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CHAPTER I
INTRODUCTICN

1,1. Introduction. Much hes been wriitten on the subject of

Yon-Zuclidean Geometry, both from zn elementary and an advanced vieu-
voint. However; even in the texts written for one just beginninz to
study this topic, there is considerable difficulty in visualizing the

behavior of lines and angles in tne hyperbolic plane.

1.2. Statement of the problsm. It was the purpose of this

study (1) to construct a mapping of the hyperbolic plane into a circle
within the hyperbolic plane; and (2) to show some of the applications

of this mapping.

l.3. TImportance of the study. The circle obtained under this

mapping differs from the circles associated with the study of the hyper=-
bolic plane, by means of the models of Klein and Poincare. Since this
circle is within the hyperbolic plane, it is not a "model®" of hyperbolic
georetry. Rather, it is a subset of the hyperbolie plane, within which,
many of the properties of this plane 'become easier to visualize. This
last statement is extremely important, since it is possible to devalop

a good deal of hyperbolic geometry by considering what happens in this
circle. (L[LI, p. 73). |

l.4e Undefined terms. The following three terms have been ta=

ken as undefined in this thesis:

1) points, denoted by capital letters A,B,Cyeee,



2) 1lines, denoted by small letters a,b,c,...,

3) a hyperbolic plane, denoted by the Greek letter 47.

In this thesis the discussion has been limited to the study of
points and lines within the hyperbolic plane. However, it is possible
to study the hyperbolic space in a similar manner by mapping the space

into a sphere. ([L], p.111).

1.5. Axioms. This study has used the set of axioms devised by
David Hilbert for the Euclidean Plane. (EB] s> P+9)s There are two
axioms that need to be altered; (1) the Postulate of Parallels, and
(2) the Postulate of Continuity.

The Postulate of Parallels should be changed to the following:
given a line a and a point A not lying on a, then there exists, in the
plane determined by a and A, more than one line which contains A but
not any points of a.

The Postulate of Continuity should be changed to the following;

known as the Postulate of Dedekinde If all points of a straight 1line

fall into two classes, such that every point of the first class lies 1o
the left of every point of the second class, then there exists one and
only one point which produces this division of all points into two

classes, this severing of the straight lihe into two portions.

1.6, Distance. This study has assumed the existence of a hyper-
bolic metric; that is, a one~to-one correspondence between hyperbolic

line segments and the real numbers. ([7] » De278).

1l.7. Definition of terms. Consider two straight lines in plane




T s and sequences of points cn then £7,B7,C1,e.. and 42,B2,00,...

These sequences ol points are czlied Congruent Sequence of Points if and

only if A1By=A49Bs, 490y = AsCp, ByCy = BoCo, etc.

A wmapping of plane 7 ont¢ plane # is called a Symmetry if and
only if thers exists a lire be¢ %, such that if A&, and A'€ T is the
image of A under this mapping, then b is the perpendicular bisector of
A4', Then it is said that the symmetry maps the point 4 into the point
A'. The notation for this is; S:A-}A'. Reflection may be used as a
syncnym for symmeiry.

A mapping of plane 7 onto plane 7 is called a Rotation if and
only if there exists a point O and an acute angle A, both in plane T,
such that if a point A € 7 has for its image, under this mapping, a
point A'& T , then OA = OA' and angle ADA' = <X, Then it is said that
a rotation of the plane, about 0, through angle X, has mapped A into
A'e In symbols; R:A->A'., 1In this paper, the angle X has been msasured
in a clockwise direction.

Properties of both the symmetry and the rotation mappings have
been considered at the beginning of Chapter III.

Given any two lines a and b both in plane 17, and point A on a

and B on b, then B is the Perpendiculer Projection of A onto b if and

only if AB is perpendicular to b. If a and b intersect, the point of

intersection is its own perpendicular projection.

1.8. Organization of the remazinder of the thesis. The remainder

of the tnesis has been divided into five main parts.

1) Chapter II gives a short history of hyperbolic geometry.



2)

3)
L)

5)

Chapter III develcps the itrensformation that is needed for
the mepping.

The mapping is given in Chapter IV.

Chapter V gives some of the applications of this mapping to
the theory of hyperbolic plane geomstry.

A summary of the thesis has been presented in Chapter VI.



CHAPTER IT

HISTORY OF HYPZRECLIC GECMETRY

2.1. Introduction. Non-Zuclidesan geometry is a young science;

i

the date of birth may be taken as being 1830, when Lobatchevsky's first

publication appeared. (LLJ , p.7)e

A chaﬁter dealing with the history of this new field of mathe-
matics usually traces the attempts to prove Euclid'!s parallel posiulate.
However; seldom is anything said about the events after the discovery of
non-Buclidean geometry. This chapter has approached the idea from &
slightly different viewpoint. Very 1iitle has been said about the at-
tempts to prove Euclid's parallel postulate. Rather, a look at some of
the events taking place after the discovery of non-kEuclidean geometry

has been given in this chapter.

2.2. Attemﬁts to prove Euclid's parallsl postulate. Until about

1800 the mathematical world held that a geometrical theorem was provable
if its converse was provable. Since the conversé of Buclid's parallel
postulate was itself a theorem, it was understandable why mathemaiicians
struggled for 2000 years to prove the axiom of parallels. ( [6], p.22).
In 1763, G.S. Kluegal, a student of Kestner, wrote a dissertation
in which he brought together and crit.cized all significant attempts to
prove the parallel postulate contributed by mathematicians over the 2000
years between the publication of the "Elements" and his own time. He
found, correctly, that sll 28 "proofs" were false. ( Eé] 5 De23). Most

of these proofs were based on assuming some other property, and then
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proving the parallel postulate from it. However; in every case the al-
ternate property assumed was sventuzlly shown to bg equivalent to the
parallel postulate. For exampie, assuming the sum of the angles of a
triangle to be equal to two right angles is equivalent to assuming the

parallel postulate.

