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CHAPTER I
INTRODUCTION

The present thesis centers around a theorem (called
"Helly's theorem") which sets forth conditions under which
the intersection of a family of convex sets cannot be empty.
Historically, this theorem was discovered by Helly in 1913
and communicated to Radon. It was first published in 1921
by Radon (using Radon's theoremn), foilowed by a proofl of
K8nig in 1922, and Helly's own proof appeared in 1923. Many
proofs of Helly's theorem are now known. In recent years
vthere has been a steady flow of publications devoted to
extending Helly's theorem, and many of the results have

significant applications in other areas of mathematics.
I. DESIDERATA

It is assumed here that the reader is an advanced
student who has completed some courses in higher mathematics.
Since the general setting is Euclidean n-space, the comple-
tion of a course in finite-dimensional vector spaces 1s
essential, A familiarity with certain fundamental concepts
of topology (continuity, interior, closure, boundary) will_
be very helpful, but genuine topological considerations have

been kept in the background.



There is no easily available account of the present
subject combining simplicity with generaliﬁy, however desir-
able, although Eggleston [2] has made a step in this direc-
tion. DMost of the important literature that was available
for the preparation of this tract, while not intended for
large groups of readers, has becen developed 1in a general
n-dimensional linear space, In particular, Eggleston [2] anc
Danzer-Grinbaum-Klee [1] both treat the subject in BEuclidean
n-space. Valentine [li] has rigorously developed the theory
in a topological linear space (that is, a vector space with a
Hausdorff topology such that the operations of vector addi-
tion and scalar multiplication are considered as continuous
functions in all variables jointly). On the other hand,
the book by Yaglom=-Boltyanskii [5] is a beautiful treatment
dealing with the plane case of convex sets, including a
stimulating presentation of Helly'!s theorem and various
applications of it. The numerous pictures and examples pre-
sented in [5] provide an excellent intuitive background for
the understanding of the basic theory.

The bibliography at the end of this tract is not com-
plete in any sense, but it represents an exhaustive one with
respect to the available sources. The various results tha@A
have been published in the mathematical reviews and Jjournals,

mainly those concerning Helly's theorem, were not available.
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Nevertheless, the primary references cited at the end of this
tract are important standard sources; in fact, each of these
sources 1s referred to in the bibliography of each of the
others, The two main sources used in the preparation of this
report were those of Eggleston [2]and Danzer-Griinbaum-
Klee-[1], forming a basis for the present material; so, many
of the results‘presented here can be found in these two
references with a more detailed account than is given here.
Hadwiger-Debrunner [3] was also a valuable source, and much
of the material presented in Chapter V is based on that

particular text,
II. THE PROBLEM

Statement of the problem. There 1s a close relation-

ship between Helly's theorem on the intersection of convex
sets and the theorems of Caratheodory and Radon on the convex
covers of sets. Linking these two dual aspects of convexity
leads to an illuminating interplay of ideas, and the two
approaches lead to different generalizations and results.

The primary purpose of this inquiry was to (1) to.determine
the interdependence of these three theorems, and (2) to make
a survey of the important applications that have been made-of
these results, particularly that of Helly, with the ultimate

alm being to ascertain the general significance of Helly's



theorem., To facilitate this profound objective, some
generalizations and variants, or Helly-type theorems, are
also presented, lllustrating the diversity and utility of
Helly's theorem as well as some of the chief methods used in

the theory.

Importance of the study. Convexity is a quite active

field today. In addition to being important for geometry, it
provides efficilent methods for the study of mathematics. In
particular, it has a stimulating geometric and intuitive
appeal when restricted to the plane. The importance of the
study of convex sets is evidenced by the use 1in the Russian
schools of several textbooks on convex bodies (see Yaglom-
Boltyanskii [5]). Helly's theorem is especially character-
istic of the subject, providing an excellent introduction to
the theory. In view of the popularity of this theorem and
its numerous applications in various other parts of mathe-
matics, it seemed worthwhile to pursue the subject and ac-
guire an appreciation of its true importance. This was one
of the main objectives throughout the preparation of this

report}
III. ORGANIZATION OF THE THESIS

The contents of this fhesis is divided somewhat

naturally into six chapters. Chapter II contains some defi-



nitions, certain fundamental theorems, and the introduction
to some unusual concepts necessary for the understanding of
the ensuing material, Chapters III and IV comprise the main
results of this paper. In Chapter III the inter-relationship
existing between the theorems of Helly, Caratheodory, and
Radon 1s deduced. This "dual" aspect of convexity is the
most interesting and unusual result presented in this thesis.
Applications of Helly's theorem and related results are fully
investigated in Chapter IV. Having developed the main
results in these two chapters, Chapter V continues with some
generalizations of Helly's theorem, and a selected group of
"Helly-type theorems" are presented, all of which shed
additional light on the heart of the matter. Finally, the
main findings of the paper are summarized in the last chap-
ter, Chapter VI, with some concluding remarks, and some other

interesting related problems are indicated.



CHAPTER II
DEFINITIONS OF TERMS USED AND BASIC CONCEPTS

The containing space is taken to be n~dimensional real
Euclidean space (with its usual metric) and is denoted by R™.
It is convenient to regard points in RR as vectors, and
vector additlon and scalar multip;ication are defined coord-
inatewise, The inner product is important. The distance
between points x and y in R is d(x,y) = |x = y|. The symbol
g is used for the empty set, and O is used for the real num-

ber zero as well as for the origin of RA,
I. CONVEXITY

DEFINITION 2.1. The line determined by two points x
and y of R® is the set of all points of the form
ax + (1 = a)y (a real).

The closed segment [xy] joining points x and y of RP is the

set of all points of the form
ax + (1 - a)y (0<a<1),

while'the open segment (xy) is the set of all points of the

form
ax + (1 - &)y A (0<a<1),
Where nothing else is said, the closed segment [xy]
will be referred to as, simply, the segment xy. This should

cause no confusion.
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DEFINITION 2.2. A subset X of R™ is called convex if

and only if the line segment xy joining any two points x and

¥y in X is contained in X. A closed and bounded convex subset
of RD with nonempty interior (relative to RR) is called a

convex body. A convex figure is a convex set in the plane.

The simplest examples of convex sets are the empty set,
a single point, a segment, a triangle, the whole space, half-
planes, lines, rays, and strips between parallel lines.

DEFINITION 2.3, If 'x1, ..+ 5 X3 are k points of R©,
then each point x of the form

X = aqXq *oees Foapx, (2320, aq + o0e +oa = 1)

is called a convex combination of the k points Xqs eee 5 Xpeo

Frequently it is more convenient to use a more general
form of the convexity condition.

THEOREM 2.4, If X is a convex set and if Xy, «e. , X
are k points of X, then every convex combination of xq, ... ,
X also belongs to X.

PROOF. It is trivially true for k = 1. If k = 2, the
theorem is just the definition that X is convex. Assume
inductively that it is true for k = m and consider a point of

the form

X = aqXy *oeee ¥ oapXp ¥ ofpiqXpyq (8320, ag e +oagq= ).

-

If a,.q =1, then X = xp,q belongs to X. Suppose ayiq <L1.

Let ¢ = a4 + o0 + 8, =1 - a,,4>0. Then



x = t((ag/t)xy + oou + (8, /0)%,) + & 1% 4y
= (1 = auq) ((ay/8)%, + wou * (& /8)%) + & 4%, e
Let z = (aq/t)x) + ... + (a,/t)x,;. Then

x= (0 = epq)z + apiXne .

By hypothesis, the point z belongs to X. Since X i1s convex
and contains both z and Xy+1s 1t follows that 1t contains x.
Thus the theorem is true when k = m+1, hence true for all k.
This completes the proof,

Since the closure and the interior of a convex set are
also convex, the properties of general convex sets can
usually be inferred from those of closed convex sets or from
those of open convex sets; for this réason the material in
this report is restricted generally to closed sets. The
closure, interior, and boundary of a convex set are defined
in terms of spherical neighborhoods.

DEFINITION 2.5. The spherical neighborhood (or simply

the neighborhood) of the point p with radius r is the set

S(p,r) = {x : x€R1, d(p,x)<rt.

The closed spherical neighborhood (or closed neighborhood) of

the point p with radius r is the set
S(p,r) = {x : x €R?, d(p,x)<€r}.
If the points are restricted to lie in the plane, then
the neighborhood S(p,r) is called an open disk, while S(p,r)

is called a closed disk. In n-space (nx=3) S(p,r) is called




an open n-ball and S(p,r) is called a closed n-ball. The

terms open cell and closed cell (in RB) are also used.

THEOREM 2.6, Let X be a convex set with a nonempty
interior, denoted by int X, and let x and y be two points of
X, where x belongs to int X. Then every point of the segment
Xy, except possibly y, is an interior point of X.

- PROOF. Refer to Figure 1. Let z be any point of the
segment xy different from y. Then z = sx + (1 - s)y, where
0<s <1 (since z # y). Since x éint X, there exists r>0
such that S(x,r) CX. It remains to show S(z,sr){X, If
pé€S(z,sr), i.e, if

[p - z| p - (sx = (1 = s)y)

o + (s = 1)y = sx|< s,

then [(1/s)p + (s=1/s)y - x| <r. Hence the point

p! (1/s)p + (s=-1/8)y
is contained in S(x,r). Since p- = sp! + (1-s)y, p is on the

segment p'y CX. This completes the proof,

FIGURE 1

THE INTERIOR OF A CONVEX SET IS CONVEX
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COROLLARY 2.7. The set of interior points of a con-
vex set is convex,
COROLLARY 2,8, Every half-line issuing from an
interior point of a bounded convex set X contains one and

only one boundary point of X.
II. CONVEXITY AND ITS RELATION TO AFFINE GEOMETRY

Frequently convexity is regarded as a property of
affine geometry, which is the study of properties invariant
under the affine group. The affine group consists of the
transformations A which carry a point x into the point

| A(x) = T(x) + 1,
where u 1s a fixed vector and T a non-singular linear trans-
formation. When considering properties preserved under the
affine group of transformations, vector spaces are usually
referred to as affine spaces.

A non-singular affine transformation carries segments
into segments, so that a convex set is transformed into
another convex set; that is, convexity is invariant under the
affiné group.

- DEFINITION 2.9. The m + 1 points x4, .;. » Xp4+q are

called affinely independent if the m vectors Xy = Xg5 eee s

Xp+1 - X4 are linearly independent; i.e. if

v as(xo - X1) *T eo0e t+ am+1(xm+1 - x1) =0,
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then 8.2 = ese = am+1 = 0,
Or equivalently, if
81X * agXp * eee *oapgiiXmeq = 0,
a.1 +a2+.oo +&fﬂ+1 =O’
then Bp T 8) = ees =B, 0= Oe
A non-singular affine transformation carries affine
independent points into affine independent points, for
DEFINITION 2.10. Givenm + 1 points X4, «.. , K+
in R? and m + 1 real numbers 81s ees 5 8p.q such that
8 * eee * By = 15 a centrold of the points X1s eee 5 X9
is a point x of the form
= 8gXy % e T 8Tt
THEOREM 2.11. The m + 1 points Xy eee 5 X, 4 8T6
affinely independent if and only if every point x in R® CRP
has a unique representation as a centroid of Xis oce 5 Xpiqe
The numbers a4, ... , 8,4 in Definition 2.10 are

called the barycentric coordinates relative to the basis

X1y eoe 5 X This term was introduced by M8bius (see

m+1°
[6, p. 204.]). It has the following basis. A point of RP to

which & real number m, the mass or weight of the point, is
assigned is called a mass point. If mass points x; with

weights my (1 =1, ... , r+1) are given and if a; =

mi/(m1 T eee * mr+1)’ then the point x = a,x, el v A LXK

is, by definition, the center of gravity or centroid of this
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mass distribution., The numbers m; may or may not be positive.
They are arbitrary real numbers such that m1 + g F mr+1¢ O.

It is an interesting fact that the centroid is invar-
iant under an affine transformation, that is,

THEOREM 2.12. An affine transformation carries cen-
troids to centroids with the same weights.

The theorem says this: 1f T is an affine mapping, ¢
the centroid of points x3y with weights aj, then T(c) is the
centroid of the.mass points T(x;) with the same weights aj.
(In other words, the barycentric coordinates of a point are
unchanged under an affine transformation.) For a more

detalled discussion of affine geometry and proofs of the

gbove results, see Birkhoff-MacLane [7, DPD. 287-294].
ITI. CONVEX COVERS; SIMPLEXES; CONVEX POLYTOPES

The most basic intersection property of convex sets is
the following.

THEOREM 2.13. The intersection of any collection of
convex sets is a convex set, although it may be empty.

Given any set X, there can be associated with X a con-

vex set C(X) called the convex cover, or convex hull, of X,

(Since the term "hull" is somewhat misleading, the term

"sover" will be used throughout the subsequent discussion.)

DEFINITION 2.1k, The convex cover C(X) of a set X in
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RP is the intersection of all convex sets in R® containing X.
Alternatively, it is the smallest convex set that contains X.

The following is trivial but fundamental.

THEOREM 2.15. Let X be a subset of R®. Then X = C(X)
if and only if X 1s convex.

If X4, «ee , X 1s a finite collection of sets, the
convex cover of their union is denoted by C(X;, ... » X )e

DEFINITION 2,16. The diameter of a set X, denoted by
diam X, is the least upper bound of the distances between two
arbltrary points of the set X.

The following i1s important for later considerations,
and so a proof is given here,

THEOREM 2.17. The diameter of the convex cover C(X)
of a set X is equal to the diameter of X,

PROOF. Since XCC(X), diam X<diam C(X). It remains
to show that diam C(X) €diam X. It suffices to show that if
d(x,y) <r for any pair of points x, y of X, then d(x:¥,y*)<r
for any pair of points x;I?, vy of C(X)e Since d(x,y)<r for
all y¢ X, XCS(x,r). Since S(x,r) is convex, it follows that
C(X) €s(x,r). Thus x% €S(x,r) for all x € X. Hence x €S(xi,r),
i.e. XCS(x%,r). Hence C(X)CS(x¥%,r)., This implies that
d(x#,y%*) <r and diam C(X) £diam X. This proves the theorem.

DEFINITION 2.18. ©Let X and Y be subsets of R®., Then,
for some fixed y €R}, the set X + y = {x +y : X €X} is
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called a translate of X and, for some real number a, the set

aX = {ax : x€¢X} is called a scalar multiplé of X. Also,

X+Y={x+y :x€X, yeY}.

DEFINITION 2.19. A flat, a linear manifold, or an
affine subspace, is a translate of a linear subspace of RT,
The dimension of a flat is the dimension of the corresponding
linear subspace.,

For example, a flat of dimension 1 1s called a line
and a plane is a flat of dimension 2.

