Either 2 or 3 will generate the group.
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THEORENMS ON CYCLIC GROUPS

3.3.1 Every subgroup H of a cyeclic group G 1is 1ltselfl a
cyclic group [6;185].

3.3.2 For every prime p, the multiplicative group of
integers I/(p) is cyclic [@;ISé].

3.3.3 There is & cyclic group of order n for each natural
nurber n [?;34].

3.3.4 Every cyclic group of infinite order is isoﬁorphic to

' the additive group of integers [?;184].

3.3.5 Any two cyclic groups of the same order are
isomorphic [6 } IBL;.] :

3.3.6 If G is a cyclic group of order n, G has exactly one
cyclic subgroup of order m for eacn positive divisor
m of n, and no other subgroup [?;3%].
The nth roots of unity under the operation of multi-

plication as defined for complex numbers form a group. Each

group is of order n, has 1 as the identlty and has a genera-

tor of order n (a primitive root).
3.4 DIHEDRAL GROUPS

The dihedral groups are characterized as the set of
rotations and reflections about the axes of symmetry of an
n sided polygon. However, the definition of dihedral groups

used here 1s an abstract one given in terms of generators
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and their relationships.

-

Definition. The dihedral gzroup Dn is a group of order 2n

generated by 2 elements s and ¢ which satisfy the relations

si=¢g, t2= e, and tst::s'l.

To 1llustrate how 2 elements can generate a group,
let n=3. Thne elements of the dihedral group D3 will be the
2,e::s3); the powers of t, (t,e:‘tz); and
2

powers of s, (38,s
their products, (ts, ts<, st, szt). Listingz e only once
gives e,s,sz,t,ts,st,tsz,szt the set of 8 elements whereas
the definition of dihedral groups says there should be only

L snows that

6 distinct elements. The relationship tst=s"
st=ts? and ts=s2t theredy eliminating ts2 and s2t from the
set. This leaves & elements in the set so that D3 has
order 6. The operation on this set is similar to the regular
multiplication of arithmetic except that the commutative
property does not apply. The relation tst::s"l must be used
in working out the group table to change some of the products
to a form contained in the original set. As an example, the
product of sZ and t is s@t, but by the relation tst= s71,
s2t = ts. Therefore the onroduct of s2 and t is listed as ts
in the table to better iliustrate closure.

Dihedral groups exist for any natural number n. The
smallest, of course, would be D1 of order 1. The example
used here 1is D3. To show how dihedral groups can be character-

ized as a group of rotations and rseflections of a regular

n-sided polygon, the equilatsral triangle PQR of Figure 1
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with axes of symmetry a, b, and ¢ is used. Let elements E,

B and C represent clockwise rotations about the centroid of
0, 120, and 2h0 degrees. The elements F, G and H represent
reflections of the triangle about the axes a, b, and ¢ re=-
spectively. The operation "#" in this group is interpreted
as "followed by". The symbols B#C indicate a rotation of

120 degrees followed by a rotation of 240 degrees. These
rotations leave the triangle in its original position and are

the equivalent of a rotetion of O degrees, so that B#C =E.

THE AXES O
AN EQUILAT

F SYMMETRY OF
ERAL TRIANGLE

With the set and operation defined, the following table

describes the group D3.



THE DIHEDRAL GROUP D3
i E B .C H G F
E E B*CvR"G F
B B € E G F H
C c & B F H &
H H"FvG E € B
G i = B E ©
F oG R U-8 B

It can be seen that B and F are the generators of

this group. B3 = E, F2=E and FBF=C=B"1,
3.5 ABELIAN GROUPS

The Abelian groups are named in honor of KN.H. Abel
(1802-1829).

To the 4 defining properties of groups listed in
section 2.1 the following is added:

(v) (commutative) for a,b,eG, axb=bxa.
Definition, A group is Abelian or commutative if and only
if it satisfies (v).

An Abelian group is easily recognized when its
operation table is given as the entries of the table are

symmetric with respect to the main diagonal.
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FIGURE 2
THE SYMMETRY OF THE TABLE
FOR AN ABEZLIAN GROUP

The integers form an Abelian group under addition
since addition is commutative in the integers.

The rational numbers form an Abelian group under
addition since addition is commutative in.the rationals.

The multiplicative group of integers I/(n) is Abelian.

Other examples of Abelian groups are given throughout

the remaining chapters.