2.3. Discovery of Non-Zuclidsan geometry. Evidence indicated

Carl Friedrich Gauss (1777-1855) was the first to visualize a consistent
geometry in which the parallel postulate was replaced by a contradictory
statement. However; Gauss did not publish his results, and thus two
developments have resulted. First, even though Gauss was first, he is
generally not given credit for discovering hyperbolic geometry. Second,
the work Gauss did on the subject has been leit to us in his notes, thus
giving us, quite possibly, an incomplete account of his findings.

From Gauss's notes it appears that he did not come to very many
final results in the field of non-Zuclidean geometry. In the more im=
portant areas of research, Gauss used the methods of differential geo-
metry instead of synthetic methods. This mey be.one of the reasons why
" Gauss did not publish his findings. (LLJ, p. 5L).

The first to publish a complete work on non-Euclidean geometry
was Nikolia Ivanovich Lobatchevsky (1793-1856), a professor at the Uni-
versity of Kazan. Lobatchevsky published his results in the 1829-30
numbers of the Kazan journal, but his findings did not reach other
countries.

In 1832, Johann Bolyai (1802-1850) published his results in an

appendix to one of his father's books. Thus Lcbatchevsky was the first
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to publish on the subject. Deczuse he was the first to publish, this
geometry is sometimes referred to 2g Lobatchevskian gesometry.

Since the works of both Lobatchevsky and Bolyai were ignored in
their own time, it is interesting to note how the two men resacied to
this indifference and lack of recognition. Bolyal completely withdrew
from scientific activity. Lobatchevsky, however, attempted to justify
his findings. He wrote papser after paper showing the value and itruth of
his geometry, even indicating iits applications in integral calculus.

It was not until after the death of Gauss, Lobatchevsky, and Bol-
yai that their work became known and accepted. The publication of
Gauss's notes, containing his works and a praise of both Lobatchevsky
and Bolyai, undoubtedly helped bring on this acceptance.

In 1854, Friedrich Riemann (1826-1866) introduced the other clas-
sical non-Zuclidean geometry in which there are no parallels.

Despite the work these men did in developing non-Euclidean geo-
metry, the impossibility of proving Euclid's parallel postulete was not
shown until 1868, It was at this time that the Italian mathematiciean
Eugenio Beltrami (1835-1900), exhibited a particular model within Eucli-
dean geometry in which the postulates of hyperbolic geometiry were satis-
fied, thereby proving that these were at least relatively consistent.
([9], p.209).

Using Beltrami's work as a starting point, Felix Klein (1849-
1925) was able to give the basic idea of the precise proof of the con-
sistency of Lobatchevskian geometry, when, in 1871, he constructed an

arithmetic model of Lobatchevskian geometiry. Klein also gave the name



of hyperbolic to Lobatchevskian geomeiry, and elliptic to Riemann's
geometry.

In 1903, David Hilbert (1362-1943) showed the consistency of
Lobatchevskian geometry in e manner similar to that of Klein.

In connection with the study of hyperbolic geometry, therse have
been two famous models constructed showing the relative consistency of
hyperbolic geometry. One, develoved by Klein, has elready been men-
tioned., The other is due to Hernri Poincare (185L-1912).

I"inally it has been shown that within the hyperbolic space,
there is a surface called a horosphere, and thet this surface is go-
verned by Euclidean geometry. In other words, if Lobatchevskian geo-
metry is consistent, so is Zuclidean. Combining this with the results
of the Klein and Poincare models, it can be said that if either geometry

is consistent, so is the other. ([17], p.253).



THE NECZSSARY TRANSFORMATION

3.1. Introduction. The purpose of this chapter is to define

the transformation used in Chapter IV 1o map plane 4T into a circle
within plane T . This transformation has been introduced in the fol=-
lowing manner. TFirst, the properties of the symmetry wapping are listed.
Second, the properties of the rotation mapping have been listed and
verified. Third, a slightly modified form of the final transformation

is given, followed by a list of its properties. Fourth, each of the
items on.this list is verified. And fifth, the main transformation is

given, and a list of properties given for it.

3.2. Properties of syrmetry. The symmetry mapping does not

change the size and shape of a figure; collinear points are mapped into

collinear points, and lengths and angles are preserved. (L8], p.209).

3.3+ Properties of rotation. Just as in the case of symmetry,

a rotation maps collinear points into collinear points, and also pre=-

serves lengths and angles. This is now given as a theorem.

3.4. Theorem 3.1. A rotation of plane 47, about a point O,
through an angle <, maps collinear points into collinear points, and
preserves lengths and angles.

Proof: Let O be any point in plane 47 . Consider a line a €11,
such that O is not on a (if O is on a, the proof is obvious). Next,

consider three distinct points, X, Y, and 2 on a. Perform the rotation
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about O, through angle &, to obtain the image points X', Y¥', and Zt,

Figure 1.

Figure 1

Properties of the Rotation Mapping

Angle YOX' is equal to angle O plus angle Y'OX'. DBut angle
YOX*' is also equal to angle X plus angle YOX. Tharefore, angle YOX
is equal to angle Y'OX', and thus, the size of angles is @ eserved un-
der a rotation.

