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CHAPTER I
INTRODUCTION

The problem. Very early in his training, the student of mathé-‘
matics is confronted with the problem of maldng a graph to represent a
relationship between two variables. As there is a one-~to-one corre=-
spondence between the real numbers and the points on a line, one axis
is usually used for one varigble and another for the other. Then points
on one line map to points of the other according to the relation defined
between the two variables. Thus, if the variables are x and y and the
relation is

Y= x2,
the point 2 on x maps to L on y, =3 to 9, V15 to 15, and so on. This
kind of model is not satisfactory for conveying some information about
the behavior of the relation. For if x is allowed to range over the
whole line, y will range over the half line consisting of the points
corresponding to

y > 0.
Moreover, any point on the second line is the map of two points of the
first line.

Now if the two lines are set at right angles, a plane is deter=-
mined, called a Cartesian plane after Rene Descartes, and the corre~
spondence of variables in a relation is represented by points of the
plane identified by ordered number pairs. When all points satisfying

the relation have been located, the result is the graph of ths relation.



Thus the graph is a subset of R X R where R is the set of real numberse.
Tor most purposes, this graph is ideal. It satisfies most of the things
for which a graph is desired, It will exhibit zeros of a function,'show'
simuitaneous solutions to two equations, exhibit critical points, reéré-
sent the rate of increase or decrease in a function, and it can be used
to exhibit such things as the trigonometric functionse

Trnis thesis is concerned with ways of exhibiting some of the above
mentioned things for which a graph is used when the replacement set for
the variables in the relation to be graphed is the set of complex numbers.

The usual representation of a complex number is not a point on a
line, but rather a point on a pléne, where one axis is real and the
other imaginarye. If R represents the set of all real numbers and I the
sét of real coefficients of all imaginary mmbers, then the set of
ordered number pairs R X I represents the set of all complex mumbers.
Given a complex variablé z and another complex variable w, it is desired
to make a graphical representation of a relation between these two vari-
ables. As in the first paragraphy, Where a mapping was considered be-
tween two lines, here a mapping may be considered between two planes.
If the relation is

W= 22,

the point (2,0) on the z-plane maps to (4,0) on the w-plane, (0,3) maps
to (=9,0), (3,2) maps to (5,12), and so on. As z varies over all of
its plane, w ranges over all of its plane. Just as was true for real
variables, this is not entirely satisfactory for getting an over-all

view of the relation,



Proceeding in a manner similar to what was done before, let the
two planes be placed at right angles to one another, with each of the
axes vertical to each of the other axes. Here is where the problem
arises. There are now four axes, each to be perpendicular to the oﬁhér
three. The requirement for this, in a straight forward approach, is a
four dimensional space, and this does not appear to be available,

No method has been found which does as adequate a job of showing
the relation between two complex variables as simply as the Cartesian
graph for real variables. While a number of graphical methods have
been suggested, the degree of success each has attained in a ccmplete
representation is usually dependent on the amount of elaboration in a
given method, which; in turn, results in a decrease in simplicity, with
a corresponding decrease of intuitive understanding.

Forsyth groups the important methods in three categories
[L, p. 5]. TIn the first, a four-dimensional space is used with the four
axes each perpendicular to the others. The second method uses a line,
curved or straight, the whole line or sometimes a segment of it, as
representing the two variables simultaneously. The third procedure is
for each variable to be associated with a point in a plane, or in two
different planes, such that the two points represent the two variables

similtaneously.

Organization of the thesis. No single method of representation

of points is used exclusively in this thesis. Rather, several of the
basic applications of graphs are considered, and ways are shown of

exhibiting those characteristics of graphs relating to that particular



application. Following a brief history of the problem in Chapter II,
methods of showing the roots of a polynomial equation in one variable
are ccnsidered in Chapter IIT. Graphically, this is generally done by

setting the polynomial function

0}

qual to a second variable, graphing_
the resulting curve, and noting the points where the second variable

is zero. Chapter IV is concerned with the simultaneous solution of two
equations in two variables, accomplished grgphically by identifying the
points of intersection of the curves representing the two equations.
The third application, Chapter V, is some of the topics considered in
work with the circle, including tangents to the circle, the radical
axis to two circles, and the definitions of the circular (trigonometric)
functions, and their relation to the hyperbolic functionse. Chapter VI
investigates the derivative of a function, to see what relevance this
has to the graph of the function. A sumary of the developments of the

thesis is given in Chapter VII.

Definitions. There are a few terms whose definitions are needed

in order to understand their use in this thesis. They are given here.

Complex number. A complex number is any number of the form

a + bi where a and b are real numbers and i = -1,

AT

Absolute value of a comnlex numbere. The absolute value of a
complex mumber a + bi is /a2 + b2,

Tdeal point. An ideal point is a point at infinity, added to

a line or plane so that it is not necessary to state exceptions to

certain theorems.



Asymptote. An asymptote to a curve is a line which intersects

-

the curve at an ideal point.

Imaginary number. An imaginary number is a complex number whose

real part is zero (a = 0).

Supplementary. A supplementary is the total of those points of

a graph for which one or both of the co-ordinates is complex.



CEAPTER II
BISTORY OF GRAPHS USING COMPLEX NUMBERS

Tt took mathematicians centuries to recognize the existence of
negative numbers, partially because of their inability to accept a line
as having negative length. It took longer to admit to imaginary and
complex numbers, the very name imaginary being a witness to this.
However, since in the solution of quadratic equations, solutions in-
volving the square roots of 'negative numbers were often obtained, mathe-
maticians were forced to accept such results as numbers, and they began
to provide ways to revresent such entities. The history given here is
divided into two parts, the first being concerned with the representa-
tion of a single complex number, and the second the graph of a relation

between two complex variables.

Representing complex numbers. The first known attempt to make

a representation of complex numbers was John Wallis in his Algebra,
published in 1685 [2, p. 13]. He gives some ingenious arguments for
the existence of camplex nmumbers, and gives many examples of drawings
suggested by quadratic equations whose roots are complex. Ie did not
have a general method of representing complex values of a given
variable., |

There seems to have been no further work with the geometrical
representation of complex numbers for over sixty years until Heinrich
Kuhn, challenged to the problem by Euler's invitation for him to cube

-1 + A/-3, published a book on the subject in 1753 [2, p. 16].



Actually, his methods Were more primitive than those of Wallis, and he
presented no progress towards an wltimate solution.

Caspar Wessel, an obscure Norwegian surveyor, had a paper pub-
lished by the Royal Danish Academy in 1799 that might have given an
acceptable general geometrical method much earlier had it becoms widely
known. Instead, it was nearly one Iundred years before the work was
really discovered. He used a vector agpproach in which each vector,
radiating from a common origin, had real and imaginary camponents.
While his work was awaiting its time of discovery, several other men
achieved nearly identical results. Jean Robert Argand, with some advice
from Legendre, used imaginary numbers as the mean proportional of a
positive and a negative nunber, with the real numbers represented on
horizontally directed lines, and the mean proportionals directed verti-
cally. His work was published in 1806 [2, p. 26]. C.V. Mourey and the
Rev. John Warren, both writing in 1828, also conceived of imaginary
numbers as vectors, and placed them in vertical directions with real
numbers as vectors in horizontal positions [2, p. 27].

It was Gauss, in 1831, who contributed the method of representa-
tion of complex numbers in use today [2, pe 28]. He is responsible for
considering the points 1, i, -1, and =1 as points on a plane in four
different unit directions from the origin, rather than the vector quan=-
tities that had been previously used. This is the classical represen=-
tation that has become the standard means of graphing complex numbers,
and while other methods have since been pursued, none has met with the

standard of completeness and simplicity as this standard model.



The only thing lacking in the CGauss representation is the infi-
nite domain. For the correspondence between the complex mumbers and
the plane to be camplete, the entire infinite domain of the plane con-
sists of exactly one point, a concept that is not immediately in‘tuiti_vé
[, p. 711

Of those attempts to further refine methods of representation,
the most important is an application of the principle of duality by

representing a complex point by a real line in the plane.

The graph of the relation of two variables., Jean Victor Poncelet

first published his classic work, Traite des proprietes projectives des

figures, in 1822. He was able to show, if the equation of a conic is

of the form
=1

any point P on the x-axis will have ordinates of length

V= g_'\ji(aZ - x2).

