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CHAPTER I
INTRODUCTION

l.1. Introduction. Tne quaternions are interesting

in that they are a multiplicatively non-commutative system
in which all of the other fileld postulates are valid. Since
the quaternions were the first discovered non-commutative
division algebra, an investigation of thelr properties and

construction became the basis of this study.

l.2. Statement of the problem. It is the purpose of

this study (1.) to give an insight on the history and con-
struction of the quaternions; (2.) to give a complete proof
that the quaternions form a division ring; (3.) to investi-
gate the conditions for two gquaternions to be commutative
multiplicatively and their consequences, and (4.) to present

some representations of quaternions.

1.3. Organization of the paper. The second chapter

contains a brief history of what led to the discovery of
quaternions and thelr construction as a four dimensional
number.

Chapter three develops the algebra of quaternions and
the proof that the quaternions form a division ring. A

theorem attributed to Frovenius is presented and proved.
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In chapter four the commutative quaternions are intro-
duced and as a consequence of Frobenius' theorem an iscmorphism
between the commutative quaternions and the complex numbers is
known to exist. The isomorvnism is then presented.

Chapter flve presents some theorems on representations
of quaternions by means of isomorphisms.

The sixth and last chapter gives a summary and a

suggestion for further study.



CZAPTER II

THE DEVZLOPMENT OF QUATERNIONS

2.1. Introduction. The algebra of quaternions was

born in a paper presented before the Royal Irish Academy on
November 13, 1843, by the Irish mathematician Sir William
Rowan Hamilton. Hamilton expanded this paper to include
applications in the area of physics and in 1853 published

Lectures on Quaternions and in 1866 Elements of Quaternions.

Hamilton's motivation in developing the quaternions
came about through his investigations of the bomplex numbers.
Instead of regarding a complex number as one number, Hamiltcn
conceived it as an ordered palr. He then used these ordered
pairs to represent directed line segments in the Cartesian
plane. With this representation, the imaginary unit i was
considered as an operator to rotate a directed line segment
in the plane. The complex number system was then a very con-
venient number system for the study of directed line segments
and rotations in a plane.

With this in mind, Hamilton attempted to devise an
analagous system of numbers for application to directed line
segments and rotations in three dimensional space. It seemed
natural to Hamilton that since the complex numbers could be
represented by ordered pairs the analagous number system for

the study of directed line segments and rotations in space
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would require a representation by ordered triplets. That is,
numbers of the form a+bl-+cj where a, b and c are real num-
bers and 1 and j are imaginary units. Hamilton had great
difficulties for several years as he was unable to define a
satlisfactory multiplication operation on these ordered trip-
lets, Tnis difficulty was explained in 1878 when the
algebraist Frobenius showed that no numbers exist beyond the
ordinary complex numbers which could satisfy all the vostu-
lates of ordinary algebra. Finally, Ramilton realized that

a number composed of a real part and two imaginary parts was
not adequate for the required number system and that a number
composed of a real part and three imaginary parts was required.
Why this is the case 1s outlined in the following discussion
of directed line segments in space. The outline of this dis-~

cussion is taken from An Elementary Treatlise on Quaternions

by P.G. Tait.l

2.2. Construction of gquaternions. Consider space to

be coordinatized according to the ordinary Carteslan methods
of geometry of three dimensions. Let AB denote a directed
line segment. The relative position of point A to point B is
given by the excesses of B's three coordinates over those of

A. Denote these excesses by a number tripiet to represent

1P.G. Tait, An Elementary Treatise on Quaternions,
London, 1867, pp. 32-49.




the directed line £3. In this sense all directed line seg-
ments parallel and equal in length to AB will be denoted by
the same number triplet. The usual procedures for adding
directed line segments could also be employed so that

iB +BC =AC,

The three unit directed segments emanating from the
orizin where one each is contained by the x, y and z axes
are denoted as i, j and k. (see Figure 2-1.) Any directed
line segment in space parallel to one of the unit directed
segments is written as a scalar multiple of that particular
unit directed segment. Thus, any directed line segment in
space may be resolved into three‘components, one of each of
the components being parallel to and a scalar multiple of one

of each of the unit directed segments i, j and k.
A

FIGURE 2-1
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Define the operation of multiplication of one unit
directed line segment b by another unit directed line segment
a as giving the unit directed line segment ¢, which is in a
counterclockwise rotation from b and mutually perpendicular
to a and b. From Figure 2-~1 this yields

i+ j=k, kei=j, jek=1
j o i==k, 1 . k==j, and k . j=-1i,.
Note that this multiplication 1is non-comuutative.

The quotient df two directed line segments 1is how
considered to be a "number" which will act as an operator on
one directed line segment to make it equivalent to another
directed line segment. TFor example, -%%‘==q so that
EB=q « TD. This "number® q was the type of number which
Hemilton decided was to be composed‘of a real part and three
imaginary parts. Hamllton used the following cases to arrive
at this conclusion.