DEFINITION 2,20, The convex cover S of a finite set
of k + 1 points Xq, ... , X4q in R* is called a k-dimen-
éional simplex, or k-simplex, if the flat of minimal dimen-
sion containing S has dimension k. The points x; (i =1,

2, ees s k+1) are called vertices. The k-simplex is regular
if each two of its vertices determine the same distance,

Segments are 1-simplexes., Triangles are 2-simplexes,
while the flat of minimal dimension contalning a triangle is
a plane (of dimension 2)., In particular, an equilateral
triangle is a regular 2-simplex. Tetrahedrons in space are
3-gimplexes., The following theorem is of interest and
follows immediately from Theorem 2,17,

THEOREM 2.21., The diameter of a simplex is equal to_
the maximum of the distances between its vertices,

DEFINITION 2,22, A convex polytope is a set which is
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the convex cover of a finite number of points.
THEOREM 2.23. The convex cover.of the points x4,
Xpy see 5 X, i1s identical with the set of all convex combin=-
ations of X1y eve 5 Xy
In other words, the convex cover of the points x1,
Koy oo 5 Xy consists of the centroids of all possible non-
negative weights located at the points X1y eoe 5 Xpe In
particular, if the points Xqs eee 5 X are affinely indepen=-
dent, that 1s, are vertices of a (k-1)-simplex, then the
convex cover of the set consists of all the points of
RE=1 CRD whose barycentric coordinates with respect to the
basis are non-negative.
PROOF. Denote the set of all convex combinations of
X1y eee 5 Xy by K. The set K is convex, For suppose x €K
and yéK'where
X = 81Xy *oeee t o8 X,
Y = byXgy +oees + DXy
Let z €xy, i.e.,
z=8x + (1 =-8)y (0<s<1).
Then |
Z2 = sa;x; +t .. +tosax * (1 = 8)04xy +oees (1 - 8)DX
= (sa; + (1 = 8)by)x; + ouu + (83, + (1 - 8)bL )X N
Since the coefficients sas + (1 - s)bi are non-negative and

their sum is 1, i.e., z is a convex combination of Xys ovv
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Xy, it follows that z € XK. Thus K is convex. Since K con-
tains each x4 (1 =1, ... , k), it follows that
C(xq, ees »x ) CK. Furthermore, any convex set containing
Xq5 «+s 5 X also contains K by Theorem 2.4, page 7. Thus
KCC(x,l, ess X)), completing the proof,

THEOREM 2.2, Let X be a subset of R®, Then the set
of all finite convex combinations of points of X coincides
with the convex cover C(X).

PROOF. As in the proof of the previous theorem,
denote the set of all finite convex combinations of points of
X by K. Then for any point x of K,

X = 89X + o.e t apXp
for some positive integer k, where Xps eee 5 X are points
of X and a4, .. , 8 are real numbers such that

81 t veo * @ =1 (ay20, 1 = j, sen gk)a
Thus, by Theorem 2,23, x €C(Xq, «vs ,X; )¢ But X7, +.o ,x, €K,
and hence C(xq, ... ,X%. ) CC(X), so x €C(X). It follows that
KCC(X)e DNow it can be verified, as in the proof of the
previous theorem, that K is convex. OClearly X CK. Thus,
since K is convex, it follows that C(X)CK. Hence K = C(X).
This completes the proof,

The set of points in R whose barycentric coordinate_zs-
are positive is a convex open setl.‘. Thus the following

definitions
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DEFINITION 2.25. The interior of the k-simplex
(relative to the flat of minimal dimension'containing it) is
the set of all points x of the form
x = a1x1 —+ oo o + ak+1xk+1,

where 815 eee 5 8L 4 are real numbers such that

a1 + e o0 +ak+1 =1 (ai>0, i=1’ e o e ’k+1)
and X‘l, oo 0 r) xk+‘| are its VerticeS.

IV. SUPPORT HYPERPLANES AND SEPARATION THEOREMS

The exiétence of supporting hyperplanes at certain
_points of a convex set and separating hyperplanes for certain
pairs of convex sets are fundamental results in the theory
of convexity. Separating hyperplanes, in particular, ﬁill
play a fundamental role in the results of this paper.

DEFINITION 2.,26. A hyperplane is an (n-1)—diﬁensional

flat of RW,

Equivalently, a hyperplane is the set of points
z = (x1, ee+ 3X,) which satisfy an equation of the form

CaqXg ... *a X =D,

where not ail the a; are zerc and b is some real numbers
Using the inner product notation, this_means there exists a
nonzero vector a = (a1, oo ,an) and a real number b such _
that the given hyperplane consists of all points x for which

a*x = b, For example, the hyperplanes in R2 are the lines,
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while in R3 they correspond to the planes.

DEFINITION 2.27. A hyperplane divides the space RD

into two open halfspaces consisting of the points x for which

a*'x<b and those for which a*x >b, Similarly, each hyper-

plane determines two closed halfspaces for which a-x <b and

a*x 2b, The hyperplane is said to bound the halfspaces.,

DEFINITION 2,28. The hyperplane a+x = b geparates two
sets Y and 2 in RP if either a.y<b, asz=b or asy>=Db, a+z<b
holds when y€Y, z €Z. The hyperplane aex = b strictly
separates Y and Z if either a.y <b; aez >b or a.y >b, a+z<b
when ye€Y, z €Z,

DEFINITION 2,29, A hyperplane a.x = b 1s said to cut
the convex set Y 1f and only if there exist points ¥y, and ¥y
in Y such that a*yq<b and a-yp,>Db.

DEFINITION 2.30. The dimension of a convex set X is
the largest integer m such that X contains m + 1 points
X1 ...' » K41 which are affinely independent.

In particular, every point x of X is of the form

X = aqXg *oewe *oagiqXneq (8520, 8 F oees Foapq = 1)
‘I'he flat (of dimension m) spanned by Xys ooo v Ky iceay
the set of points x of the form

X = a1K) * oeee FoApqXpeq (87 F eee +oap, = 1), .
is denoted by L(X) and is said to be the flat carried by X,

the flat spanned by X, or the minimal flat containing X,
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DEFINITION 2,31, The relative interior and relative
boundary of a set X are defined to mean the interior and
boundary of X relative to L(X).
Barycentric coordinates are used to prove the follow=-

ing result.

THEOREM 2.32. The relative interior of a convex set
is nonempty.

PROOF. Let Kis eee 5 X 1q Pem + 1 points of X which
form a basis of L(X), i.e., x € L(X) if and only if

X = aXy *oeee oAl X (a1+...+a =1).

m m+1

Consider the point x5 = (x1 + vee + xm+1)/(m+1). Then
clearly x, € L(X), and since xs€X (i =15 eee , m+1), it
follows that X5 € X by Theorem 2.4, page 7. Since each as
(i=1, ¢c¢ " m+1) depends continuously upon the coordinates
of x, there exists a positive number 4 such that if
xéS(xO,d)f]L(X), then each a; 1s positive. Hence each of
these points x belongs to X. Thus x, is a point of the rel-
ative interior of X, completing the proof.

THEOREM 2.33. The hyperplane H cuts the convex set X
if and only 1f the following two conditions hold:

(1) L(X)¢H;

(ii) H intersects the relative interior of X. R

COROLLARY 2.34. If a hyperplane cuts X, it also cuts

the relative interior of X.
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For a proof of Theorem 2,33 and the corollary, see
Eggleston [2, p. 17]. |

The following separation theorem is basic to the sub-

sequent considerations of this paper.

THEOREM 2.35. (Separation Theorem) Suppose X and Y
are two convex sets, Also suppose X # @, int Y # &, and
that XNint ¥ = §. Then there exists a hyperplane H which
gseparates X and Y. (For a proof, see [2]1, [L4].)

DEFINITION 2,36, A hyperplane that intersects the
closure of a convex set X and does not cut X is said to be a
supporting hyperplane of X,

Planes of support play an important role in the theory
of convex sets., The next two theorems concerning supporting
hyperplanes give a characterization of convexity.

THEOREM 2,37. Through every point on the boundary of
a convex set X there passes at least one support hyperplane
of‘X.. |

- THEOREM 2.38. If the closed set X has a nonempty
interior and if through every point of its boundary there
passes a supporting hyperplane to X, then X is convex.

Proof's of the above theorems and related results may
be found in Eggleston [2] and Valentine [L]. Also, see
Yaglom=Boltyanskii [5] for a treatment of the plane case,

This characterization of convexity, when taken as a

definition, forms the basis of the duality theory of convex
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sets. Although it has not been seriously pursued in the
preparation of this little tract, the duality theory pro-
vides efficient machinery'in the study of convexity. In fact,
Valentine [4] says: "Always look at the dual situation . . .
for it may save you some embarfassment. The theory . . . may
be intuitively simpler when viewed in the dual situation."

In [4], the duality theory and the dual cone are employed as
an approach to Helly's theorem.

There is no exact duality in convexity as in the case
of projective geometry, and so there is a choice of dual
spaces available, a "dual space" to R being a space in which
fhe hyperplanes or halfspaces of RP are represented by points
or, possibly, halflines. In fact, "duality" is simply a
correspondence between points, on the one hand, and hyper-
planes on the other. While correspondence is a more modest
term, the use of the term duality gives a sort of "dual
feeling" and is somewhat more natural and geometric. The
idea of duality is important for two main reasons: (1) it
often suggests'alternative proofs of known results, and (2)
it often suggests new results which are "dual" to known
results.

The following theorem, which gives an alternative
definition of a convex polytope (see Definition 2.22, page
1), illustrates the scope of duality in Euclidean space.
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THEOREM 2.39. A bounded nonempty subset of RP is the
intersection of a finite number of closed halfspaces of RV if
and only if it is a convex polytope.

The dual properties are those of being the inter-
section of a finite number of closed halfspaces, on the one
hand, or of being the convex cover of a finite set of points
on the other. This dual aspect of Euclidean space is invest-
igated further in Chapter III,

THEOREM 2.40. If X is a closed convex set and Y is a
convex body which does not intersect X, then there exists a
_Ixyperplahe strictly separating X from Y,

PROOF. Let x, and ¥4 be points of X and Y, respec-
tively, such that

d(x4,y1) = inf { d(x,y) : x€X, y¢ Y}.
Then d(x;,¥4) >0. (It can be shown that such a pair of
points x;, y; always exists, and also that d(x4,y,)>0.) Let
Hy and Hy be the hyperplanes through xq and yq perpendicular
to the segment x4y4. Then the hyperplane Hq through x4 is a
supporting hyperplane of X at X, and the hyperplane H, through
y1 supports Y at y,. For suppose there is a point q € X on
the same side of I-Ll as y,, that is, q and y, are in the sams
open halfspace bounded by Hq. (Refer to Figure 2.) In the
2-flat spanned by'x»l, ¥4, and q drop a perpendicular from y4

to x,q with foot p. If p éx1 d, then V1P <Vq%Xqs contrary to
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assumption, If q € X4p, then y,q <yqxq, also contrary to
assumption., Therefore all of X lies on oné side of Hq; hence
Hy 1s a supporting hyperplane of X. Similarly H, supports Y,
and any hyperplane between H1 and H, strictly separates X

from Y, This completes the proof,

4, H,

FIGURE 2

THE EXISTENCE OF A SEPARATING HYPERPLANE
V. PROJECTIONS AND MAPPINGS

Many theorems proved for convex sefs in R! and R® are
extended to Rn_by induction on the dimension, so that it is
necessary to relate the property in R® to that in ro-1,

There are essentially two ways of doing this: (1) projection
of a convex set from a point, and (2) projection of a convex
set parallel to a fixed;direction,,that is, by orthogonal -

projection. The fifst mapping is described as follows., Let

X be a convex set, and let O be a point not belonging to X.



The union of all halflines joining O with points of X is
called the cone subtended by X at the vertex O. If H is a
hyperplane not containing O and intersecting every halfline
joining O to any point x X in a single unigue point T(x),
then a mapping of the set X into H is defined. This mapping

is called the projection of X onto H from 0. The second type

of mapping is orthogonal projection. Given a convex set X,
the set of all lines parallel to a given line and intersect-
ing the convex set X is a convex set, The intersection of
this convex set of lines with a flat (also convex) perpend-
_icular to the given line is called the.orthogonal projection
of the given'set X onto.the flat. The orthogonal projection
of the set X onto the flat is convex since it is the inter-
‘section of two convex sets.

Sometimes it islconvenient to reduce a problem concern=
ing a closed bounded convex set to one on a closed spherical
neighborhood or closed n-ball. This is done by "central
pro jection" as follows.

% THEOREM 2.47. All n-dimensiondal convex bodies are
ihomeomorphic to a closed n-ball.

‘ PROOF. Let X be an n-dimensional convex body in RP,
:and let BN denote a closed n-ball whose center is any inte?ior
;point Xy of the convex set X. Let x by any point in X
Hdifferent from x5. See Figure 3 for the case n = 2. Denote

by p(x) the boundary point of X lying on the ray XX, by q(x)
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the point in which the ray XpX Iintersects the boundary of
B! (see Corollary 2.8, page 10), and by f(x) the point which
divides the segment xoq(x) in the same ratio as the point x
divides the segment xop(x). Then f i1s a homeomorphism such
that £(X) = B™ with center f(xy) = xy; that is,
f(x)

f(xg)

(x - ko)/(ip(X) - x5l) + x5 if x # x5,

FIGURE 3

A HOMEOMORPHISM

DEFINITION 2.42. A positive homothety is a trans-
formation which, for some fixed y € R® and some real number
8>0, sends x €R® into y + ax. The image of a set X under a

pbsitive homothety is called a homothet of X.



CHAPTER III
THE THEOREMS OF HELLY, CARATHEODORY, AND RADON

I. HELLY'S THEOREM

Prologue. Eduard Helly was born in Vienna on June 1,
188, He received the Ph.D. degree in 1907 at the University
of Vienna. In addition to his famous theorem on the inter-
section of convex sets, which he discovered in 1913, he con-
tributed a number of other important results in mathematics
during the years to follow. In 1938 Helly‘emigrated to
America, with his wife and seven-year-old son, where he waé
on the staff of two Eastern colleges and the Illinois Inst-
itute of Technology. He died in Chicago in 1943. A more
detailed account of Helly's life, obtained directly from his
wife by the authors, is included in Danzer-Griinbaum-
Klee [1, p. 101]. Helly's theorem is formulated as follows.

THEOREM 3.1. (Helly's theorem) Let F be a family of
at least n+1 convex sets in affine n-space R®, and suppose
F is finite or each member of F is compact. ‘Then if each n+1
members of F have a common point, fhere is a point common to
all the members of F.

A vector space satisfying Helly's theorem is essent~
ially one whose dimension is finite (see [2, p. 33]). 1In

particular, Helly's theorem on the intersection of convex



sets is one of the most striking properties of Euclidean
n-space. As an illustration of Helly's theorem, consider
three convex sets in RZ which have a common point (see, e.g.,

Figure li). Helly's theorem says that if a convex set in R@

FIGURE L .

AN ILLUSTRATION OF HELLY'S THEOREM

intersects each of the three shaded areas, which are the
pairwise intersections of the sets, then it must intersect
the supershaded area, which is the intersection of all three
of the given sets. The theorem of Helly is closely related
to the theorems of Caratheodory and ﬁadon on convex covers.

THEOREM 3.2. (Caratheodory's theorem) Let X be a
subset of RB, Then each point of C(X), the convex cover of
X, is a convex combination of n+1 (or fewer) points of X. )

This theorem was first published in 1907. The theorem

of Caratheodory and an extension of it, where it 1s assumed
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that X in RP has at most n components (that is, separated
pieces), are proved in this chapter. A proof of Helly's
theorem by means of Caratheodory's theorem is also given.
Caratheodory's theorem is described by saying that the convex
cover of a given set X is the union of an aggregate of sim-

plexes whose vertices are among the points of X. Let X be

a subset of RZ consisting of, say, three components (as, for
example, in Figure 5). Caratheodory's theorem guarantees that
each point of the convex cover C(X) of X either lies inside

a triangle (2-simplex) whose vertices are points of X, is on‘
a segment‘(1-simplex) whose endpoints are points of X, or is

itself a point (O-simplex) of X.