If P is in the interior of the conic, the ordinate length is a real

number, but if P is in the exterior of the conic, y will be imaginary.
The segment joining the two points of the conic in the latter case is
called an ideal chord. The locus of all of the points with imaginary

ordinates is called the supplementary to the conic, and has the equation

+2 2
§2 = %2 =1 (2, po. 68-69).

In 1839, the English mathematician Gregory started a more com-
plicated line of thought by using a surface in space to represent a

curve (2, p. 701. He located points of the graph of the equation



fz,w) =0, z=%x+ iy, w=1u + iv
by two perpendicular complex planes. If a point (x,y) is lccated in
the z-plane by the Gauss scheme, the w-plane is then established passing
through the origin of the z-plane and perpendiculsr to the line paséiﬁg
through the origin and the point (x,y). The origin of each plane is the
same point. The real axis u of the w-plane is normal tc the z-plane,
while the imaginary axis v lies in the z-plane. The point (u,v) corre-
sponding to (x,y) is then located in the w-plane, a line is drawn join-
ing (x,y) to (u,v), and then the origin is projected normal to this
line. This gives the point (z,w).
A somewhat simpler approach was taken by Walton in 1852
[2, p. 71]. He represented the point (z,w), where
z=2a+ bl andw= c 4+ di
in a three-space using axes X, Y, and Z., The point Was represented by
the ordered mumber triple (X,Y,Z) where
X=a,¥=cy,and Z =b + d,
In 1878, Appell used an approach similar to that of Walton,
except instead of z = b 4+ d, he used z = A/b2 + d2 [2, p. 72]. This
has a great detraction in that a complex point and its conjugate are
indistinguishablle. In 1933, however, Jahnke and Emde, in their bilin-

gual book, Tables of Functions with Formulas and Curves, in which are

found many tables for use in higher mathematics not normally found in
books of tables, make use of Appell's method and have made rather elab-
orate graphs of a number of functions which they call the relief of the

function f9, p. Xk
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In 1869, Sophus Lie devised a method of representing the points
of a curve by the use of the real points in a three-space. The point
(& + bi, ¢ +di) was represented by the real point (x,y,z) where

X=a, y= b, 2= ¢,
to which is attached a weight d. Thus he had a correspondence of com-
plex non-weighted points of the plane with weighted real points of
space [2, p. 104].

It has already been mentioned that a line was sometimes used to
represent a complex number. Weierstrass, in 1892, and Van Uven, in
1911, used real lines to shcow the relation between two complex vari-
ables. They graphed the point (a + ib, ¢ + id) by a real line lying in
a three-space. The point a + ib was graphed as (a,b,0), while ¢ + id
was placed at (c,d,k), where k was some arbitrary constant. The line
joining these two points represented the complex point [2, pp. 80-81].

Henschell, in 1892, and Vivanti, in 1895, also proposed to repre-
sent points of a curve by lines in space, their methods becoming quite
involved, using spheres and stereographic projections [2, Do 82]. In
1948, Laird used Plucker's line coordinates to set up a one-to-one
correspondence between the complex points and real lines in space
[10, p. Lo].

This survey of some of the developers of representative proce-
dures for graphing complex points and curves using complex variables
is certainly not complete. Many other mathematicians have worked on
it. Some of them, like the Abbe Buee [2, p. 2L} and Bjerknes [2, p. 7L],

presented methods inferior to what had been already developed. Others,



such as Laguerre [2, p. 851, Paulus [2, p. 78], and Marie [2, p. 78],
presented some tremendous strides in developing and improving previous
work. Riemann, by introducing the idea of Riemann surfaces, wWas able
to provide a method of giving a single value to w in fimctions such as

W o= zl/n,
n a natural number, where previously multiple values existed in the
w-plane {1, p. 275). Klein used the complex tangents to the curve rather
than the curve itself, incorporating Riemarn surfaces in his work
[2, p. 83]. The Von Staudt theory defines a complex point as "an ellip-
tic involution on a line, together with a sense of descriptilon for that
line" (2, p. 230,

t is hoped that this sumary gives same idea of the importance
that has been attached to the problem of representing complex numbers
and graphing relations involving complex variables by some of the great
mathematicians of history. No method has yet been given that includes
the completeness, simplicity, and intuitiveness of the Cartesian repre-
sentation of real curves. The methods of representation used in this
thesis will {ry to maintain, as much as possible, these attributes,
using points of Gaussian planes to represent complex mumbers whenever

this is feasible.



CHAPTER ITI
ROOTS OF A POLYNCMIAL EQUATION

One of the most important uses of graphs of polynomial fmmcti‘c_m\s
is that of representing the roots of a polynomial equation. If the
function

F(x) = ka'nxn:
where the ap are real, is graphe:i in the usual manner using Cartesian
co-ordinates, all real roots of the equation

F(x)=0

become readily available as the abscissas of the points of intersection
of the curve and the x-axis. Now it is well-known that a polynomial
equation of the form F(x) = 0 will have k roots. If the graph of
vy = F(x) does not indicate all k of the roots, then the ones remaining
must be complex. This chapter is concerned with methods of indicating

these complex roots by the use of graphse.

Methods of representation. There are basically two ways in which

complex roots may be demonstrated. The first method makes use of the
fact that the real curve y = F(x), while not indicating the roots
directly, has certain characteristics determined by them. The other

: procedure is a direct representation showing real roots as the points
of intersection of the curve y = F(x) with the x-axis, while complex
roots are indicated by the intersection of the curve with the complex
X-plane., In the latter case, the variables z and W are used instead of

X and y, respectively.
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The dual plane. The first method considered is a way of finding

the roots of a quadratic equation in x, making use of a single plane
serving a dual purpose. The plane is first considered as real, but’
when the roots of the quadratic are complex, then, after the procedu:re;
described below are completed, the same plane is taken as a complex
plane [3, p. 130].

In order to find the roots of a gquadratic equation of the form

F(x) = O, graph ¥ = F(x) on the real plané in the usual mamer, such
as in Figure l. ¥When the parabola does not intersect the x~axis, the
roots of the equation are complexs To identify the roots on the graph,
first draw the axis of the parabola, line AB in Figure 1(a). From the
point C, where AB cuts the x-axis, draw the two tangents to the curve,
determining points T and To as the points of tangency. Draw line T1To
cutting the axis AB in a pointe. Call this point De Then mark off the
length ™D on AB on either side of C, locating points P and Q. If the
plane is now considered as a complex plane, the co=ordinates of P and Q
are the desired roots.

Proof: It is first necessary to find the equations of the
tangent lines CTy and CTo of Figure 1(a)e The paraboia formed from
the general quadratic,

v a2+ X+ ¢ (1)

will have an axis passing vertically through its vertex. The vertex
is the point where x = =b/ 2a, which provides that the point C will
have co-ordinates (-b/2a,0)e Thus the equation of the set of lines

passing through C is
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v = n(x + b/2a) (2)
where m is the slope of a line. In equations (1) and (2), substitution
to eliminate y gives
ax? + (b = m)x + (¢ -~ mb/2a) = 0. '(3)
The solution of (3) for x will give the abscissas of the points of
intersection of (1) and (2). If a line of (2) is to be tangent to the
curve, the roots of (3) must be real and equal. Thus
(b - m)2 - hac + 2mb = 0,
Solving this for m, the slope of the tangent line is
2ax + b= +Vhac - b2,

Solving this for x,

x = =b* Vliac - bv2
. 2a
This indicates the points Tq and Tp bhave abscissas Vlhac - b2/22 units
on either side of the axis x = -b/2a, that is, the line AB. This dis-
tance corresponds to the real number which is the coefficient of i
given by the quadratic formula. Thus, when the distance TqD is marked
off on AB on either side of C, the resulting points, P and Q, when
considered as points of a complex plane, correspond to the roots of

the quadratic equation., This justifies the dual use of the plane.

