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'Ci-IA?'TBR. I 

IN'I'nODUCTION 

1.1 T:iE PROBLEM 

The student of mathematics begins to find early in his 

study that certain basic concepts seem to occur again and 

again in every area of investigation. One of these concepts 

of great universality in mathematics is the group. 

Historically, groups arose and were used as a tool in 

the study of the theory of equations. Groups were first used 

by Augustin L·ouis Cauchy (1789-1657) and by Evariste Galois 

(1811-1832) as a mapping of the roots of an equation onto 

themselves [4;2~. The results of ~h~ir work greatly en­

riched the study of polynomials and fields and furnished 

incentive for further development of group theory. 

The axiomatic formulation of an abstract group was 

first given in 1870 by Leopold Kronecker (1823-1891) [4;~. 

Since that time the group concept has undergone a consider­

able degree of sophistication. 

As the study of mathematical concepts becomes more 

abstract, problems of com.."'nunication arise for the student and 

the teacher of.mathematics. One of the areas of difficulty 

in the theory of groups is the small n~~ber of examples in 

many textbooks. Both the teacher and the student find it 
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helpful when examples are provided wh.ich illustrate the con­

tent of a definition. 

The realization that a part of the development of the 

student of mathematics is the ability to provide examples 

for abstract definitions, has been the motivation for study 

in this particular area. 

The purpose of this thesis is to present definiti,ons 

for and to provide examples of many of the more common types 

of groups. In addition to the examples provided, theorems 

are given so that the reader ~~y provide examples for him-

s el f' • 

In this thesis it is assumed that the reader has had 

a course in abstract algebra. To pres~nt examples on this 

level, all definitions and theorems are limited to finite 

groups except in a few cases where a particQlar definition 

or theorem may app11 to both finite and infinite groups. 

~aapters II and III contain many definitions and terms whic~ 

are already well mown to the student of abst'ract algebra. 

They are listed in these chapters to serve as a review and 

for ease of reference. 

1.2 ORGANIZATION OF THE T~ESIS 

Chapter II contains the basic definitions of terms 

used in the thesis, as well as a few common examples. 

The simpler groups are defined with examples in 0nap­

ter III. Many of the groups given,as examples in Chapter III 
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serve again as examples in later chapters. Chapter IV ~on­

tains a presentation of groups defined in terms of elements 

of a group and powers. Groups with normal subgroups are pre­

sented in Chapte~ v. 
The method of organization in this thesis follows a 

pattern of definition, example or examples, theorems and more 

examples. 



:~PTE II 

DEFINITION OF TERMS 

2.1 DEFINITION OF A GROUP 

Defini ti on. A nonempty set G with binary· operation 11.;;." is a 

group if and only if it satis.:i'ies the following properties: 

(i)	 (closure') for a., b(G there is a unique c£.G 

such that a-;:-b= c, 

(ii) (associativity) for a,b,cE:G, a~:·{b.;:·c):: {a·;:-b).;:-c, 

(iii)	 (identity) there is an e~G such that if aE:G 

then a';:~e =a, 

(iv)	 (inverses) for a€ G there is an a-l€.~ such that 

a ·"a-,r l -_ e • 

Since the abstract system called a group is defined in 

terms of a set and an operation on that set, it is often de­

noted as an ordered pair, (G,·;:-), the first element of the 

pair being the set G, the second being the operation 11~:.II. 

However, (G,*) will be denoted by G except in cases where 

misunderstanding may occur. 

The set G of a group may be either finite or infinite. 

The term order of a group refers to the number of elements 

in G. 

Definition. If G has n elements, where n is a positive 

integer, (G,.;:-) is said to have order n. If there exists no 

such positive integer, (G,.;:-) is said to have in:inite order. 
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...e operation 11.::.11 is customsrily called addition or 

multiplication although the oparation as used in a particular 

group may not be the same as the addition and multiplication 

af ari thIne ti c. 

A number of easy theorems follow from the defining 

properties i-iv. 

2.1.1	 The' identity of a group is unique [6;169J. 

2.1.2	 The inverse of every element of a group 1s 

unique [6; 16~ • 

2.1.3 If a,b,c£G such that ab=ac, then b=C·i~i16iJ. 

'2.1.4 If a,b,c£G such that ba=ca, then b=C[};16~• 
r: .., 

2.1.5	 For aE:G, e-::-a=a ~;7J. 

2.1.6	 For &E.G, a -1.::-a: e 1[:; £] . 
2.1.7	 If a,bE:G then there exists x£G such that 

a·::-x = b ~ i 7J · 
2.1.8 If a,b.G then there exists x.G such that 

x~'a= b	 ~;7J. 
2.1.9	 If a-::'b =e, then b=a -1 [j;7J. 
2.1.10	 (a-l)-l:;; a c?;-Q. 

2.2 POWERS OF EL -·TS OF A GROUP 

In the discussion of groups it is necessary to coo­

sider an element of a group raise~ to a power. Since the 

exponent of a group element is an integer, the exponent is 

quite often not an element of the group itself. It is 

therefore helpful to define exponepts in the following ma~~er: 
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aO=e,
 

an::(an - 1 )·;:-a, and
 

a-n~(a-l)n, so that
 

aO=e
 

a l=a o~:·a
 

a 2=al.::·a
 

a3=a2·:~a 

andan - l )~·a.
 

By induction:
 

am an = am+n and (am) n :: arnIl •
 

The element s of a set G in (G, .::.) have order, defined 

in terms of exponents. 

Definition. For a € G, a has order n if n is the smallest 

positive integer suca that an:;e where e is the identity of 

G. If no such integer n exists, a has infinite order. 

2.3 RXAMPLES OF GROU?S 

The set of integers with n.;:-I\ as the usual opera tion 

of addition forms a group of infinite order denoted (1,+). 