FIGURE 5

AN ILLUSTRATION OF CARATHEODORY'S THEOREM
THEOREM 3.3. (Radon's theorem) Each set of n+2 or )

more points in R0 can be expressed as the union of two dis-

joint sets whose convex covers have a common point.
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A proof of Helly's theorem, based on Radon's theoren,
was first published by Radon in 1921. Radon's proof of
Helly's theorem is also included in this chapter. As an
example of Radon's theorem, let X be any subset of R con-
sisting of four points (see Figure 6)., Radon's theorem says
thist either one of the points lies in the triangle deter-
mined by the other three, or else the segment joining some
pair of points intersects the segment determined by the other

pair of points.

FIGURE 6
AN ILLUSTRATION OF RADON'S THEOREM

Each of the three theorems of Helly, Caratheodory, and'
Radon can be derived from each of the others (see [1,p. 109]).
Indeed, this is the most astounding fact discovered in this
investigation, It thus appears that these three results on
the intersection of convei sets and the representation of
convex covers are the manifestation of some underlying prop-

erty of Euclidean space, In.particular, this relationship
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i8 closely connected with the concept of duality in the
theory of convexity. The "dual" aspects are the intersection
of convex sets, on the one hand, and the representation of
the convex covers of sets, on the other,

Except for the derivation of Radon's theorem from the
ther two theorems, the equivalence of the three theorems is
3stablished in this chapter. The theorems of Helly and Radon
are also both proved independently and "directly". Some
gpecial cases of Helly's theorem for the line and plane are
first considered, including several different interesting

oroof's for the plane case,

Helly's theorem in the line and plane.

THEOREM 3.4. (Helly's theorem for the line) If each
vair of n segments of a line have a common point, then all
1 segments have a common point.

PROOF. Designate the left endpoints of the given seg-
b

ients by a4, &5, ees , &, and the right endpoints by b

1’ 2’
335 eee s b . Since the segments a;b; and ajbj (L =1, aee

n

13 J =1, ees , n) intersect, it follows that the left end-
oint a; of the first segment cannot be to the right of the
ndpoint bj of the second segment; in other words, none of the
Left endpoints lies to the right of any of the right end- -
oints, Let a denote the left endpéint lying furthest to the

ight, b denote the right endpoint lying furthest to the
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left. If a coincides with b, then a = b is the only point
belonging to all the segments aqbq, asbo, ces 5 anbn‘ If a
lies to the left of b, then the entire segment ab is con-
tained in all the given segments. This completes the proof.

LEMMA 3.5. Let four convex figures be given in the
plane, each three of which have a common point. Then all
four figufes have a common point. |

PROOF. A relaxed form of Radon's theorem is used.
Denote the convex figures by Cq, Cp, CB’ICM' Let au be a
common point of Cis Co» 03, let a3 be a common point of Cq>s
02, q+, and so forth. Since 81y 8p, 83 belong to CM’ the
triangle aq8p2, is contained in CM' Similarly, the triangle
a1a2%+ is contained in CB’ a1a3au in C,, and a2a3au in C10
e Figure 7. According to Radon's theorem, two cases can
arise: (1) either one of the points 815 8p, 83, 8 lies
inside (or on one side) of the triangle formed by the other
hree, or (2) none of the points lies in the triangle formed
)y the other three, that is, the four points are vertices of
L convex quadrilateral. Suppose, for example, in the first
ase, that a4 lies inside the triangle a2a33h° Then a4
elongs to all four figures, The argument remains valid even
f the triangle.is degenerate. Suppose the second case occurs,
hen the intersection of the diagonals of the quadrilateral

elongs to all four triangles under consideration, and hence
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to all four figures C;, Cp, 03, Ch' The other cases are all

gimilar. This completes the proof,

FIGURE 7

THE FOUR FIGURES HAVE A COMMON POINT
(IF EACH THREE HAVE A COMMON POINT)

THEOREM 3.6. (Helly's theorem for the plane) Let n
convex figures be given in the plane, each three of which
have a common point. Then all n figures have a common point.

PROOF. The proof is by induction., If the number of
figures is three or four, then the theorem is true. Assume
inductively that it 1s true for k figures. Let Cys Cps

be k+1 convex figures, each three of which

c , C

3, ®00 k+1
have a common point., Denote the intersection of the figures

Gy and Cp

ures, each three of which have a common point. For by hypot-

by Cje-—Then 01, vee 3 Ck-1’ Ci are k convex fig-

hesis there exists a cormon point for each three of the

iy v
‘O
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figures distinet from Cj. Further, by Lemma 3.5, there

exists a common point of the figures Ci’ Cj, Cﬁ (that is, a
common point of the figures Ci’ Cj I ? Ck+1’
esis each three have a common point). In other words, each

s C since by hypoth-

three of the figures Cis wen 5 Gy Cﬁ have a common poinﬁ.
By the inductive assumption, there is a point belonging to
these k figures, and hence to each of the figures C1, cee o
Cxs Cy41e This completes the proof.

In general, it is not true that an infinite number of
unbounded convex figures have a nonempty intersectlion if each
three have a common point. Consider, for example, an "upper"
halfplane bounded below by some horizontal line., If half-
planes situated "higher" are adjoined, each three have a
nonempty intersection. Adjoining more and more such half-
planes, the intersection moves higher and higher and

gradually "slips away to infinity" with the continual adjunc-

tion of higher halfplanes. See Figure 8.

"J//// 7 /////,////
/Y ia

/
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FIGURE 8
THE INTERSECTION OF THE HALFPLANES

"SLIPS AWAY TO INFINITY"
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On the other hand, this situation cannot occur if
bounded figures are considered, for the intersection must.
then remain in a bounded part of the plane (in fact, the
boundedness of at least one of the given figures suffices),
The following is true.

COROLLARY 3.7, If a finite or:‘ an infinite number of
closed and bounded convex figures in the plane are given
such that each three have a common point, then they all have
a common point,

The preceding discussion is suggestive as to why
Helly's theorem deals with only two types of families: those
which are finite and those whose members are closed and
bounded. This matter is investigated later,

A different proof of Helly's theorem in the plane is_
now given, This proof is more réadily generalized to prove
Helly'!s theorem for convex sets in Rn; The theorem is proved
nere only for four convex figures, The proof for any finite
aumber of figures then proceeds by induction, as in the proof
>f Theorem 3,6,

THEOREM 3.8, Let four bounded convex figures of the
olane be given, each three of which have a common point.

'hen they all have a common point. )

PROOF., As before, denote the given figures by Cqs Cp,y

23, Gh’ Let C denote the convex figure which is the inter-
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section of Cq, Co, 03' It is evident, after a moment's
reflection, that the four given figures have a common point
if and only if C and Cu have a common point., It remains,
therefore, to prove that C and CM have a common point.
Assume that they do not. Since C and Ch are then two dis-
joint closed and bounded convex figures, there exists a line
L which strictly separates the two figures (by Theorem 2,40,
page 22). Assume that the line L is horizontal and that C

lies above L and C below it, as illustrated in Figure 9.

FIGURE 9

A CONTRADICTION TO THE SEPARATION ASSUMPTION
Since each three of the given four figures intersect,
there exists a point a4o belonging to G4, Cos CM’ a point
a13 belonging to G4, C3, Ch and a point 823 to Cop, C3, CM'
All three points lie beloﬁ the line L (since they all belong
to Cu). Let a be any point of C (that is, the intersection

of G4, Cp, 03). Since the figures Cis Cp, 03 are convex, the
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segment a;-a8 lies in the intersection of the figures C1 and
Cr, the segment a13a in the intersection of101 and 03, and
8038 in the intersection of Cp and C3. Denote by bqp, b13,
b23 the intersections, respectively, of the three segments
with the line L. In particular, these intersection points
belong to the given figures, ‘Thus each two of the figures
C15 Coy C3 have a common point on the line L. Furthermore,
sach of the three figures has a segment in common with L.
Since each two of the three segments have a common point, it
follows that there is a point b of the line L which is common
to all three segments (by Helly's theorem for the line). 1In
particular, the point b belongs to all three of the figures
C15 Cp, 03, hence to Cs This is a contradiction to the
assumption that L has no point in common with C, the inter-
jection of the figures C;, Cp, C3. Hence C and Cu intersect,
30 that Cq5 Cpy 03, Ch have a point in common. This concludes
the proof,

It should be noted that the figures were assumed to
)6 bounded in the above theorem. This was necessary in order
0 apply the separation theorem, which is valid only for
ounded figures. However, if the number of figures is finite,
he proof is still valid; for a closed disk of sufficiently.
.arge radius can be taken such that it at least partially

overs the intersections of each three of the given convex
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Tigures in the theorem. Since the disk is convex, all such
intersections are convex, and the problem reduces at once to
& finite number of bounded convex figures, each three of
which have a common point., The separation theorem can then
beé applied. This situation is discussed later,

THEOREM 3.9. (Helly's theorem in space) Let n convex
bodies be given, each four of which have a cormon point.
Then all n bodies possess a common point.

The following is &lso true: If infinitely many
bounded convex bodies are given in space, each four of which
have a common point, then all the bodies possess a common
point. The proof is essentially the same as that of
Theorem 3.8, except that a separating plane is used instead
of a line. Since Helly's theorem will be proved in the
general n-dimensional casé using this same approach (in
Helly's proof), the theorem is only stated here as a further.
illustration of Helly's theorem.

DEFINITION 3,10. Suppose n convex sets C1, Cosy see
Cnbare given in R®, The distance from a point p to the set

of convex sets 04, Cp, «se , Cy 1s the greatest of the dis-

n

tances from p to the individual sets Cq, Cp, eee 5 Cpn.
THEOREM 3.117. Let p be a point of the plane such that

the distance d from p to the set of convex figures C1, eee o

Cp is a minimum. Then
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- (1) either there are three of the given figures Cs s
Cj’ Cy for which the points ay, ays 8y nearest to p are at
a distance 4 from p and form a triangle containing the point-
p within itself; or
(ii) there are two figures C;» G; for which the points

J
83, &; nearest to p and at distance d from it are the ends of

J
8 segment containing the point p.

See Yaglom-Boltyanskii [5, pp. 165-167] for another
interesting elementary proof of Helly's theorem in the plane
using Theorem 3.711, together with a proof of this theorem,
The theorem is qtated here, not only as a curilosity, but as
indications of things to come, since esséntially the same
approach is used later in proving Helly's theorem in RP by
neans of Caratheodory's. Actually, Theorem 3,11 is an
slementary variant‘of Caratheodory's theorem in the plane,
Also,_another interesting proof of Helly's theorem for the
ylane is given in Hadwiger-Debrunner [ 3, p. 60), using a

somewhat more general form of Radon's theorem than used in

Lerma 3.5, page 31.

Helly's theorem in Euclidean n-space. Helly's theorenm

leals with two types of families: those which are finite and
those whose members are all compact. For a family of compact
convex sets, it is sufficient to prove the result for finite

families, for then the finite intersection property implies
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that the intersection of such a family is nonempty. For let
F be a family of compact convex sets, each finite subfamily
of which has a nonempty intersection, and suppose further
that the members of F have an empty intersection. Select
F1€ F'e Since the members of F have an empty intersection,
for x €¥, there exists a member Fy € F which does not contain
X, Since F, is closed, there exists a neighborhood N(x) of
x such that NNF, = #. By the Heine-Borel property which
defines compactness, a finite covering N(xq), N(x2), e.. ,
N(xk) of Fq 1is thus obtained such that members Exié P exist
_such that N(xi)ﬂin =¢ (i=1, eoo », k)e Then
F1ﬂFx1ﬂanﬂ ﬂka = g,
a contradiction, since every finite subfamily of F has a
nonempty intersection. The following theorem enables one to
work with bounded closed sets.

THEOREM 3.12. Suppose K = {K1, ..o , Ky} is a finite
family of N convex sets (in some linear space), each n+71 of
which have a common point. Then there exist N convex (com-
pact) polyhedra Py (i =1, ... , N) such that P;CK;

(=1, oo , N); and such that every n+1 of them have a
nonempty intersection,

PROOF, Consider all possible ways of choosing n+1 .
members of K, and for each such choice select a single point

in the intersection of the n+] sets chosen. Let J be the
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finite set of all points so selected. For each K;€ K let Py
be the convex cover of Kif\J. Then each Pi is a convex poly-
nedron and each n+l of the sets P have a common point.

Also, any point common to all the sets P; must lie in the
intersection of the family F. Thus, for a finite family of
convex sets, Helly's theorem may be reduced to the case of a
finite family of compact convex polyhedra. (Compare this
argument with that on page 36.) In particular, the separa-
tion theorem can then be applied to the compact sets thus
>btained., |

The literature contains many proofs of Helly's
theorem. Three proofs are presented in this section: (1)
Helly's own proof; (2) Radon's proof (using Radon's theorem);
and (3) a proof by means of Caratheodory's theorem. Each
approach adds further illumination, and in many cases these
lifferent characterizations lead to different generalizations
and resultse. |

Helly's own proof depends on the separation theorem
for convex sets in RPN and proceeds by induction on the dimen-
3ion of the spéce. Among the many proofs, his is the most
reometric and intuitive. Refer to Figure 9, page 35, for
the case n = 2, .
PROOF (1). (Helly's) The theorem is obvious for RO,

(It is also true for R' and R2, but this fact is not needed
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in the present argument.) Assume inductively that it is

R™™1, Let F be a finite family of at least n+]

true for
compact convex sets, each n+1 of which have a common point,
Suppose the intersection KWF is empty. Then there are a
subfamily F'!' of F and a member A of F' such that (1Pt = g,
but such that [ VW(F'\{a}) = M # 4. Since A and M are disjoint
nonempty compact convex subsets of RP®, the separation theorem
guarantees the existence of a hyperplane H in RP such that A
lies in one of the open hélfspaoes determined by H and M lies
in the other, "Let J denote the intersection of some n members
of F'\{A}. Obviously JDM. Since éach n+] members of F have
a common point, J must intersect A. Since J 1s convex, in
oxtending across H from M to A it must intersect H, and thus
there is a common point for each n sets of the form G/ H with
¥ ¢ F*\{a}l., From the induction hypothesis as applied to the
(n=1)-dimensional space H it follows that M/ H is nonempty,
2 contradiction, thus completing the proof.

Helly's proof above can be found in [1, ppe. 106=1071],
[4, PPe 70-71]1. According to [1, p. 106], essentially the
3ame proof was given by KBnig (see page 1). The next proof
s due to Radon. It 1s a very elegant algebraic proof and
1ses Radon's theorem stated above (see page 28).

PROOF (2). (Radon's) Let F.