Case 1. If AB and CD are parallel it is well known in
Cartesian space geometry that a scalar multiple of TD is
equivalent to AB. Thus, the "number" q in this case would
operate as a real number to increase or decrease the length
of CD.

Case 2. If AB and CD are not parallel, take the
equivalent of ZD to be ED' so that AB and AD!' emanate from
point A. XNow rotate AD' about A until its direction coin-
cides with that of AB. To specify this rotation operation

the "number" g must be composed of three elements; two
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elements to represent the angles which fix the plane in which
the rotation takes place and one more element to represent
the angle for the amount of this rotation. Also, this
"number" g must contain an additional element to increase or
decrease the length of AD! so that ZD! would be equivalent

to AB when operated on by q &. in zase 1.

With these cases in mind, Hamilton used the three
imaginary unit directed line segments to establish the plane
and the amount of rotation and a real number to increase or
decrease the length of the given directed line segment in
constructing the "number" q. These "numbers" q then act as
operators to rotate a given directed line segment into
another given directed line segment. It was the set of all
these "numbers" q, given as the quotient of any two directed
line segments and represented with a real and three imaginary

varts, which Hamilton designated as quaternions.

2.3. Historical conseguences. Although Hamilton ex~-

pected his quaternions to prove to be a powerful tool for the
advancement of physics, his expectation was never completely
fulfilled. A large part of this 1s due perhavs, in the loss
of naturalness in taking the square of a directed line seg-
ment to be a negatiVe scalar and the fact that quaternions
are rather bulky to work with.

It is Interesting fo note that the American physicist

J.W, Gibbs, by simplifying and meaking more flexlible the
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perations with quaternions, was able to develop a more
anplicable vector algebra to meet the demands of tensor cal-
cualus. In this respect, vector theory might be regarded as
vbeing latent in the theory of gquaternions.

To the pure mathematician, a consequence of Hamilton's
guaternion algebra is tnat it was the first example of a con=-
sistent algebra in which one of the fundamental postulates,
the commutative law of multiplication, was deleted.2 As a
result, the door was opened for the study of structures of

algebraic systems.

2C. Lanczos, hilliam Rowan Hamilton - 4n Appreciation,

American Sclentist, Vol. 55 (1967); P 137




CEAPTER III

THE ALGEBRA OF QUATERNIONS

3.1, Introduction. The algebra of quaternions is the

system consisting of the four basis units (1, i, j, k) over
any field. However, unless otherwlise stated, restriction will
be made to the system of quaternions over the field of the
real numbers. All properties of the real number system will
be assumed for any operation performed on real numbers.

In this chapter, it will be shown that.the gquaternions
over the fleld of real numbers form & division ring and that
these quaternions are the only non-commutative division ring

algebraic over the field of real numbers.

3.2. Definitions and algebraic vroperties. Let & be

the set of all numbers of the form a+bi+cj+dk where a, b,
¢ and d are real numbers and 1, i1, j and k are basis units.
Equality and the operations of addition and multiplication

are defined on the elements of Q as follows.

Definition. 3.1. Equality. (a+bi+cj+dk)=

(x+yi+2zj—+wk) if and only if a=x, b=y, ¢=2 and d=w.

Definition. 3.2. Addition. (a+bi+c¢j+dk)+

(x+yi+zj+wk)= l:(a-i- x})+ (bt+yli+(ct+z)] +(d+w)l§] .
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Definition. 3.3. Multiplication of basis units.

122 j2= k%= -1
i-j=k, Jjek=1, kel=]
jJel=~k, kej=-1 and iek=-j.

Set @, with the above operations defined on Q, will
now be feferred to as the guaternions.

In the algebra of gquaternions, multiplication of a
basis unit with a real number is assumed to be commutative.
That 1is, for any real number X and the basis unit i,
X-i=1-x and similarly for the other basis units.

Definition. 3.4. Multiplication of quaternions.

(a+bi+cj+dk) » (x+yi+2zj+wk)= Bax-by-cz-dw)-&*
My+bx+cw-dzh.+(az-bw+cx+dyu'+(aw+bz5cy+dxnﬂ.

It 1s well to note here that multiplication of gua-
ternions is very similar to multiplication of polynomials
with the use of definition 3.4. and the commutativity of
basis units with real numbers.

Investigation of the structure of quaternions as a
mathematical system will now follow.

Definition. 3.5. A group G is a collection of ob-

jects for which a binary operation % is defined where the
operation 1s subject to the following laws.
(L.) If a and b are in G, then axb is in G.
(2.) If a, b and ¢ are in G, then (a*b)ic=ax(bic).
(3.) There exists a unique identity element e in G

such that for all a in G ae=a.
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(lL.) For every a in G there exists a unique inverse
element a' such that a*a'::e.l

If the group G is_also comnutative under the defined
operation (i.e. asb=biwa for all a,b in G), then G is called
an abelian group.