The identity element is 0 and the inverse of a is -a. 

The set of rational numbers form a group under the 

operation of addition. The inverse of ~ is - ~ and the 

identity element is 1. 
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The set of positive rational nllirnbers with 11.;:.ll as the 

usual arithmetic operation of multiplication forms a group 

of infinite order denoted (tRa,·). Eac~ rational ~ nas an 

inverse ~ and the identity element is 1. 

The rational numbers of ~,l) form a group where 

addition is defined as ai!-b = c where c<l, a+b.:: c-l villere c~l. 

The identity element of the group is 0 and the inverse of a 

is l-a. 

The ~et ~,1,2, ••• ,n-~ with addition modulo n is a 

finite group of order n with identity element O. This group 

is referred to as the addi tive group 1/(n). 

The set t1, 2,3, ••• ,n-~ with multiplication modulo n 

\"lhere n is a prime, is a finite group of order n-l.The 

identity element is 1. This group is referred to as the 

multiplicative group 1/(n). 

The f.ollowing exampl e of a mul t ipl i ca t i ve group 1/( n) 

is given so as tQ help in the illustration of some later 

definitions. 

The set ~,2, ••• ,6} with multiplication modulo 7 

forms a group of order 6. The operation table below shows 

the identity element to be 1. Note that each of the elements 

in the group has an inverse. U~-1::4, 3-1=5, 4-1=2, 5-1=3, 

6-1:::6, 1-1=1) 
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TA3LE I 

THS rroLTIPLICA7IVE GRO~P 1/(7) 

. . I 1 2 3 I,..,.. 5 6 

1 I 1 2 .. 
-' 4 5 6 

2 I 2 L~_ 6 1 3 5 

3 I 3 6 2 r 
~ 1 4­

4­ 4 1 5 2 6 3 

5 5 3 1 
I 
0 4­ 2 

6 6 5 4­ 3 2 1· 

2.4- SUBGROU?S 

Definition. If a subset H of G has elements whicn satisfy 

the properties of a group under the operation of ~, then H 

is said to be a subgroup of G. 

The theorem of La Grange is stated here because it 

will be of value later in the thesis in finding subgroups of 

groups. "If G and a subgroup H have order m and n respec­

ti vely then n divide s mil 17;191. 
~ :.JI 

SUbgroups often have what might be termed "inheri­

tance properties ll , that is, if G is a certain type of group, 

every subgroup H often is of that type. 

2.5 EXA~PLES OF SUBGROUPS 

For G, the mUltiplicative group 1/(7), G has subsets 

n:: [1,2,4-} and J:: {1,6} whose elements satisfy the properties 
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of groups. Notice Hand J have order 3 and 2 respectively, 

both of which divide the order of G. 

?6 DSFINITION OF COSET 

Definition. If E is a subgroup of G, then a right coset of 

H in G is a subset S of G such that there exists x~G tor 

which S =Hx. A left coset of H in G is a subset S' of G 

such that there exists xcG for which S'= xH. 

2.7 EXAK?L2S OF COSETS 

For G, the multiplicativ,e group I/(7), H:: {1,2,4} 

and J = ~,6} are subsets of G. To illustrate the definition 

of coset, the right cosets of H in G are determined below. 

Hl .= {1,2,4} 1 = tl-;:-l, 2-::-1, 4-::-1} - [1 ,2,4}. 

H2 = tl ,2,4}2:: 
r
tl-;~2, 2-:~2, 4-::-2} = {2,4,1}. 

H3 = {l, 2,4} 3 :: [1-::3, 2-:a, 4··..3l.. ) - [3,6,51· 

H4= {l, 2,4} 4 :; {1-::-4, 2-::-4, 4-;~L.) :: t.l ,2,4j. 

H5 :; ll,2,4}5 :: {1~:-5 , 2-~5, 4-;6} :: [5,3,6). 

H6 = {1,2,4}6 = tl~:-6, 
(

2~~·o , 4·:~6J ::: [6,5,31· 

The right cosets of H in G are [1,2,41 which is H it ­

self and [3,5,6J. In this particular example the left cosets 

of H in G are the same as the right cosets as shown below. 

lH :: 1 [1,2,41 :: tl-::.l, 1-:~2, 1:::-4} = tl ,2,4).
 

2H :: 2[1,2,4}:: t2-:~1, 2·~-2, 2-:;·4} = (2,4,11.
 

3H = 3tl ,2,4) :: t3~:-1, 3·:~2, 3·~·4} :: [3,6,51·
 

~-i :: 4 {l, 2,41 = l4·~1, 4~:-2, 4-·::41 :: [4,1,21·
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58 = 5(1,2,41 :: l5-::-1 , 5-::-2, 5{:-4J = [5,3,6J. 

6H = 6[1,2,q = [6"1',., 6"2 .... ,.. _ l6,5,31·i·(, 6"4)­

The left cosets of J in G are determined beloTI. It 

can easily be seen that the right cosets of J in G are equal 

to the left cosets. 

" 6} , /~lJ :: 1 t1, :: ll, 0) •
 

2J = 2{1,6j :: {2,5}.
 

3J:: 3(1,6} = [3,41.
 

4J:: 4t1 , 63 :: t4, 31 •
 

5J = 5[1,6} :: [5,2}.
 

6J ; 6[1,61 :; t6,1~.
 

The left cosets of J in G are t1,6l, t2,5j, and [3,41.
 

