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NUMBERS SIMULTANEOUSLY POLYGONAL

For the purpose of this thesis the term polygonal
number will refer only to positive integers and 1s defined
as follows: let {ak} be an arithmetic seguence whose first
term is 1 and whose common difference 1s m-2, where m is a
positive integer greater than 2. The sequence of partial
sums, (sr), associated with {agﬁ is called a seqguence of
m-gonal numbers or the sequence of polygonal numbers with
m sides. For example, when m=3 the arithmetic sequence to
be considered 1s {agﬁ={;, 2, 3, o + ey Ky, 4 . .} and the
associated sequence in this case 1is {s£}={l, 3, B, & « s,
rir 1)/2, . . . .} This is the sequence of 3-gonal (trian-
gular) numbers. For simplicity the rth term of the seguence
of m-gonal numbers willl be denoted by p;. Table I is a
general -listing of p;. Teble I was obtalned using the
following well-known formulas for arithmetic sequences anad
series: =1+ (k-1) (m-2) and S£=(r/2)(2+(r—l)(m—2)).

Historically the numbers were named polygonal because

they can describe, for a given m, a nest of regular polygons

@)

f m sides having a common vertex and with r=1, 2, 3, . . .
points for each side. The diagrams shown below in Figure 1
illustrate polygons which are representative of the first

four triangular, scuare, and pentagonal numbers.



TABLE I

POLYGONAL NUMBERS

1 2 3 L 5 6 . .. r
3-gonal 1 3 6 10 15 21 . . . r(r;l)
L-gonal 1 4 9 16 25 36 ... v
S-gonal 1 § 12 23 35 51 . . . r(5p-1)
6-gonal 1 6 15 28 L5 66 . . .  r(2r-l)
7-gonal 1 7 18 3l 55 81 . . . r(Sg—B)
B—gonai 1 8 21 Lo 65 9 . . . r(3r-2)
9-gonal 1 9 24 L6 75 131 -« = - r_(?g—S)
10-gonal 1 10 27 52 85 126 . . .  r(kr-3)

m-gonal 1 m 3m-3 6m-8 10m-15 15m-24 . . . rz(m—2)—r(m-u)
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If P denotes the set of 2ll polygonal numbers, it is
apparent that P is the set of all positive integers except 2.
An integer w will be called simultaneously polygonal if and
only if there exist integers r and g such that for distinct
integers m and n 1t 1s true that sz;=pq Let the sest of all

ne
simultaneously polygonal numbers be denoted by Pz} The

following facts immediately present themselves: (1) P° ig
a proper subset of P. (2) lé.Pa, since for all m>2, pi:l.
(3) If mrePz, then exactly one of the following hold:

(1) r=q=1 or (ii) r#q, where w=p£:p%. An investigation of

the possible ways a given number may be polygonal helps to
determine the nature of the set Pz. Let w be any integer.
If w is the rth m-gonal number, then w:pﬁ:(r/Z)[?+{r—l)(m-2ﬂ
and hence 2w=r @*{r—l) (m-2ﬂ . Now if any given w is to bs
polygonal, then 2w will have to be expressed as a product

of two factors. One of these factors is r and the other is

2+(r-1)(m-2). The following theorem shows that r must be

the smaller factor.



Theorem 1: If w=p;, then r<2¥%(r-1) (m-2).
Proof: By definition wm-221. Hence by multiplying each
member of the ineqguality by r-1, (r-1)(m-2)zr-1 is
obtained. Adding 2 to both members yields (r-1)(m-2)+
2zr+l. Anéd it follows that r<2+{(r-1){(m-2). @QED
It is now clear that the smaller factor of 2w is r and that
by subtracting 2 from the larger factor the product
(r-1) (m-2) is obtained. Using the preceding fact, m is
easily determined. As an example of this methnod, the
problem of deciding the number of ways 36 may be polygonal
is examined. The first step is to express 2x36 as a product
of two Tactors in all possible ways.
2x36=3x2)=l1x18=6x12=08x%9
The first factorization, 2x36, is then considered. Since
r must correspond to the smaller factor, r=2. By subtract-
ing 2 from the larger factor 3l is obtained. FHence,
(r-1) (m-2) must be 3 in this case and m is therefore 36.
Thus, this factorization indicates theat 36=p§6. Similariy
the Tfactorization 3*2& indicates that r=3 and (r-1)(m-2)=22,
wnich implies that m=13. From this factorization it is
concluded that 36=p%3. Not all factorizations are indicative

of a menner in which 36 is polygonal. It will be noticed

3
)

that the factorization Lx18 shows that 36 is never the Lth

<k

element of an m-gonal sequence, since in this case r=l,

(r-1) (m=-2)=16, and since 3=r-1 does not divide 16 there can
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be no inteéral value for m-2 and hence no value for m.
Table II indicates all the ways in which 36 is polygonal.
Fence, 35 is polygonal in exactly four ways. It is possible
that some factorizaticns can be eliminated from consideration.
The following theorem indicates that consideration need only
be given those factorizations of 2xw where the smallest
factor is less than or equal to %(\{Bw+l -1).
Theorem 2: If w=p§, then rﬁé%(48w+l -1).