Theorem. 3.1l. The quaternions form an additive
abelian group. |

Proof: By use of definition 3.2. and the closure
property of addition for the real number system, it is seen
that addition is closed 1n the quaternions. In a similar
manner assoclativity and commutativity follow from definition
3.2. and the associative and commutative properties of the
real numbers. The unique additive 1ldentity element is the
zero quaternion 0=0+0i+ 0+ 0k. The unique addiltive in-
verse for any quaternion a+bi+cj+dk is the quaternion
[(-a (=D)L +(=c)j+ (-d)k] Thus, the quaternions form an
additive abelian group.

Definition. 3.6. A ring R is an additive abelian

group with the additional properties:
(L.) The group R is closed with respect to a second
binary operation e,
(2.) The operation e is associative for all elements

in R.

lxenneth S. Miller, Elements of NMcdern Abstract
Alzebra, New York, 1958, p. l.

ot Bk
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(3.) The operation « is distributive with resvect to
#* on both the left and right for all elements in
R.

If a ring has a unity element u for each element x in
R such that xeu=x, then the ring is called a ring with
unity.

Theorem. 3.2. The quaternions form a ring with
unity.

Proof: Theorem 3.l. satisfies the first condition
for gquaternions to be a ring with unity. <Closure under
multiplication is seen from definition 3.l4. and the closure
properties of addition and multiplication for the real num-
vers. To show that multiplication is associative is =
rather tedious task. To satisfy thils condition the argument
1s used that it suffices to show that the basis units are
associative for multiplication and since the real numbers
are assoclative for multiplication this would imply that
quaternions are also associative for multiplication. To
show that the basis units are associative for multiplication
definition 3.3. 1s used as follows:

(1ej)ei=kei=j=ie(=k)=1e(js1)

(i.j).j:k.jé-i=i.(-1)=i.(j.j)

(1ej)ek=kKekz=l=1ei =ie(jek)

2Ibid., p. Sk
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(iei)ei=-ledi=-i=ie(=-1)=4.(i.1)
(1ei)ejz==lej==j=di.k=1.(1.3)
(iei)ekz=lek==-k=1e(-j)=1.(1i-k)
(iek)ei=-jeizck=tej=1ie(kel)
(Lek)+j==jeJ=1=1e(-1) =10 (ko)
(iek)ek=ejek=-i=1e(=-1)=1ic{(k+k)
Since multiplication is unchanged under the substitution
i—-), jk, k=91 it follows that the basis units are associa-
tive under multiplication.3 The conclusion can now be made
that the quaternions are multiplicatively associative. It
must now be shown that the quaternions satisfy the distribu-
tive law of multiplication over addition. That 1is, for any
quaternions Q, Q2 and Q3 it must be shown that Q;«(Qo+ Q3):
Q Q2+ Q Q3 and (QpTQ3)eQ) =QpeQ +Q3.Q;. For the left
nand distributive property, if the sum of Q2 and Q3 is found
and the product of Q1 with this sum is taken, then this pro-
duct is identical to the sum of the products Q;.Qp and Ql.Q3
due to the commutativity of the real numbers with the basis
units and definitiocn 3.2. A similar arguement holds for the
rignt hand distributive property. The existence of a multi-
plicative unity element is verified since for 1=1+ oi+ oj+
ok, le{a+bl+cjt+dk)=a+bi+cj+dk for any quaternion

a+ bi+cj+dk. Thus, the guaternions form a ring with unity.

3Cyrus C. NacDuffee, An Introduction to Abstract
Algebra, New York, 1940, p. 251,
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Definition. 3.7. If every element of a ring with

unity, except the additive group identity, has an inverse,
then the ring is called a division ring.u

To show that the quaternions form a division ring the
following definitions will be needed.

Definition. 3.8. The conjugate of any quaternion

a+bi+cj+dk is the quaternion a+ (-b)i+ (-¢)j + (-d)k.

The conjugate of any quaternion Q will be denoted as
Q.

Definition. 3.9. The norm of any quaternion @ is the

product Qoﬁ;
The norm of any quaternion Q will be denoted as [Q].
It should be noted that the norm of any quaternion 1is
a real valued quaternion. That is, for any quaternion
Q=a +bil+cj+dk, then JQ!: [(a2+ b2+ ¢24+ d2) + of + oj-r-ol::] .
Theorem. 3.3, The quaternions form a division ring.
Proof: Theorem 3.2. satisfies the first condition for
the quaternions to be a division ring. It remains to be
shown that every quaternion Q, Q#0 has an inverse. Since
QQA=ReQ =1Qf %0 (if Q#0) and |1Q] is real valued, |Q| has
an inverse |Q)-1l. Then, Q(Q-IQ['1)==(Q;§)°’Q)‘1= jQl-1Q)=1= 1.
Thus, by closure of multiplication the inverse of any quater-
nion Q is the quaternion (E;lQ\'l) and the set of quaternions

is a division ring.