2.8 OPERATIONS ON COSETS 

For a subgroup H of G, if A, the set of right cosets 

of H in G, is equal to B, the set of left cosets of H in G, 

an operation can be defined on A such that A forms a group 

under that operation. Let A Al , A2 , A3 ,. ~. ,Ak • The 

product of any two cosets of A, Ai·A j , with m and n elements 

respectj,vely is 

Ai·Aj = [ali-::-al ' a2 . .;:-al.,···,am. .;:·al.' a2.·::-a 2·'
j 1 J 1 J 1 J 

••• , am -::-a2 ' a l '::-a3 ' a 2 .;:-a3 , ••• , al '~a ,
i j i j i j i nj
 

a2 o;:-anj ,· •• , ami·::-anjl·

i 

The operation just defined on cosets will be referred 

to as multiplication of cosats. 
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2.9 DEFINITION OF FACTOR GROUP 

From section 2.7, A, the set of right cosets of H in 

G, is equal to the set of left cosets of H in G. 

Definition. The set of cosets A of R in G under the oper­

ation "multiplication of. cosets ll is a group called the 

factor group of H in G, denoteQ Gill. 

Using the set of cosets A :; [[1,2,4}, [3,5,6jJ and the 

operation llmultiplication of cosets" defined in 2.7, the 

following example of a 

tl ,2,4! • t3,5,6J 

1 ~:-6, 2·;:-6, 4~l-6~ 

[1,2,41 • ll,2,4~ 

..... ~Lt-(1 .."4~, 2"4",.-, 4,,11
J 

[3,5,6~ • [1,2,41 

3~:-4, 5~l-4, 6·;l-4! 

[3,S,6S • (3,5,61 

3*6, 5*6, 6*61 

factor group is given. 

'1 ~..,.. 3 2"-..3 .t.t-h"', 1 "5t J I"3 .,-,= 
:; [3,6,5,5,3,6,6,5,3J 

= '1-"-1l .., 2''''1.', 4·I.,..·1 . 1-"-2n, 

-- [1,2,4,2,4,1,4,1,21 

= t:'~.. , --"1 -If>-, i,-,f--"l >......:", 6"1 3"2 

I ~;a" ,2".'.,;~ , 4-" ( 

= [;3,5,63 
2·..n,-2 j, '''-2"+ n J 

::. tl ,2,41 

5"2~..., 6"2·u-, 

:::	 [3,5,6,6,3,5,5,6,3 J ::. t?' 5,61 

[3-::-3, 5-;;.3, 6';;.3, 3~:-.5, .5~;.5, 6-::-.5,= 

= [2,1,4,1,4,2,4,2,11 = 1.2,1,41 

1\~BLE II 

A FACTOR GROUP OF ORDER 2 

• [1,2,4) b ,5,6~ 

t1 ,2,41 . [3,5,6J t.1,2,4~ 

[3,5,6} [1,2,4}l3,5,6} 
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2.10 ISOMOR~F.ISMS 

Two groups of the same order ~ay be found upon exami­

nation to have exactly the same pro,erties so that the only 

way in which they differ is in the choice of symbols used to 

represent the elements of each group. Accordingly, such 

groups are said to be isomorphic. 

:;)efinition. A 1-1 mappiniS of a group G onto a group Gl is 

called an i?omorphisr.1 if the operation i3 preserved under 

this mapping; that is, if fo~ arbitrary elements a,b of G: 

a~;'b maps into a,l-l:-bl • If there exists an isomorphism of G 

onto Gl , G is isomoruhic to Gl • 



CHAPTE;{ III 

COM'MON GROUPS 0::<' AB5TRACT ALGEBRA 

G20UPS3.1 P 

Definition. Let S be a set of elements. A permutation P on 

the set S is a 1-1 mapping of S onto itself. 

The number of possible permutations of a set S onto 

itself is, of course, dependent upon the number of elements 

in S. It can be shown that if a set has n elements, there 

are n2. permutations on that set. 

Let S be a set of n elements. Sn ={Pl ,P2'.·' ,Pn !} is 

the set of permutations on & set S of n elements. 

The set Sn of all permutations on a set of n elements 

forms a group under the operation of composition. 

~efinition. The group of all permutations of a set of n 

elements is called the s~~~etric ~roup on n symbols and is 

denoted USn".
 

Definition. Any group whose elements are permutations is
 

called a permutation grou~. 

In the following examples, permutations Pn on a set 

S are denoted by listing t~e elements of S on two rows. 

Ir~aediately below an element of the top row is listed its 

image under the particular mapping Pi. 

For the first exanple let S =ta, b, c!. The set 

53 = lPl,P2,P3'P4,PS,P6} is t:.03 set of permutations on 
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the set S of 3 elements. The permutations Pl, ••. ,P6 ar,e 

identified by their row representations. 

P =(a b C)1 abc. 

P =(a b C)
2 a c b • 

P = (a ~ C)3 c 0 a • 

p =(a b C}4 b ca. 

P = (a b C)5 cab. 

P6::: (~ b C)o a c • 

Since Pl, •.• ,P6 are all 1-1 functions, the co~position 

of those functions will also ~e 1-1. Using the operaticn 

eo~position of functions, the following table is constructed. 

TABLE III 

THE SYl.1ME.TRIIC GitOUP S3 

J,,, I Pl 
~ 

·2 P3 P4 P
5 P6 

Pl Pl P2 
p. 3 P4 P

5 P6 

P2 
p
42 ~

.1.1 P
5 P6 P

3 P4 

P
3 

P3 P4 Pl P2 P6 P
5 

P4 p
4 

p
·3 P6 P

5 
Pl P2 

P
5 ?S p

·6 P2 Pl P4 P
3 

P6 P6 
1) 

"'5 PI
LJ.. 

P3 P2 Pl 

Other examples of sy~netrlc groups are S4' the set of 

permutations on 4 elements of order 24; S5' the set of permu­

tations on 5 elements of order 120. 
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..n important theorem of group theory is Cayleys Theorem 

'.vhich states, "Any group is isomorphic to a group of permu­

tations" ~;47J. 