1(i=1, ...,I‘)ber

lembers of the given family F of convex sets, where r >n+2,
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Ihe proof is by induction on r. Suppose every r-1 members
of {Fi (L =15 s50m » r)} have a point in common., It remains

7
to prove ( \F; # #. By the inductive hypothesis applied to

i=1
the subfamily which consists of the whole family except Fj,
there is a point x(J) = (x§j), oo ,xéJ)) which belongs to

f, if 1 # j. The equations

r

£ 1 ajxl({j) = O (k = 1, e e e k] n)’
J:

L & = 0,

=3 |

form a set of n+1 equations in the r unknowns 819 eee 5 2pe

Since r >n+1, these equations have non-trivial sets of solu-
tions. For one such solution denote by ai1, ece o aik'those
2 that are non-negativ d b cee a'
g e an y ahq, R those that
are negative., Define the point y = (yq, +e0o »¥,) bY
Ji = (= airxl({lr))/(z air).
r ’ b of
since x{1r)eP; ir 1 # 1., it follows that y ¢ Fy by
Theorem 2.4, page 7, provided 1 # i1, eee » 1lks L1e€e, ¥
>elongs to Eh1, cee 3 Fp K But according to the system of
r—
quations above,
(hg)
= -8, )X -a
Y (g ( hs) k )/(Es: hs)’
o Thus y is a point
"k

ind thus y also belongs to Fi1’ P
ommon to all the sets Fj, j=1, «ve » re Hence, by induc=~

ion, the members of each finite subset of the family I have

A point 1in common, - By compactness, this implies that all
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members of F have & point in common. This completes the
proof,

PROOF (3). (using Caratheodory's theorem) The proof
is by contradiction., Suppose there is a collection of N con-
vex sets satisfying the conditions of Helly's theorem, but
that there is no point common to all the members. Suppose,
also, that the sets C1, e+ 5 Oy are compact. Let x be any
point of R®. There exists a point x; such that f(x) =
1Ta§ d(x,Cn) attains its least value at x = Xge Also
f2;5§g>0. Among the Cr there are some, say C1, eve o Ck’
which are such that f(xg) = d(xo,dr), (P =1y eee s K)o
Suppose that x., € C, and Ixo - xr|= T(xg)y =15 oo , ke
(See Figure 10 for the case n = 2.) ‘UYhe points x, exist
because each C, is compact; each kr is unique because each

C. is convex. Then Xg € C(xqs «oe sXy); otherwise, £(xy) could

FIGURE 10

SUPPORTING HYPERPLANES AT NEAREST POINTS.
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be reduced by moving Xy towards C(x,I 5 swe ,xk). By
Caratheodory's theorem there is a subset of the points x4,
XDy e.e 5 Xp consisting of at most n + 1 members, say X1
X2s «+s » Xg, Such that xy€ C(xq, ... ,Xg). Then

Xg = iarxr (a;20, a7 * coe + a5 = 1),
The hyperplane through xizgerpendicular to xpX, supports C,

at xn. Thus if y € C,, then 4

V(y - xg)e (x, - xo)a(!xo - JLI,I)2>O (2 =15 sas 5 K)s
since none of the x,, coincide with x5, * = 1, ees , k. Thus
if y€Cp, » = ’l,: eee 5 S (such a point exists since s < n+1

by the hypothesis of Helly's theorem),

0= (y =~ x9)*(xp = xp)

s
(7 = %) ( 2 an(x, = x5))
S r=1
= 2 an(y - %) (%, - %)
r=1
>0,
since all ap>0 and at least one a,>0. This contradiction
establishes Helly's theorem in the case when the sets are
compacte
The literature contains many different approaches to
Helly's theorem. Eggleston [2] employs Caratheodory!'s
Cheorem, which i1s closely connected to the approach by means
f the dual cone, Valentine [LL] employs Caratheodory's -
theorem and the duality theory of convex cones, Hadwiger

1as obtalned Helly's theorém and other results by an appli-
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>ation of the Euler-Poincare! characterization (see, c.g.,
jadwiger-Debrunner [3]). Levi has developed an axiomatic
ipproach based on Radon's theorem, and additional proofs of
lelly's theorem have been given by Krasnoselskii, R. Rado
nd many others (see [1, p. 1091). Helly has also proved

A topological generalization by means of combinatorial
sopology; this approach has lead to many interesting prob-
lems, but 1t remains to be fully exploited. Finally, for a
somplete bibliography of these various results, consult the

sompendium Danzer-Grinbaum-Klee [1].
II, THE THEOREMS OF CARATHEODORY AND RADON

In this section Radon's theorem is proved. The theorem
)f Caratheodory is deduced from the theorems of Helly and

Radon, and an extension of this theorem is also proved.

Proof of Radon's theorem. In terms of a basis in RP,

the set of n + 1 equatioﬁs corresponding to
aqxq * apxpy + ... t arxr.= 0
a7 +ap t ... +an =0
a8 a nontrivial solution a¥, 85, ... , a¥, since r zn+2,
A\t least two of the numbers a¥, ayy ... , aj must have oppo-

site signs. Without loss of generality, suppose ai >0 if -

i =1, voo , j and ap<0 if k = j+1, ... , S Also
4 o r
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J o
Then, if t = }_ a7,
i=1 J pig .
x= 5 (af/t)x; = 2_ (af/-t)xg.
i=1 k=j+1
This completes the proof.

Deduction of Caratheodory's theorem from Radon's.

Consider a set XCR? and a point x ¢ C(X). According to
Theorem 2,2l., ‘page 16, there is some integer k such that
X = agXq +oeee *oayXx,, a;20, all + ....+ a = 1, x5 €X.

It remains to show that an expression can be found for x with
¢« €n+l1. Let k be the smallest integer such that x can be
Pepresented‘ ;as above and suppose k =zn+2. Then by Radon's
theorem there exist numbers b‘l’ cee o bk not all zero such
that |

P1xq * ee. + Dpx) = 0, Dby + eee t by = 0.
Lot V = {i : b;<0} and let j €V be such that rj = a;/bj3a;/b;
for all i€V, Then

x = (aq + rsby)xg + ... + (g * I'jbk)xk'

a3 +rypy3 20 (1 =1, ... , k),

J

Since the coefficient of X 5 is zero, it follows that x is a

convex combination of k - 1 points of X. This contradicts

(a’] + I'-b1) + ) + (a.k + ijk) = 1.

the choice of k and establishes the theorem of Caratheodory.-

Deduction of Caratheodory's theorem from Helly's. The

case of Caratheodory's theorem is proved in which the given



L7
set X is compact. Let y €C(X). It can be assumed that y is
an interior point of C(X); otherwise, C(X) is supported at ¥y
by & hyperplane, say H, and y ¢ C(X/H), If y is an interior
point of C(XMNH), then the argument can proceed with X/)H
instead of with X. Otherwise, the process 1s repeated until
a flat Q is reached such that y is an interior point of
¢(X/\Q) relative to Q. Therefore, it is_assumed that y is an
interior point of C(X). If yé€X, there is nothing to prove,
If y¢X, then for each point x €X denote by T(x), W(x) the
closed half-spaces bounded by the hyperplane through x per-
pendicular to xy (see, e.g., Figure 11). W(x) is the half-
épace which contains y. Now the set /) T(x) is empty. For

: _ x€X
suppose it contained a point z. Let H be the_hyperplane

W)

FIGURE 11

THE INTERSECTION OF THE HALF-SPACES IS EMPTY
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hrough y perpendicular to zy. There is a point, say X0 of
separated from z by H. Then the hyperplane perpendicular
0 Xn¥ through X5 does not separate y from z, a contradiction,
ince z €T(xy) and y €W(xg). Since each T(x) is convex it
ollows from the converse of Helly's theorem that there are
of X such that /S\T(xi) = g.

i=1
ut this implies that y‘éC(x1, Py ,xs); otherwise, there is

points, s &n+i, X1s eee 5 Xg
hyperplane Q strictly separating y from C(X;, «ee ,Xg)e

et the halfline that terminates at y, which is perpendicular
0 Q, and which meets Q be L. Then L meets évery T(x3) and
11 of L except a finite segment is contained in T(xj). But
his impliés that fg\T(Xi) # §. This last relation is false,
nd hence yéEC(x1,1T3. ,xs) and Caratheodory's theorem is

roved,

An extension of Caratheodory's theorem. An extension

f Caratheodory's theorem is proved here in which it is
gsumed that X in R? has at most n components.

DEFINITION 3.13. A convex set C in R® which has at
east two points is called a convex cone with vertex y if for
ach 2a>0 and for each x €C, x # y, then (1 - a)y + ax €C,

cone which is a proper subset of'a line is a ray.

THEOREM 3,%14. Let X be a subset of RN with at most )

components, and let y € C(X). Then there is a set of s

oints Kys oee 5 X all belonging to X with s<&n such that



 is a point of the simplex whose vertices are Kis eoe 5 X0

s
PROOF. Let y be any point of C(X). By Caratheodory's

heorem, there are s points of X with s<n+l, y€C(xq, ...xs).
f s<n+1, the theorem is true. Suppose then that s = n+1,
hen

Y =bgXy +oeee b ax g (D320, by + eee F Dpyq = 1),
here if any by = 0, the theorem is true, so suppose b; >0
i=1, ees », n+t1). Let x4 be the reflection of x; in vy,
.6., X} =2y - x (1<i<n+1). Let Cj be the cone subtended
't vy by the simplex whose vertices are ﬁhe n points x{, cee 3

%_1, x3+1, ees » x}.q (see Figure 12 for the case n = 2),

FIGURE 12

CONES SUBTENDED AT A POINT BY SIMPLEXES
onsider for definiteness the cone Ci. By definition, its ~

oints z are of the form

Z=By+t(&2Xé+ .oo-+ %+1x1‘1+1)’
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whers 8320, 82 + ees * 241 =1, s + t =1, t20,
Take y to be the origin. Then
2= ajxh + oo+ algxly (a]20, 2<1Sn),
and similarly for the sets C
!

57 7%

3 2<€ j&€n+1, It follows that

Thus X3 is an interior point of Cje Since there are n+l
cones each containing points of X, and since X has at most

n components, there is at least one point of X in the boundf
ary of one of_the cones C;.. Suppose, for example, that

p € XMBd Cie Boundary points of Cq are points z of the form
above in which at least one of the numbers aé, sEE 3 aﬁ+1 is

zero, Suppose then that aé = 0, say

p = 03)( + sew T °n+’!X111+'! (ciBO, 1 = 3, eee 9 n+1)o
Then y = 0O
= (p + 03X3 + saw F cn+1xn+1)/(1 s 03 + eee *+ cn+1).

Thus y is a point of thé éimplex whose n vertices p, X3,
Xy oo s Xn+] all belong to X. The other possible cases
are all similar and the proof of the theorem i1s complete.
The least number of points in Caratheodory's theorem
cannot be reduced any further by imposing even more severe
conditions on the connectivity of X. For example, if g
Xoy eee 5 Xp4pq 8re the vertices of a non~-degenerate simplex

in R0 and X is the n segments x;Xj, 2<i<n+l, then X is
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connected, but there are points of C(X) that are not con-
tained in any simplex which has s vertices .all belonging to

X where s £n-1.



CHAPTER IV
APPLICATIONS OF HELLY'S THEOREM

A number of interesting results which can be proved

vith the aid of Helly's theorem are given in this chapter.
I. XIRCHBERGER'S THEOREM

In this sectlion an example is given of the use of
Hlelly's theorem to prove a result due to Kirchberger.,

THEOREM L.1. (Kifchberger's theorem) Let X and Y be
;wo finite éubsetS'of R, If for every subset S consisting
of n+2 points selected from the union XUY it is possible to
find a hyperplane that strictly separates SNX from SNY,
then there is a hyperplane that strictly separates X from Y}_

This theorem was formally established by Kirchberger
in 1902. The following proof was given by Rademacher and
Schoenberg in 1950. It is of interest to note that the
original proof, which did not employ Helly's theorem, is
nearly twenty-four pages longe.

PROOF. For each x = (x4, e »X,) €X and y =
(y1, ees s¥,) €Y, define the open halfspaces J, and Qy in
R0t by

(ag5 ooe 5a,,b) €I if ajx, + cvo + &%) + D>0,

(a5, ov0 52 ,P) ¢ Qy if agyy *oees TRV F < 0.
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3y hypothesis, each n+2 of the halfspaces {Jx 2 xéZX}LJ
[Qy : y€Y} have a point in common, and hence by Helly's
heorem there is a point common to all of them., This point
s, say, (&, .o« ,2;,b'), and the sets X and Y are strictly
separated by the hyperplane a{zq T o aﬁzn + b' = 0, where
2= (Zgy eee ,zn)éﬂfﬂ This completes the proof.

The number n + 2 used in the theorem cannot be reduced.
Jonsider, for example, the case in which X is the vertices of
1 regular simplex and Y is the centroid of the simplex. Then
very subset S consisting of n + 71 points of XUY is such
hat SMX can be separated from SMY, but X cannot be
separated from Y. In R2, for instance, X would be the
rertices of an equilateral triangle and Y would be the cent-

r0id, that is, the "center'", of the triangle.
II. ESTIMATES OF "CENTEREDNESS"

The applications presented in this section indicate
chat for an arbitrary set there are points which behave |
ipproximately like a center of the set.

DEFINITION L.2, Let S be a set of points. If for
sach point of the set S there is a point of S such that the
segment joining the two points 1s always bisected by the

3ame point O, then O is called the center of symmetry (or

simply the center) of S.
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It follows from this definition that the center of a
convex set is a point which besects every chord passing
through it. Since every set does not have a center of sym-
netry, the following estimates are presented to show to what
legree certain arbitrary sets are "centered',

‘THEOREM L.3. Let n points be given in the plane.
[hen there exists a point 0 in the plane such that on each
3ide of any line L through the point O there are at least n/3
of the given points (including points on the line itself).

PROOF. Let P4, Ppy, .es , P, be the given points,
Consider all closed halfplanes which contain more than two-~
Ehirds of the given points (including points on the boundary
lLines of the halfplanes). It is then asserted that each
shree of these halfplanes have a common point. For suppose
L, Hy, H3 are any three such halfplanes. Let H!' be the
somplement of H. Then (H1nH2hH3)v = B UHyUH]. Since
ach H: contains less than n/3 of the given points, it follows
shat H{k)HéLJHé contains less than n points (of the set) and
30 H1F\H2f\H3 cqntains at least one point of the set, This
roves the assertion., Helly's theorem then implies that
here 1s a point 0 common to all of the halfplanes under con-
3ideration. The point O is now shown to be the desired
oint, Let L be any line through O and assume it has been
riven a definite direction, Let P be either of the half-

ylanes into which L divides the plane, say the half-plane to
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the left of L. There are at least n/3 of the given points in

the halfplane P (including the line L). For suppose the
contrary. Then there are more than 2n/3 of the n given
points to the right of L, not counting those that belong to
L itself. Consider the line M parallel to and to the right
of L and sufficiently close to L so that hone of the given
points lies between L and M. Then there are more than 2n/3
points to the right of M. Hence the halfplane to the right
of M must contain the point 0, a contradiction, since O lies
on the line L and is to the left of M. Thus the halfplane

P contains at least n/3 of the given points.

FIGURE 13

EACH HALFPLANE CONTAINS AT LEAST .
ONE-THIRD OF GIVEN POINTS

THEOREM L.4. Let a bounded curve K of length L be
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given in the plane (consisting possibly of separated pieces).
fhen there is a point of the plane such that each line
hrough the point divides the curve K in two parts, each
1aving a length of not less than L/3.

THEOREM L.5. Let C be a plane bounded figure (con-
sisting possibly of separated pieces) with area S. Then
here 1s a point in the plane such that every line through
he point divides the figure into two parts, each having an
rea of not less than S/3.