4Miller, op. cit., p. 57.
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A division ring 1s said to be a field if the division
ring is multiplicatively commutative. The guaternions are
not a field as is evident in definition 3.3.

To conclude this chapter the proof of a theorem attri-
buted to Frobenius will be constructed. This tneorem contains
an interesting characteristic of gquaternions, namely that the
gquaternions constitute the only non-commutative division ring
over the field of real numbers. To construct this procf the
foliowing facts must be recalled about the field of complex
numbers. These facts are derived from the fundamental
theorem of algebra.

fact. 3.1l. Every polynomial of degree n over the
field of complex numbers has all its n roots in the field of
complex numbers,

Fact. 3.2. The only irreducible polynomial over the

field of real numbers are of degree one or two.

Definition. 3.10. The set C of all elements which

commute with every element of group G is called the center
of G.5

Definition. 3.11., A division ring D i1s said to be

algebraic over a field F if:

(1.) P is contained in the center of D and

5Ibid., p. 51.
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(2.) for every a in D, a satisfies a nontrivial poly-
nomial witn coefficients in F.©
Lemma. 3.1. Let C be the field of complex numbers
and suppose that the division ring D is algebrailc over C.
Then, D=¢C.
2roof: Suppose that a is any element of D. Since D

is algebraic over C, al+ pl-an'l

+ oot p, 78+ p,=0 for some
PysPsse-+Py in C. By fact 3.1. the polynomial p(x)= x%+ pq-
xn=1 *Tee.ot Py yX+p, can be lactored so that p(x) = (x-qy)"
(x-q5) «.. (x-qn) wnere qj,qpe.-,4, are all in C. Since C is
in the center of D, every element of C commutes with a and
with the hypothesis p(a) = (a-gj)e(a-gp)...(a-an)=0. Since
D is a division ring a=q = 0 and a=qy for some k. Thus,
every element of D is in C and since every element of T is in
D, then D=C.'

Theorem. 3.4. (PFrobenius). Let D be a division ring
algebraic over the fleld of real numbers F. Then D is iso-
morphic to one of:

(1.) the field of real numbers

(2.) the field of complex numbers, or

(3.) the division ring of guaternions over the real

numbers.,

61.%. Herstein, Tovics in Algebra, New York, 196k,

P. 326.
TIvid., pp. 326-327.
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Proof: Suppose DFF and that a is In D but not in 7.
By hypothesis a satisfies some polynomial over F, hence some
irreducible polynomial over F. By fact 3.2., a satisfies
elther a linear or quadratic equation over PF. If this equa=-
tion is linear, a is in F contrary to assumption. Tnerefore,
suppose a2+ 2pa+q=0 where p and q are in F. Then, (a+p)2=
p2-q. Now p2-q< 0 for otherwise a+p=%d where 4 is the real
number,\V p2-q and so a would be in F; but, a is not in F.
Since p2-qg<0 we may write p2-q = «r2 wnere r is in F. There=-
fore, (a+p)2 = -r2 and (%‘Q)z:-l. Thus, if a is in D and not
in #, real numbers p and r can be found such that (339)2= -1,

r

If D is commutative, pick a in D and not in F and let 1 =
(g%g) where p and r are chosen in F so that i2=<1, There-
fore D contains a field isomorphic to the field of complex
numbers; call it F(i). Since D is commutative and algebraic
over F it is algebraic over ¥(i) and by lemma 3.1. D=F(i).
Therefore, if D is commutative it is either F or F(i).

Assume now that D is non-commutative. The center of
D must be F for if a is in the center and not in F, then for
some p and r in F (3%3)2=--1. Therefore, the center contains
e field isomorphic to the complex numbers. But by lemma 3.1.
if the complex numbers (or an isomorph) are in the center of
D, then D=C forcing D to be commutative. Hence I 1is the
center of D.

Now let a be in D and not in F. For some p and r in

F, i= 222 satisfies 12 =-1. Since 1 is not in F, i is not in
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the center of F. Therefors, there is an element v in D so
that ¢=bi-ib7# 0. Now compute i.c+cei; ic+ci =i(bi-ib)+
(bi-ib)i =ibi - i%b+bi2 - ibi=0 since 12=-1. Thus, ic=-ci.

2

Also, icf= =c(isc) = =-c(-cei) =ci and c? commutes with 1.

Now ¢ satisfies some quadratic equation over 7, e+ te+m=0.