L.l p=GROUPS

Definition. A group G is a p=group if and only if every
element of G except the identity has order a power of a
prime p.

The operation table below glves a group of order 9

which is Abelian. Each element except e has order 3.

TABLE VI
AN ABELIAN p-GROUP OF ORDER 9

#| e a b ¢ ¢ T g B
e s & b ¢ 4 o T g h
a & % & o g I ¢ b 4
b 5 & &4 ' A @ 6 4 g
& e 5 T & # g b 'a b
d d g h ¢ ¢ a b o ¢
o &8 L & g &« A 4 © e
by f ¢ o h b 4 g & =&
g E h 4 a o b e f ¢
h}|h 4 g b £ @ a ¢ o

THEORENS ON p-GROUPS

h.l.l A subgroup or factor group of a p-group 1s a p-group

[95131].
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finite group G is a p=-group if and only If the order

(=3

i—;.-l.z -

of G is a power of some prime number [é;l}é].
4.2.3 Any group of order p2 is Abelian [?;8?].

The characterization of p=-groups given in theorem
i.1.2 makes the problem of finding examples of p-groups a
very simple one. Any group of order 2,3,4,5,7,8,9,11,13,16,
17,...1s a p=-group.

To find a cyclic p=-group éf order p, & prime, let
a®?=e. The elements of the group are e (the identity), a,
22,...,eP "}, The operation is regular multiplication. In
this group aP=e, (a2)P=€,000, (aP=1)P = r wnich satisfies
the definition of a p=-group.

2, p a prime, a® = e gives p~

For groups of order p
zroups which are also cyclic. aP=e, bP=e, ba=ab defines
groups which are p-groups. The example given in sectiocn .1
is defined by ad= e, o= e, ca=ac. (b= a2, d:cz, e=ac,
f= azc, g= ac2, h=a? 2).

The dihedral group Du is a non-Abelian p-group of
order 8.

Other examples of p=-groups can be found by consulting

a table of defining relations for p-groups [5;51,186].
4.2 THE QUATERNION GROUP

The quaternion group satisfies the definition of p-
groups and can be defined in terms of generators.

Definition. The group G of order 8 generated by a,b where



a2=12, p~tab= e
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is the guaternion group.

a1

The operation table below is given in terms of =1, =i,

14

+

j» %k with the multiplication rules: 12, j2, k°=-1; ij=k;

A3

k=1; ki=j; ji=-k; kj==1; ik=-j; and the usual rules

e

for multiplying -1. The 8 elements of this group are th
basis units of the guaternion; that is, every quaternion can

be written as a linear combinaticn of these elements.

TABLE VII
THE QUATERNION GROUP

*| 1 i J k -1 -1 =-j =k

i i -1 k -5 =i 1 =k h]
3 j =k =1 i =] k 1 =~i
k k j =i <1 =k =j 3 1

<k [k -3 1 1 k § -1 =1
.3 SYLOW p-SUBGROUPS

The Sylow p-subgroups are named for Ludwig Sylow
(1832-1918’, an important contributor to group theory.

Definition. A subgroup S of a group G is a Sylow p-subgroup

of G if and only if it is a p-group and is not containecd in

any larger p-group which is a subgroup of G.



Any proper subgroup of a p-group G is not a Sylow
_p-subgroup since it is contained in the larger p-group G
which is a subset of itself. For this reason the examples
chosen will be prorer subgroups of non p-groups.

The group S3 has subgroups {Pl,Pé}, FE,P3}, {?l’PZ}
and {?I,Pu,Pg}. Since the order of the subgroups is 2 and
3, they are p-groups by theorem Li.1.2. None of them are con-
tained in a larger p-group, therelfore they are Sylow p=-sub-
groups of S3. The three groups {PlsPé}’ {Pl,P3} and {Pl,Pé}
are sometimes called Sylow 2-subgroups. {Pl’PQ’PSI would be
a Sylow 3=subgroup.

The group S) has subgroups of order ;2,346,013
and 24, By theorem L.l.2 the subgroups of order 6, 12 and
2l are not p-groups and therefore are not Sylow p-subgroups.
All subgroups of order 1,2,3,4 and 8 are p-groups. However,
in §

i
p-groups (those of order li) and are therefore not Sylow p-

all subgroups of order 1 and 2 are contained in larger

subgroups. All subgroups of order I} are contained in the
subgroups of order & so that the Sylow p-subgroups of Su are

the I subgroups of order 3 anéd the 3 subgroups of order 8.