Any element of a set of permutations can be expressed 

in terms of what is termed cycle notation. A cycle is a set 

of ordered n-tuples (al,a2ia3, ••• ,Rn) of elements of a group. 

The n-tuple (al,a2,a3' •.. 'un ) represents the permutations 

which maps each ai onto ai+l ~nd an onto ale P4~(~ ~ ~) of 

3 3 is represented by the cycle (a b c). P5=(~ ~ b) of 33 
1s represented by the cycle (a c b). 

If a particular permutation maps an element into it­

self that element is omitted from the cycle representing that 

permutation. In P 2-=; ( ~ b 
b
C) of 8

3 
, a is mapped into itself~ c 

and is omitted from the cycle. P2 would be represented by 

the cycle (b c). P and P6 of are represented by (a c)
3 

33 
and (a b). Pl of S3 maps every element into itself so that 

all elements are omitted from the cycle. The permutation 

which maps every element of a group onto itself is denoted 

"I". 

In permutation groups larger than S3' some permuta­

tions require two or more cycles for their representation. 

The permutation (~ ~ ~ ~) of S4 would be represented by the 

two cycles (a b) (c d). 

3.2 ALTERNATING GROUPS 

An alternating group is a subgroup of a symmetric 
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rol.l.p. In order to see exactly what type of subgr-Ol.l.?, it is 

necessary to introduce the id6a of a transposition and an 

even permutation. 

Definition. If the elements of a set S are written as a~ 

ordered n-tuple (xl,x2,x3' ••• 'xn ), a transposition on S is a 

permutation which exchanges the position of any 2 elements. 

Definition. A permutation is called an even per~utation if 

it can be expressed as the product of an even number of 

transpositions. 

It is possible to write a definition for odd permuta­

tions'but it is not given here because it will not be needed. 

It can be shown that the set of all even permutations 

of the symmetric group Sn is a subgroup of Sn of order nl/2. 

Definition. The subgroup of all even permutations of a 

symmetric group of n elements is called the alternatinG 

group on n symbols and is denoted ltA311. 

For the example of alternating groups the elements of 

S3 are listed, showing that 3 of them are transpositions and 

3 are the product of an even number of transpositions. The 

3 elements which are products of an even number of trans­

positiGns are the elements of A the alternating group on
3

, 

3 elements. 

There are 3 elements of S3.waich are transpositions. 

P2= (: ~ b) exchanges the position of band c. P3= (~ ~ ~) 
b C)exchanges the position of a and c. ( a exchangesP6 = b a c 

the position of a and b. 
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From Table III it is obvious rha? p ~4 ana' ~ can bev...,. • l' .;. I •• ... 51.1 

expressed as the product of an even number of transJositions 

and are the even permutatio~s of 53. 

The operation table of A is listed beloW•3 

.....E IV 

THE LTERNATING GROUP A3 

P4 Psi1 Pl 

p .....P: P1 P4 :;) 

P4 P4- Ps Pl 

P,Ps ?s .... P4 

The other examples of alternating groups are A2 ,"A4' 

AS, ••• ,A of order 1,12,60, ••• ,nJ/2 •n 

3.3 CYCLIC GROUPS 

Each element of a cyclic group can be expressed as a 

power of a single element of the group. 

Definition. If a group G contains an element a such that 

every element of G is of the form an for some integer n, then 

G is a cyclic group and is said to be generated by a or a is 

a gener~tor of G. 

The set of integers under the operation addition is an 

infinite cyclic group. 1 is the generator of this group 

since 1+1:: 2, 1+1+1:; 3, •.. and is of infinite order. 

The multiplicative group of integers 1/(5) is cyclic. 

Either 2 or 3 will generate the group. 
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L \
3

LL
- 1 ­,- ~). 

0); CY~.IC GROD?S 

3.3.1 Every subgroup H of a cyclic group G is itself a 

cyclic group [6;1851. 

3.3.2 For eve~J prime p, the multiplicative group o~ 

integers I/(p) is cyclic [6;18~. 
3.3.3 Ther-e is a cyclic grou:'J of order n for each natural 

nu.rr.ber n [9 ;34],. 
, 

3.3·4 Every cyclic group of infinite order is isomorphic to 

the additive group of integers ~;184J. 
3.3.5 Any two cyclic gro~ps of the same order are 

isomorphic [6;18~. 

3.3.6 If G is a cyclic group of order n, G has exactly one 

cyclic subgroup of order m for each ~ositive divisor 

m of n, and no other subgroup [?;3~. 

The nth roots of unity under the operation of multi­

plication as defined for complex numbers form a group. Each 

group is of order n, has 1 as the identity and has a genera­

tor of order n (a primitive root). 

3.4 DIHEDRAL GROUPS 

The dihedral groups are characteriz·ed as the set of 

rotations and reflections about the axes of symmetry of an 

n sided polygon. However, the definition of dihedral groups 

used here is an abstract one given in terms of generators 
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and their relationships. 

e,fini tion. The dihedral r~roup D is a group of order' 2n n 

ated by 2 elements sand t which satisfy tD~ relations 

sn= e, t 2= e, ana' t s t =s -1 • 

To illust~ate how 2 eleme can generate a group, 

let n= 3. The elements of the dihedral group D will be the
3 

powers of s, (s,3 2 ,e= s3); the powers of t, (t,e=t2 ); and 

their products, (ts, ts2 , st, s2t ). Listing e only once 

gives e,s,s2,t,ts,st,ts2 ,s2t the set of 8 eleme~ts wcereas 

the definition of dihedral groups says there should be only 

6 dist·inct element s. The rela tionship tst =s-l shows that 

st= ts 2 and ts = s2t thereby eliminating ts2 and s 2t from the 

set. This leaves 6 elements in the set so that 1)3 has 

order 6. The operation on this set is similar to the regular 

multiplication of aritr~etic except that the corr~utative 

property does not apply. The relation tst=s-l must be used 

in working out the g~oup table to change some of the products 

to a form contained in the original set. As an example, the 

product of s2 and t is s 2t, but by the relation tst= s-l, 

2s2t = ts. Therefore the "Clroduct of 9 and t is listed as ts 

in the table to better illustrate closure. 