2

Since ¢< and m commute with i, tc must commute with i. That

is, tci=itc=tic=-tci. Therefors 2tci= 0 and since 2¢i#0,
then t =0 and ¢®= -, Since c is not in F (for ci=-ic¥ic)
it can be said that m 1is positive and so m=v2 where v is in

. Therefore cZ=v2; let =%,

Then j satisfies:
2_¢2

(lo) j S—=z=-=1
v
. . C c_ci+ i
(2.) ji+ij=gi+ig= 222 =0,

Let k=1ij. The i, j and k behave like those for the quater-
nicns, so that T ={po+ pli +p2j+p3k1 PosP1sP5 and p3 are in
F_} forms a subdivisicn ring of D isomorphic to the guaternions
over the real numbers. It must now be shown that T=D.

If g in D satisfies g= -1, let N(g)= {x|x is in D,
Xeg =g-x}. N(g) 1s a subdivision ring of D; moreover g, and
so all p,+p,g, where py and py are in Fy, are in the center
of N(g). By lemma 3.1. it follows that N(g):{po-r plglpo
and p; are in F} and if x-g =g+x, then x=p, + p;g for some

1538 and p, in F.

Suppose that u is any element in D and not in F. For

some p and q in F, w= 252 satisfies we=-1. Now wi+ iw com-

qQ
mutes with both 1 and w since i(wi +iw)=41iwi-+ i2w =iwi+ wi2::
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(iw+wil)i, where j€=.1, Similarly wi{wi+ iw)= (wi+iw)w.

3,

rrom the preceding paragrapnh it can be stated that wi+ iw=

c's i=po+ P We If w is not in T, then py= 0 (since other-

vise

-

could be solved in terms of i). Therefore wi+iw=p_
for some Py in F. Similarly wj-+ jw:qo for some 9 in F and
wk+kw=r, for some r  in F, Let z=w+%@i+ %.O.j+ _;.91{. Then
zi+iZ=wi+iw+é§-u2+i2)+%@431+1j%+%04k1+ikh=po-po=
O. Similarly z)+jz=0 and zk+kz=0., Now, O=2zk+kz =
zij+ijz=(zi+1z)j+1i(jz~-2j)=1(jz=-2j), since zi+iz=0.
However, 1#0 and since this is in a division ring, it follows
that jz-2j=0. But, jz+zj 0. Thus, 2jz=0 and 2j#0,
implies that z=0. Now, z= w+—§;°i+ %—oj+ -I2:-°k=0 and w is in
T, contradicting w not in T. S3ince w=5—:—1'9, u=gw-+p, then
u is in T. Therefore, any element in D is in T and since T
is contained in D, then D=T. As T is isomorpnic to the
quaternions over the field of real numbers, D is also isomor-
rhic to the division ring of real gquaternions. This completes
8 .

the proof.

81bid., pp. 327=329



CHAPTER IV
THE COMMUTATIVE QUATERNIONS

L.1. Introduction. Quaternions are not generally

commutative under the operation of multiplicaticn. In this
chapter the conditions for two quaternions to be commutative
will be determined and some of the properties of the sets of
quaternions which are commutative will be examined.

Attention will first be directed to finding the condi-
tions for two quaternions to be commutative. That 1is, for
quaternions Qy=a+bi+cj+dk and Q2= X+yl+zj+ wk when 1s

Qe Qe=Qpe @7

L.2. Conditions for commutativity. By definition 3.l.

Q¢+ Qo=(ax=by=-cz= aw) + (ay+ bx +cw~- dz)i + (az - bw+ ex +dy) j+
(aw +bz = cy+dx)k and Q2- Q,l= (ax = by = ci - dw) + (bx+ay+dz -
cw)i+ (cx - dy+az+bw)j+ (dx +cy - bz +aw)k. By definition
3.1. Qq« Qo=Qps Q if and only if:

(1.) ax~-by=-cz -dw=ax -by - cz -~ dw and

(2.) ay+ bx+cw -dz =bx +ay+di - cw and

(3.) az=bw+cx +dy =cx = dy+ az +bw and

(4.) aw+ bz - cy +dx =dx + ¢y = bz + aw.

It suffices to show that Q- Q2=Q2 . Ql when statements
(2.), (3.) and (l.) are satisfied simultaneously. That 1is,
in simplified form