Proof: If w=(r/2) @+{r—l)(m-2§ , then solving for m-2,

m-2= %%EE§%. But, also, by definition m-22 1. So,

T

2 (w-1)

;%¥:§§ij_or 2(w-r)zr(r-1l). Hence w;iﬂ%?JJ +r or
2

+r and completing the square 8w+12;ur2+ur+l=(2r+l)2.

Thus 48w+1ézmw1 and therefore %(18w+1 -l)zr. Q=D

2w2r

+3

A number that is not an element of P2 is 26. his is
epparent since 2¥26=L1x13 are the only factorizations of 2x26.
The first factorization Shows that 26=p§6, but since 3 does
not divide 11 this is the only way 26 is polygonal. It

also follows that if w is any prime, then the only factor-
ization of 2*w is 2¥w and hence w=pg. This 1s the only

way w is polygonal. Taus, P2 contains no primes. Further-

£

more, the above method reveals that there are twenty-seven
composites less than 150 that are not elements of P2:
L, 8, 1, 20, 26, 32, 38, UL, 50, 56, 62, 68, 74, 77, 80,
86, 98, 110, 116, 119, 122, 125, 128, 13L, 140, 1Lh3, and

146. The following conjecture seems appropriate at this
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TABLE II
THE WAYS 36 IS POLYGONAL

Corresponding

Factorization r m polyzonal number
2
2X36 2 36 P36
3
3x2l 3 13 p13
Lx18 not possible for 36 to be Lth m-gonal
, : 6

w

8x9 8 3 P



Conjecture: With the exception of L, there does not exist

a composite integer that is not an element of P2 that is
not congruent to 2 modulo 3. In partial support.of this
conjecture is the following tneorem:
Theorem 3: If w is a composite and is congruent to O
modulo 3, then w 1s an element of PZ.
Proof: If w=0(mod 3), then there exists a positive
integer k such that w=3k and then 2w=2 (3k). Factor-
izations of 2w include 2(3k) and 3(2k). The first
factorization implies r=2 and (r-1)(m-2)=3k-2 and

hence m-2=3k-2 which implies m=3k=w or w=p2

m
we The

second factorization implies r=3 and (r-1)(m-2)=2k-2

and hence m-2=k-1 so that m=k+l and w=pi+l. Therefore,

w€P2., QED

In Chapter II a method 1s developed by which all inte-

gers thet are simultaneously polygonal in a specific menner
may be determined. The remaining chapters then illustrate
the use of this method. Its application allows the deduc-
tion of several theorems which are stated and proved in

Chapters III and IV.



CHAPTER IT
NUYBERS BOTH M-GONAL AND N-GONAL

This chapter deals with the determination of integers
w such that for specific values of m and n there exist

; . . r_ _a ; i
integers r and g such that w=p,=p,. 4 general treatment

iy

of this question may be considered, but it necessarily

becomes quite involved, and when specific instances are

treated the method will vary somewhat to facilitate brevity

T 2

This general aporoach could, however, be followed in all

cases to be considered. From Table I, if pn—pq then

%((m-E)rZ-(m—u)r)=% ((n 2) -(n-L.)g). Let a=m-2 and b=n-2.
Then, %(ar-(a-2)r)=%(bg 2_(b-2)q 1), or multiplying by 8a

and completing the square the equation becomes: (2ar-
2
) .

(a-2))% LaboP-la (b-2)q+(a-2 Upon multiplying by ab and

completing the square on g, the following is obtained:

(1) ab(2ar-(a—2))2+a2(b— )2 (2abg-a{b-2)) +ab(a—2)2

Let y=2ar-a+2, x=2abg-a(b-2), and C=a” (b-2)%-ab(a-2)°.

Now (1) maj be written as

(2) xg-abyasC.