Dihedral groups exist for any natural number n. The 

smallest, of course, would be Dl ~f order 1. The example 

used here is D3 " To show how dihedral groups can be character­

ized as a group of rotations and reflections of a regular 

n-sided polygon, the equilateral triangle PQR of Figure 1 
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ith axes of s~~etry a, b, a~d c is used. Let elements ~, 

describes the group D3• 

With the set and operation defined, the following table 

the equivalent of a rotati on of 0 degree s, so that B·;:-C = E. 

rotations leave the triangle in its original position and are 

spectively. The operation il.;:." in this group is inter-prated 

as ITfollowed by". The symbols 3·;:-C indicate a rotation of 

Band C represent clockvlise rotations about the centroid of 

120 degrees followed by a rotation of 240 degrees. Tnese 

reflections of the triangle abou~ the axes a, b, and c re­

0, 120, and 240 degrees. T~e elements F, G and H represent 
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It can be seen that Band F are the generators of 

thi s group. B3 =E, F 2 =E and FBF =C =B-1 • 

3.5 ABELIAN GROUPS 

The Abelian groups are named in honor of K.H. Abel 

(1802-l829) • 

To the 4 defining properties of groups listed in 

section 2.1 the following is added: 

(v) (commutative) for a,b,EG, a-;;-b~b.v~a. 

Definition~ A group is A~elian or com~utative if and only 

if it satisfies (v). 

An Abelian group is easily recognized when its 

operation table is given as the entries of the table are 

symmetric with respect to the rr.ain diagonal. 
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THE SY101ETRY OF THE TABLE
 
FOR AN ABELIAN GROUP
 

The integers form an Abelian group under addition 

since addition is commutative in the integers. 

The rational numbers form an Abelian group under 

addition since addition is commutative in the rationals. 

The mUltiplicative group of integers r/(n) is Abelian. 

Other examples of Abelian groups are given throughout 

the remaining chapters. 



C3APT~R IV
 

p-GROUPS AND nELATED GROUPS
 

I,Lf-e 1 p-GROUPS 

Definition. A group G is a p-grouu if and only if every 

element of G except the identity has order a power of a 

prime p. 

The operation table below gives a group of order 9 

which is Abelian. Each element except e has order 3. 

TABLE VI 

AN ABELIAN p-GROUP OF ORDER 9 

*1 - ­e a b c d 0 f g h 

e I e a b c d 0 f g h 

a I a b e 0 g f c h d 

b II b e a ... 
J. h c 0 d g 

C I c 0 
_.. 
J. d e g h a b 

d I d g h e c a b 0 f 

0 I 0 f c c: 
0 a h d b e 

f I f c 0 h b d g e a 

gig 
h c. a 0 b e f c 

h h d g b ..... 
J. -e a c 0 

THEOREi.1S ON p-GROUPS 

4.1.1 A subgroup or factor group of a p-group is a p-group 

[c;; 131J·
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4.1.2	 A finite gro~p G is a p-grou? if and only if the order 

of G is a power of some pr.ime number [9;13~. 

4.1.3	 Any group of order p2 is Abelian [7;87J. 

The characterization of p-groups ~iven in theor0ffi 

4.1.2 k the ?roblem of finding examples of p-groups a 

very simple one. Any group of order 2,3,4,5,7,8,9,11,13,16, 

17, •.. is a p-group. 

To find a cyclic p-group of order p, a prime, let 

aP =: e. 'rhs elements of the group are e Cthe identity), a, 

2 p-la , ••. ,a • The operation is regular mUltiplication. In 
"0_ (2)"0_. ("0-1)"0_ ',' h " ".thi s group a- - e, a . - e, ••• , a- • - r WL11C. satlsIles 

the definition of a p-group. 
2 

For groups of order p2, p a prime, aP =: e gives p-

groups which are also cyclic. aP = e, bP::. e, ba= ae defines 

groups which are p~groups. 1he example given in section 4.1 
is defined by a 3= e, c3 = e, ca = ac. {b=:a2 , d=c2 , e=:ac, 

2 222f=a c, g=ac, h=a c). 

The dihedral group D4 is a non-Abelian p-group of 

order 8. 

Other examples of p-groups can be found by conSUlting 

a table of defining relations for p-groups ~;51,18iJ. 

~.2 THE QUATERNION GROUP 

The quaternion group satisfies the definition of p-

groups and can be defined in term.s of generators. 

Definition. The group G of order 8 generated by a,b where 
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? . 2 -1 -1 = '0 JI ..... :::.0 1 b ab=a s ~Ce Quat8~nio~ ~roup. 

+­The operation table oelo';-/ is given in tern-ls of !l, -1., 

:tj~ 1:k with the mUltiplication rules: i 2 , j2, k 2 :: -1; ij= kj 

.~ = -\ j ki=jj ji=-k; kj=-i; ik=-j; and the usual rules 

~or multiplying -1. The 8 elements of this 3rouP are the 

basis units of the quaternion; that is, every quaternion can 

be written as a 11near combination of these elements. 