(2.) cw=dz,



(3.) dy=bw, and

(4Le) bz =cy.
must ve satisfied simultaneocusly. Obviously, if b, ¢ and d
are all zero and/or y, z and w are all zero the above equa-
tions are satisfled. This implies that Q)+ Qy,=Q,e Qp when
one or both of Q and Q2 are real valued quaternions. A4lsc,
all three equations are satisfied when the gquaternions Ql
and Qo are complex valued. That is, if Ql and Q2 are elements
of a subset of quaternions isomorphic to the complex numbers.
(If Ql and Q2 are both of the form & + bi +0j+ 0k, or both of
the form a+ ol +bj + 0k, or both of the form a+ oi +oj+ bk.)
Now suppose that Q; and Q2 are not both real valued or of
the complex forms. Tahen equations (2.), (3.) and (4.) are

satisfied if 2.2.4 « The following theorem can now be

vy z~w
stated.
Theorem. L.l1. Quaternions Q)= a+bi+cj+dk and
Q2=x+yi+ zj +wk are commutative if:
(1.) Q; and/or Q, are real valued quaternions
(2.) Ql and Q2 are complex valued quaternions
(3.) 2=2=4 |
Case 1. of theorem L.l implies that any real valued
quaternion will commute multiplicatively with any other
gquaternion. Case 2. implies that a complex valued quaternion
will commute only with another complex valued quaternion of
the same form. Case 3. implies that any two quaternions

wnich have their corresponding coefficients of their
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respective basis units in constant ratio will commute.

As the sets of quaternions which satisfy case 1. or
case 2. are the sets of guaternions isomorphic to the real
numbers and the complex numbers respectively, the remainder
of this chapter will be devoted to the sets of guaternions
wnicn satisfy case 3. of theorem L.l.

In case 3. the coefficients of the basis unit 1 of Ql
and Qo play no part in determining the commutativity of Ql
and Qz. In other words, given any quaternion Q= a+ bi+cj+
dk all other quaternions which commute with Q would be of the
form e+ nebi +necj+ne.dk where e and n vary over the set of
real numbers and the real numbvbers b, ¢ and d are fixed by
the choice of Q. Thus, for each cholice of Q there exists an
infinite set whican contains Q and all quaternions wanich com-

mute with Q.

u.3. Quaternions which commute. Consider now the set

of all quaternions which commute with some quaternion Q=a+
bi+cj+dk. This set of course includes Q, all real valued
quaternions and all quateranions of the form e +nbi+ncj+ ndk.
Denote this subsst of the quaternions as CQ. The operations
of addition and multiplication on Cg are the operations de-
fined on all quaternions in chapter III..

Theorem. L.2. The set of quaternions {Q form a field.

Proof: First, CQ is an additive abelian group. Let
Q1 = (a +nbi +ncj +ndk) and Qo= (e +mbi+mecj +mdk). Then,

QL +Qp =Ba+e) + (n+m)bi + (n+m)ci + (n+m)d1§ which is an element
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ol C&. Thus, addition is closed in CQ. Associativity and

commutativity for addition follows as in thecorem 3.1, The

v

§

dditive identity o+ oi +0j+ ok is an element of CQ. For

any element (a +nbi +ncj-+ndk), its additive inverse (-a -
nbi-ncj-ndk) is also in CQ. Thus, €CQ is an additive abelian
groud.

Now, multiplication is closed in CQ. Let Q1= (a +nbi+
ncj+ndk) and Q2:=(e-+mbi+-mcj+-mdk) waere @) and Q, are any
elements of CQ. Then, Q;* Q =|:(ae - mnb2 - mnc2 - mnd?) +
(ne—rma)bi-f(neﬁ-ma)cj-+(ne-rma)d% and Qlo Q2 is in T§.
Multiolication is associative and also is distributive with
respect to addition on both the left and right as a result
of theorem 3.2. and closure in CQ of multiplication and
addition. The multiplicative identity 1+ oi +o0j+ ok is in
CQ. From theorem 3.3., the multiplicative inverse for every
non-zero quaternion in CQ is again in CQ. Since this set 1is
the set of quaternions which are commutative under multiplie-
cation, CQ is a field.

According to the theorem of Frobenius, if €Q is alge-
braic over the field of real numbers, then CQ is isomorphic
to either the fileld of real numbers, the field of complex
numbers or the division ring of quaternions over the real
numbers. To show that this 1s the case, the following
theorem must be proved.

Theorem. l.3. The field CQ is algebraic over the

field of real numbers.
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Proof: To prove this theorem two conditions must bve

sztisfied:
(1.) the real numbers must be contained in the center
of CQ;
(2.) every element of CQ must satisfy a non-trivial
polynomial with coefficlents in the real numbers.
Condition (l.) is easily satisfied as CQ contains all
real valued quaternions which are isomorvhic to the field of
real numbers and of course commute with every other element
in 3. To show that condition (2.)vis satisfied, let & be
) .
(x - Q) so that p(x)=x°- (3+Q)x+ Q+Q. The coefficients of

any element of €Q. Consider the polynomial p(x)=(x-

O

this polynomial are real numbers and p(Q) =0. Thus, C& is
algebraic over the field of real numbers and must be isomor-
paic to either the field of real numbers, the field of complex
numbers or the division ring of quaternions over the rezl
numbers.

Theorem. L.4. CQ is isomorphic to the field of
complex numbers.