A more general graphical interpretation. For the purposes of

this section, consider the polynomial equation
F(x) = ianxn =0, k £ 2, ay = 1,
neo
which has at least one pair of complex roots, a + bi. There is a
procedure which will indicate the complex roots, a + bl, on the usual

real graph. The equation can be written in the form



pd
[o)

Fx) = (x2 - 2ax + a% 4+ b2)£(x) = 0,

where f(x) is a polynomial function of degree n - 2. Here the family
of curves v = nf(x) is introduced, m being a real parameter. Then roots'
of the polynomial equation F(x) = O can be obtained graphically by m‘e_arl1s
of the theorem which follows.,

Theorem: If F(x) = (x2 = 2ax + a2 + b2) £(x), where b 0, and
£(x) is a polynomial function with real coefficients, then there is a
curve of the family y =mf(x) that is tangent to y = F(x) at a point
(hyk) on the real plane, with a = h and b = VA [7, p. 2381,

Proof: Two of the roots of the equation F(x) = 0 are a + bi.
F(x) = O and each member of mf(x)= O will have n - 2 roots in comnon,
Equating the two functions,

(x2 - 2ax + a2 4+ B2)f(x) = mf(x).
Then if f(x) = O, |
x2 - 2ax + a2 + b2 - m = 0..
By the quadratic formuila,
X =ax ’\/;n-_-_bz_,

the values of x being the abscissas of the points of intersection of
the two curves. By proper choice of the parameter m, the values of
x can be made to be real, which puts the intersections on the real
plane. The midpoint of the line segment joining the two points of
intersection has an abscissa a. 4 vertical line through this midpoint
intersects the curve y = F(x) in a point also having abscissa a. Now
if m is allowed to approach b2 as a limit, the secants Joining the points

of intersection of v = F(x) and vy = mf(x) will approach the tangent to
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¥y = F(x), at the point where x = a, as a limit. Therefore, when m = b2,
the two curves will be tangent, the point of tangency being the point
(h,k) of the theorem, and a = h and b = V1,

The theorem thus having been established, all that remains 3_n
finding the complex roots a +bi of the polynamial equation F(x) = 0 is
to determine the value of m making y = F(x) and y = mf(x) tangent, and
to f£ind the abscissa of the point of tangency. In order to see how this
theorem applies to actual problems, applications are here made to solve
quadratic and cubic equations for complex rootse.

Let the quadratic equation

x2 4+ ajX + a5 = O
have complex roots a +bl. Then
F(x) = x2 - 2ax + a2 + b2,
and
nf(x) = me
When y = F(x) is graphed, it is a parabola with a vertical axis, The
family v = mf(x) is the set of horizontal lines y = m, with one of these
lines tangent to the parabola at its vertex. If the parabola has its
vertex at (h,k), then a = h, b = VA = Vk, and the roots of the equa-
tion are x = h + 1 Vk.
As an example of this, consider the equation
x2 +2x +5 =0.
The graph of Figure 1(b), page 18, is the parabola
| v =x%x2+2x +5,

from which the co-oruinates of the vertex, (-1,L), are obtained. Hence,
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FIGURE 1(b)

y=x2+2x+5/--

THE y = m TANGENT LINE SOLUTION OF x° + 2x + 5 = O
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m = L, and the roots of the equation are x = =1 + 2i.
Let the cubic equaticn
%3 +ax2 +ajxF+ay=0
have one real root, r, and two complex roots, a + bl. From this

F(x) = (x2 = 2ax + a2 +b2)(x - r).

nf(x) = n(x - r).
The family v =m(x = r) is a set of straight lines passing through
(r,0), and having slope ms One of these lines will be tangent to ire
curve y = F(x). The complex roots of F(x) = 0 will be a + bi, where a
is the abscissa of the point of tangency, and b is the square root of
the slope of the tangent line.
For example, consider the graph of
vy =x3 + 22 - (15/L)x - 17/2,
shown in Figure 2. Then
F(x) = (x2 + bx + 17/L)(x - 2),
and
nf(x) = n(x - 2).
The curve y = F(x) intersects the x-axis at x = 2. Any secant line
is then dram through (2,0), intersecting y = F(x) in two other points,
S1 end Sp. The possible secant lines have the equation y = m(x - 2).
The midpoint of chord S3S, has an abscissa of -2. The line tangent
to the curve v = F(x) at x = =2, is y =1/L (x - 2). Then b has the
value Af1/L, and the required complex roots of F(x) = O are

X = =2 j:l/2 i-



FIGURE 2
y =2 +2x% - (15/L)x - (17/2)
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Direct representation. The other method of indicating roots of

an equation is more direct. For the purposes of this representation,

w = f£(z) is the functional form used, where z =x + iy and w= u + iv,
Given any equation f(z) = 0, in which coefficients are real, nwnberé_ |
satisfying the equation may be identified directly from the graph of
the function w = £(z). If the independent variable is allowed to vary
over the complex numbers, both variebles will at times be complex, and
each requires a plane for 1oca'bing points, malding it necessary to use
four dimensions to obtain a complete graphe. The points where the graph
and the (x,y) plane intersect represent the roots of the equation.

In solving £(z) = O by graphing w = £(z), only the three-dimen-
sional cross-section, in which v = O, of the four-space is needed, as
the points where the graph crosses the (x,y) plane will always have a
zero co-ordinate for we. This makes the graph for which w is real while
z 1s complex ideal for representing the solution to this kind of prob-
lem (5, p. L1c].

Consider the linear equation w = az + b. The independent vari-
able z is allowed as a domain the entire field of complex numbers.
Then W will have as a range u +iv = (ax + b) + i(ay)e If w is to be
real, then y = O, Thus, all real values of W are in the (x,u) plane,
and the results are the same as in the graph of the function in real
co-ordinates.

To represent roots of the quadratic equation

az2 + bz +¢ = 0,

grapn the function
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W= azl+ bz + C,

z=x + iy, then
w=(ax2 - ay2 + x + c¢) + iy(2ax + b).
7 is to be real, then y = O or 2ax + b =0, Therefore, the des:'_r"ed‘
oh of W = az® + bz + ¢ consists of
=ax2 + x +c, (1)
' e usual real graph of the quadratic equation on the real plane; and
= -ay2 - (b2 = Lac)/ba, (2)
| parabola lying on the x = -b/2a plane. The curve will intersect the
(x,7) plane in two points in all cases. If the discriminant, b2 - lac,
is zero, the points are not distinct, but are in all cases where
b2 - Lac # O. If the discriminant is positive or zero, the parabola of
the equation (1) intersects the x-axis, giving the same results as in
the ordinary grzph in the real plane. If the discriminant is negative,
the curve of the equation (2) intersects the (x,y) plane, yielding two
complex pointse.
As a specific example, consider the function
W= 22 =2z +5,
Figure 3 shows that part of the graph for which w is real, that is, the
graph whose damain has z =x, and z = 1 + iy. The curve lies on the
planes ¥y = O and x = 1, and intersects the (x,y) plane in points corre-
sponding to the rooté, z =1 +2i, of the quadratic equation
22 - 2z +5 =0,
There is a mechanical method for solving any quadratic graphi-

cally using a single well-made graph of the function w'=(z')2 {11, p. 108,
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This graph will consist of points on the (x,u) and (y,u) planes, as
shovn in Figure Lis To solve az? + bz + ¢ = 0, obtain a unit coefficient
for the z2 tern,
z2 + (b/a)z +c/a = 0.

Reduce the function

u= 22 + E? + % (1)
to

ut = (z21)2, (2)
To accomplish this, substitute

z =z'! - b/2a
in (1), This reduces the function w to

u=(z1)2 - b27ahac .

* Graphically, the substitution translates the axes b/2a units along the
X-axis. Let

b2 - .)LEIC = k.
La2

Then
u=(z2")2 -k

Now let

u=u' -k,
Then

ut = (z1)2,
The last substitution translates the axes k units along the u-axis,
The substitutions given result in axes translations only and have no
effect on the form of the curve, On the graph of (2) can be found the

roots desired, by following through the translations given,
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For example, to solve
z2 - 2z + 5= 0,
let
z=z"'+ 1.
The equation thus formed is

(Z')2+ ]_!. = Q.

Move -l units on the u-axis on Figure L, and read the corresponding

values of z', z'= + 21, Since z = z'+ 1, the desired roots are

Z = l j_-_2i.