TABLE VII 

THE QUATERNION GROUP 

.;} I 1 i j 1: -.L,"' -i -j -k 

1 I 1 i oJ 
; k -1 -1 -J -k 

1 I· i -1 k .j -i 1 -k j 

j j -k -1 i -j k 1 -i 

k k j -i -1 -k -j i 1 

-1 1-1 -1 -j -k 1 1 j k 

-i 1-1 1 -k j i -1 k -j 

-j -j k 1 -.1 j -k -1 ,i 

-k I-k -j i 1 k j -1 -1 

SYLOW p-SUBGROUPS4·3 

The Sylow p-subgroups are named for Ludwig Sylow 

(1832~1918)', an important contributor to group theory. 

Definition. A subgroup S of a group G is a Sylov p-subgroup 

of G if and only if it is a p-group and ~s not contained in 

any larger p-group which is a subgroup of G. 
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.. ny proper- sUbgroup of a p-group Gis not a S:'TloYl 

p-subgroup since it is contained in the larger p-group G 

which is a subset of itself. For this reason the examples 

chosen will be proper sUbgroups of non p-groups. 

The group 53 has subgroups ~PlIP61, [FIIP3}' tPl,P2} 

and [Pl,P4,P5}. Since the order of the subgroups is 2 and 

3, they are p-groups by theorem 4.1.2. None of them are con­

tained in a lar~er p-group, therefore they are Sylow p-sub­

groups of S3. The three groups tPl,P61, [Pl,P3l and tPl,?21 

are sometimes called Sylow 2-subgroups. tPl,P4,psl would be 

a Sylow 3-subgroup. 

The group S4 has subgroups of order 1,2,3,4,6,8,12 

and 24. By theorem 4.1.2 the subgroups of order 6, 12 and 

24 are not p-groups and therefore are not Sylow p-suogroups. 

All subgroups of order 1,2,3,~ and 8 are p-groups. However, 

in 34 all subgroups of order 1 and 2 are contained in larger 

p-groups (those of order 4) and are therefore not Sylow p-

subgroups. All subgroups of order 4 are contained in the 

subgroups of order 8 so that the Sylow p-subgroups of S4 are 

the 4 subgroups of order 3 and the 3 subgroups of order 8. 

THEOrtEMS FOR SYLOW p-SUBGROUPS 

4.3.1	 If G is a group of ordsr prm, where p is a prime and 

p and m relatively priMe, a subgroup H is a Sylow p-

subgroup if it ~as oreer pI' [9; 13~	 • 

4·3.2 (Sylow's theorem) If G is a group of order prm, where 

p is a ~rime and p and c are relatively prime, the 
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number n of SYlow p-suogroups is such that n=l (~od p) 

~;133 I. 
Note how theorems 4.3.1 and 4.3.2 verify the results 

of SI. above. 

4.4 DICYCLI~ GROUPS 

efinition. A group G is dicyclic if and only if it is of 

order 4n and is generated by 2 elemBnts a and b such that 

a 2n =e, an :b2, aba=b. 

The dicyclic group of lowest order is the group of 

order 4, found by letting n~l. The elements are e, a, b, 

and abo 

For n= 2,. the expression a 2n = e, an=:;. b 2 , aba= b 

becomes a4 = e, a 2= b2 , aba::: b. In the following it is 

shown that aba= b is equivalent to b-lab =a-I. 

aba::;: b. 

ab=ba3 • 

b- l ab=a3 • 

b-lab::: a-l • 

By the definition of the quaternion group in section 

4.2 it is obvious that the dicyclic group obtained for n= 2 

is isomorphic to the quaternion group. 

The dicyclic grou!,) of o~a.er 12 (n=3) along witn the 

dihedral group D6 are the only 2 non-Abelian groups of order 

12. 
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.5 IJETACYCLIC GROUPS 

11·" an l-'''~''''~lnition. A group G is ." ,,c_ C ~1 d on;j ~v 1.S 

enerated by two elements a and b such that xID =yll= e 

y-lxy= xl' where (m,r-l) =1 and r n :: 1 (mod n). 

Finding the examples for metacyclic groups amounts to 

finding the numbers m, nand l' which meet the conditions of 

the definition. 

For m=5, n.:= 2 and 1" = 9 the set of elements for the 

group are e,x,x2,x3 ,x4,y,xy,yx,x2y and yx2 wh1ch is the 

dihedral group D5­

By letting m=3, n=2 and r::::.5 the group D is ob­3 
tained which is of order 6 and is isomorphic to S3" 

For m::: 3, n::::. 2 and r::: 1 a group of order 6 is obtained 

waich is Abelian. This group is isomorphic to the cyclic 

group of order 6. 



G:iAPTER If 

GROUPS WITH NOill~AL SERIES 

5.1 NOITh~L SUBGROUPS 

The idea of a coset as defined in Chapter II is used 

here to define normal subgroup. 

'Definition. A subgroup H of G is a norm su.:£group if and 

only if every left coset of H in G is also a right coset. 

The symbol E G denotes H is a normal subgroup of G. 

Since every subgroup of an Abelian group is norrr.~l, 

the more interesting examples are non-Abelian groups with 

normal subgroups. The quaternion group of section 4.2 is 

such an example." The subset [1, -1, i, -i} is normal in the 

group since the left cosets ti, -l~ -i, l} and lj, k, -j, -k} 

are al so the right cosets. The subset t1, -13 is al so normal 

in this group with cosets tl , ",~, ~, -i1, ~, -j~ and tk , -k1. 
The dihedral group D3 of section 3.4 with subgroup 

[E,B,e} is normal in D3 with cosets {E,B,c1 and tH,F,G1. 
The group G =. {I, (12)(34), (13) (24), (4)( 23)} gi ven 

in cycle notation is a normal subgroup of S4' and is iso­

morphic to the non-cyclic group of order 4 called the 

4-group. 