Hence, the problem is reduced to finding all integral
solutions of (2). It is noteworthy that if r, m, g, and n
are integral, then x and y must be integers, but that the
converse is not true. That is, integral solutions (x, y) of

xz-abya=0 will not necessarily indicate an integral solution



(r, a) of p;;p%. It is also noted that x=abt2a, y=a+2 is

always a solution of (2) since r=l, g=1 is always a solution
for pﬁ;p%. This will be called the triviel solution.

To find all solutions of (2) two cases rust be consid-
ered. First, if ab is a perfect sguare and ab=k< for some
integer k, then (2) becomes (x+ky)(x-ky)=C. Without loss of
generality C 1s assumed to be positive, for if it 1s not,

(2) may be rewritten as (ky+x)(ky-x)=-C. The following

theorem will now be established:

Theorem lL: If ab=k2 for some integer k, where a=m-2 and

b=n-2, then there are at most a finite number of solutions

(r, ¢) such that p
Proof: In equaticn (2) above x=abg-a(b-2) and y=2ar-a+2.

A solution x70, ky»0 of C=x2—(ky)2=(x+ky)(x-ky) implies

a facvorization of C in the form C=de where d=x+ky and

e=x-ky. Hence d+e=2x and d-e=2ky. It follows that

dze(mod 2). Conversely, there is a solution x=(d+e)/2

1]

and ky=(d-e)/2.

(i) Since C is the difference of two squares,
C#2(mod L).

(i1) If C=1(mod L) or C=3(mod L), then C is 0dd
and both 4 and e must be odd so that d=e(mod 2) will be

satisfied. If C is not a socuare then every factorization

Hy

C implies d#e. There are 7(C) choices for d where =(C)

Hy

O

€L

is the number of divisors of C. <«(C) is even and t-ere
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are exactly 7(C)/2 choices for d>e>0. If C is a souare,
there 1is one and only one factorization of C=de in which
d=e, which would not lead to a solution. In t-is case
T(C) is o0dd and the number of solutions (x, ky) is

(w(c)-1)/2.

(1ii) If C=0(mod L) then C is even and hence d and

(@)

]

e must both be even. Let d=2D and e=2E. Fance, C/L=DE
where D?E>0 and the number of solutions depends exactly
on the number of factorizations of C/4L=DE. Proceeding

as in case (ii) the number of solutions is 7(C/L)/2. QED

If, howsver, ab is not a sqguare, the following propo-

S

e

tions will be needed to find all solutions of (2). The
proof's of these results can be found in elementary number

theory texts and will not be included here.

De

)
S

ir

Hh

tion 1: If D is a natural number not a perfect sguare

2-Dy%=l, then (xl, yl) is

and if (xq, yl) is a solution of x

e . . . . a 2
a fundamental solution if and only if x >%y7-1.

mi,

Theorem 5: The fundamental solution of XZ-Dy%=1,where D
is not a perfect square, is unique. That is, there is only

2
one solution (Xl’ yl) that satisfies the inecguality Xi>%yl—l.

my

heorem 63 If (xl, yl) is the fundamental solution of

2 2

X -Dy=1, where D 1s a natural number, ard not a perfect

square, .then all positive solutions are given by (x,, y,)

where x +{D y{=(xl+{5 yl)n for n=1, 2, 3, « . . .

y " PR = R <.
Theorem 7: If D is a natural number and if x -Dy =N has cne



solution, then it has infinitely

2 ~

(ul, vl) is a solution of u“-Dy=1 and (Xl’ Yl) is a solu-

tion of xa—Dy%=N integers x and y determined by x+y{D =

(u1+vlJ5)(xi+yl{5) form a solution of x2-Dy4=N.

2 2

Examining the Pellian eguation u“-Dv=1 with (u, v)

any sclution of the equaticn and with (xl, yl) any solution
2

mt

of x —Dy%=N, then according to Tneorem 7, integers x, and

vo will also be a solution where x2+J5'y2:(u+ D v)(xi+55'yl).
The solution (xz, y2) is said to be associated with the
solution (xl, yl). The set of all associlated solutions

forms a class of solutions. Since there are infinitel
v

a

many solutions for the Pellian equation, each class will

2 2

contain infinitely many soluticns for xX™-Dy=N. It is

possible to tell whether two given solutions (Xi, yi) and

(xj, yj) belong to the same class. The necessary and suf-

ficient condition for the two to be associatsed is thsa

ct

(3

=
L

X.-¥. V. D)/N and (y, x.,-x, v.)/N be integers. If S
J 7+ 17 1
is the class consisting of the solutions (x;, yi) then
solutions (Xi, -yi) also constitute a class which is usually
denoted by S. S and S are called conjugate classes and nay
e distinct or coincide. In tze latter case they are called
ambiguous classes. Among all solutions (x, y) in a given
class the fundamentel solution 1s chosen in the following