The estimates in the preceding theorems cannot be
improved, For example, three non-collinear points constitute
2 set of points admitting no point 0 such that on each side
f any line through O there are more than n/3 of the three
oints; three non-intersecting smali circles about the
rertices of a triangle furnish an example of a curve K for
thich the estimates cannot be improved.

THEOREM L.6. Let S be any finite set of points in
pace. Then there 1s a point 0 such that every closed half-
pace bounded by a pléne through O contains at least n/l
oints of S.

PROOF. Let P4, Pp, «.. , P, be the given points,
oonsider the set of all closed halfspaces which contain more
han 3n/l; points of S. It is asserted that each four of

hese halfspaces have a common point. Helly's theorem can



57

hen be applied to conclude the existence of a point O com=-
ion to all such halfspaces. To prove the assertion, let Iy,
I, H3, HM be any four closed halfspaces each containing more
han 3n/lL points of S, Let H' be the complement of H, It

s known that (H,;MN HzﬂH3ﬂHu)! = H{UHéUHéUHA. Since the
ﬁ_each contain less than n/lLL points of S,‘it follows that
ﬂLJHékJHéLJHi contains less than n points of S and hence
ﬁfWHé(WHBF\Hu contains at least one point of S. This proves
he assertlon. It remains to show that the point 0 is the
lesired polnt. Suppose the contrary. Then there is a plane
§ through 0 which bounds a closed halfspace containing less
han n/lLy points of S. The opposite open halfspace H will
ontain more than 3n/lL points of S. Let P! be the plane
yarallel to P passing through the points of SNH closest to
>, The closed halfspace H! bounded by P! and lying in H
sontains more than 3n/lL points of S, but H' does not contain
)e This contradiction completes the proof.

THEOREM L1.7. Let S be a bounded set of points in
space having volume V. Then there is a point O such that
svery closed halfspace through O intersects S in a set of
rolume at least V/lk.

THEOREM 4.8. 1Inside every bounded convex figure C
here exists a point O such that every chord AB of C which

vasses through O is divided into two segments AO and BO, each
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)f whose length is not less than 1/3 the length of the seg-
nent AB.

PROOI's Let C be a given convex figure and let A be
any boundary point of C. Consider all possible chords of the
figure C through A and lay off on any chord AB the segment AD
vhose length is 2/3 the length of AB. Refér to Figure 1.
low all of the points D thus obtained form the boundary of a
certain figure C, which is similar to the figure C and which
lies in a position similar to the figure C. The point A is
the center of similitude and 2/3 is the ratio of similarity.
Let O be the point whose existence is to be proved, and let
AB be a chord of the figure through this point. Since by
definition of the point O the inequality AO<2/3AB must hold,
the point O must belong to the figure C,p. The assertion in
the theorem is equivalent to the assertion that there exists
a point O belonging to every figure C, whose center of sim=-
ilitude A lies on the boundary of C and whosé'ratio.of sim=-
ilarity is 2/3. Since all the figures Cp are convex (that
is, since 211 figures similar to a convex figure are convex),
it is sufficient, by Helly's theorem, to show that any three
of the figures under consideration have a common point. Let
CA’ Cp» and CC be three such figures similar to the figure 9
whose centers of simiiitude are the boundary points A, B, and

C respectively. Draw the three chords AB, BC, and AC of the
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(igure C. Let M, N, and P be the midpoints of the triangle
\BC and let Q be the intersection of the medians AM, BN, and
P of this triangle. The point M belongs to the figure C.
iccording to a well-known property of the medians of a tri-
ngle, the segment AQ equals 2/3 AM; hence the point @ belongs
;0 the figure Cp. Similarly, Q also belongs to the figures
JB and CC' Thus CA’ CB, and CC possess a common point. The

roof is complete.

FIGURE 1L

A FIGURE SIMILAR TO A CONVEX FIGURE
(WITH CENTER OF SIMILITUDE A)

The estimate in the preceding theorem cannot be
improved. Within a triangle there is no point O such that
both segments of each chord through O are greater than 1/3_
»f the entire chord, lFor let O be an interlor point of the

sriangle ABC (in Figure 15) and let D, E and F be the respect-



60
ive intersections of 0A, BO, and CO with the sides BC, AC,
and AB of the triangle. If DO >1/3DA, then O lies in the
interior (not the boundary) of the triangle cut off from ABC
Oy a line parallel to BC and passing through the intersection
[ of the medians. If EO >»1/3EB then 0 is similarly situated
within the triangle cut off from ABC by a parallel to AC
through M. If FO >1/3FC, then O lies within the triangle cut
off from ABC by a parallel to AB through M. These three tri-
angles have no common interior point; hence no such point O

>f triangle ABC can exist.

FIGURE 15
THERE EXISTS NO POINT O WITHIN A TRIANGLE SUCH THAT
BOTH SEGMENTS OF ALL CHORDS THROUGH O ARE GREATER
THAN 1/3 THE LENGTH OF THE CHORD

The next result is a generalization of Theorem .8,
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The proof 1s due apparently to Yaglom-Boltyanskii [5]. Radon
also proved that the centroid of a convex body has the stated
property (see [1, p. 115))

THEOREM 4}.9. If C is a convex body in R®, there exists
a polnt z € C such that for each chord uv of C which passes
through z, (lz-ul)/(lv-ul)<n/(n+1).

PROOF. For each point x €C, let Cx = x + n(n+1)~1(C-x).

It is claimed that [\ Cx # #. By Helly's theorem, it suffices

xeC
to show that 1f X135 e« 5 Xppq are any n+l points of C, then
il n+
Cxi 1ncludes the point y = (n+1)~1 in. This is true,
i=1 i=1

since for each j it is true that

y=Xj+————lex)€x+ (Cx).

n+l n s n+1

Consider an arbitrary chord uv passing through the point
z € mCx. Then z ¢ u + -2 _(uv - u), whence z = u + 2 _s(v-u)
for some s, 0¢s<1., Thus

lz-ul/|v-u| = sn/(n+1)<n/(n+1),

completing the proof,
IIT. TRANSLATION AND COVERING PROBLEMS

The following translation problem brings out the
relation between covering and intersection properties of
convex sets, )

THEOREM L.10. Let K = {K, : a¢A} be a collection of

compact convex sets in R® containing at least n + 1 members,
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et C be a compact convex set, If for each set of n+1 mem-
ers of K there exists a translate of C which intersects (is
ontained in; contains) all n+1 of them, then there exists
uch a translate of C which intersects (is contained in;
ontains) all the members of K.

PROOF. For each K, € K, let K} ={x€ RD : (C+x)rK,},
here r means "intersects" or "is contained in" or 'contains".
hen X] 1is convex. For instance, if r means "contains", then
f X, CC + x4, KCC + xp, it follows that K,CC + txq+(1-t)xp,
20, for if x = Y txq =12+ Xp, X€Ky, Y€C, 2 €C, then
=ty + (1-t)z + txq + (1-t)xp, so that x €C + txq + (1-t)xp.
ence tx1 + (1—t)x26-Ké and Ké is convex. It is also compact.
vy hypothesis, every n+1 of the members of {Ké : aé.A} have
. point in common. Hence there exists a point q common to
11 Ké by Helly's theorem, and C+q is the desired translate
T C.

Theorem L4.10 is a generalization of Helly's theorem,
or the latter results when C consists of a single point and
means "intersects" or "is contained in". The theorem is
specially useful for varilous covering problems when the
amily K consists of one-pointed sets, as the following
orollaries showe.

COROLLARY L.11. Let n points be given in the plane

uch that each three of them can be enclosed in a circle of
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adius 1. Then all n points can be enclosed in a circle of
adius 1.

Although Corollary L.11 follows readily from
heorem .10, a "direct" proof is given here for simplicity.

PROCF, It is necessary to show there exists a point

of the plane (the center of the desired circle) whose

istance from all the points is not greater than 1; or
quivalently, that there exists a point O of the plane which
elongs to all the circles of radius 1 about the given points,
ccording to‘Helly's theorem, it suffices to show that any
hree of the circles (about any three of the given points)
ntersect. By virtue of the hypothesis, any three points
‘aﬁ>be enclosed in a circle of radius 1. The center of this
ircle is a point belonging to the three unit circles about
he three points, say A, B, D(since it is at most at distance

from each of the three points).

2

FIGURE 16

THE CIR CLES ABOUT THE THREE GIVEN POINTS INTERSECT
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The next result is of some interest in itself.

COROLLARY L.12, A class of convex set in R® is such
hat to every subclass of n+1 members of the class theres
orresponds a point whose distance from each of the n+1 con-
ex sets is less then or equal to a fixed positive number d.
nen there 1s a point whose distance from each convex set of
ne whole class 1s less than or equal to d.

COROLLARY L.13. If X is a subset of R® and each n+i
r fewer points of X can be covered by some translate of the
onvex body C in R®, then X lies in some translate of C.

THEbREM .14, Suppose a convex set in R® is covered
y a finite family of open or closed halfspaces, Then it is
overed by some n+1 or fewer of these halfspaces.

This theorem illustrates the use of Helly's theorem
n the contrapositive,

PROOF. Let H ={Hy, Hy, .. , H.J be the family of
alfspaces covering a convex set C. Let Hi denote the comp=-
ement of Hj relative to C., Then H' = {H,, H, ... , H }is

finite family of convex sets whose intersection is empty,

o> by Helly's theorem there are n+1 or fewer sets in this

amily whose intersection is empty. This completes the proof.

IV. A CHARACTERIZATION OF STARSHAPEDNESS

DEFINITION L4.15. A set S is said to be starshaped
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rith respect to the point P of S, starshaped from P, if and
nly if for each polnt Q of S the entire segment PQ lies in S.

DEFINITION L.16. If x and y are points of a set SCRD,
r is said to be visible from x (in S) provided xy CS.
DEFINITION Lt.17. Polygons having the property that
11 segments which join a given interior point with all bound-
ry points of the polygon also lie in the polygon are called

star-shaped polygons. (See Figure 17.)

FIGURE 17
A STAR-SHAPED POLYGON

The following theorem is a characterization of star-
shapedness for polygonal domains.

THEOREM l1,18. (Krasnosel'skii's theorem) If a domain
in RS is. bounded by a simple closed polygon, and if Tfor each
three sides of the polygon there is an interior point from
shich these three sides are visible, then there is some point

yf the domain from which all the sides are visible.
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The following picturesque form is given by Yaglom-
301tyanskiitﬂ: If for each three paintings in a gallery one
an find a place from which all three can be viewed, then
here must be a place in the gallery from which all its
ictures are visible.

PROOF. Let X be the given polygon. Let K be given a
osltive orientation on its boundary, each side of K being
lirected so that, when traversing the boundary in tﬁis sense,
n the neilghborhood of each side interior points of K lie to
he left. Let AB be a side of the polygon lying on the line
5o Assume L has the same direction as the side AB and denote
)y H the halfplane to the left of L. H will be called the
'left halfplane of the polygon K with respect to the side
\B". It remains to prove that therevis a point O belonging
0 the left halfplanes with respect to all the sides of the
olygon K and that this point satisfies the conditions of the
heorem. According to Helly's theorem, it suffices to show
hat any three of the left halfplanes have a common point.
ot Hq, Hp, H3 be the three left halfplanes with respect to
ny three sides of the polygon K and let Aq, A2, A3 be any
oints on the corresponding sides. By hypothesis, there 1is
n interior point M of K from which these three sides are )
risible, that 1s, the segments AqM, A2M, A3M’ in particular,

ie inside the polygon K. It follows that when the three
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sides are traversed, the point M lies on the same side as
the the interior points of the polygon K, that ls, to the
left. Thus M lies in all three halfplanes Hys Ho, HB'

As an illustration see Figure 18, Let O be a common point of
all the left halfplanes of the polygon K with respect to its
sides (by Helly's theorem). It remains to show that 0 is

the desired point. First it is shown that 0 lies inside K.
Refer to Figure 19. Assume that O llies outside the polygon

K and that X is the boundary point of the polygon K which is
nearest to the point 0 (or one of several nearest boundary
points). Then the segment 0X, except for the point X, lies
entirely outside K. . If the point X were a vertex of the
polygon K, then é point sufficiently close to X could be
chosen on one of the two sides through this vertex such that
it would not be a vertex of the polygon and such that, except
for the point itself, the entire segment commnecting it with

0 would lie outside the polygon. In other word;, if 0 lies
outside X, then a point X of ¥ can be found which is not a
vertex and such that except for X the segment 0X lies outside
K. In particular, if AB is the side on which X lies, then O
is on the same side of AB as the exterior points of the poly-
gon, that is, to the right, a contradiction. Hence 0 lies .
within K. It remains to show fhat the entire segment 0C lies

within K if C is any point of the polygon K. Assume the
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FIGURE 18

EACH THREE LEFT HALFPLANES HAVE A COMMON POINT

FIGURE 19

THE POINT O LIES INSIDE THE POLYGON K
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contrary and let M be a point of the segment OC which lies
exterior to the polygon K (see Figure 20).. Let P be the
point of intersection of the segment CM with the boundary of
{ nearest to M. If P is not a vertex of K and AB is the side
onn which P lies, then the point 0 lies on the same side of
AB as M, that is, on the same side as the exterior points of
the polygon, thus in the right halfplane with respect to AB,
o, contradiction that O belongs to all the left halfplanes of
(. If P 1s a vertex of K, then on each of the sides through
P a point P! sufficiently close to P can be found which is
not a vertex of X and such that on the.segment OP' there 1is
a point M! outside the polygon K. The above argﬁment is then
repeated. It follows that all sides of the polygon K are
visible from O. This completes the‘proof.

The preceding theorem holds not only for polygons, but
for any plane figure. Since there are then infinitely many
left halfplanes, and because of the unboundedness of the
ralfplanes, Helly's theorem cannot be applied immediately;
1owever, it is nevertheless still valid as follows. For each
left halfplane a square'is chosen that has one side on the
soundary line, contains the "side" (which may bé degenerate)
»f the figure lying on the boundary line, and in addition is
50 large that it entirely contains the part of the figure

that 'lies in the left halfplane. In this way, the problem
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is reduced to bounded "left squares" and Helly's theorem is

‘10

then valid,.

FIGURE 20

THE POLYGON IS STAR-SHAPED WITH RESPECT

TO THE POINT ©
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A rigorous proof of the general n-dimensional case of
neorem l..18 is now given.

THEOREM L.19. ©Let S be an infinite compact subset of
1, and suppose that for each n+1 points of S there is a point
rori which all n+1 are visible, ’.fhen S is starshaped (with
sspect to some point).