Proof: The mapping of CQ onto the field of complex‘

numbers is given by:

a+bi+cj+dk &Y/ a+ (1 .\/b2+c2+d2) i.

Then,

e+ nebi+neci+n.dk e—> e+ (n +Vb2+c2sra? ) 1

and

£+ rebi+recjtredké—7F +(r \b2rc?+d? ) 1
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so that
(e+?) + (n+r)bi + (n+r)cj+ (ntr)dk
(e+f) + an\fh co+ d2:l
[-;— \/'2+c2+d2)31+
[fi—(r o2+ c2 + a2)§

and

l:ef ~nr(b2+ c2+4d%)  —— [f_ ne (024 2+ dzﬂ +
+ (nf +re)bi +(nf+re)cj [nf-f-re)\,/g + ¢2 ‘{:Ij i=
+ (nf+re)d_lzl Ea+ (a2 + ¢2 + %)

L._Jf"J

E‘ + (r\Jo2+ c&+d%)
Thus, operations are preserved.
Now, if
e +nbi +ncj +ndk 2 e +(a b2+ cf+ a%) 1

and

f +rbi+rcj+rdk e+(n\fb +cl+ad) 1

so that
)_-_(e+f) (n+r)bl + (ntr)cj ¢— (e+f)+ [(n+r)\/b2+ c2 a2 ]i-—
+ (n+r)ak| o+ (a NoZ# P+ 320 i+

I: \,/b2+02+d2)
{(e-&-e)‘)- [(n-n-n) + C +d2]}

then the complex numbers (e+f)*t Bm-r) .\/b2+ c +d2]i and

I_"_“_l

(e+e)* [(n-m) .\fb2+ c2 a2 :li are equal if and only if f=e
and r=n, establishing the one-to-one correspondence. Tnus,

the isomorphism 1is established,



CHAPTER V
REPRESENTATIONS OF QUATERNICANS

S.1. Introduction. Various ways of representing the

set of quaternions over the field or real numbers will be
given in this chapter. To accomplish this, an isomorghism
between each proposed representation and the guaternions

wnich were defined in cnapter III will be shown.

~

5.2. Ordered guadruvles. The irst representation

will be a representation of the guaternions by the set A
consisting of all ordered gquadruples (al, 8o, &3, au) where
a1, &p, 83 and au are real numbers, Tnhe usual manner for |
defining equality of n-tuples will be assumed to hold for
the elements of set A.

Definition. 5.1. 1) addition of ordered quadruvles.

(31532:a3:a4) + (b13b2,b3:b“_) =
(ay+ by, as+ by, a3y + D3, aj + bﬂ-)

ii) multiplication of ordered
quadruples.

(al,az,aB,au) '(bl’b2’b3’b4) =
(ajbi-apbp-a3b3y-a/b), ajbptasbi+
a3bﬁ-a4b3, a1b3-a2b4ﬁ-a3bl1-aub2,
ajbj tapgby -azbp+ajby).

With these definitions on the set A of ordered quad-

ruples there exists a natural isomorphism with the set of
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quaternions over the real number systemn.
Theorem. 5.1. The quaternions over the field of
real numbers are isomorphic to the set A of ordered quad-
ruples.
Proof: The mapping of the quaternions onto set A is
zZiven by:
a+bi+cj+dk — (ay, Dy c, d)e
If
e+ fi+gj+hk —> (e, £, gy h)
then
Ba+e)+—(b+f)i'+(c+g)j+-(d+h)%]é—————) (ate, b+f, c+g, d+h)=
- (a,b,yc,d) +(e,f,2,0)
and
Bae-bf-cg~dh)-r(af+be+ch-dg)i+ ¢ (ae-bf-cg-dh, af+be+ch-dg,
(ag-bh+ce+df)j-k(ah+bg-cf+ed)%] ag-bh+ce+df, ahtbg-cf+de)=
(ayb,c,d) e (e,f,g,0)
establishing the one-to-one correspondence and preservation

of operations.

5.3. Matrices. The following representations of
guaternions involve matrix algebra requiring the following
definitions.

Definition. 5.2. An mxn matrix over a field F is a

rectangular array of elements of F consisting of m rows and

n columns of the form:
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ll 120-.3.1

8.21&22. . .aen

— 1
. ° — m(aij)no

The usual manner for defining equality of matrices

will be assumed.

Definition. 5.3. Natrix addition.

The sum of the matrices over F, A"'m(aij)n and B=

m(01)n 15 the matrix C=A+B=_(a;srbij), in F.°

Definition. 5.l4. MNultiplication of a matrix by an

element of F.
The product of m(aij)n by an element £ of F is the
matrix m(f’aij)n'3

Definition. 5.5. Matrix multiplication.