THEOREMS ON NORr,~L SUBGROUPS 

5.1.1 Any sUbgroup of an Abelian group is normal [4;61 .. 
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5.1.2 If n;i:4, An is the o~ly proper normal sUbgroup 01~ 

Sn 
-1 

~ ;46J. 
5.1.3 If the order of the Group divided by the order of the 

subgroup gives a quotient of 2, the subgroup is 

normal [!; 2~ • (This is the case in both exa~ples 

given above.) 

Other examples of norma.l subgroups will be giver.. 

throughout the remainder of this chapter in the sections on 

nilpotent 7 supersolvable and solvable groups. 

5.2 ?:..P.MILTONIAN GROUPS 

Definition. A group is Hamiltonian if and only if every 

subgroup is normal. 

Every subgroup of the quaternion group is normal and 

therefore Hamiltonian. 

5.3 SIrn'LE GROUPS 

For the groups which have no normal subgroups, the 

following definition assigns a name. 

Definition. A group G is a ~imDle group if and only if it 

contains no proper normal subgroups. 

The notable examples of simple groups are the alter­

nating groups An where n~4 as is. pointed out in theorem 

5.3.2 which foll~ws. 

The cyclic group of order 5 given in the table below 

is a simple group. 



31 

VIII 

A SIMPLE GROUP O? ORJER 5 

e I' s t u 
-

~ e e I' s ..... 

'" U 

r I 
I' U e s t 

s s e t u I' 

t t s u r e 

U I u t I' e s 
I 

T::iEO:mI!~S O~ SIMPLE GrWD?S 

5.3.1	 The finite cyclic grou~s of prime order are simple 

groups ~;2~. 
5.3.2	 If n P 4, An is a sim?le group [];4~. 

5.4 NORMAL SERIES 

Definition. A normal series of a group G is a finite 

sequence Ao, .•• ,A of proper subgroups such tnatr 

e :Ao<l A1'l •••4Ar= G. 

For the examples of groups with normal series, 54' 53 

and D4 are used. These same groups are to appear later as 

examples of types of groups which are defined in terms of 

conditions on finite normal series. 

The subgroups w~ich form a normal series in S~ are 

given in cycle notation. 

A4::; tIS 
A3:: (I, (12) (34)1 
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2= [r, (12)(34), (13) (~-L (14-)(23)} 

A1:: [I, (123), (124), (132), (134-), (11+2), (143), 

(234), (243), (12)(34), (13)(24), (14)(23)1 

A = s4 = [I, (12), (13), (14), (23), (24), (34), (123),o 

(124), (132), (134), (142), (143), (234) 

( 24-3), (12) (34), (13) ( 24, (14) (23 ) ~ 

(1234), (1243), (1324), (1342, (1423), 

(14-32)J. 
The cosets of 

ALj, in .4.. are tI1 and {(12) (4)} ; 
3 

.40.3 in .4. 2 are lr, (12) (34)J and £( 13) (23), (14) (23)5 , 

A2 in A1 are lI, (12) (4), (13) (24), (14-)(2])}, 

U134), (243), (14-2 ), (123)} and 

t(234 ), ( 13 2 ), (143 ), ( 124 )} • 

Al in A are A1 and 1(l2), (13), (14), (23), (24-),o 

(34), (1234), (124-3), (1324), 

(134-2), (423), (143 2 )} • 

The subgroups which form a normal series in S3 from 

Table III of section 3.1. are: 

A2 = {Pl~ , 

A1= [P1' P4 J P.s!' and 

.0. =. S3 -= {PI' P2 , :'3' P4' P6}·0 P5,
 

'I'ne coset s of
 

A 2 in A1 are [?~, {pJ and [p51 ;
 
11. 1 in A o are lP1 , P4' :'51 and tP2' :3' P6}' 
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.• 8 S:.l:ogroups which fo:-rG. a n:n':TIal se:-ies in D4 of 

section 4.3. are: 

A :; [e},
3
 

A2"= l.e ,s2],
 

A - L s ",2 s31
1- lC' ,." j,
 

A = DIt- '=- te ,s,s2,s3,t,ts,st,s2t }.
o
 

'I'[).e cosets of
 

1.3 in A2 are 1t l and Ls2] , 

A2 te ,s21 and t<> ~31 

Al in Ao a-re [e,5,s2,s3] and {t t t s, s t, s 2t } .' 

in Al are >:> ,. '" , 

5.5 ~qE CEKT~rt OF A GROV? 

Definition. Tne center of a p-rou~ G is the set of all x G 

that comnute with every element of G. 

In Abelian groups all elements co~~ute and the set 

itself is the center. In sorr.e grou?s tne on:y element which 

connnutes with every other element is the identity in w:1ich 

case the center is said to be trivial~ 

The group D4 with elements {e,s,s2,s3,t,ts,st,s2 t } 

bas a non-trivial cente:- ie,s2]. 

From the quaternion 6rouP of section 4.2., tl,-~ is 

t~e non-trivial center. 

A helpful theorem on p-gro.ups states, !l'rhe center of 

a fini -ce p -group is greater than the iden tit Y alone 1\ [s;4-~ . 
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The nilpotent groups are ~he fir3~ of ~hree types of 

croups def':'ned in ter:n:s of fi:1i~e nor:ual series • 

Definition. A group G is .. ~ __ nt if and only if it 

possesses a finite normal .series G Ao d Al , :d.A 22 .. " 

~f...r = e, in which Ai-l/Ai is in the center of G/Ai fat' 

l=l, ... ,r. 

The example for nilpotent groups is the group D4. The 

finite normal series Ao, ••• ,A] has already been shown in 

section 5.4. All that remains to be shown is that' each 

factor group Ai_l/Ai is in the center of the fac~or group 

G/A i · 

hO/Al is in the center of G/A l • 

Al/A2 is in the center of G/A2. 