PROOF. For each x¢5, let Vi = (y : xy]CS}. The

ypothesis 1s that each n+1 of the sets Vy have a common

oint, and it remains to prove that [ )Vx # @. By Helly's

X€S
neorem, there exists a point y € (1) C(Vx), and it will be
XE€S
roved that y & ﬂvx. Suppose the contrary. Then there

X€S
xist x € S, ué[yx)+S, and there exlists x'é¢€ SNx] with

ux!)\S = g. Further, there exist w é (ux!) such that

d-xt| = (1/2)a(u,S), and v € [uw] and xg € S such that

xg-v| = d([uw],S). Sinece xy is a point o S nearest to v,

t 1s evident that VXO lies in a closed halfspace Q which
isses v and 1s bounded by the hyperplane through x5 perpend-
cular to (_vxo]. But then y € C(on) CQ and Xyxgv 272,

hence Ixgvy <2, Since d(v,s)<ad(w,s)<d(u,S), it follows
hat uw # v and hence some point of [uv) is closer to X0 than

. This contradicts the choice of v and completes the proof,

V. APPLICATIONS TO APPROXIMATION THEORY
OF POLYNOMIALS:

Some important results in the field of analysis
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related to the approximation of functilions by polynomials
1ave been obtained with the aid of Helly's theoren. This
section 1s devoted to a general investigation of the way in
hich this part of mathematics has been approached by means
>f Helly's theorem,

DEFINITION l.,20. A common transversal for a family

I sets 1s a line which intersects every set in the family.

The following tcheorem due to Santalo! 1s a conseguence
f Helly's theorem and has important applicatlons in analysis,

THEOREM L.21. Let S be a finite collection of parallel
line segments in the plane., If for every three members of S
chere 1s a line which intersects all three, then there is a
line which intersects all members of S.

PROOF. Choose a coordinate system with the y-axis
sarallel to the given segments. Let Py (x;,yi) and Qi (%i,vyi)
be the endpoints of the ith segment where y£<:y£. If the
line ¥y = mx + b intersects the 1th segment, then

:}ié mx; + b=yl
3ince every line L not parallel to the y-axls 1s completely
letermined by its slope and y-intercept, to each point (m,b)
here corresponds a unigue line L, and conversely. Consider

he equations b = -x.m + y; and b = =X;m + ¥i. These

I .
represent parallel lines in the mb-plane, since they have

he same slope -xi. It follows from the above inequalities
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chat the line L intersects the ith segment if and only if the
boint (m,b) corresponding to L lies in the strip S; bounded

oy these parallel lines. Figure 21 illustrates this situation.
By hypothesis each three segments are intersected by a line.
Iherefore each three of the corresponding strips contains a
common point. By Helly's theorem there is a point (m1,b1)
common to all the strips. The line y = myx + b, intersects

all the segments, This completes the proof.

\11 @L(“g’) ‘é:’)
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FIGURE 21
THERE IS A POINT COMMON TO ALL THE STRIPS
(SINCE EACH THREE HAVE A COMMON POINT)
The above theorem is suggestive of how Helly's theorem
is applied to the theory of aporoximation of functions. To
illustrate the use of the theorem consider a continuous

function £ defined on some interval. It is said that the
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line y = mx + b approximates the function f on the set S
(contained in the interval) with exactness within €>0 if
and only if [f(x) - (mx+b),ééé for every x in S. The prob-
lem is finding a line that best approximates the function T
on the given interval. It is sufficilent to seek the lines
which approximate the function, within given exactness, at
211 possible triples of points of the interval, and 1t then
follows from the theorem that there is a line which approx-
imates f within € on any finite number of points of the
interval. Together with the continuity of f this implies
the existence of a line which approximates f within € on the
whole interval,

Using Helly's theorem for space, the following theorem
can also be proved.l .

THEOREM l;.22., Let S be a finite collection of parallel
line segments in the plane., If for every four members of S
there is a parabola which intersects all four, then there is
a parabola which interéects all members of S.

By analogy with the preceding discussion, it is suff-
icient to seek the parsbolas which best approximate the

function £ at all possible gquadruples of points of the

interval. In general, the straight-line transversals in

Theoren l1.21 can be replaced by nth-degree polynomial curves

as follows,.
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THEOREM L4.23., Let S be a finite collection of para-
lel line segments in the plane containing at least n+2
enbers, Suppose every nt+2 segments in S are intersected
imultaneously by some polynomial or_degree n,

= agx® + agxB~1 + .+ oa, Then all the segments of S
re ilntersected by such a polynomial.

The proof'of this theorem corresponds to that of
heorem L.21, except that (m,b) is replaced by (ao, . ,an).
hereas in the former proof a duality between points in a
lane and lines in a plane was used, the_proof of this
heorem utilizes a duality between points in Rnfq and nth-
egree polynomial curves in the plane. Similarly, Helly's
heorem in R® yields the following "fitting theorem" of
arlin-Shapley (see L11).

THEOREM L.2}. Suppose f4, ... , £, are real-valued
unctions on a linear space L; Xq, ..o , X are points of
5 8{s eee 5 8y real numbers; and €, ... , €, are real non-
egative numbers. Then the existence of a linear combination
T the f3y's which fits éach point (xi,ai) within es (Le€ay
r(x;) - ail$ei) is guaranteed by the existence of such a
itting for each n+1 points (xi,ai).

More general results relating to.the approximation of

- function by polynomials of arbiltrary degree have been

btained in a similar way by the Russian mathematician L.G.
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nirel'man with aid of Helly's theorem. The well-known
ussian mathematician P. L. Tschebyscheff obtained the same
'e;ults with an entirely different method. Together with
urther generalizations, similar results have been given by
ademacher and Schoenberg in particular, using Helly's
heorem. Theorem LL,23 1s apparently due to Rademacher and

choenberg (see [L, p. BOJ).
VI. JUNG'S THEOREM

The following is the plane case of Jung's theorem.

THEOREM L.25., (Jung's theorem for the plane) Every
oint set of diameter 1 can be enclosed in a circle of
adius 1/43. |

The approximation given in Jung's theorem cannot be
mproved., An equilateral triangle 1s an example of a figure
T diameter 1 which cannot be enclosed in a circle of radius
ess than 1//3. It is of interest to know that this theorem
s used in certain number theory problems (see [5, p. 18]).
he theorem is illustrated as follows: If there is a spot
f diameter d on a table cloth, then it is certain that it
an be covered with a circular napkin of radius d/Jg.

PROOF, Let S be a point set of diameter 1. According

o Corollary L.11, page 62, it is sufficlent to show that any

hree of the given points of S can be enclosed in a circle
g e
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> radius 1/4/3. No side of a triangle ABC formed from any
:hree of the points of S is greater than 1. If this triangle
Ls obtuse or right-angled, then it is completely enclosed by
“he circle that 1s constructed on the largest side as dia-
ieter. The radius of this circle is not greater than 1/2,
nd is therefore smaller than 1/4/3., If the triangle ABC is
wcute-angled, then the radius of the circumscribing circile
zan likewise not be greater than 1/43, for at least one of
“he angles of this tfiangle, say angle A, is not less than
50°, Hence the side BC, as chord of an arc not less than
120° but less than 180°, is not smaller than r+/3, where r
.s the radius of the circumcircle of the triangle ABC (the
shord of an arc of 120° has length r+/3). Hence BC%BrJ§;.and
since BC<1, it follows that r+43 <1, and thus r<1/43. This
>ompletes the proof,

It is also true that every figure of diameter 1 can
e covered by a regular hexagon inscribed in a circle of
adius 1/4/3, but that éven this hexagon is not the smallest
‘igure possessing this property. The following problem, the
olution of which is unknown, is closely related to Jung!'s
heorem: Find a figure of least area which covers every
ylane figure of diameter 1. It has. been proved that such a
igure exists (see, e.g., [5, pp. 100-10L]).

Here is the n-dimensional version of Jung's theorem.
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THEOREM L.26 (Jung's theorem) If X is a set in R
with diam X<2, then X lies in a Buclidean cell of radius
[2n/(n+‘z )]1/3, ITf X does not lie in any smaller cell, then
cl X, the closure of X, contains the vertices of a regular
n-simplex of edge-length 2,

PROOF. By Helly's theorem, this theorem can be
reduced to the case of sets of cardinality<n+l. For con-
sider XCR® with card X =n+1, and for each x € X the cell

= {y :ly-x| € f2n/(n+’l )]?? . If this theorem is known for
sets of cardinality £n+1, then each n+1 of the sets By have
a common point, so that () Bx.. is nonenpty by Helly's theorem
and the desired conclusiJocxéleollows. Therefore suppose X CRD
with card X<n+1., Let y denote the center of the smallest
Buclidean cell B containing X and let r = r(X) be its radius.
Let {25 eee 5 258 = {x€X :ly-x| = r}, where m&n. It is
verified that y & C(zpg, ... ,2Zy), and it is assumed without
loss of generality that y = 0, whence

%aizi = 0 with %ai = 1 and a;>0.

For each i and Js let dj; = |zy - zj[é2, whence
d23 = 2I'2 - 2(Zi’zj).
For each j,
> 3 a2/l
1 - a; = as a
d 1#3 0 lvlj
.2 m
= r</2 - Zal l,z )/2 = r2/2,
8]

Sunming on j (from O to m<n) leads to the conclusion that
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‘;(m+1)r2/2, whence r2552m/(m+1)££2n/(n+1). Further,
quality implies that m = n and d = 2 for all i # j, so
he proof is complete,

The proof of this theorem shows how the theorems of
¢lly and Caratheodory can sometimes substitute for each
ther in applications., . The assumption that card X n+1
justified by Helly's theorem) was made only to insure that
he point y C(X) could be expressed as a convex comblnation
f n+1 or fewer points of X. On the other hand, this is also
nsured by Caratheodory's theorem, so that the above proof
ould also be based on the latter. Caratheodory's theorem

as employed by Eggleston,
VII. BLASCHKE'S THEOREM

The theorem of Blaschke is of interest in itself,
aving implications far beyond the scope of this thesis,
he purpose here is to illﬁstrate the use of Helly's theorem
n proving this theoreﬁ. The present discussion is restricted
o the plane case of the theorem; there is an analogue of
laschke's theorem for general n-space, but only the analogous
heorem for 3-space 1s stated here.

DEFINITION l1.27. Thé smallest distance between )

arallel supporting lines of a bounded convex figure is called

he width of this convex figure.
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THEOREM L,28. (Blaschke's theorem for the plane)
very bounded convex figure of width 71 contains & circle of
adius 1/3.

PROOF. TLet C be a convex figure satisfying the
ypothesis of the theorem, and let 0 be the point whose exist-
nce is asserted in Theorem 4.8, page 57. Then O is the
enter of a circle of radius 1/3 which is entirely enclosed
vy C. Lt suffiges to show that the point 0 has a distance
't least 1/3 from each of the boundary points of C. Refer
o Figure 22,. Consilder a supporting line L through any
oundary point B of the figure C. Let B, designate the point
f intersection of the figure C with the supporting line Ly
I C parallel to L. The distance between L and Lq cannot be

ess than the width 1 of C,

FIGURE 22

THE DISTANCE OF THE POINT FROM THE SUPPORTING LINE
IS AT LEAST ONE-THIRD THE DISTANCE BETWEEN THE

TWO PARALLEL SUPPORTING LINES
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Let D and Dy be the intersection points of the line
3,0 with the boundary of the figure C and the line L, respect-
ively. Since DOE>1/3DB1 (by definition of 0), it follows that

D,]O = DO + DD, 2‘1/3(DE>1 + 3DD1)>1/3D1B1.
Hence the distance of the point 0 from the line L 1s at least
1/3 the distance between the lines L and L4, that is, at
least 1/3. It follows that the diétance_between the points
0 and B is at least 1/3. This completes the proof.,

The approximation ih this theorem cannot be improved.
in.equilateral triangle of altitude 1 is an example of a
convex figure of width 1 in which no circle can be drawn
vith radius greater than 1/3. For another interesting proof
of Blaschke's theorem in the plane, see Yaglom-Boltyanskiil
[5, Pp. 123-125]. Helly's theorem is applied in the proof
to obtain the point O which i1s chosen as the center of the
desired circle.,

The questlon of the figure of greatest area which can
oe enclosed in every coﬁvex figure of width 1 is unsolved,
although the existence of such a figure has been established.

THEOREM L.29. (Blaschke'!s theorem for space) Inside
sach convex body of width 1 in 3-space a sphere of diameter

1/A3 can be placed,
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VIII., APPLICATIONS OF CARATHEODORY'S THEOREM

The theorem of Carathecdory has some interesting
pplications. An especially useful consequence of
aratheodory's theorem is the following.

THEOREM lL,30. The convex cover of a compact set is
ompacte. |

. PROOF. Let X be a compact subset of RB, Define the
ompact subset B of RA! by

B = {b = [bgy wea ,bn)éRnH: 'i-bi = 1 and by 2 O}.
’of each point . ¥

(by) = ({bgs wee sbzlelBny «ne 2%, 1) €B x X
efine the mapping f by

f{b,x) = éi 1X3 e

2

(B x x0Ty 1is compact. By Caratheodory'!s theorem,

ince f is continuous and B x X271 is compact, the set
(B x x2*1) = ¢(x).
his completes the proof,

The following theorem 1is due to Sfeinitz. The proof
vy means of Caratheodory's theorem is due to Valentine and
rinbaun.

THEOREM l1.31. (Steinitzt!s theorem) If a point y is
nterior to the convex cover of a set XCRY®, then y is inter~

or to the convex cover of some set of 2n or fewer points of
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PROOF. Assume without loss of generality that y is
the origin 0., With O € int C(X), there is a finite subset Y
>f C(X) such that 0 € int C(Y) and the existence of a finite
set VCX with O€int C(V) is concluded. Let J denote the set
>f all linear combinations of n-71 (or fewer) points of V.
3ince J # R%, there exists a line L through O such that
,NJ = {0}, Let w, and w, be the two points of L which are
soundary points of C(V) and let Hi denote a hyperplane which
supports C(V) at w:. Clearly O é(w1w2) and wi€ C(Vf\Hi). By

i
Jaratheodory's theorem and the choice of L, w; can be expreés-
>d as a convex combination of some n points Vi, wen v% of
JMH; but cannot be expressed as a linear combination of

"ewer than n points of V. It follows that wj is interlor to
che set C(v%, ove ,v%) relative to H;, and since 0 & (wqwo),
then 0 € int C(v], ... ,v},v%, ... ,v2). This completes the
oroof,

DEFINITION L.,32., A set Y in RY is said to be convexly

independent provided no point of Y is a convex combination

> other points of Y.

For n = 3, this definition requires that ¥ should
>onsist of one or two points or is the set of all vertices
f a convex polygon or a convex polytope. The followilng
“heorem follows at once from Caratheodory's theorem.

THEOREM L .33, If a set in R® is such that each n+2

I its points are convexly independent, then the entire set



ls convexly independent.

DEFINITION L.3li., Given a subset X of R? and an

integer J between O and n, the j-interior intj X is the =et

>f all points y such that, for some j-dimensional flat F CRD,
y 1s interior to XNPF relative to F,
X = int X. The following

Then intg X = X and intn

theorem of Bonnice and Klee on the generation of affine hulls
(covers) is of interest.

THEOREM L.35. If XCR and v € int; C(X), then
y € int C(Y) for some set Y consisting of at most max {2j,n+1}
points of X.

For a positive integer j and a set X in R1, let Hj(X)
denote the set of all convex combinations of J or fewer
elements of X, Then C(X) = ;ij Hj(X). On the other hand,
the convex cover C(X) can alg;1be generated by iteration of
the operation Hs; for fixed j>1; that is, Xy = Li? H%(X),
where HY(X) = Hj(X) and (for 1>1) H}(X) = Hj(Hjj-ﬁx)). The
question 1s asked how meny times the operation Hj rmust be
iterated to produce the convex cover of a set in RP. The
question is trivial (modulo Carathéodory's theoren) in view
of the followlng fact: Hj(Hk(X)) = ij(X). As then noted
by Bonnice and Klee: if X CRR and Jpdp eee Jymn¥1, then |
Hj1(Hj2 i & (Hjn (X))...) = ¢(X); conversely, if X is the set

of all vertices of an n-simplex and j,}j2 coe jné:n, then

Hj1(Hj2 (:{jn(x))...) # C(X).