manner: if vy is the least non-nsgative value of y which

cececurs in S and if S is not ambiguous, then the number Xy
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is aiso determined, for the solucion (-x1, yl) belongs to
tns conjunete class S. Ir S is amdliaous, a unigue X, mey
obta:nzd by prescribing tca Xi>O. In the fundarental solu-

tion the nomber [xﬂ has tho lesast value which is possible

is an elsment <l S. The case x=0 can

~~

for |z, .mhen (x, ¥y

only occur uvien the class is ardbiguous, and sgimilarly for

Thczre: 8: If S is a class of soluvions for the equation

x2-Dy%=N where N is a pocitive inte.er with. (x, y) the

fundamental solution of the class S and with (ul, vl) the

. . s . 2
undamental solution of u —DV2= , then

(3) 0sys(v 1«\ /‘g (ur1

(L) o<[x|gls(u +l)h

Hh

If N is a negative integer, N=-I. Now inequalities (3) and

(L) vecome
(5) 0<y& “'/J u and
(6) O "l}x‘ ,ig M

It is now clear from the preceeding theorems that if

Ui

ab and C are natural numbers and 1f ab is not a perfect

square, tne equatlions xg—aby2=0 and x2—aby2=-C have a
finite number of classes of solutions. The fundamsntal
solutions of all classes can be found afilter a ITinite number

of trials b

e

r means of the inequalities (3) and (L) or (5)

A
B
Q

) ED (Xl’vyl) is the fundamental solution of the

class S, all the solutions (x, y) of S may be obtained from



{(7) X+y\]_a$ :(x1+ yl\(a—.%) (u#v@ )
2 .

where (u, v) run through all the solutions of u“-abv

b

Whnen an equation has no solutions satis

inequalities, it has no solutions at all.

2

ying the above

1.

13



CHAPTER III
TRIANGULAR NUMBERS

The methods developed in Chapter I are used in this
chepter to determine the nature of integers that ars bhoth
triangular and m-gonal for specific values of m#3.

Thne cuestion to be treated initlially concerns solu-
tions for p&:p%.

2 2 Cq .
becomes X -2y =L where x=Lg+2 and y=Lr. To facilitate

Here m=lL and n=3. Thus equation (2)

scliutions the ecuivalent squation Z2—8r%=1 where Z=x/2=2qg+1
will be considered. According to Theorem 6 all positive
sclutions of the crove equation are given by Z+J§_rizl+j§.rl)n
n=l, 2, 3, . . . waiere (Zl’ rl) is the fundamental solution.
This solution is readily determined by trial to be Z=3, r=1
which corresponds to pi;p%:l. Hence all solutions are

glven by

(8) 2+ r=(3+{8)" n=1, 2, 3, . . .

A listing of the first ten solutions (r,q) and the corre-
sponding polygonal number 1s given in Table IIT. The fol-
lowing recursion formula may be derived to further simplify
the problem of finding solutions: 1if (Z,, rn) is any solu-
tion obtained by (3), then (Ztr, 8)(3+{é)=325F8rn+(an3rn)ig.
Thus the solution (Z,,q, rn+l) is given as

(9) Z_..=3Z +8r and

(10)  rp 23 .



TABELE III

TRIANGULAR NUMBERS THAT ARE SQUARES

r_ a
P a
r g j Nk <
43
1 1 1
6 8 36
35 L9 1,225
204 288 11,616
1,189 1,681 1,413,721
6,930 9,800 48,021,900
110, 391 57,121 1,631,432,861
235,416 332,928 55,420,693,056
1,372,105 1,540,449 1,882,672,131,025
7,997,214 11,309,768 63,955,431,761,796
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Solving equation (10) for Z, and substituting the expression
in eguation (9) yields 25 3r,-r,_ - Fow by replacing Zp in
(10), rn+lz6rn—rn_l. A similar procedure gives Z, 4y~ 0% -Z

Theorem 9: All solutions of pﬁ=p% may be determlned by

n-1°

= § - = = W = ) nd
r=6r ,-r , and g= 6qn—l qn_2+2 nere (rl, ql) (L,1) an
(rz, q2)=(6:8)-

This follows Tfrom above derived formulas and the fact

that Z=2qg+1l.