To prove that the rotation maps collinear points into collinear
points, it is sufficient to show that angle X'Y'Z' equals a straight
angle. Since, from the definition of rotation, OX = QX!', OY = OY!,
and ¥ YOX = &K Y'!'OX', it follows, by SAS, that triangle YOX is con=-

gruent to triangle Y'OX'. Also, since by SAS, triangle YOZ is con=-

gruent to triangle Y'0Z', the following equalities would hold. First,
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angle OYX equals angle OY'X'. Second, angle OYZ eqguals angle QY!'Z!',
Since the sum of the angles OYX and OYZ is equal to a straight angle,
then the sum of the angles OY'X' and 0Y'Z' is also equal to a straight
angle. Thus collinearity has been preserved.

Finally, from the congruence of triangles OXY and OX'Y!, it is
true that XY is equal to X'Y'. Therefore the rotation has preserved
the length of a line segment. Q.E.D.

It is worthwhile to note that the proof for symmetry, while not
given here, follows almost the same pattern ( i.e., it uses the SAS

congruence axiom).

3.5. Transformation h. Consider a fixed acute angle X , a

fixed point O € 7T , and an arbitrary point A € M . Draw OA, and con-
struct an angle equal to &L using OA as its initial side; and call its
terminal side b. A point Ay on b is called the image of A under trans-
formation h if ana only if Ay is the perpemdicular projection of point

A onto b, Fig. 2. When using this transformation, the notation h:A->4,

has been used.

3.6. Properties of transformation h. The following properties

are possessed by transformation h.
1) it leaves the point O unchanged,
2) it maps collinear points into collinear points,
3) it maps angles with vertex O into equal angles with vertex O,
h)‘ it maps circles with center O into circles with canter O,
5) it maps right angles with one side passing through O into

similar right angles.
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A

0

f
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o

Pigure 2

Transformation h

3.7« Proof of property l. Property 1l states that transformation

h leaves the point 0 unchanged.

Proof: The proof is obvious, since it follows directly from the
definition of transformation h.

The proof of property 2 is not so obvious, and requires the use

of the following two lemmas.

3.8. The 1A lemma. In plane r , two right triangles are con-

gruent i1f a leg and an acute angle 6f one are equal to the correspon=-
ding leg and acute angle of the other.

Proof: Lét triangles ABC and A'B'C! bé any two right triangles
in plane 4T , such that £ C = X C' = 90°, and AC = A'C', as shown in
Figures 3a and 3b respectively. Two cases must be considered; (1) when
X A= X A', and (2) when &< B = & B'. In both cases it is sufficient

to show BC = B'C!', since the SAS congruence axiom could then be used.



|
C B 87 r-c:' c B B D I—qC‘.'
a) b)
Figure 3

LA Congruence Lemma

Suppose that BC #B'C!, and that B'C' is the longer of the two.
On B!C!', mark point D such that BC =DC!'. Next draw DA'. By SAS the
triangles ABC and A'DC!' are congruent.

In case 1 this implies that <X C'A!'D = <X BAC = <X C'A'E!, which
is a contradictioh of the fourth zxiom on the existence of congruent
angles. Therefore BC = B'C!,

In case 2 this implies <= A'DC! = <)’.ABC = <L A'B!'C! which con-
tradicts the fact that the exterior angle of a triangle is larger than

an interior and opposite angle. Therefore BC = B!C', Q.E.D.

3.9. Hjelmslev's Lemms, The centers of the segments joining

the corresponding points of two congruent sequences of points lie on a
straight line.
Proof: Consider two straight lines ay and ap, both in plane 4T,

and the congruent sequences of points A;,B;,Cy1,..., and A2,B2,Co,... on
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a; and ap respectively. Connect 47 and 4p, aﬁd designate the midpoint
of this segment as Ay, Fig. L. Using A, as the center, rotate plane %7
through an angle of 18C°. As a result, segment AjA, is mapped onto
Ahs, and line ay is mapped onto a line ag passing through Ase. Bl,Cl,
..+ are mapped into points of aj designated by B3,C3,..., such that

A1B) = A5B3, ByCy = B3C3, etc.

as S

Figure L

Hjelmslev's Lemma
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Next, map 42,B3,C3,... Dy syrretry with respect to s, the bisec-
tor of angle BpA;Bs. From the definition of symmetry, Ao is mapped into
itself, B3 is mapped into Bp, C3 into Cp, etc.

The effect of both the rotation and the symmetry has been the
mapping of Ay into A5, By into By, Cy into Cp, etc.

Next, construct 2 perpendicular from A, to s, possibly extended,
and call the line containing this perpendiculer t. When the plane is
rotated about an angle of 180°, line t is mapped onto itself, since it
passes through the center of the rotation. Draw the perpendicular BiK
from By to line t. By the above mentioned rotation and symmeiry, BiK
is mapped onto a segment BoM, where M is a point on t, and BoM is per-
pendicular to t.

Next, draw the segment ByBy, and designate by F, the point of in=-
tersection of this segment and t. The two right triangles B1KT' and
BoMF are congruent by the LA lemma, and therefore, F is the midpoint of
B1Bs. In other words the midpoint of this segment lies on t. The same
argument could be applied to C3Cy, that is, its midpoint lies on t.

Q.E.D.

3.10. Proof of property 2. Property two states that transforma-

tion h maps collinear points into collinear points.