CHAPTER V.
HELLY-TYPE THEOREMS

In this chapter some generalizations and variants of
elly's theorem are presented to shed some additional light
n the subject. The generalizations usually involve attempts
o find theorems with assumptions of Helly type; that 1s, of
ne type indicated below, so that the intersect;ons of given
emilies of convex sets are nonempty, and from which Helly's
neorem follows as a speclal case.

Specifically, the contrapositive of Helly's theorem
tates that if a family of convex sets is finite or is
nfinite and its members are compact, and if the intersection
[ all the members is empty, then there is a subfamily of
+ 1 or fewer members whose intersection is empty. Regarding
=11y!'s theorem as saying something about the "structure'" of
ertain families of convex sets (namely, those which are
inite or whose members are compact), attempts are then made
> arrange the structure of every family of convex sets in RBH
or which the intersection is empty, having Helly's theorem
5 a consequence., The polnt common to all the members of the
mily of convex sets in the conclusion of Hellyt's theorem )
y be regarded (for j = 0) in any of the following six ways:

1) as a j-dimensional convex set contained in each member;
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2) as a j-dimensional convex set which intersects each
iember; (3) as a j-dimensional flat contained in each nember;
L) as a j-dimensional flat which intcrsects each member; (5)
s a (j+1)-pointed set which is contained in each member; and
6) as a (Jj+1)-pointed set which intersects each member of
he family. The question is asked: What condition on a
ertain family would assure the existence of such sets for
ther values of j? The generalizations of Helly's theorem
re results of questions of this sort, and some of the answers
re given 1in this chapter,

The following theorem, due to de Santis, is a typical
eneralization of Helly'!'s theorem.

THEOREM 5.7. If every k + 1 members of a finite
amily F of convex sets in RE contain a common flat of
limension n - k, then all the members of F contain a common
lat of dimension n - k, provided F contains at least k + 1

embers.,

t=

or ¥ = n, this becomes Helly'!'s theorem. The proof
bil Théorem 5.7 by means of duality can be found in Valentine [u].
his theorem, together with other general theorems of Helly
ypre, is developed there.
A generalization of Helly's theorem has been developpd
n the theory of games. Helly also has a topological theorem
n R2 concerning simply connected compact sets. The following

heorem, established by Molnar, i1s an improvement. Ior a
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ilscussion of these and numerous other general results, see
danzer-Grinbaum-Klee [1].

THECREM 5.2. A family of at leést three simply con-
lected compact sets in RZ has nonempty simply connected
ntersection provided each two of its members have connected
ntersection and each three have nonempty intersection.

DEFINITION 5.3. A j-transversal of a family of sets
n R1 is a j-dimensional flat which intersects each member
f the family.

Helly's theorem deals with O-transversals. Some prob-
ems dealing with 1-transversals (lines) are included in this

hapter. They are called common transversals (see Definition

.20, page 72). Included also are some theorems on common
ransversals for infinite families of sets which have no
ounterpart for finite families.

There are two general approaches. One, while restrict-
ng the relative positions and the distribution of the convex
ets, allows the sets themselves to be quilite general., Examples
f this type will be given where the sets are said to be
totally separable" or “"sufficiently sparsely distributed”,
escribed in terms of the "viewing angle". The other approach,
hile weakening the condition on the relative positions of ?he
ets, places restrictions on their shape or assumes they are

lisjoint and congruent., The virtual necessity of these
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2 ssumptions 1s shown by various examples in Hadwiger-
debrunner 3 ,

The remaining material in this chapter will be res-
ricted to a group of theorems of Helly type generally
eferring to ovals, which are closed and bounded convex sets
.n the plane. Many of them eare proved with the aid of Helly's
heorem for the line or plane, after a suitable transform-
1tion, and the proofs of these are included here, mainly to
1lustrate the tremendous utility of the theorem of Helly.
)therwise, the proofs are omitted, Their proofs can be
ound in 3 , along with many other theorems of Helly type,
n particular the plane cases of Helly's theorem, Radon's
heoren, Kirchbefger’s theorém, and Krasnosel'!sklii's theorem,

THEOREM S.Li. If each two rectangles of a femily of
varallel rectangles, that is, with sides parallel to the
oordinate axes, have a common point, then all the rectangles
>f the family have a common point.

PRCOF. This theorem follows from Helly's theorem for
he plane if it can be shown that each three of the rectang-
es have a common point. Let Rs, Rp, RB be any three of the
ectangles. Choose a Cartesian system so that the axes are
yarallel to the sides of the rectangles and let Pi(xi,yi) be
. point that is in all three of the.rectangles except perhaps

3o Then P; and P; points of Ry and Ry contains the entire

J



ectangle whose sides are parallel to the axes and whose
iagonal 1s the segment Pin; that is, Ry includes all points

(x,y) for which x lies in the interval (x5,%:) and y in the

J
nterval (yi,yj). If the indices are chosen so that
1€ Xo% Xq and yiéngyk, then the point P(xg,yj) satisfies

hese conditions for all three of the rectangles and hence
elongs to all of them,
COROLLARY 5.5. If each two segments of a family of
egments in the line have a common point, then all the
egments of the family have a common point. (Helly's theorem
or the line)
Some theorems of Helly type are given next which
nvolve families of circular arcs which lie on the same circle,
he theorems are closely related to the-éboﬁe corollary and
re useful for applications.
THEOREM 5.6, If a femily of circular arcs, all smaller
han a semicircle, is such that each three of the arcs have
common point, then all the arcs of the family have a common
oint.
PROOF. This theorem can be reduced to Helly'!s theorem
n the plane., A family of circular arcs, each smaller than
sernlcircle, has a common point if and only if this is tru?'
f the corresponding segments of the disk. For this it

uffices, by virtue of Helly's theorem, that each three
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snould have a common point.

the condition on the size of the arcs cannot be
weakened, for it is Talse for semicircles; nor can the
number three be replaced by two. For example, four points
evenly distributed on a circle determine four semicircles for
vhich the theorem is false., However, the following is known.

THEOREM 5.7. If a family of circular arcs, all smaller
than one-third of a circle, is such that each two of the arcs
nave a cormon point, then all the arcs of the family have a
common point,

PROOF. This theorem follows from Helly's theorem for
che line (Corollary 5.5), If each of the circular arcs is
smaller than one-third of a circle while each two of themn
1ave a common point, then they leave some point of the circle
imcovered, for example, the point antipodal (that is,
ilametrically opposite) to the midpoint of one of the arcs.
'he circle can be cut at this point and unrolled on a line
so that each of the arcs turns into a segment of the line.
Phe desired result then follows by applying Helly's theorem.

All assumptions on the size of the arcs are dropped
Cor the next result,

THEOREM 5.8. If a family of circular arcs is such
“hat each two of the arcs have a common point, then there is
n antipodal pair of points such that each arc of the family

includes at least one point of the pair. In other words,
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there 1s a diameter of the circle.that intersects 2ll the
i

PRCOF. Let L(a) be the directed line through the
center Z of the circle, making an angle a with a fixed
direction, Projecting the given pairwise intersecting arcs
orthogonally onto L(a), the resulting segments have the sanme
property. Thus the intersection D(a) of all of these seg-
ments 1s a point or a segment. By Helly's theorem for the
line, the intersection i1s not empty. The set D(a) includes
the center Z for at least one angle apge To see this, note
that the position of D(a) relative to Z in L(a) is exactly
antipodal to the position of D(a + ) relative to 2 in L{a + 1),
(Recall that these are directed lines.) Since the orthogonal
projection of each arc on L{a) varies qontinuously with a,
so does the set D(a), and thus rotation through an angle of
mrmust yield at least one ag for which Z €D(apg). The line
L(ag + T/2) is then a diametral line that intersects all the
arcse.

THEOREM 5.9. If a femily of ovals is such that each
two of its members have a common point, then through each
point of the plane there 1s a line that intersects all the
ovels of the family. .

PROOF.. If the pairwise intersecting ovals are mapped

into a circle by central projection, they give rise to arcs
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hat satisfy Theorem 5.8. Then every oval in the family is
ntersected by the line determined by the two antipodal
oints specified in Theorem 5.8,

THEOREM 5.70., If a family of ovals is such that each
wo of its members have a common point, then for each line
n the plane there is a parallel line that intérsects all the
vals of the family.

PROOF. By orthogonal »rojection of the ovals into a
ine, a family of segments satisfying Helly'!'s theorem is
enerated. All the ovals of the family are intersected by the
erpendicular line that passes through a point common to all
hese segments.

Theorems 5.9 and 5.10 are the plane cases of more
eneral theorems of A. Horn, answering the question as to
hat can replace the conclusion of delly's theorem when the
umber three is replaced by two in its hypothesis. The idea
s to relax the intersection condition on the class of sets
n R, The following is Horn's extensions of Helly's theorem
n the general setting. The modified form requires only that
very subclass of k members, 1<£k<n, have a common point.

- proof is given in Eggleston [2, op. L3-4L].

THEOREM 5.711. A finite collection of compact convex
ets in R™ has the property that every k of the sets have a
oint in common, 1<&£k<£n. Then, giveh any (n-k)-dimensional

inear space M, there can be found an (n-k+1)-dimensional
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linear space N such N2DM and N intersects each of the convex
sets of the given collection.

The question 1s asked as to whether points can be
"eplaced by lines in the conclusion of Helly's theorem in
che sense that the following form 1s correct: If each h
embers of a family of ovals are intersected by a line, then
here is a line that intersects all the ovals of the family.
'he answer is negative, as to the existence of such a Helly
'stabbing number" h, for L. A. Santalo! has proved that for
ach natural number n 22 it is possible to construct a family
I’ n ovals so that each n-1 members.of the family admit a
ommon trensversal, but not.all of them. TFor a verification
f this, see Hadwiger-Debrunner {3, pp. 8-91. As indicated
>efore, theorems of this sort are established by placing
ertaln conditions on the shape and positions of the ovals.
'he following theorems are typical.

THEOREM 5.12, If each three rectangles of a family of
yarallel rectangles are intersected by an ascending line,
hen there is an ascending line that intersects all the
ectangles of the family.

PROOF. The conclusion follows at once if among the
varallel rectangles of the family there are two that have a
nique ascending transversal in common, for then this line
st intersect every other rectangle of the family. There-

ore assume that each three rectangles of the family admit
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a common ascending transversal that is not parellel to the
x-axls., But then the same is true for any finite number ol
rectangles in the family. To see this, lay out two lines
parallel to the x-axis and associate with each transversal
a point of an auxiliarly (or "dual") plane, the coordinates
of this point being the x coordinates of the intersection of
the transversal with the two parallel lines., The set cf all
ascending transversals of a rectangle of the famlly is thus
assoclated wivth a convex, closed, but unbounded point set in
the auxillarly plane., By hypothesis, each three of these
sets have a common point. For any finite number of these
convex sets, the intersections with a suflficlently large disk
are ovals that, according to Helly's tacorem in the plane,
nave a common polnt. The line assoclated with this point
intersects the corresponding finite number of rectangles. In
order to carry out the proof for infinite sets of rectangles
1lso, without using a stronger variant of the plane case of
Helly's theorem, it is required from the above proof only the
fact that each four regtangles of the family have a common
transversal, With each line forming an angle a with the two
varallels, associate a point on a circle having angular coord-
inate a. The set of all ascending lines that intersect two
>iven rectangles of the femily is thus associated with a

~ircular arc that is smaller than one-third of a circle.
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arried out for 2ll pairs of rectangles from the family, this
:apping produces a family of arcs that intersect pairwise
ecause each four of the rectangles admit a common ascending
ransversal., There is a point common to all these arcs by
heorem 5.7, page 90, and each two rectangles of the familly
dmit a common ascending transversal parallel to the line L
hat corresponds to this point. Then under projection
arallel to this line, the family of rectangles is carried
nto a family of segments that have a common point by Helly's
neorem for the line. But then the line through this point
arallel to L intersects all the rectangles of the family.
'his completes the proof,

Klee posed the question as to whether there is a Helly
tabbing number when the ovals are pairwise disjoint. Again,
he answer is negative, as shown by the construction of a
osette of circular segments (see, e.g., [3, P. 10]). This
ame rosette 1s used to demonstrate the non-existence of
arious other questions that are considered. The next two
ropositions, however, show to what extent the existence of
. common transversal can be deduced from Helly type assumptions
ith certain supplementary conditions.

THEOREM 5.13., If each four membérs of a family of )

omothetic ovals admit a common transversal, then there are

our lines, parallel or orthogonal in palrs, such that each
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of the ovals 1s intersected by at least one of the lines,

PROOF. Let P be a point of a circle. To each line L
in the plane, lay a parallel through P; let its second point
oI intersection with the circle be the image of the line L.
Jnder this mapping, the set of all lines that intersect two
rixed ovals goes‘into an arc., Carrying this out for all pairs
>f ovals from a family in which each four ovals have a common
transversal, a family of pairwise intersecting arcs 1s
obtained. There are two orthogonal directions corresponding
to the antipodal pair of points that intersects all the arcs
oy Theorem 5.8. Hence, if each four ovals of a family admit
2. common transversal, then there exist two orthogonal direc-
tions such that each two ovals of the familly admit a common
transversal in one of these directions. If the ovals of this
family are mutually homothetie, and if four lines are lald
out in two orthogonal directions so that they form a rectan-
zle circumscribed to a gilven oval of the family, vthen each of
the family's (homothetic) ovals that is not smaller than the
riven one must be intersected by one of these four lines,
hus if there is a smallest oval of the family, the lines
circumscribed to it meet all ovals of the family. If there
is no smallest oval in the family, the desired result is )
>btained from some supplementary considerations on the limit-

ing behavior of the size and position of the ovals in gquestion.
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If the ovals are not only homothetic but are mutually con-
gruent, 1t can be verified that some three of these Iour
lines intersect all the ovals, completing the proof,.
DEFINITION 5.,7k. A system of ovals is said to be

cotally separable 1if there exists a direction such that each

iine in this direction intersects at most one oval of the
system. (Pairwise disjoint parallel strips can then be
formed in the plane in such a way thatleach strip contains
exactly one oval from the systemnm.)