The product plajjlpe nlbijlp is the matrix plcijlyp,

where Oij=i [aik‘bkg’ (i=1,2,...,m; j=l,2,ooo,p)o)+
k=1

Definition. 5. A square matrix is a matrix with

n rows and n columns.
With the use of the preceding definitions the follow-

ing theorem 1s stated and proved which yields the second

lCnarles P. Benner and others, Topics in Modern
Algebra, New York, 1962, p. 31.

2Tpid., p. 3l
31pid., p. 32.
b1bid., p. 34.
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representation of the quaternions over the field of real
numbers.,

Theorem. 5.2. The quaternion over the field of real
numbers are isomorphic to a sjstem of Lxl matrices over the
field of real numbers.

Ezggf: The mapping of the quaternions onto the set of

Lxl, matrices is given by:

a+bltej+dk e— a b ¢ d
b a -d ¢
-c d a =b
-d =¢c b a .

If

e+ fit+tgjthk > e f g h
-f e -0 g
-g h e =f
-h =g f e

then

[(are) + (b+r)1 ate  Db+f ctz A4

-(b+f) at+e =(d+h) ctz
+ (c“'g)j*(d*h)la(_? -(c+g) ds+n  ate ={b+f)

-{d+n)=-{ctg) b+f ase

~__
1]

a b ¢ 4a e £ g h
-b a -d ¢ -f e =n g
-¢c d a =b + -g h e =f
-d =¢c b a -h -g £ e
and
l:(ae-bf-cg-dh) + (af+be+ch-dg)i —>

+(ag-bh+ce+df)j4-(ah+bg-cf+ed)gJ
ae-bf-cg=-dh af+be+ch-dg
~(af+be+ch=dg) ae=-bf=cg~dh
~(ag-bhtce+df) ah+bg-cf+ed
-(ah+bg-cf+ed) -(ag-bh+ce+dr)



ag=bhtce+df
-(ah+bg=-cf+ed
ae-bf-cg=-dh

af+betch-dg

a b ¢
~b a =d
~-¢c d a

-d -¢ b

30
antbg-cftred

ag-bh+ce+df

H

~(aft+be+ch-dg)

ae-bf-cg-dh

e f g h

-f e ~-h g

. -2 h e -f
-h =g £ e

establishing the one~to-one correspondence and preservation

of operations.

The last representation of the quaternions over the

field of real numbers to be taken up in this chapter is given

by the following theorem.
503.

Theorem,

The quaternions over the field of real

numbers are isomorphic to a system of 2x2 matrices over the

fleld of complex numbers.
Proof':

2x2 matrices is glven by:

atbi+cj+dk &~ a+bl
-ct+di

Ir

e+ fi+gj+hk — e+fi
<;g+hi

The mapping of the quaternions onto the set of

ct+di
a=bi/ ,

g+hi
e=-f1
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then
[lare) + (b#2)1 ¢y [ lave)+ (b+£)L  (crg)+ (a+n)i
+ (c+g) ] +(h¥d)k] “(otg) +(arn)1  (ave) = (b+D)1)

a+bi c+di e+fi g+hi
+
-c+dl a=-bi -g+hi e-fi

[}ae-bf-cg-dh)1-(af+be+ch-dg)i

and

&
+ (ag=bhtce+df)J+ (ah+bg-cf+ed)l£|
(ae=bf=cg=dh) + (af+be+ch=-dg)i
-{ag-bh+ce+df) + (ahtbg-cft+ed)l

(ag=bh+ce+df) + (ah+bg-cf+ed)i
(ae=bf=cg=dh) ~ (af+be+ch=-dg)i

atbi c+di e+f1i g+hi
»
(lc+di a=-bi -g+hi e=-fi
establishing the one-to=-one correspondence and preservation

of operations.



CHAPTER VI

CONCLUSION

6.1. Summary. The quaternions were devised by
Hamilton as a mathematical tool for the application to the
solution of physics problems in three dimensional space.
However, even though Hamilton's expectations for the use of
quaternions were never fulfilled completely, from the
quaternions emerged the more applicable subject of vector
analysis. |

The quaternions had an effect on the study of
structures of number systems which was similar to the effects
that the discovery of the non-Euclidean geometries had on the
study of geométry. With the development of the quaternions
it was shown that a consistent algebra existed which contra-
dicted what was thought to be an immutable postulate of
algebra, the commutative principle for multiplication.

In conclusion, the effects of Frobenius' theorem in
the development of this study should not be overlooked. It
is hoped that the reader has gained a fuller appreciation
for the power of thils theorem with the isomorphism that was
presented between the commutative quaternions and the field

of complex numbers.

6. 2. A suggestion for further study. In chapter two

it was stated that the algebra of quaternions was the number
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system of the basis units 1, i, j and k over any field. The
question as to what properties are contained by the quater-

nions taken over a finite field or infinite fields other than

the reals might merit further investigation.
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