Proof: For this property, two cases must be considered; (1) when
the points are on a line passing through O, and (2) when the points are
on a line that does not pass through O,

Case 1l: This follows directly from the defipition, and the

fourth axion on the existence of congruent angles.
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Case 2: Consider the points 4, B, and C which lie on some line
€ T » such that line a does not pass through O. This has been il-

lustrated in Figure Se

A,

a,

Figure 5

Illustration of Property 2

Rotate the plane about point U, through an angle of 2 (X, thus
mapping the points A, B, and C into Ay, By, and Cy. Since the sequences
Ay, By, Cy and 4, B, C are congruent, the midpoints of the segments AAq,
BBy, and CCy are collinear, by Hjelmslev's lemma. Eut the center Ay of
the segment AAj 1s the Image of A under transformation hj; since triangle
AOA; is isosceles, amd angle AOA, = L, OA, 1is perpendicular to AAj.
The same applies to the points By, C,, etc. Q.E.D. Therefore, transfor-

mation h maps collinear points into collinear points.
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3.11. Proof of property 3. Froperty 3 states that transforma-

tion h maps angles with vertex O into equal angles with vertex O.
Proof: Consider an arbitrary angle AOB in plane T . Perform
transformation h on the segments OA and OB. From properties 1 and 2,
it is kmown that these segments are mapped into the segments OA' and
0B', thus forming angle A'OB' as shown in Figure 6. To prove property

3, it is sufficient to show that angle AOB is equal toangle A'OB!.

Figure 6

Illustration of Property 3

The equality of these two angles can be shown by writing angle
AOB! in two different forms. First, angle AOB! is equal to angle &X
plus angle A'OB!., Second, angle AOB!' is equal to angle AOB plus angle
QX . Therefore, angle AOB is equal to angle A'OB!', and the proof is
complets.

Before property L has been verified, a lemma has been stated and

proven,
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3.12. The HA lemma. In plane 97, two right triazngles are con-

gruent if the hypotenuse and an acute angle of one are equal to the
hypotenuse and corresponding acute angle of the other.

Proof: Let triangles ABC and A'B!'C! be any two right triangles
in plane TI, such that & C = <X C' = a right angle, AB = A'B', and

X A = <X A', Figure 7.

A Al

C B B! C)

Figure 7

Diagram for the HA Lemma

To show these two triangles congruent, it is sufficient to show
that AC = A'C', since then the SAS postulate could be used.

Suppose that AC % A'C', and that A'C' is the longer of the two.
Then on A'C', mark off point D such that AC = A'D. Next, draw D3'. By
SAS, the triangles ABC and A'B'D are congruent. This implies that angle
A'DB' = 90°, which is impossible since an exterior angle is larger than

a remote interior angle. Thus AC = A'C', and the proof is complete.

3.13. Proof of property L. Property l; states that transforma-

tion h maps circles with center O into circles with center O.
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Proof: It is sufficient to show that if a point a2t a distance

r from O is mapped into a point at 2 distance r' from O, then the same
is true for all points at a distance r from O,

Consider any two points on a circle with center O in plane 77 .

Designate them A and B. Perform transformation h on these two points,

obtaining the points A' and B!, as illustrated in Figure 8.

Figure 8

Illustration of Property L

Consider the two right triangles AOCA' and BOB'. It is given
that A0 = BO. Also, <X AOA' = <X BOB' since both of these are equal to
(. Therefore by the HA lemma, the two triangles are congruent. Thus,

A'0 = B'O and the proof is complete.
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3.1h. Proof of property 5. Froperty 5 states that transforma-

tion h maps right angles with one side passing through O into similar
right angles.

Proof: If angle CAO is a right angle with one side passing
through the center of the transformation, then the line AC is tangent
to the circle with center O and radius OA, as in Figure 9. Since pro-
perty L has shown that, under transformation h, this circle is mépped
into another circle with center O, it is sufficient to show that the
tangent to the circle with radius OA is mapped onto the tangent to the
circle with raaius QAt.

Consider a circle with center at 0, and radius OA, and a line a
tangent to this circle at A, Figure 9. Perform transformation h, map-
ping this circle into another circle with radius OA'. Line a is mapped

onto line a'! passing through A' (property 2). If a'! is not tangent to

Figure 9

Illustration of Property 5
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this cirele with radius CA', then there exists some point, say B?Y,
different from A', that is the point of intersection of a' and the cir-
cle. Combining properties 2 and L gives this result: That there is
some point E of the original circle such that h:E ->B'; and there is
some point D, on line a, such that h:D—>B!'. Therefors, <X D0B' = CL

= <& EOB'. Now, two cases must be considered. The two cases are

(1) when B!, D, and E are collirear, and (2) when B!, D, and E are not

collinear. These have been illustrated in Figures 10 and 11, respec-

tively.

Figure 10

Case I For Property 5
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Figure 11

Case II For Property 5

In case 1, two lines, OE and 0D, form with OB' an angle of size
L . Now since 0, E, and D are not collinear, this would be a contra-
diction of the fourth axiom of existence of congruent angles. Note
that if O, E, and D were collinear, this would imply < EOB'=X =
a straight angle, which is clearly a contradiction.

In case 2, two lines, EB' and DB!', form with B'O an angle
equal to a right angle. As above E, B!, and D could not be collinear.
Thus a contradiction of the fourth axiom of existence of congruent

angles is obtained. Q.E.D.
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3.15. Transformation j. Consider the image of a point in

plane 9T , say A, under the following mappings. First, perform trans-
formation h on point A, thus obtailning point Ag,; that is, h: A-—»A..
Next rotate the plane about O, through an angle of — QU . This will
replace Ag by A'; that is, R:io—=>A'. This has been illustrated in Fi-
gure 12. Transformation j is a combination of these two. In other

words, a point Q is mapped by transformation j into the point Q' (in

symbols; j: Q—»Q') if and only if Q is mapped by h into Qo» and then

Qo is mapped by R into Q'.

Al

Ao

Figure 12

Transformation j

Transformation j possesses the same five propertiss that were
listved for transformation h, and for convenience, have been listed

again before the beginning of Chapter IV,
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3.16. Properties of transformation j. It leaves the point O
_J %

unchanged; maps segments onto segmenis; angles with vertex 0 into equal
angles with the same vertex; circles with center O into circles with
center O; right angles with one side passing through O into similar

right angles. ([h], p.68).