THEORIEM 5.715. If each three members of a totally
separable system of ovals admit a common transversal, then
there is a transversal common to all of the ovals of the
system.,

PROOF¥. Let a line in the separating direction be
chosen as the xX-axis. Every other line in the plane forms
an angle 4 (measured counterclockwise) with the x-axis for
which 0 <4 <4aT. The set of all lines that intersect two ovals
of the system, say A and B, corresponds on a #-axis to an
interval of angles between 0 and 1T which i1s denoted by (AB);
and similarly for other pairs of sets. It is then claimed
that each two of these intervals have a common point. Assum-
ing this, there follows from Helly's theorem for the line

the existence of an angle 4y such that each two ovals of the

system admit a common transversal in the direction éo. In
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other words, the parallel pro;cction; of the ovals in this
direction form a systc~ of pairwise intersecting segments on
the x-axis. Then all the ovals of the system are intersectecd
oy the projecting line through a point common to all the seg-
nents (by Helly's theorem for the line). It remains to show
that each two intervals of angles have a common point. For
such pairs of intervéls as (AB) and (BC) this is assured by
the assumption of a common transversal for A, B, ana C, IT
two intervals, say (AB) and (CD) should have no common point,
chen a contradiction would result as follows. Each of t
intervals (AC), (AD), (BC), and (BD) would have points in
cormon wWith both (AB) and (CD), so that the following situation
orises for an angle éq between (AB) and (CD): the ovals A.
and B, and also C and D, are separable by lines of direction
51, from which follows the separability of an additional pair
oy means of each of these two separating lines, but the pairs
A and C, A and D, B and C, and B and D are not separable in
chis way. This is a contradiction, which establishes the
>roof.

A corollary of Theorem 5.15 is the theorem due to
.. A. Santalo! (Theorem L.21, page 72), according to which
“here is a transversal common to all the members of a family
T perallel segments if each three segments from the family
admit a common transversal.

Another interesting question arises as to what peculiar
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oproperties of a system of ovals lead to its total separabil-
ity. -The ovals are then said to satisfy a transversality
condition and are said to be "sufl'iciently sparsely distrib-
ated" in the plane. This is described in terms of the size

of the viewing angle (see Figure 23).

FIGURE 23
THE VIEWING ANGLE OF A SYSTEM OF OVALS

THEOREM 5.716. If the ovals of a system are so sparsely
distributed that from each point in the plane at most one of
the ovals subtends an angle of TV/3 or more, and if each three
of the ovals of the system admit a common transversal, then
the system is totally separable, and there is a transversal
common to all of the ovals of the systeun.

PROOF. The assertion is first proved for a system of
four ovals C; (1 =1, 2, 3, 4}, ILet L be a line that inter-

sects C1, Cp, and C3. By M' and M" denote two lines that
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orm an angle of T/3 with each other as well as with L. Ko
ine parallel to M' or M" can intersect more than one of the
vies Cq, Cp, and C3, since otherwise more than one of the
vals would subtend an angle of at least T3 at the point
here this line intersects L. The same argument shows also
hat either no parallel to M! or no parallel to M" can inter-
ect more than one of the ovals Cq, 02, CB’ CM; otherwlise, a
arallel L' to M' would intersect C; and C; and a parallel LY
o M" would intersect Cy, and Cﬁ’ where i and k are among the

umbers 1, 2, 33 a transversal M of Css G

o0 and Cu, which must

xist by hypothesis, then forms a nonobtuse angle T/3 with

ne of the lines L, L' and L"; M and this line would then

oth intersect the same two of the four ovals Cq, Coy C3, and
nd CM’ which is impossible because of the condition on sub-
ended angles, Thus the four ovals are totally separable
ither by parallels to M! or by parallels to M", and accord-
ng to Theorem 5,15 must admit a common transversal. It
emains to prove the assertion for a system of more than four
vals., According to what has been proved already, it may be
ssumed that for each four ovéls of the system there is a
ormmon transversal., Let P be a point of a circle. With each
ine L that intersects two ovals of the system associate a
arallel through P and regard its second point of intersection
ith the circle as the image of the line L., In this way the

et of all transversals common to two ovals is carried onto



101
n arc; effecting this construction for all pairs of ovals
I the system, a Tamily of arcs is obtained, each smaller
han one-third of a circle by the condition on subtendea
ngles, and each two intersecting by the existence ol a trans-
rersal for each four ovals. Thus all the arcs have a cormon
oint Q by Theorem 5.7, and the antipodal point Q% is not in
ny of the arcs. Hence the line determined by the points P
nd Q% yields a direction not corresponding to a transversal
I any two ovals. The system is totally separable by lines
n this direction, and from Theorem 5.715 there follows the
Xistence of a line that intersecfs all the ovals of the
system. This establishes the theorem.

COROLLARY 5.17. If a family of disks in the plane is
50 sparsely distributed that even the disks with the same
enters but doubled radil are all disjoint, and i1f each three
11sks of the family have a common transversal, then there is
. transversal common to all of them.

PROOF. The set of all points at which a circle sub-
ends an angle of at least /3 is a concentric disk having
wice the radius. Thus the hypothesis that the disks with
loubled radii are disjoint implies that at no point of the
ylane does more than one of the disks subtend an angle ;TVQ.
Jonsequently the result is a corollary of lheorem 5.16.

me next few theorems are some examples of covering

nd intersection problems. Jung'!s theorem (see page 76) on
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the circumcircle of a set is typical of this sort of problem.
DEFINITION 5.18. A set of lines is called bounded if
it includes no parallel lines and the set of all intersection
points of pairs of lines from the set is bounded.
| According to this definition, a single line would
constitute a bounded set of lines (since the empty set is
bounded) .

DEFINITION 5.179. The intersection radius of a bounded

set of lines is the radius of a smallest closed disk that
intersects all lines of the set.,

DEFINITION 5,20. The diameter of a set of lines is
the dlameter of the set of 2ll intersection points of the
various pairs of lines involved.

THEOREM 5.21. If each three lines of a bounded set of
lines are intersected by some disk of radius R, then some
such disk intersects all lines of the set.

PROOF. This theorem is a special case of Theorem L.10,
page 61; for the lines can be replaced by sufficlently long
segments,

THEOREM 5.22. The intersection radius of a set of
lines of diameter D = 1 is r< 1/2¥3. (Dual to the plane case
of Jung's theorem)

PROOF. By Theorem 5.21, it suffices to prove the

assertion for a set. of diameter 1 consisting of three lines.



103
hese lines form a triangle of perimeter P<£ 3 that is circun-
scribed about the smallest intersecting circle. Since the
squilateral triangle of perimeter 6r43 has the smallest
oerimeter of any triangle that can be circumscribed about a
circle of radius r (see e.g. [9]), it follows that br/3 £P <3
ond hence r:é%Jg. This completes the proof.

The more the various ovals of a system are drawn
cogether, the less the possibilility that the members of the
system can- be separated by a line.

DEFINITION 5.23. A system of ovals 1s sald to be
separable 1f there 1s a linsc that-intersects none of the
ovals, but such that each of the two open hallfplanes deter-

nined by the line contains an oval of the system,

DEFINITION 5.2, If an oval has interior points, it

| i

s.sald to be proper, otherwise to be degenerate.

The next result is a good illustration of the close
connection among various groups of theorcms and methods of
oroof in convexity and combinatorial geometry, especially
since 1t is of Helly type. Hadwiger-Debrunner [3, p. 18}
state it picturesguely as follows: If each two members of a
system of congfuent disks can be pilerced by a needle, then
three needles suffice to pierce all the disks of the system.

LEUMA 5.25. A point set of diameter D=1 can be
covered by an equilateral triangle of side s = 3.

PROOF. Let S be an ecuilateral triangle that is
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circumscribed about the set, so that each of its sides
includes a point of the set, and let S« be another such
triangle that is obtained by reflecting S in a2 point and then
translating and magnifying, or contracting, if necessary, to
obtain a second circumscribed equilateral triangle. Then
either S or S has sides of 1ength.sé4J§. To see this,
consider an arvitrary point that is common to S and Si#, and
consider the perpendiculars from this point to the sides of
the triangles. By a theorem from plane geometry, the sum of
the three perpendiculars from any point in an egulateral
triangle is equal to the altitude of that triangle. Since
the set is of diameter< 1, the sum of a perpendicular to S
and corresponding perpendicular to S must be 1, so that one
of the triangles has altitude £3/2 and side of length £43,

-

LEMMA 5.26., A point set of diameter D = 1 can be
covered by a regular hexagon of side s = 1/4/3.

PROOF. In addition to the pfoof of the preceding
Lemma, 1t 1s verified that the length of the side of the
circumseribed equilateral triangle S variles continuously with
the directions of the sides and becomes that of S+# alter
a rotation thrbugh the angle M. Thus for some position of S,
S and S% are congruent and their intersection, which conta%ns
the given set of diameter 1, is a (possibly degenerate)
centrally symmetric hexagon in which the distance between

parallel sides is £1.- This hexagon is contained in a regular
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exagon that has the same center of symmetry and same direct-
ons for its sides, and in which the distance between parallel
ides is equal to 1. Thc regular hexagon has sides of lengt
/43 and contains the given set.

The above proofs follow conventional lines. For many
ther interesting problems of this sort, see Kazarinoff [9]
nd Yaglom-Boltyanskii [5], also Lyusternik [8].

The following theorem can now be justified,

THEOREM 5.27. If a system of congruent disks is such
hat each two of its members have a common point, then there
xists three points such that each disk of the system covers
t least one of the three points.

PROOF, A point set of diameter D<£2 is formed by the
enters of the disks of radius R = 1 that intersect pairwise.
t follows from Lemma 5.26 that this set can be covered by

regular hexagon having sides of length 2/J§: In this
exagon there are three points, the midpoints of three diag-
nals, at a mutual distance of % such that all points of the
exagon, and in particular the centers of the given disks,
re at distance £1 from at least one of these points.
ccordingly, each of the given disks includes at least one
f the three points. This completes the proof. ]

That the "piercing number" n = 3 cannot be reduced is
llustrated in [3, p. 19] by a group of 9 disks arranged in

uch a way that 2 needles would not pierce all of them.
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The following two theorems are characteristic of the
ub ject.

THECREM 5.28. If a point set A on a circle consists
I at least three points, and each three points of A lie in
ome closed semicircle, then the following alternatives arise:
ither A is a four-pointed set formed from two antipodal
airs, or A 1tself lies entirely in a semicircle,

THEOREM 5.29. If in a family of ovals that are all
omothetic to a parallelogram A, each two have a nonempty
ntersection, then they all have a nonempty intersection.
he assertion 1s no longer true when A is é proper oval that
s not a parallelogramn,.

THEOREM 5.30. If a family of ovals all homothetic %o
. parallelogram A is such that for each line there is a
arallel line intersecting all the ovals of the family, then
he ovals have a nonempty intersection. The assertion is no
onger true when A isfa proper oval that 1s not a parallel-
granm.

The next result appears to be some guirk of the
magination,

THEOREM.S.BT. If each three ovals of an infinite
amily of pairwise disjoint congruent proper ovals are inter-
ected by some line, then there is a line that intersects

11 of them.
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The theorem is no longer true if any one of the four
special conditions (proper, congruent, disjoint, infinite)
s omltted. For example, the four segments shown in
'igure 2l have the property that each three can be inter-

ected by a line; however, no line intersects all four.

FIGURE 2l

THE OVALS AR

=

NOT PROPER
If one imagines very small rectangles in place of the
segments, each containing a countably infinite number of
lis joint segments of the same length, then again each three
' these segments will be intersected by a line,‘but not all
f them. The ovals are not proper. For examples showing
he necessity of the other three conditions and a proof of
he theorem, the reader is referred to Hadwiger—Débrunner[3].
Hadwiger-Debrunner [ 3] have generalized Helly's
heorem in a form so that one can declde when a given collec-
>ion of.convex sets can be partitioned into subcollections,

ach of which has a>nonempty intersection. The fbllowing
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theorem is stated., Its proof can be found in 13, p. 83].

THEOREM 5.32. If the p-pointed subsets of an infinite
set A are divided into k classes, then A contains an infinite
subcecllection all of whose p-pointed subsets belong to one
and the same class.,

The following propositions are closely related to
Telly's theorem.

THEOREM 5.33. If each line meets only finitely many
ovals in a given infinite famiiy of ovals, then there is an
infinite subfamily consisting of mutually disjolnt ovals.

PROOF. The pairs of ovals from the family are divided
into two classes according to whether the two ovals of the
oair have an empty or nonempty intersection. By Theorem 5.32
the family of ovals contains an infinite subfamily such that
21l its pailrs belong to the same class. If there were no
infinite subfamily consisting of pairwise disjoint ovals,
then there would be an infinite subfamily whose ovals are
pairwise intersecting. If the ovals of the subfamily are
oro jected orthogonally onto a liﬁe T, the resulting segments
intersect pairwise and hence by Helly's theorem have a corxon
boint P, The line L that is perpendicular to T at P inter-
sects all the ovals of the subfamily, contradicting the
1ypothesis,

THEOREM 5.3L. If an infinitve family of mutually

varallel rectangles does not include infinitely many that
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are palrwise disjoint, then some infinite subfamily has a
nonempty intersection.

~ PROOF. The pairs of rectangles are diviaed into two
classes according to whether the two rectangles of the pair
nave an empty or nonempty intersection. By theorem 5.32 the
family of rectangles has an infinite subfamily whose pailr
all belong to the same class. By hypothesis this can only
be the second class and then the desired conclusion is
obtained with the aid of Theorem 5.l.

THEOREM 5.35. If an infinite family of ovals 1s such
that each of its infinite subfamilies includes three ovals
with a nonempty intersection, then some infinite subfamily
has a nonempty intersection. |

PROOF. The triples of ovals are divided into two
classes aécording to whether the threc ovals have an empty
or nonempty intersection. By Theorem 5.32 the family has an
infinite subfamily whose triples all belong to the same
class. By hypothesis this cannot be the Lfirst class; hence,
by Helly's theorem for the plane, the ovals of the subfamily

nave a nonempty intersection,



CHAPTER VI
SUMMARY AND CONCLUSIONS
I, SUMMARY

The following fundemental results of this paper are
re-emphasized here: (1) affine independence; (2) the exist-
ence of supporting and separating hy.erplanes; (3) duality;
() convex covers and simplexes; and, finally, (5) the inter-
dependence of the theorems of Helly, Caratheodory, and Radon.
All these results are inter-related and were necessary for
the normal development of this paper.

Helly's theorem has been applied in many different
parts of mathematics, and various applications were presented
in this report. In particular, the applications of this
theorem to estimates of "centeredness" and to the approx-
imation theory of polynomials are of interest. The theorems
of Kirchberger, Jung, and Blaschke can be proved with the
aid of Helly'!s theorem. Using Helly's theorem, a character-
ization of starshapedness results. The translation problem
proved in conjunction with the applications of Helly's
theorem, while being especially useful for sets consisting
of one-pointed sets, brings out the "dual" relation between
covering and intersection properties of convex sets.

The Helly=-type theorems presented in the last chapter,
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consisting mainly of transversal and covering problems, are
of interest. 1In addition to illustrating the relation
between the covering and intersection propertlies of convex
sets, which was mentioned above, the proofs of these theorems
indicate the principal methods and technigues used in the
theory; the various mappings, projections, and "dual" spaces

employed are typical.
II. CONCLUSIONS

The various applications of Helly's theorem, along
with the numerous Helly-type theorems, all show that not only
is Helly's theorem one of the most interesting theorems, but
it is one of the most important tools in the study of con-
vexity,

The inter-dependence of the theorems of Helly,
Caratheodory, and Radon seems to lie at the core of the whole
matter. Ultimately, and particularly in the light of the
proof of Radon's theorem, the problem appears to be reducible
to the idea of (affine) independence and the concept of dimen-
sion. Studying the inter-relationship between these three
theorems, one arrives at the conclusion or conjecture that
any further investigation of this underlying problem would-
lead inevitably into a study of dimension theory and assoc-
iated concepts of combinatorial topology. The present

investigation was leading naturally in this direction.
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