THEOREMS FOR SYLOW p=-3UBGROUES

4.3.1 If G is a group of order pfm, where p is a prime and
p end m felatively prime, a subgroup H is a Sylow p-
subgroup if it has order pT [9;132:] "

4.3.2 (Sylow's theorem) If G is a group of order p¥m, where

p 1s a prime and p eand m are relatively prime, the
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number n of Sylow p-subgroups is such that nE21 (mod p)
[95133].
Note how theorems L.3.1 and 4.3.2 verify the results

of 54 apbove.
.l DICYCLIT GROUPS

Definition. A group G is dicyelic if and only if it is of
order lin and is generated by 2 elements a and b such that
a2n=e, an=b2, aba=b.

The dicyclic group of lowest order is the group of
order l, found by letting n=1l. The elements are e, a, b,
and ab.

For n= 2, the expression 2a®=¢, aP®=b%, aba=b
becomes ah: e, a2=:b2, aba=b. In the following it is
shown that aba=b is eguivalent to b‘labza'_'l.

aba= b.

ab= ba3.

p~lab=al.

“lop=a™,

b

By the definition of the quaternion group in section
l.2 it is obvious that the dicyclic gro&p obtained for n=2
is isomorpnic to the quaternion group.

The dicyclic group of order 12 (n=3) along witn the

dihedral group Dy are the only 2 non-Abelian groups of order

12.



4.5 MNMETACYCLIC GROUPS

 Definition. A group G is metacyelic if and only if it is

gcenerated by two elements a and b such that xXP=yl= e
y'lxy::xr where (m,r-1)=1 and r®=1 (mod n).

Finding the examples for metacyclic groups amounts tTo
finding the numbers m, n and r which meet the conditions of
the definition.

For m=5, n=2 and r=9 the set of elements for the

2y and yx° which is the

group are e,x,x2,x3,xu,y,xy,yx,x
dihedral group DS'

By letting m=3, n=2 and r=5 the group Dy is ob-
tained whieh is of order 6 and is isomorphlc to S3.

For m=3, n=2 and r=1 a group of order & 1s obtained

wnich is Abellan. This group is isomorphic to the cyclic

group of order 6.



GROUPS WITH NORMAL SERIES
5.1 HNORMAL SUBGROUPS

The idea of a coset as defined in Chapter II is used
here to define normal subgroup.

Definition. A subgroup H of G ig a normal subgroup if and

only if every left coset of H in G is alsoc a right coset.
The symbocl E G denotes H is a normal subgroup of G.

Since every subgroup of an Abellan group is normal,
the more interesting examples are non-Abelian groups with
normal subgroups. The guaternion group of secticn L.2 is
such an example. The subset {1, -1, i, -i} is normal in the
group since the left cosets {i, -1, -1, 1} and b, K, ~j» -k}
are also the right cosets. The subset il, -i} is also normal
in this group with cosets {1, -%,i?, -% s U, -j} and{?, -k&.

The dihedral group D3 of section 3.4 with subgroup
{E,B,c} is normal in D3 with cosets {E,B,c} and {H,F,G].

The group G = {I, (12)(34), (13)(2h), (14)(23)} given
in cycle notation is a normal subgroup of Su, and is iso-

morphic to the non-cyeclic group of order 4 called the

li-group.

TEZEOREMS ON NORMAL SUBGROUPS

S.1.1 Any subgroup of an Abelian group is normal [?;6%].
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2.1.2 If nstl, Ap i1s the only proper normal subgroup of

Sy [};h:]-

5.1.3 If the order of the group divided by the order of the

o

subgroup gives a guotient of 2, the subgroup is

normal [?;2%]. (This is the case in both examples

given above.)

Other examples of normal subgroups will be given
througnout the remainder of this chapter in the sections on

nilpotent, supersolvable and solvable groups.
5.2 HAMILTONIAN GROUPS

Definition. A group is Hamiltonian if and only if every

subgroup is normal.
Zvery subgroup of the guaternion group is normal and

therefore Hamiltonian.
5.3 SIMPLE GROUPS

For the groups which have no normal subgroups, the
following definition assigns a name.