CHAPTER IV
MAPPING THE PLANE INTO A CIRCLE

4,1. Introduction, The purpose of this chapter is to pressnt

the mapping of the hyperbolic plane into the interior of a circle within
the hyperbolic plane., This mapping is accomplished by applying trans-
formation J, of the previcus chapter, to the boints of the hyperbolic
plane,

In Chapter I the axiom of parallels for the hyperbolic plens was
given to be: given a line a and a point A not lying on a, then thers
exists, in the plane determined by a and A, more than one line which con-
tains A but rot any point of a.

On the basis of this postulate, the following theorem can be de-

rived,

4,2, Theorem A. If 1 is any line and P is any point not on 1,
then there are always two lines through P which do not intersect 1, which
nake equal acute angles with the perpendiéular from P to 1, as in Figure
13, which are such that every line through P lying within the angle ccn-
taining that perpendicular intersects 1, while every other line throuza
P does not. ([8], p.67).

The acute angle referred to in theorem A has been designated as
B - Throughout the remainder of this thesis, when B is used, it will
be used in this sense. The following is an immediated consequence ol

Theorem A,
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Figure 13

I1llustration of Theorem A

L.3. Corollary A. In plane 97, there exists an acute angle B
(angle APQ in Fig. 13) such that a perpendicular to one of its sides
(1 L PQ in Fig. 13) does not intersect the other side of the angle.

Two lemmas related to Corollary A are now proven.

Lo Iemma Aj. Given angle ABC in plane 1T, such that angle
ABC = B, and a point H on the half-line BC such that the perpendicular
erected at H does not intersect the half-line AB, and a point R on BC
is such that BR > BH, then the perpendicular erected at R does not in-
tersect the half-line AB. This is illustrated in Figure 1l.

Proof: Suppose the perpendicular at R intersects the half-line
AB, say at the point T, as in Figure 1l4. Then triangle BIR is formed,
and since the perpendicular at H passes through BER, it must, by Pasch's
axiom, pass through either BT or TR. I% cannot cut BT since it was
given as a perpendicular that did not intersect the half-line AB. Nei-
ther can it cut TR, for if it did, say in Q, then triangle HQR would

have two right angles, also a contradiction. Therefors, the perpendicular
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at R does not intersect the half-line AB. Q.E.D.

N

Figure 1L

Illustration of Lemma Aj

4.5. Lemma Ap. Given angle ABC in plane 17T, such that angle
ABC = B, then there exists a point H on one side of the angle, say BC,
such that the perpéndicular erected at H is the first perpendicular that
fails to intersect the other side of the angle AB« This is shown in

Figure 15.

\

Figure 15

T1lustration of Lemma 4y
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Proof: If at points of BC, perpendiculars are erccted, some of

these will intersect AB while by Corcllery A, there exists a2t least one
that does not intersect AB, as in Figure 16. Thus the points of half-
line BC are divided into two sets: those at which the perpendiculars in-
tersect AB, and those at which the perpendiculars do not, each point of
the first set preceding each point of the second by Lemma Aj. Under
these conditions, the Postulate of Dedekind asserts that there exisis a
point such that the perpendicular =t this point brings about this divie
sion. Designate by H the point that divides the sets. OSince the perpen-
dicular at H itself either cuts AB or does not cut it, it must either be
the last of the cutting perpendiculars or the first of the non-cutting
ones. Suppose it was the last of the cutting ones, intersecting AB in

point F, Figure 16.

G
FA/

/ r dh

A4

11 _ [
B C HM

Figure 16

Proof of Lemma Ay
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Then measure off FG on AB suchk that BG is greater than EF, and
drop a perpendicular from G to BC at ¥ (To a given infinite strazight
line, from a given point which is not on it, to draw a perpendicular
straight line). Then MG is a cutting perpendicular, and by an argument
similar to the one used in the proof of Lemma Ay, B is greater than HE.
In other words M lies to the right of H, and a contradiction is reached
since HF was given to be the last cutting perpendicular. Thereifore the

perpendicular at H is the first of the non-cutting perpendiculars. Q.E.D.

L.6. Theorem B. If OC and OA represent any two distinet half-
lines in plane <T such that angle ACC equals /B s then the perpendicu-
lar projections of the points on the half-line OA map onto a finite seg-
ment OH, not including H, of OC, Figure 17, where H is the point at

which the perpendicular first fails to intersect the half-line OA.

T

v

Figure 17

Illustration of Theorem B
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Proof: Two things must be shown; (1) every point of OH, not in-
cluding H, is the perpendicular projection of some point on the half=-
line OA, and (2) no point to the righi of H is the perpendicular projec-
tion of any point on the half-line CA.

Now the point O is the perpendicular projection of itself, by
definition of perpendicular projection. Next, consider any point X, of
OH such that 0 < 0Xy < CH. At X, construct a perpendicular. This per-
pendicular intersects the half-line OA at X since H is the first point
where this fails to happen. But X, is the perpendicular prcjection of
X on OC. Now if H was the perpendicular projection of some point, say
R, of half-line OA, as in Figure 17, then RH would be perpendicular to
OC which is clearly a contradiction. Therefore, every point of OH, not
including H, is the perpendicular projection of some point of the half-
line OA,

Suppose a point of half-line OA, say T, had Tg on CC as its per-
pendicular projection, and that OT, > OH. This would imply that the
perpendicular erected at Ty would intersect the half-line OA. DBut this
contradicts Lemma A;. Therefore, no point to the right of H is the per-
pendicular projection of any point on the half-line OA. Q.E.D,

Hereafter in this thesis, whenever H is used to represent a point,
it is used as the point H of Lemma A,, that is, as the point at which
the perpendicular first fails to intersect the other side of the angle.