In order to faui the roois of a cubic equation by the present

method, it is necessary to graph the function
u=2z3+ bzl + cz + d.
The curve will appear as the graph of

w=(z")3+ clz' + a!

if a proper translation of the axes is made. The substitution in the

first function which accomplishes this translation is
z = z' = b/3,
and it translates the axes b/3 units along the x-axis.
graph depends only on the resulting coefficient of z!.
only the cubic of the form
u= 23+ cz +4d
will need to be considered here,
Since z = x + iy,

us=x3 - 3xy2 +cex + d +iy(33c2—y2+c).

The form of the

For this reason,

(1)

(2)

As u is real, the coefficient of i must be zero. The real curve is
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obtained by letting y = O, from which
w=x3+cx +d, (3)
a curve lying on the (x,u) plane. This plane intersects the (x,y) plane
in the line |
y=0, u= 0, (L)
The suppleméntary is obtained by letting 3x%2 - Ve + ¢ = O, and will lie
on the surface
y2 = 3x2 = ¢,
which intersects the (x,y) plane in the hyperbola
y2 = 3x2 = ¢, u =0, (5)
The line will be the major axis of the hyperbola if ¢ is negative, and
its conjugate axis if ¢ is positive,.

The supplementary intersects the (x,u) plane and the rezl curve
at the extrema points of the real curve, if those points are real. The
projection of the supplementary onto the (x,y) plane is the hyperbola
(5)s If the substitution

y2'= 32 + ¢ .
is made in (2), the result is the cubic
u= -8x3 - 2x + d, (6)
which represents the projection of the supplementary onto the (x,u)
plane, for values of x at and beyond the extrema points of (3).

Those points of the graph of (1) which are also points of the

hyperbola (5), if any, will represent the camplex solution of
z3 + cz +d =0, (7)
The point or points in common with the x~axis will show the real solu-

tione
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=23 +cz +d
will take orne of three forms, depending on the value of the coefficient
of z. Figures 5, 6, and 7 show these three forms. In Figure 5, ¢ is |
negative, in Figure 6, ¢ is zero, while in Figure 7, ¢ is positive.
These graphs are made with d = 0. The real part of each graph, lying
in the (x,u) plane, is the cubic (3), as it is usually graphed using
real variables.

If ¢ is negative, the graph appears as in Figure 5. The supple-
mentary intersects the real graph in the extrema points of the real
graph. If the supplementary is projected onto the (x,7) plane, the
resulting locus is the hyperbola (5), with the x-axis being the trans-
verse axis of the hyperbola. If the supplementary is projected onto
the (x,u) plane, the resulting locus is the cubic (6), for those values
of x beyord the extrema points of (3). As ¢ increases in value, the
extrema points of the real graph move closer to the origin, and the two
branches of the supplementary move closer to the u-axise.

When ¢ = O, the graph sppears as in Figure 6. Here, the real
graph and both branches of the supplementary intersect at the origin.
The real graph (3) is the cubic

u= %3,
the projection of the supplementary to the (x,y) plane is the two inter-
secting lines from (5), ]
y=3x=0and y+ 3x=0,

5

and the orojection of the supplementary to the {x,u) plane is the
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FIGURE 5

W=z -z
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FIGURE 7
u =z + (1/10)z
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cubic from (6),
u = -8x3,

The third form the cubic may take is when c¢ is positive, as.
shown in Figure 7. Here the projection of the supplementary is still‘
the cubic (3) on the (x,u) plane and the hyperbola (5) on the (x,y)
plane, but now the transverse axis of the hyperbola is the y-axis. As
¢ continues to increase, the supplementary approaches two straight lines,
as indicated in Figure 8.

If d = 0, the axes will be translated -d units along the u-axis.
When the supplementary intersects the (X,y) plane, the complex solutions

to the equation (6) are represented by the points of intersection.
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CHAPTER IV
THE INTERSECTION OF TWO CURVES

One of the first uses of graphs the student of mathematics
encounters is that of finding the common solution to two equations.
Geométrically, this is represented by the points of intersection of
the graphs of the two equations. The co-ordinates of these points

correspond to the algebraic solution,

Number of points of intersection. One of the important theorems

having to do with the intersections of curves is that attributed to
Bezout. This theorem states that, given a curve of degree m and a
second curve of degree n, the two curves will intersect in mn points
[12, p. 5h]s These points need not be distinct, and some or all of them
may be points added to the plane, cammonly called ideal points of points
at infinity.

The set of points at infinity, called the infinite domain, of a
complex plane conslsts of a single ideal point corresponding to the
value of z, when
for z a complex number. This will provide one ideal point on each of
the two complex planes of the four-space determined by the axes x, y,

u, and v, and the ideal point may be approached by going in any direc-
tion on these planes. On other planes of the space, such as the (x,v)
plane, a single point at infinity is added to the plane for each line

which has a distinct slope. Thus, each set of parallel lines will have
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a point in common. Each line in the space has one and only one ideal

point on it.

Graphical representation. The real graphs of two equations will

indicate the common points when the equations are linear, and for many
equations of higher degree. However, if in the simultaneous solution
of two equations, when at least one of them is of degree two or more,
not all of the solutions are necessarily real, and the complex solutions
do not appear on the real graph.
For instance, if
z =X +1y and w = u + iv,
the graph of the paragbola
W= 22

and of the straight line

W= 32 =1
do not intersect in the real plane. Yet algebraically, they have two

points of intersection, (1 +2i'\/— § =k +21 VE) and <1 '21'\[3_ s ~1 -211/3).

This chapter shows how a graph may be drawn which will demonstrate
intersections which show comblex roots as actual geometric entities.
Consider, as a first example, the two circles
22 + wé = pe
and
(z = a)2+ w2 =12,
where r is real. Algebraically, these equations yield a simultaneous

Lr2 2
solution consisting of the ordered mumber pairs (z,w), ( % , M__g_a_>
and (% , -____,Z__‘M . The circles intersect in two points, which will
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be not real if a2 is greater than Lr2.
In representing graphically the intersection of these two cir-
cles, if
a2 < Lr2,
the intersection points will have y =v = 0. If
a2>lr2,
the intersection points will have y = u = 0. In either situation,
¥y = O. Therefore, a graph which will always exhibit the intersections
may be made in a three-space, using x, u, and v for axes, with y = 0.
The equation of a circle with center at the origin and real
radius r, when. expanded, becomes
(x2 + u2) = (y2 + v3) + (2xy + 2uv)i = r2,
From this it follows that
(x2 + u2) - (y2 + v2) = r? (1)
and
xy +uv = O, (2)
If y is zero then, from (2), u is zero or v is zero. If v is then
zero, from (1),
x2 +u2 = r2,
which is the equation of the real circle in the (x,u) plane. If u is
zZero,
x2 - v2 =12,
which represents an equilateral hyperbola, and appears as such in the
(x,v) plane, but is actually a part of the locus of the circle.

Figure 9 is the graph of
22 + w2 = U,



FIGURE 9

z2+w2-h,y-0
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The curve consists of the real circle in the (x,u) plane which, at the
points (2,0) and (-2,0), undergoes an abrupt right-angle change onto the
(x,v) plane and follows the path of what appears to be a hyperbola. -
These points satisfy the equatiqn of the circle, so the points of thé |

"hyperbola" are actually points of the circle.

Circles with no real points of intersection. Now if the circle

(z - 6)2+w2 =1
is graphed on the same axes, the intersections of the two circles,
although in the (x,v) plane, are seen by Figure 10 to be actual occur-
ences. The imaginary branches of the circles intersect at the points
(3, V5 i) and (3,-Y5 i).

As circles have equations of degree two, reference to Bezout's
Theorem indicates there should be four points of intersection. The two
points not shown will be points at infinity [2, pp. 69-78], and the
graph of the curves indicates, in an intuitive way, these points. If
the asymptotes of the hyperbolic-type supplementarys of the circles in
the (x,v) plane are drawn, they will, by definition, intersect the curve
in an ideal point. Since thé asymptotes of the two circles are parallel,
they also intersect in an ideal point, giving the other two points of

intersection of the circles as points at infinity.

A graph in four variables., While there are many instances of the

type just given of the intersections of two curves where the said inter=-
sections occur in planes determined by two of the four axes, these

remain special cases of a much more general problem. A more elaborate



FIGURE 10

THE INTERSECTION QF
z2+w2-hAND(z-6)2+w2-h
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graph must be devised to show intersections of the type represented by
the problem given at the opening of this chapter. For the solution of
this problem, all four of the variables x, y, u, and v must be repre-
sented simultaneously.