Definition. A group G is a simple group if and only if it

contains no proper normal subgroups.

The notable examples of simple groups are the alter-
nating groups An where n#l as is pointed out in theorem
5.3.2 which follows.

The cyclic group of order 5 given in the table below

is a simple group.
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THEOREMS ON SIMPLE GROUPS

5.3.1 The finite cyclic grouos of prime order are simple

groups [%;2§].

5.3.2 If n#4L, A, is a simple group E];h,S].
5.4 NOARMAL SERIES

Definition. A normal series of a group G is a finite

sequence Ao""’Ar of proper subgroﬁps such tnat
& =A04 AlQ. . .4Ar,= G.

Por the examples of groups wlth normal series, 54, 53
and Dﬁ are used. These same groups are to appear later as
examples of types of groups wanich are defined 1n terms of
conditions on finite normal series.

The subgroups wnich form a normal series in S

LL- are

given in cycle notation.
Ah::{l}
az= {1, (12)(34)



(WS)
n

Ap= {T, (12)(34), (23) (24), (14)(23)}
a1= {1, (123), (124), (132), (134), (242), (143),
(234), (243), (12)(34), (13)(24), (1) (23)}

Ag= s, = {I, (12), (13), (1), (23), (), (34), (123),
(124), (132), (134), (142), (143), (234),
(243), (12)(34), (13)(24, (14)(23),
(1234), (1243), (1324), (13h42, (1y23),
(1432)} .

The cosets of

A in A5 are [I} and li2) 343} ;

43 in &, are (I, (12) (34)} and {(13)(23), (4)(23)} ;

Az in &) are {I, (12)(34), (13)(2h), (14)(23)},

{(134), (243), (142), (123)} and
{(234), (132), (143), (124}
Ay in A_ are 4, and {(12), (13), (14), (23), (24),
(3L), (1234), (1243), (1324),
(1342), (1423), (1432)} .
The subgroups which form a normal series in 83 from
Table III of section 3.1. are:

A= {By}

Ay = {Pl, Pu, PS}, and

ko= S3={Py, Pp, P, P,» Pgs Py e

The cosets of ’

Ap 1n Ay are {7}, {7} and{Pé&;

Ay in Ag are {Py, P, Pjand {Pp, 25, Pl -
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The subgroups which form a normal series in DQ of

section l.3. are:

-

&
A2 in Al are {3,52} anc {3,53

2

|
are ie,s,s ,53} and {t,ts,st,szt}Q

5.5 THE CENTER OF A GROU?P

~

Definition. The center of a group G is the set of all x &
that commute with every element of G.

In Abelian groups all elements commute and the set
itself is the center. In some groups the cnly element which
commutes witn every other element is the identity in waich
case the center is said to be trivial.

The group D,+ with elements {6,5,32,53,t,ts,st,s2t}
has a non-trivial center ie,sg}.

From the quaternion group of section h.2.,il,-1§is
the non-trivial center.

A helpful theorem on p-groups states, "The center of

a finite p—group is greater than tne identity alone™ [?;qz].



Definition. A group G is nilpotent if and only irf it

possesses a finite normal series G Aj D Ay, DApD ...
dAn=e, in which A3_71/A; is in the center of G/A; for
12 1. 0uy 0%

The example for nilpotent groups 1s the group Du.
finite normal series AO,...,A3 hes already been shown in
section 5.it. All that remains to be shown i1s that' each

factor group A;_,/A; 1s in the center of the factor group

Ao/A71 is in the center of G/A;.
A1/A> is in the center of G/A,.

h,/A3 is in the center of G/As3.

THEOREMS ON NILPOTENT GROUFS

5.6.1 Every subgroup of a nilpotent group G is nilpotent

E7;12§|.

.0.2 A Tinite nilpotent group is supersolvable [é;lE%].

\n

5.6.3 Every finite p-group is nilpotent ?;l2§].

.7 SUPERSOLVABLE GROU?