By an argument similar to the one just given, it is clear that
the same would apply if OA and OC were extended to form lines. Since
vertical angles are equal, the voints on the half-line obitained by ex-

tending OA would have their perperdicular projections mapped onto a
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finite segment of the half-line obtained by extending 0C. This is

illustrated in Figure 18.

A\ 4
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Figure 18

Theorem B Extended to Lines

If the point on OC extended that corresponds to H is designated

by I, it is true that OH =0I. This is now given as a lemma.

L.7. G's Lemma. For the acute angle A in plane T , the
distance from the vertex of this angle to the point on one side, from
which the perpendicular erected first fails to cut the other side, is
uniqus.

Proof: Consider, in plane T, two angies CAB and C'At'B!', such
that  CAB = <( C'A'B' = B , Figure 19. Let H and H' represent the
points on AB and A'B' respectively where the perpendiculars erected at
these are the first that do not intersect the other sides of the angles.

Lemma Ap guarantees the existence of the points H and H'.
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Figure 19

Illustration of G's Lerma

Suppose that AH # A'H', and that A'H' is the longer of the two.
Then, on A'H', mark off A'R', such that AH = A'R'., The perpendicular
erected at R' intersects A'C' at some point, say S!', since the firsi
non~intersecting perpendicular was given to be at point H'. On AC marik
off AS= A'S', and drop a perpendicular SR to AB at R. DBy SAS, triangle
SAR and triangle S'A'R' are congruent, from whence AR = A'R!?,

But A'R'= AH, thus implying that AR = AH. DBut this is impos=~

sible since the perpendicular at H does not intersect AC. Q.E.D.

L.8. Applyving transformation j to the hyperbolic plene. TFirst,

apply transformation j to the points of some half-line b, in plane 7 ,
using O as the center and ;3 as the angle. This is illustrated in

Figure 20.
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Figure 20

Transformation j Applied to a Half-line

Recall that transformation j replaces each point X, on half-line
b, by its perpendicular projection X, on scme half-line a, where the
angle between a and b is some acute angle (in this caselﬁ?), and then
rotates the plane about O, through an angle that is the negative of the
given acute angle (in this case ~ B), so that X, is mapped into X' on
b. Thus, the end result is: Jj:A—>A', j:B—>B', etc.

If Ho is used to denote the point at which the perpendiculsr
first faiis to intersect b, then transformation J would not assign any
point of b to H', This is designated by saying that H' represents an
"infinitely distant™ point of b.

By a similar argument, transformation j could be extended to the
points on the lines formed by extending a and b. This has been illus-
trated in Figure 21, where I, corresponds to Hj,. Then OI, = OH, by G's
Lemma, and where I' would not be the image of any point on line b under

transformation j.
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Figure 21

Transformation j Applied to a Line

Now, if transformation j is performed on all the lines passing
through O, using angle/s, a mapping of plane T into a cirecle with

center O and radius OH' is obtained.

L.9. Notation Used With the Circle. The notation used so far

has associated, under transformation j, the point A with A', point B
with B', etc. Therefore; in an effort to be consistent, the following
notation is used in the next chapter.

If A, B, Cyes., and a, b, c,... represent points and lines in
plane 7T , then A', B', C!', ..., and a', bt!, ¢',... designate the cor-
responding points and linss within the circle. This is shown in Figure

22, ([47], p.70)%



Figure 22

Notation Within the Circle




CHAPTER V
APPLICATIONS OF THE MAPPING

o

5.1. Introduction. In Chapter IV, a mapping of plane ‘1 into

the interior of a circle was shown to exist. This mapping was accom=
plished by choosing a point O, of plane 1T , arbitrarily, and then
applying transformation j to the points of “T , where the angle used
was equal to A . The radius of the circle was OH's Straight iines of
the plane are represented in this circle by chords. Two types of angles
have their meaéures preserved under the mapping: (1) those with vertex
at 0, and (2) right angles one side of which contain O.

It is possible, using the circle as the instrument of ressarch,
to develop some of the theory of hyperbolic geometry. This chapier in
no way exhausts the use of the circle as a means of developing hyperbo-
lic geometry. Rather, it was the chapter'!s purpose to apply the proper-
ties of this circle to some of the more "familiar' characteristics of
the plane, such as the notion of parallelism, znd the angle of parallel-
ism.

This mapping shows that many of the intuiltive results cbtainable
by use of models of the hyperbolic plane in Euclidean Space can be ob-
tained without reference to another geometry; il.e., within the hyperbo-

lic plane.

5.2. Notion of parallelism. Consider the points and chords of

the circle as shown in Figure 23a. In the plane these chords represent

the lines l,b,a,c,d, and e, while the points in the circle represent the
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points R, T, and P of the plane, as showm in Fizure 23b.
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Figure 23

Notion of Parallelism

Take 1 as the perpendicular from P to a (recall that 1' would
not be perpendicular to a' unless either a' or 1! contained 0). Now
rotate 1 about P in a clockwise direction. It is concluded from the
map, Figure 23a, that 1 would intersect a until it reached the position
¢, since on the map c!' is the first line through P! in that direction
that does not intersect a' (recall that the points B! and A' do not re-
present any points of the plane under the mapping). If instead 1 is ro-
tated in the other direction about P, it would intersect a until it
reached the position e, since in the circle e' is the first that fails
to intersect a' in that direction. Also, from the map, it is clsar that

any chord, such as d!, lying within the angle formed by ¢! and e! does



not intersect a'. Thus in the oplane eny line, such as d, lying within
the angle formed by e and ¢ fails 1o interssct a.