This can be accomplished by a partial departure from the repre-
sentation of points in a strictly Cartesian co-ordinate system. The
variables x, y, and u might be represented in a three-axis system with
v represented by graphing x, ¥y, and u for various values of v. There
are at least two ways this can be done. While both are essentially the
same, they are separated here for purposes of application, the first
being a more complete representation, with the second probably easier to
visualize in the context of the present problem.

Figure 11 depicts the graph of

W o= 2%
for discreet values of v where v attains the values zero, one-half,
one, and two. Only values of u greater than zero are shown. The points
of the curve lie on the surfaces v = 2xy, which cut the (x,y) plane in
the family of hyperbolas
v =2y, u=0,
here called a path equation. As x and y vary on a path v, values of u
are obtained from
u = x2-y2,
here called a length equation. These equations are obtained from the
expansion of

u+ iv= (x +1iy)2



FIGURE 11

W= 2



yielding

u tiv = x2 - y2 + 2xyi,
producing the path and length equations just given. This graph gives
an idea of what happens between, and beyond, those values of v shown'b§
interpolation and extrapolation, and, indeed, indicates a surface with
values of v as parameters, producing curves on the surface. By graphing
a function from different vantage points, or with one of the other vari-
ables as the parameter, a better idea of how the function behaves may
sometimes be obtained, although any one graph is complete.

The graph of the linear function

w=12 -1
is shown in Figure 12 as a plane in three-space with v as a parameter.
Now if the graph of Figure 12 were superimposed on that of Figure 11,
the intersections of the surfaces at the points where the parameters
are equal would give the simultaneous solutiop. However, the graphs
then become rather difficult to visualize. A somewhat different ap-~
proach might be adopted at this point.

Instead of illustrating intersections by means of a graph attempt-
ing to show continuous values of all four variables, a series of graphs,
each representing a single value of one variable graphed against the
other three variables may be used. Thus the graph of

w =22
is shown in Figure 13 for values of v of O, 1, and 2. Part (a) shows
the curve for v = 0, with the u > O part that part of the parabola

lying in the (x,u) plane, the plane of reals. The u < O part of the
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FIGURE 12
w=132-1




FIGURE 13
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FIGURE 14

THE, INTERSECTION OF w = 22 AND w = z - 1
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for instance, gives
(w2 + x2) = (v2+ y2) = r
and
uv + xy = O.
Here, no apparent path equations in any plane are present, nor do length
equations appear. Even more sophisticated procedures must be developed
for these. Before turning to this more general type of problem, it is

first shown when the procedures developed above may be applied.

Types of functions to be graphed. The function

w=f(z) (1)
can be written in the form
u+tiv= 9(x,y) + iV (x,7). (2)
From the definition of equality of complex numbers, it follows that

¢ (x,v) (3)

u

and

v=y (x,7). (L)
Thus, for any given value Qi‘ v, a definite relationship exists between
x and y, and from each of these, a value for u. Hence, (L) may serve as
a path equation in the (x,y) plane for each value of v, with (3) as a
length equation. Therefore any explicit function of the form (1), from
which functions of the form (3) and (L) may be obtained, can be graphed
in the manner described.

For implicit functions of the form
£(w,2) = 0, (1)

there are some, procedures which can be used that will provide a graph
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of the function. For this, resolve the function into its component
parts,

O(x,y,u,v) + iy (x,y,u,v) = 0,

from which

o(x,y,u,v) =0 (2)
and
Y (x,y,u,v) = 0 (3)
are obtained. Define any convenient function
y=M(x). ’ (L)

The type of function defined may be a straight line, circle, hyperbola,
or some other curve, in the (x,v) plane, suggested or dictated by the
original function. Using this defined function as a path in the (x,y)
plane, £ then serves as an operator, transforming (L) in the (ax,y)
plane into some locus

N (u,v) =0 (5)
in the (u,v) plane. The function (5) is obtained by substituting (L)
into (2) and (3) and eliminating x from these, if possible.

Since values of x and y do not appear in the final result, graphs
of both (L4) in the (x,y) plane and (5) in the (u,v) plane need to be
made with occasional indications as to where certain points of (L) map
to (5) [5, p. La8].

Because of the wide variety of functions possible which may not
te satisfactorily served by the methods of this chapter, the next step
in the progress to more sophisticated problems is the theory of complex

functions where maps of regions in the domain plane are studied in some
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detail. Most textbooks on complex variables or complex functions will
treat this matter. Churchill, for instance, gives an appendix showing
the transformations of some of the more widely used functions

[l’ ppo 28)4-291].

Conclusion. This chapter shows a method for revresenting graphi-
cally the intersection of two curves when the points of intersection are
complex as well as When they are real. In order to accomplish this in .
the general sense, each point of a curve must, in some way, exhibit the
relation of the four variables, x, y, u, and v. Hence, some procedures
that may be used for making such a representation are given. The graphs
of explicit functions are found to be a special case of the more general
graphs with implicit functions. The situation where all intersections
of two curves occur in the (x,u,v) space with y = O is a special, al-
though very useful, case of explicit function. While many functions do
not lend themselves nicely to similtaneous solutions in the present
context, it has been demonstrated that such a process is often possible,

and not particularly difficult for the simpler functions.



CHAPTER V

THE CIRCLE

Introduction. This chapter is concerned primarily with appli§a;
tions of graphs to problems involving circles. The specific problems
considered are the tangent to a circle from a point, the representation
of circles with imaginary radius, the representation of circles with
radius zero, the radical axis to two circles, and the relationship

existing between the circular (trigonometric) functions and the hyper-

bolic functions.

Tangent to a2 circle. In the study of elementary analytic geom-

etry, there are a number of things of importance concerning the tangent
to a curve, and especially to a circle, such as the equation of the
tangent line at a point on the circle and the length of the tangent from
a point. TUsually the tangent to a circle is stated to have been drawn
from a point outside the circle. It is of interest here to represent
the tangent to a circle from a real point, with no restrictions on where
that point is.

Consider the relation

22 + we = 2,

When z and w are real, this is the equation of a circle of radius r and
with center at the origine It is here still considered as a circle when
2=X+ iy and w = u + iv. Since the tangents desired are from real
points, y = 0. Without loss of generality, due to the symmetry of the

circle, only tangents‘from the points on the x-axis will be considered.
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If the abscissa of a point on the circle is x, the point will have an
ordinate w= + ré - x2, When x2 < r2, then w = u; otherwise w = iv.
Therefore, the graph in three dimensions of x, u, and v, with y = O,
will be used [5, p. 415].

Figure 15 shows the circle

22 + Wl = 9, y =0,
with the part of the locus that falls in the (x,u) plane represented by
x2 +u2 =9
and the supplementary in the (x,v) plane represented by
x2 - ve =9,

For any point (h,0) on the (x,u) plane such that h? > 9, the tangent
from the point to the circle lies in the (x,u) plane. This is the usual
tangent to a circle from a point outside the circle. When 0< h2 <9,
the point lying within the real circle, the tangent passes out of the
(x,u) plane into the (x,v) plane, and is tangent to one of the hyper-
bolic branches of the supplementary, the tangents being drawn to the
"right" branch if h >0 and to the "left" branch if h < 0. For instance,
the line from the pcint (1.8,0) tangent to the circle is found to be
tangent at the point (5,k4) in the (x,v) plane, that is, the point (z,w)=
(5,L1).

Three special points have need to be considered individually.
These are the points (h,0) on the (x,u) plane with h= 4r, where r is
the radius of the circle; and the center of the circle. If the point is
on the (x,u) plane with h= +r, then lines lying in both the (x,u) and

the (x,v) planes perpendicular to the x-axis at the points designated



FIGURE 15

TANGENT LINE TO 22 + w® = 9 at (z, w) = (5, Li)
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will be tangent to the curve. The equations

zZ= 4T
represent two planes whose intersections with the (x,u) and (x,v) planes
are the tangents to the real curve and the supplementary, respectivélf.
This leaves the point (0,0), the center of the circle, from which it is
desired to draw a tangent to the circle. It will be remembered that
the supplementary of the circle, lying in the (x,v) plane, has the
equation

x2 - y2 = r2
which has the form of an equilateral hyperbola whose asymptotes pass
through the origin. Therefore these asymptotes may be considered as
tangents to the circle, intersecting the circle at the ideal points of
the asymptotes.