Ul

The supersolvable groups are also defined in terms

ki

inite normal series.

c
=3

Definition. A group G is suversolvable if and only if it

The

possesses a finite normal series G=A D A1D ApD ... DAp=¢, in



ch each factor group A, ./4, is cyclic.
The group 53 is an example. of a supersolvable group
which is not nilpotent. The factor group AO/A1 has elements
b} {
{P $ s ir.g and {Péﬂ with generator {P §, The factor group
- 2 L
X

A /A

L 2
with {P s B3 Rk } as generator.
A

¥

}

8 cyclic, has elements {Pl, Pu, Pﬂ} and {PZ’ PS’ P6
b 2 o

THEORENMS ON SUPERSOLVABLE GRQUPS

5.7.1 Subgroups and factor groups of supersolvable groups
are supersolvable E);'.LSQ.

S5.7.2 A finite nilpotent group 1is supersolvable [?;ISEJ.

5.7.3 If the order of G is 2p™, p a prime, G is super=
solvable E};IS@ i

5.7.4. A supersolvable group is solvable [?;15%].

5.8 SOLVABLE GROUPS

The solvable groups get their name from Galois theory.
L polynomial is solvable by radicals if and only if its
Galois group has a finite normal series in which every factor
Zroup ofAsucceeding normal subgroups is Abelian.
Definition. A group G is solvable if and only if it possesses
a finite normal series G= A D Alg Ay eee > AS.= e in which
every Ai_l/hi,i::l, «eeyS is Abelian.

The example of a solvable group is Su. In section
S.4 the subgroups which make up the finite normal series are
shown. To show each factor group is Abelian, the operation

table for each factor group can be constructed.
- .



THEOREMS ON SCLVABLE GROUPS

5.8.1 Any subgroup of a solvable group is solvable [?;llé].
5.8.2 IfN » 5, S, is not solvable [7';11@. '
5.8.3 Every finite p-group is solvable [7;114].

S.8.4 Z2very group of odd order is solvable [§;22%].

5.8.5 If ng L, then S, is solvable [?;114].

_5.8;6 The dihedral g roups are solvable [E;ll%].

The theorems above suggest numerous other examples of

solvable groups.
5.9 THE HIERARCHY OF FINITE GROUPS

Through the use of & few theorems it is possible to
shew a hierarchy of classes of finite groups.

5.9.1 Every cyclic group of order n is isomorphic to the
edditive group I/(y) [%;18;]. (This implies every
finite cyclic group is Abelian.)

5.9.2 If G is Abelian then G is nilpotent [7;12}] :

5.9.3 Every finite nilpotent group is supersolvable [?;15%].

5.9.L A supersolvable group is solvable [?;15%].

The theorems establish the following result:

Cyclic<::<Abe1ian Nilpotent Supersolvable Solvable
groups groups groups <:: groups groups

Some examples show that each subset 1s proper as

shown in the table below.



TABLE IX

EXAMPLES AND COUNTEREXAMPLES
OF FIVE FINITE GROUPS

CLASS EXAMPLES
52 é;cup Dﬁ ; 53 Su SS
Solvable Yes Yes Yes Yes Yes No
Supersolvable Yes Yes Yes Yes No No
Jilpotent Yes Yes Yes No No No
Abelian Yes Yes No No No. No
Cyclic Yes Ko No - No No No
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Several examples for each of 18 different types of
groups nave been listed. In addition there are theorems
these types of groups wnich en=-

given relating to certain of
other examples not listed.

able the reader to find many
n Chapter II, groups, subgroups, ccsets and operations

k-

cn cosets were defined for later use in the thesis.
The groups commonly encountered in a course of ab-

stract algebra were introduced in Chapter III for a review
groups introduced

and to supply examples for other typses of

in later cheapters.
Chapter IV supplies examples of groups wnich are de=-

ed in terms of the power of the elements of the group.
The

fin
The normal subgroup was defined in Chapter V.
groups of that chapter were then defined and presented in

terms of normal subgroups and normal series.

6.2 SUGGESTION FOR FURTHER STUDY
The idea of tals thesis could be profitably extended
Examples ol vector

algebra.

t
helpful to students and

to other toplcs of abstrac
ds would be
¢ the effectiveness could be

rings or fiel
In such

Paces,
a topl

teachers alike,
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ncreased by the inclusion of counter examples as well as

examples.

In the study and preparation of this thesis several
topics have éroused the curlosity of the writer.

1) How is an algorithm for solving a polynomial
equation related to the solvability of a group
associated with the polynomial equation?

2) ©Can group theory be studied strictly from the
standpoint of generators and relations?

3) Wnat is being accomplished in the area of semi-
groups, quasi-groups ané loovps?

Answers to these guestions could lead to very

interesting studies in the field of group theory.
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