Thus lines ¢ and ¢ ssparate the lines that intersect a from those
that do not intersesct a. Lines ¢ and e are therefore defined to be the
parallels to a through P, one in each direction., That 1s, ¢ and e are
the Parallels to a through P, in each direction, if and only if ¢ znd e
are the two lines that separate the lines through P into intersecting
and non-intersecting.

It is known from Theorem A of Chapter IV that the lines ¢ and e
form equal acute angles with 1, the perpendicular from P to a., There-
fore, ¢ and e are symmetrical to each other with respect to 1.

On the map, straight lines that are parallel to each other are
represented by chords meeting on the perimeter of the circle, and con-
versely, chords meeting on the circle represent lines that are parallel

%0 each other, Figure 2L.

Al

Figure 24

I1lustration of Parallaels

Now, if in the plane, lines b and ¢ are both parallel to a in the

same direction, this would imply that in the cirecle a' and b' intersect



on the perimeter, say at A', znd also that a' and ¢! intersect at A!
also, Figure 2l.

The following two theorems are an immedicte consequence.

S.3. Theorem T. If three straight lines a, b, and ¢, in plane
7", are such that both a and b are parallel to ¢ in the same direction,
then a and b are parallel to sach other,.

Proof: Using the notation of Figure 24, if a is parallel to c,
then a' and c!' intersect at A', where A' is some point on ths perimeter
of the circle., Also, if b is parallel to ¢ then b' znd ¢! intersect at
A'. Dut this gives the result that a' and b' intersect at A'. There-

fore, a is parallel to b. Q.E.D.

5el4s  Theorem R. If in plane I , two lines a and b are such
that a is parallel to b, then b is parallel to a.

Proof: Using the notation of Figure 2L, if a is paraliel to b,
then a' and b' intersect at a point on the perimeter of the circle A'.
But this implies that b! and a! intersect at A'. Therefore b is parallel

to a. Q.E.D.

5.5. Divergent lines. If a and b represent any two lines in

plane TT7 , & and b are Diverzent if and only if a and b do not inter-
sect and are not parallel.
A theorem and its converse are now proven concerning divergent

lines.

5.6. Theorem D. If three distinct lines, in plane 9T , a, b,

and ¢ are such that a and b are both perpendicular to ¢, then a and b



arg divergent lines.
Proof: Consider distinct lines a, b, and ¢ such that 2 and b

are both perpendicular to c, as in Fizure 25.
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Figure 25

Illustration of Tneorem D

Since AP is perpendicular to a, there exists lines 1 and n,
through P, parallel to a, such that 1 and m form equal acute angles
with PA by Theorem A, Thus 1 and m are distinct from b, so b is not
parallel to a.

Since <L APD = < FPG, b cannot fall within & FPG, since this
would imply an acute angle is greater than a right angle which is im-
possible. Therefore b lies within~%:EPF, which implies b is non-
intersecting with respect to a. Since b doss not intersect a, and b

is not parallel to a, then the lines a and b are divergent. Q.E.D.
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57+ Theorem D'. If a ard b represent any two divergent lines
in plane 4T , then thers exists a line ¢, in 47 , such that ¢ is per=-
pendicular to both a and b,

Proof: Consider the divergent lines a and b, as in Figure 26.
To prove that there exists a comnon perpendicular, it is sufficient to
show that there exists, through a point D, between a and b (i.e.,
AD + DB = AB, if 4, B, and D are collinear), a pair of lines e and £
such that e and f are parallel to both a and b. For then the verpendi-
culars from D to a and b at K and L respectively would form a straight
line, since< KDL = a2 straight angle.

Therefore, consider the mapping of plane 7 into a circle. Di-
vergent lines a and b would be represented by the chords at' and b' that

have no point in common, as in Figure 27. Draiw R'N',RI'M!, and M!S?,
3 3 2
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Figure 26

Illustration A of Theorem D!



Figure 27

I1llustration B of Theorem Dt

Since H!'S! entérs triangle R'M!N! at M', it follows from Pasch's axiom
that M'S' must intersect R'N' ai a point distinct from either R*!' or It.
Denote this point by D'. Also denote I'S' as e', and R'N!' as f'. 1In
plane g7, point D 1s the point required, for it is clear that through
D, both e and f are parallel to the lines a and b. Therefore, there

exists a common perpendicular to two divergent lines. Q.Z.D.

5.8, Theorem U. If a and b are any two lines in plane 1T such
that 2 and b are parallel, then there exists a line ¢, also in 17 ,
such that ¢ i1s parallel to & in one direction, a2nd ¢ is parallel To b
in the other direction.

Proof: Consider any two lines a and b such that a is parallel to
b, as in Figure 28a2. Then map plane 4T into the circle, obtaining the

chords a' and b'. Since a and b are parallel, a! and b! nmeet on the
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perimeter of the circle, say at A', as in Figure 28b,
p 3 > 133

l

CI

Figure 28

Tllustration of Theorem U

Designate a! and b! as A'B! and A'C! respectively. Draw chord
B1C', calling it c's Since c¢!' and b' intersect on the perimeter at Ct,
then ¢ is parallel to b. Also, since a' and c' meet on the perimeter
at B', it follows that ¢ is parallel to a. Therefore c is parallel to
both a and b, Since B! and C!' do not represent the same point, it fol-
lous that ¢ is parallel to a in one direction and parallel to b in the

other direction.

5.9. Impropsr Triengle, 4&n arrangement of points and lines in

plane 7 is called an Improper Triangle if and only if it is mapped

onto a triangle, when <T° is mapped into a circle, such thaet the tri-
angle has one, two, or all three of its vertices on the perimeter of the

circic.
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Thus the three mutually parzallel lines of Theorem U form an

improper triangle.