The equation of a tangent line to a circle of radius r at a point

(a,b) on the circle z2 + wé = r? is

az + btw = r2,
This holds true whether or not the point (a,b) is on the real plane. As
an illustration, consider the point (5,Li) on the circle. Then the
equation of the tangent line is

5z + lwi =9,
When expanded, this gives

'5x = v =9 and Sy + lu = 0,

Since y = 0 in’the cross section being used here, then u = O and only
the first of tﬁese‘lines lies in the (x,u,v) space. It is, indeed, the
tangent to the circle, lying in the (x,v) plane, and passing through the

x-axis at x = 1.8 as shown in Figure 15.



Power of a point. Given a circle

z2 + wl = r2

and a point (h,k), the power of the point is defined to be t where

t2 = n? 4 k2 - £2,
If the point (h,k) is outside the circle, t is real and is the length
of a tangent from the point to the circle, If the point is on the
circle, the power of the point is zero. If the point lies within the
circle, t is imaginary. Although when t is imaginary, it is not a
distance, there are certain observations related to the idea of a dis-
tance, that can be made. OSuppose this equation is applied to a point
on the x-axis such that O<x2<r2, Then t2= x° - r2, Now since

0<|x2 - r2l< r2,
t will always be an imaginary number with coefficient less than the
measure of the radius of the circle. Then the absolute value of the
power of a point within the circle, but not at the center, is less than
the radius of the circle since |ir| = r. Applying the formula for the
power of a point to the center of the circle, it is found that t = ir,

and hence |tl = r.

The locus definition of a circle. The circle is often defined as

the locus of points a given distance from a given point. If z and w are
real, then the distance d between points (z1,w;) and (zo,wp) is deter-
mined by the equation

-d = ’\/(zg - 27)2 4 (wp - wy)2,

In the more general situation under consideration here where z and w are

not both real, then d is not necessarily a distance. Again, though,
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certain observations can be made in comparing this to the idea of a
distance. If the value of d is computed for itwo points when one is the
center of a circle and the other is on the supplementary, then d is.
equal to the radius of the circle. For instance, the point (5,Li) is |
on the supplementary of the circle of Figure 15, page 52, whose radius

is 3. Then

a= V(5 -0)2+ (i - 0)2 =3,

Certain difficulties arise in trying to consider the relation d
as being a distance metric in the present context. Consider the line of
slope i, that is, the line whose co-ordinates (z,w) have the form (a,ai)
wWhere a is real. Lines of this type are sometimes defined to be iso-
tropic lines |:8, p. 121]. Using d as a distance relation, the distance

between two points on this line, say (a,ai) and (b,bi), a# b, is

d= Vb -a2a)2+ (bi-ai)2 =0,
Thus the distance between any two finite points on such a line is zero.
Now one of the conditions for a metric, defined on a space, is that if
the distance between two points is zero, the points are the same. As
this is not true in this case, the relation d camnnot be a distance
metric. Still, 4t is interesting to see the results of comparing the

relation to the idea of the distance between two points.

Circles with imaginary radius. Consider the relation

22 + w2 = a, a<O.
If the y = O cross=-section is taken as before, then the expansion of
the relation gives

x24+ul= a (1)
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x2 - v2 = a, (2)
Now (1) is not possible since a is negative and x and u are real.
Therefore (2) is the only possible locus. This is in the form of a '_ |
hyperbola in the (x,v) plane conjugate to the hyperbolic supplementary
of the circle of radius r= -a, as shown in previous representations.
There is no trage at all in the real plane. It is a curve existing only

in the complex regionse.

Circles with zero radius. Consider the circle

22 + w2 = 0,
This is normally thought of as a point at the origin. Resolving the
function into its real and imaginary parts, and taking the same cross-
section as before, it is found that

x2 - v2 = 0,
This is a pair of intersecting straight lines in the (x,v) plane, that
is, the lines

X =v=0and x+ v =0,

These lines intersect the (x,u) plane in the point (0,0), the only point

of the curve existing in the real plane.

The radical axis of two circles. The radical axis of two inter-

secting circles is sametimes defined as the common secant of the two
circles., If the two circles do not intersect in the real plane, they
still have a radical axis, for the supplementarys will intersect in

complex points. (Intersections in the infinite domain are not
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considered here.) Therefore the word "intersecting! in the definition
is unnecessary, and the radical axis of two circles is the common secant
of the two circles, Another definition sometimes given is, the radical |
axis of two circles is the locus of points such that the lengiths of ﬁhe
tangents from it to the two circles are equal., The two definitions are
equivalent, and either one requires the use of the supplementary in
order to define what is intended. If the definition is taken as the
common secant of the two circles, and if the real parts of the circles
do not intersect, then the common secant joins the points of intersec-
tion in the supplementarys. The common secant line in the (x,v) plane
is the intersection of the (x,v) plane with a plane with an equation of
the form x = k. The intersection of the plane x = k with the (x,u)
plane will be the line which is the real radical axis to the two cir-
cles. Thus, the real radical axis is a real line perpendicular to the
x-axis,‘and passing between the real circles,

' If the definition is taken as the locus of points such that the
lengths of the tangents to the two circles are equal, then supplementarys
to the circles are still required. Otherwise, if the two circles inter-
sect, there are points of the common secant lying within the circles.

These points would not then have tanpgents to the circles.

Other conic sections. The procedures described here for the

circle may by extended, and similar applications made, to conic sections
other than the circle. The graph of the'parabola has already been con-
sidered. The ellipse has a supplementary in the form of a hyperbola,

but not necessarily equilateral. The hyperbola will have a
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supplementary in the form of an ellipse. If the hyperbola is equilat-
eral, the ellipse will be a circle. Thus when looking at the graphs of
an ellipse and a hyperbola, strict attention must be paid to the iden=-
tiltles of the axes in order to identify the particular relation thatihés

been graphed.

The circular and hyperbolic functions. Figure 16 is the graph of

the real part of the unit circle

22 + w2 =1 (1)
and the real part of the unit equilateral hyperbola

22 =Wl =1, (2)
The circular and hyperbolic trigonometric functions are often identified
with lines on the (x,u) plane., If 6 is an angle with vertex at the
center of the circle, initial side on the x-axis, and terminal side
intersecting the circle at A and the hyperbola at C, with lines drawn
from A and C perpendicular to the x-axis, meeting the x-axis at B and
D, resp.ectively, then

AB and sinh ©

Il
8

sin ©
Likewise,
cos ©® = 0B and cosh © = 0D,

Pigure 17 is the graph of the y = O cross-section of the suppie-
mentarys of (1) and (2), with the supplementary of (1) appearing as a
hyperbola in the (x,v) plane and the supplementary of (2) appearing as
a circle, also in the (x,v) plane.

On a camplex plane, multiplication of a number by i is of‘ten

depicted as a positive rotation of one right angle of a vector drawn
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FIGURE 16

z2+w2-1,y-0,v-0

22-w2=1,y-0,v-0



FIGURE 17

z2+w2-1,y-0,u-0

22—H2-1,Y'0,11'0
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from the origin to the point representing the number, locating a new
point corresponding to the product. In the three-space being considered
here, multiplication by i will be represented as a positive rotation of
one right angle of the space around the x-axise. Thus, i8 will be thek
angle ©' in the (x,v) plane, with the terminal side of the angle cutting
the hyperbola and the circle in the points A' and C', respectively.

This interpretation of multiplication results in the equalities

i(4B) = A'B, i(CD) = C'D

]

i(0B) = 0B, i(0OD) = 0D,
and
i(e) = e,

Interpreting the circular and hyperbolic relations as before,
but this time in the (x,v) plane in Figure 17, being careful as to which
points belong to the circle and which points beleng to the hyperbola,

sin ! = C'D, cos €' = 0D,

sinh 8' = A'B, and cosh ©' = OB.
The relation between the circular and hyperbolic functions, usually
proved in terms of exponentials, or other abstract definitions, or
derivations from definitions, of the functions, are here interpreted
graphically. For sin i6 = sin &' = C'D = i(CD) = i(sinh 6). The other

relations are similarly obtained and are summarized here., They are

]

sin 16 = i sinh 6, sinh i6 = 1 sin ©

cos i8 = cos 8, and cosh i€ = cos 8.