A2/AJ is in t~e center of'G/AJ" 

THEOREMS ON NILPOTENT GROUPS 

5.6.1	 ~very subgroup of a nilpotent group G is nilpotent 

C?;12~ . 
5.6.2	 A finite nilpotent group is supersolvable ~;15~. 

5.6.J	 Every finite p-group is nilpotent ~;12~. 

5.7 SUP~RSOLVABLE GROG?S 

The supersolvable gro~ps are also 'defined in terms of 

a finite normal series. 

Definition. A ~roup G is narsolvable if and only if it 

possesses a fini te normal series G =A~ A12 A2;2 " .•~Ar =e, 1n 
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which each factor g. rouu A~ l/~J oS cyclic. 
... ..:.. -.....	 l. 

The ~roup S3 is an exa~ple. of a supersolvable group
 

hich is not nilpotent. he factor p-roup AO/A ~as e:ements
1 

tPlJ ~ tpJ and tp1 with generator tpJ .. The factor grot.:.ps
A /A is cyclic, has elements [PI' P4' PSJ and S?2~ P", P 1

1 2 l ~,6,; 

.•Ji th tp2' P3' p61as generator. 

THEOREMS ON SUPE:\SOLVABLE GROU? 

5.7.1	 Subgroups and factor groups of supersolvable groups 

are super sol vable [J;15~. 

5.7.2	 A finite nilpotent group is supersolvable 1J;15~. 

5.7.3	 If the order of G is 2pn, p a prime, G is super­

solvable ~ ;1.5~ • 
5.7.4	 A supersolvable group is solvable [9;15~. 

5.8 SOLVABLE G30UPS 

The solvable groups get their na~e from Galois theory. 

A polynomial is solvable by radicals if and only if its 

Galois group has a finite normal series in which every factor 

:Troup of succeeding nor:nal subgroups is'Abelian. 

Definition. A grou? G is solvable if and only if it possesses 

a finite normal series G::: An"'2 AI=> A ••• ::> A -= e in which 
v- -	 2' - s. 

every A. /A, i ::; 1,. ••• , s is .il.oelian. 
l-l i 
The example of a solvable group is S4. In section 

5.4 the subgroups which make up the finite normal series are 

shown. To show each facto~ group is Abelian, the operation 

table for each factor group can be constructed. 
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.::EOREMS ON SOLV 1" GROUJ.-';:; 

5.8.1 ny subgroup of a solvable group is solvable [7;ll~. 

5.8.2 l' N > 5, Sn is not solvabl e I7; llL;] •	 . 

5.8.3	 Every finite p-group is solvable L7;11 ..... 

5.8.4	 ~very group of odd order is solvable ~;22~. 

5.8.5	 If n < 4, then Sn is solvable [7;11~. 

5.8.6	 Tne dihedral groups are solvable [:;ll~. 

The theorems above suggest numerous other examples of 

sol vable groups. 

5.9 TEtE HIEill>.RCHY OF FE\ITE GiiOUPS 

Th~ough the use of a few theorems it is possible to 

shew a hierarchy of classes of finite groups. 

5.9.1	 Every cyclic group of order n is isomorphic to the 

additive group I/(n) ~;18~. (This implies every 

finite cyclic group is Abelian.) 

5.9.2	 If G is Abelian then G is nilpotent [7;12~ . 

5.9.3	 Every finite nilpotent group is super solvable [?;15~. 

5.9.4	 A supersolvable group is solvable 1};15~. 

The theorems establish the following result: 

CYcliCC Abelianc NilPotentc supersolvablec Solva.ble 
groups Groups groups groups gro~ps 

Some examples show that each subset is proper as 

sho~n in the table beloW. 

, rr
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TABLE IX 

E 

CLASS 

Solvable 

Supersolvable 

~Jilpotent 

I 

IYes 

IYes 

IYes 

E X 1:. M P L E S 

LL­ D S 
I 4­ 3group 

Yes Yes Yes 

Yes Yes Yes 

Yes Yes No 

s4 

Yes 

No 

No 

s5 

lxo 

No 

No 

Abelian Yes Yes No No No l~o 

'~yclic I Yes No No No No No 



PTE:i VI 

6.1 

Several examples for each of 18 different types of 

6rouPS have been listed. In addition there are theorems 

given relating to certain of these type's of groups which en­

able the reader to find many other examples not listed • . 
In Chapter II, groups, subgroups, cosets and operations 

on cosets were defined for later use in the thesis. 

The groups co~~only encounter&d in a course of ab­

stract al3ebra were introduced in Chapter III for a review 

and to supply examples for other types of groups introduced 

in later chapters. 

Chapter IV supplies examples of groups which are de­

fined in terms of the power of the elements of the group. 

The normal subgroup s daf d in Chapter V. The 

groups of that chapter were th'en def.inad and presented in 

terms of normal subgroups and normal series. 

6.2 SUGGESTION FOR FURTHER STUDY 

The idea of this thesis could be profitably extended 

to other topics of abstract algebra. Exa~ples of vector 

spaces, rings or fields would be helpfu: to students and 

teachers alike. In such a topic the effectiveness could be 
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~ .. c!"·aa.seo. by the inclusion of counter examples as viell as 

.!..n the study and Dre-olirat;ion of this thesis several 

topics have aroused the curiosity of the writer. 

1) Rov is an algorithn for solving a polynomial 

equation related to the solvability of a group 

associated with the polynomial equation? 

2) Can group theory be studied strictly from the 

standpoint of genel"ators and relations? 

3) What is being acco~plished in the area of semi­

groups, quasi-groups and loo~s? 

Answers to these questions could lead to very 

interesting studies in the field of group theory. 
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