5.10. Ansle of Perallelism., In Chapter III, Theorem A stated

that, in plane -7 , there existed an acute angle B such that the
perpendicular to one of its sides does not intersect the cther side of
the angle. H was used to denote the first point at which the consiruci-
ed perpendicular failed to cut the other side. This is illustrated in

Figure 29.
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Figure 29

Angle of Parallelism

Denote the length of PH by q. 4ngle B is then called the angle
of parallelism for g. That is, an angle G, in plane 477, is called

the Angle of Parallslism for some distance g if and only if q is the

distance, on one side of L, to the point where the perpendicular at

this point first fails to intersect the other side of CA.
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It can be proven, although the proof is'not presented in tails
thesis, that the angls of parallelism for any given distance is con-
stant. That is, the angle of pearzllelism is & function of g. The no-
tation to be used for this is: o = T ().
By utilizing the mapping of Chapter IV, it is possible to arrive

at an Yelementary" result concerning the relation betwesn CL and q.

5.11 Theorem L. If, in plane 7°, L is the angle of paral-
lelism for length g, then OL approaches $0° as q approaches 0, and C°
as q approaches infinity.

Proof: lMap plane 4T into a circle choosing the center of trans-
formation j to be the vertex of (K. Thus.both sides of CK are mapped

onto radii of the circle, Figure 30.

Figure 30

Tllustration A of Theorem L
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Denote the sides of QL' by 03B! and CA'. By Proverty 2 of trans-
formation j, X L = &, since its vertex is al 0. Drop a perpen-
dicular from A' to OB' a2t D'. Since one side of the right angle A'D'C
passes tarough 0, Property li of transformation j states that << A'D'0
is the image of a similar right angle in plane 7 .

Thus, since QA' and A'D' represent parallel lines in the plzzne
such that A'D!' represents the first non-intefsecting perpendicular to
the line represented by 0D', it follows that QL is the angle of parzl-

lelism for the segment 0D, as in Figure 31.

D
E

A\ 4

-

Figure 31

J1llustration B of Theorem L

Take a point E on OD such that CE<OD, On the map this corres-
ponds to a point E!' on OD' such that CE'<0OD!', Figure 32.

At E' construct a perpendicular cutting the circle at F'. F!' is
distinct from A', since if they were the same, triangle A'D'E! would

contain two right zngles which i1s impossible.
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Figure 32

Tllustration C of Theorem L

Draw OF'. Angle F'0D' is larger than angle A'OD' since angle
F10D' equals angle A'0D' plus angle A'OF!'., Now if E!' and F' are con=-
sidered as arbitrary points, theﬁ as E' approaches O, F' approaches the
point G!' where G' is the point on the perimeter of the circle where the
perpendicular at O cuts the circle. Thus the segment OG' is the limiting
position of EtF'., From this it is clear that angle F'OE' approaches 90°
as OE' approaches O.

By an argument similar to the one used to show angle F'0OE' is
larger than angle A'OD', it i1s shown that angle F'OE' gets smaller as
OE' becomes larger. As E' approaches B', F' also approaches B'. Thus
OB' is the limiting position of OF' as E' approaches Bt,

Since angle B'OB' = 0°, it follows that angle F'OE' approaches
0° as OL' approaches OB'.

Therefore, since OL' varies between 0° and 90°, then QL varies

between 0° and 90° as the length of q varies. Q.E.D.



CHAPTER VI
CONCLUSION

6.1. Summery. The purpose of this thesis has been tc present a
method of mapping the hyperbolic plane into the interior of z circle in
the hyperbolic plene, and to show some of the applications of this map-
ping. As wes mentioned at the beginning of Chapter V, no atiempt was
made to exhaust the uses of this circle.

In Chapter I, the list of axioms, defined, and undefined terms,
that were to be used in this study, were given.

Chapter II gave a short history cf hyperbolic geometry, concen-
trating on the events taking place after Lobatchevsky published his
original work in the Kazan journal.

In Chapter III, the transformation used in mapping the hyperbo-
lic plane into a circle was given., This transformation was called
"transformation j%. The central problem in setting up transicrmaticn
Jj was the question of preserving the collinearity of points on a line
that did not pass through the center of the transformation. This was
done by means of Hjelmslev's lemma.

In Chapter IV, transformation J was applied to the points of the
hyperbolic plane. The result of this was that the plane was, so %o
speak, compressed into a circle with a finite radius such that the
points on the perimeter of the circle were not the images of any points
in the plane.

In Chapter V, some of the applications of this mapping were gi-

ven. Since lines in the plane were mapped onto chords, and certain
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angles had their measures preserved, it was possible to prove scme of

the "basic" theorems of hyperbolic pleane geomstry.

6.2. Suggesied research. There are two main areas for further

research suggested by this thecis.
First, recall that a particular acute angle B was used in vrans-
formetion ; in mapping the plzne into a circle. If an arbitrary acute
angle is used, can the plane still be mapped into a circle? If so, what
gffect would it have on the radius of the circle?

Secondly, in Chapter I, it was menticned that the hyperbolic
space could be mapped into the interior of a sphere with a finite ra-
dius,., How would this be done? Would there be fewer, the same, or more
properties preserved under such a mapping?

Besides the two above guestions, a third natural area of research
would be to see how much of the theory of hyperbolic plane geometry could
be developed using the properties of the circle only. For example, Fi-
gure 28b hints at the possibility that, in the hyperbolic plane, there
exists a triangle having a maximum area. That is, no other triangle in
the plane would have an area excesding the area of a certazin triangle.
Does the triangle in the hyperbolic plane that is mapped onto itriangle
A'B'C? possess the property that its area is greater than or equal to
the area of any other triangle in the plane? If so, could this be

prcven by the use of the mapping only?
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