Concluding Remarks. This chapter has presented same of the uses

of graphs of circles using complex nunfbers as variables for w while
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z is real in the circle 22 + w2 = r?, Tt has been shown that many of
the vroblems encountered in elementary work that normally are left with-
out a suitable representation geometrically can be so represented. -
These usually concern the intersections of lines meeting at points nét‘.
on the real plane. Also, it has been shown that same definitions made
for real curves may be more general than is usually supposed. There has
also been shown a way of graphing certain equations which, in the real
plane, have no points whatsoever,

As a last observation, consider two conjugate hyperbolas, such as

z2 w2

22 "2t
and

w2 ”2

— - = L

b2 a2 ?

a2 and b real. These hyperbolas, while being separate in the real plane,
share certain things in that plane, They have the same centers and
coﬂmon asymptotes, and they exchange transverse and conjugate axes. In
the y = O cross-section of the graphs for z and w complex, the supple-
mentarys of the two hyperbolas are identical, occupying the same locus.
This locus, lying in the (x,v) plane, is the ellipse

2 2
E 1" z = 1'
a2 b2
From this emerges a central theme of an even stronger relation among
the conic sections in the merging of the circle and ellipse with the

hyperbola than can be brought out through the study of their real parts

alone.



CHAPTER VI
DERIVATIVES

In the study of real functions, certain geometrical meanings éré
placed on the deri%ative of a function. If the derivative exists at a
point, then it is known that the curve is continuous at that point.
The value of the derivative is found to be the slope of the tangent
line. When zero, a maximum point, a minimum point, or a point of inflec-
tion is indicated, To determine which of these is the case, the second
derivative is used. If it is pesitive, it indicates a positive change
of slope of the tangent line, that is, a minimum point, and if nega-
tive a maximum peoint is indicated. The concern of this chapter is the
geometrical interpretation that can be made on the derivative when

variables are complexe.

Complex functions of a real variable. A function of the form

w= f(z)

where the domain of z is the real numbers and the range of w is the
complex numbers is defined as a complex function of a real variable.
Some use of such functions has already been made, in those situations
where graphs with y = O were used. The function

w= Ap2 - g2
together with

5w NP2 = g
gives the circle studied in the last chapter, where w = u + iv and

~

z = X + iy, with y= O. Essentially, then, z was considered as a real



variable with w as a complex function of that variable. Before any-
thing can be done with the derivative, it must be made clear just what
a derivative of a complex function is,

Just as was true in the calculus with real variables, the der‘iv‘el-
tive of a complex function w of a real variable x is defined in terms of

limits, with a similar geometrical interpretation. (See Figure 18.)

D, F

Fx,+A%)
£(x14%~£(x)
AX
FIGURE 18

ERIVATIVE OF A COIPLEX FUNCTION OF A REAL VARTIABLE

Given w = £(x), w = u + iv = {(x) + i¥(x), the derivative of w at a
point x; is defined by the following equation.

Dy = }Ez_lxof(xl +ax) = £(x7),

b
X

provided such a limit exists. Resolving this into its component parts,

it is found that

Dyu + iDyv = %1;331;0[43@1 +ax) ~ ¢0x1) +i(\P(x1 +ax) - \P(xl):}
AX AX

which implies the two relations

Dy =Al>?£}: O(xq + A::jc - ¢(x1)
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and

LV = %iﬂ c.,u(xl-r Ax) =¥ (xq) ,
AX

The derivative of a complex function is now reduced to a complex combi-
nation, Dyu + iDyv, of two real derivatives of the real functicns §
andV .,

One geometrical result which follows immediately is that if the
derivative exists and is not zero at a point, then a tangent exists at
that point. Because there does not exist an order on the complex num-
bers, it is not possible for the value of the derivative to indicate
anything that might be meant by an "increasing" or '"decreasing" func-
tion. However, a megning can be attached to the value of the derivative
at a point, for this will be the slope of the curve at that particular
pointe

For instance, consider once more the function

‘ | w= /\/IT—__Z.

The part of the graph of Figure 15, page 52, for which u>0 and v>0 is
the graph of this function for which r = 3. For any value of x such
that O<x?2 <r2, the function is real valued and any meaning attached to
derivatives i‘of real functions applies equally well here. If x2> 12,
the derivative has an imaginary value. An imaginary slope, such as mi,
is here interpreted as the slope of the line lying in the (x,v) plane,
whose slope is m in that plane. In other words, the i in the imaginary
number causes a rotation of one right angle around the x-axis of a line

4
of slope m in the (x,u) plane into the (x,v) plane.
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As an example of the derivative indicating an imaginery slope,
and how this may be represented, consider .'bhe point on the gbove curve
where x = 5. In the function being used, w = u for all x such that’
x2 ¢ 9, and w = iv for all x such that x2 > 9, Obtaining the deriva"bi\‘re
of the function,

Dyw = X .

When x = 5, Dyw = 5i/li, Then the slope of the tangent line at the point
(5,L) in trhe (x,v) plane is 5/li. This is supporited by observation of
the graph of the function, on which the tangent line has been drawm.

The definition of the derivative does not guarantee the existence
of the derivative at any point. Necessary and sufficient conditions for
a derivative to exist will be given later. A tangent is not guaranteed
at points where the derivative is zero because of the possibility of
such special points as cusps and angular points [6, pe 30].

Certain intuitive ideas will usually be expected if a curve is
saild to be smooth; that is, it would not be expected to have any cusps,
angular points, or other "sudden turns." On a closed real interval
X] £ X £ X2, a curve is defined to be smooth if it can be represented
by a function w = f(x) whose derivative is continuous and not zero at
all points on the interval, .Then the idea of smootlmess is another
property of the graph of a function which may be indicated by the deriv-
ative of the function. Again considering the function

w= T2 - %2,
,

with its derivative on any closed interval containing x such tha

x2= r2, it is found that the derivative is not continuous, as there
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does not exist a derivative when x2 = r2, Observing the graph of the
function, in Figure 15, page 52, it is immediately apparent that the
curve is not smooth at those particular points, but rather undergoes a

sudden turn of one right angle out of one plane into another.

Tunction of a complex variable. The definition of the derivative

of a function of a complex variable takes the same form as the defini-
tion of the derivative for functions of other variables. The derivative
Dyw, where w = £(z), at a point zy = X, + iyy, With Az = z = zg, is

defined by the eguation

flzo + az) - £(zg)
Az

| D,w = %2:%
if this 1limit exists.
Three conditions must be satisfied for a function of a complex
variable to be continuous at a point zgy. These are
f(zo) exists,
;_._1)_2, £(z) exists,
and
Lin £(z) = £(z,).
2-)2°
In view of the definition of the derivative of a function of a complex

variable,

Lim (£(zo+ az) = £(z0))

azse AZ

1in Kf(zO + a7) - £(z0) }
Az

= 74m (2ot 4z) - £(25) 1inm az
g'.f,f% - Az 8729

= O.
Then

Ln (£(zo+ az) - £(z0)) = Uin f(zo+ az) - Ln £(z0) = 0.
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Therefore,
lin f(zo + az) = Lin £(z,).
AZ*0 2240
Since Az = z - zg,
Lim £(z) = £(20)e
292,
Thus, if the derivative exists at a point zgy, then the function is
centinuous at that point. The condition of the existence of a deriva-
tive, then, implies the continuilty of the function, which, in turn,

implies that the graph is comnccted.

Relation of the functions v and v. Necessary and sufficient

conditions for the existence of a derivative at a point are important
theorems in the study of complex variables. The condi‘bions are given in
terms of what are called the Cauchy-Riemann, or d'Alembert-Euler, condi-
tions, which are equations in terms of partial derivatives of the real

functions u and ve The equations are

— I st T e —

2U _ »V & U WV
2x Y dY OX

Necessary conditions for a derivative to exist are given in the follow-
ing theorem.

Theorem 1, If the derivative £'(z) of a function f= uw + iv
exists at a point z, then the partial derivatives of the first
order, with respect to x and y, of each of the components u and
v mast exist at that point and satisfy the Cauchy~Riemarmn condi-
‘tionS [1, pc 351.

Sufficient conditions guaranteeing the existence of a derivative
are given in the following theorem.
Theorem 2, . Let u and v be real- and single-valued functions of

x and y which, together with their partial derivatives of the first
order, are continuous at a point (xq,¥o). If those partial
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derivatives satisfy the Cauchy-Riemann conditions at that point,
Xa)

then the derivative £'(zy) of the function f = u + iv exists, where
Z =X+ 1y and zg = Xgo + 1y [l, p. 36].

Proofs of these theorems may be found in most textbooks on com- '
plex variables. Churchill gives a proof of each of them and includes a
relation giving the value of the derivative in terms of partial deriva-

tives of the real functions u and v,

[V
o]

3V -1

o ——

Y '- 157);. [1, PDe 3&-38—_]

Dyuw

e
el 2

+ i

L%
"

The graph of a function in this paper has been made by assuming
four mutually perpendicular axes, or a modification of this, as the
basis of the model of the space the graph occurs in, the axes being
X, ¥, Uy and ve These axes determine six planes. However, there is
nothing in the consideration of these planes to distinguish any of them
as being basically different from any of the others excepnt as this dis=~
tinction has been specified in working with particular problems. The
planes do have basic differences., The (x,y) plane and the (u,v) plane
are coﬁplex pldnes in which a point on one of these planes represents a
complex mumber, while a point on the (x,u) plané represents an ordered
pair of rezl numbers. On other planes, such as the (x,v) plane, a point
represents an ordered pair of numbers, the first real and the second
imaginary, while on the (.‘/‘,V) plane, a point represents an ordered pair
of imaginary numbers. Certain equations among the partial derivatives
of a function whose derivative exists, such as the Cauchy~Riemann con=
ditions, provide some of the basis of the space being wtilized. For
instance, given u as a function of z, and knowing w = £(z) to b a

differentiable function, the corresponding function of v may be found,
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using the Cauchy-Riemann conditions, providing a full knowledge of
w (L, p. ].
As an 1llustrative example, suppose a function in u is knovm

for which the corresponding function of w 1s knowm 10 have a derivative.

Let
W=x3 - 32+ lx? - Ly + 2¢ + 5.
Then
.33_;{}.=3x2-3y2+ 8x+2=§_l3.’;,
v =3x2y - 33 + &xy + 2y s ex), (1)
z—‘;=- by - by = - 22,
and
v = 3x%y + 8xy + n(y). | (2)

Comparing the {mo values of v, it is found that there is no function of
% in (2) not contained in (1). Therefore g(x) = 0. The equation (1)
contains 2y - ¥3 not contained explicitly in (2). Therefore, h(y)=

>y = v3. Then v =3x2y = 33 + 8y + 2y. The function w= u + iv can,
by proper factoring, be found to be

Wa=23 4 Lz2+ 2z +5,

Conclusions. The derivative is found to be very important in
working with graphs. The slope of a curve representing a complex func-
tion of a real variable can be found, and suggestions as to where the
points might be where the graph leaves one plane for anofher are those
points where the derivative i1s zero or does not exist--that is, points

where the curve is not necessarily smooth. It has been shown that a
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curve is connected wherever the derivative of a function representing
that curve exists. Finally, it is suggested that the whole problem of
defining a'space to properly represent the four wvariables here involved
can be founded on certain relations among the partial derivatives of“

those functions whose derivatives existe



CHAPTER VII
CONCLUSTIONS

General conclusions. There is quite a break in continuity for

the student of mathematics in going fram the graphical methods of real
analytic geometry to the conformal mappings of complex functions. The
aporoach taken here helps to avoid this break by beginning with the

simple Cartesian system, and moving step by step through familiar prob-

lems to the transformations of function theory.

Summary. Chapter TIII gave a method for finding the complex roots
of a quadratic equation by the use of a dual plane, where a single plane
i1s considered as having characteristics of both a Cartesian plane repre-
senting ordered number pairs of real nunbers and a Gaussian plane repre-
senting complex numbers. A careful distinction was made as to when the
plane was considered real and when it was considered complex., A gener-
alized method for finding roots of any polynomial in one variable was
then given which is dependent upon the effect the complex zeros of the
polynanial function have on the graph of the function.

After this, the points of the graph were considered as ordered
mumber pairs (z,w) where

z=X+ iy and w=u + iv,
For representing the roots of a polynomial F(z) = O, the graph of
w=F(z), v=0
was made using thé procedure developed carefully and with greaf skill

by Phillips and Beebe in their book, Graphic Algebra |11, pp. 97-156).
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Graphically, this represents a certain three-dimensional cross-section
of the four-space determined by =, ¥y, u, and ve. At certain critical
points the real curve intersects its suoplementary, and the intersec-
tions of either the real curve of its supplementary with the plane w":‘O
gives a point or points in the ccmplex z-plane which correspond to the
roots of the original polynamial equation.

In Chapter IV, the same cross-section, v = O, was used to intro-
duce intersections of curves, and then v was allowed to vary, giving, as
v varies contimuously, a surface in the (x,y,u) three-space. A particu-
lar value of v for each surface passing through a point in the space
must be associlated with that point. This procedure is similar to the
methods given by Sophus Lie, whose wWork was mentioned in Chapter IT, with
the interpretation given there that the points of the space are weighted.
In this way, each point of the surface is assoclated with all four veri-
ables. The points of any particular surface for which v is a constant
then determine a curve on the surface. Any one of the four variables
could serve as parameters on a surface that is the graph of the other
three for various values of the fourth.

The remainder of the thesis was concerned more with the effect on
the value of w with a change in x. Thus, the graph of z real and w
complex, that is, the three-dimensional cross~section with y = O of the
four-space, was taken as a model.

The graph involving the supplementary of a circle, introduced in
Chapter III, and used extensively in Chapter IV, follows from the equa-

tions first obtained by Jsan Poncelet, whose work in this field, and the
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results he obtained, were summarized in Chapter II. It was Poncelet who
first suggested the word "supplementary" for the camplex part of a
curve.

In Chapter VI, the use of partial derivatives of functions whbsé
derivatives exist was used to show the relation which exists between the
funetions u and v, showing that a knowledge of one of these functions

determines the other, and hence determines w.

Questions for further study. There were a number of gquestions

encountered in the study of this problem that could lead to further
investigation. Some of these are sumarized here.

In working with the four-space system required for the complete
representation of an equation involving two complex variables, the
four axes x, ¥y, u, and v are used, or usually here, three of these
four. From the viewpoint of a graph in four-space (or three-space)
points on a plane such as that determined by the x and v axes seem to
obey the usual Euclidean measure theory. But when it is remembered
that the v-axis represents the imaginary part of the (usually) depen-
dent variable w, this measure, when the points are considered in thedir
larger context, does not necessarily hold., As was pointed out at the
time, any two points on a line of slope i or -~i have a distance of
zero between them. Further investigation shows that, again assuming
Euclidean measures, the distance from such a line to any point on the
plane is always undefined, and that the line fails to make an angle
with any other line. A study of the geametry of such a space should

prove worthwhile.
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A study of the graphs of equations in which the coefficients may
be complex instead of restricting them to being real would also be of
intereste.
In working with the wnit circle in Chapter V;, the equation of
the circle ‘
22 ¢+ W= 1
was resolved into its component parts,
(x2 + u2) = (2 + v2) + 2i(xy + uv) =1,
which gives
(x2 +12) = (y2+ v2) =1
and
Xy + uv = 0.

If y = 0, then u= 0 or v = 0, giving the two parts of the circle

graphed,
x2+ul=1
and
x2 - v2 =1,
Now if x = O, then
w2 - y2=1 ' (1)
and
v2 ¢ v2 = -1, (2)

The graph of (1) is a hyperbola in the (u,y) plane with the
u-axis as a transverse axis. Up to this point, the graph of (2) does
not exist, as y and v were defined as real., The case might be consid-

"ered where y and v are not real, producing a number of the form a + bi
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where a and b are not necessarily real. RNumbers of this type have the
complication that, in ©The equation

a+bli=c+ di,
it is not necessarily true that
a=cand b=d.
A study of a number system of this kind, which is one approach to the

study of quaternions, might be very interesting.
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