Theorem 10: If pj_rpq has solution (rn, qn) and the next

larger solution is (rn+l’ qn+l)’ then rﬁf nrqn+l rn+l
It will be necessary to present the following lemma
before the proof of Thedrem 10 can be established.
Lemma: If pr:pq then g =(f+e -2 ) /It ang r =(f - LJ*
where fﬁ=(3+{g) and ep=(3- J8)2 for n=1l, 2, 3, . . . .
Proof: If Z=2q+l all solutions may be obtained from
Z+J§r=(3+J§)n. Now Z+J§ r=f and Z—Jg rse. Bliminating
r, Z=(f+e)/2 or a=(f+e-2)/L. By eliminating Z,
/(1{2) is obtained. Hence the lemma is proved.
This lermma allows the following proof for Theorem 10.
Proof: If fn=(3+Jé)n and fn+1=(3+¢§)n+l and e, and
€41 BTO defined in a similar fashion, then by the above
lemma q.=(fte - 2)/2, rp= fn—en)/(u{_), Ape1=(FpaFensy-21/2
and rn+l=(fn+1+en+l)/(uf§). The theorem now follows from

the fact that £ =(3+{8)f, and e,,1=(3-{8)e,. Q=D

Now investigations will be directed toward solutions
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Tor p%Zp%. Fere m=5, n=3 and hence a=3 and b=1l. Taus,

2-3y2=6 where x=6q+3 and y=6r-1. The

equation (2) becomes x
equation may be simplified and rewritten as
(11) y23322=—2 where Z=20+1.

The fundamental solution of u2—3v2

=1 1s obtained by
trial and is found to be (2, 1). Possible classes of solu-
tions for (11) are determined by its fundamental solutions.
These fundamental solutions are found by avplying inecual-
ities (5) and (6). Here =3, vi=l, and uj=2. Thus possi-
bilities for fundamental solutions are 0<24[2/{2=1 and
og|yl€ 3/J2 or (0, 0), (0, 1), (1, 0), (1, 1). Of these
possibilities only (1, 1) is a solution for (11) and,
therefore, there is just.one fundamental solution and one
class of solutions. All solutions may be determined by
(12) y+z{3=(1+{3) (u+v{3) where (u, v) run through all the
solutions of u2—3v2=l. Once again, not all solutions
(y, Z) lead to solution (r, q). & listing of the first
five solutions (r, g) appears in Table IV.

The following theorem is useful when solutions (r, q)
of pg:p% are reguired:

©

Theorem 11: If (u Vn) is a solution of u2—3v2=l then

n?

aq

3

only if: (i) when 9v ZO0(mod 6), then u =1l(mod 6), or (ii)

(Up41s Vpe1) Will yield a solution (r, g) of pE:p if and

when 9v£53(mod 6), then uzEl(mod 6).

Proof: According to Theorem 6, un+l+vn+lJ§=(un+J§vn)(2+J§)



TRIANGULAR NUMBERS THAT ARE PENTAGONAL

o (y,2) (r,q) D§=___3

1 (5,3) (1,1) 1

2 (19,11) - - }

3 (7L, (12,20) 210

Iy (265,153) - B

5 (989,571) (165,285) 10,755

6 (3691,2131) - . -

7 (13775,7953) (2296,3976) 7,906,276~
8 (511,09,29661) - | }

9 (191891,110781) (31982,55391) 1,534,109,136

NOTE: Solutions (u,, v,) are determined by uﬁfvniﬂ_:
=41 i 3 ] - \ = 3 7 {2 =
(2+{3)". Then, solutions (y,Z) are determined by y+ZJ3 =

(1+I§)(ud+vn 3). Thus y=br-1l and Z=2g¢+1 yield solutions (r,c).
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or un+]_‘-=2un+3vn and Vv,

Vet Zne 1035 (14Y3) (v + BV, 1) and thus (6r-D(2g+1){3 =

(Sun+9vn)+(3uﬁ+5vn){§. Yence r=(5u5§9vﬁ+l)/6 and

150t 2V By equation (12)

q=(3u,+5v,-1)/2. If r is to be an integer, then Sug v,

rmust be congruent to 5 modulo 6. Any multiple of 9

must be congruent to O modulo 6 or 3 modulo 6. In the
first case Sun mast be congruent to 5 wmodulo 6 which
implies u,=1l(mod 6), and in the latter case Sty I8
necessarily congruent to 2 modulo 6 which implies

uﬁEh(mod 6). These conditions are also sufficient for

g to be integral. Conversely if 9v,=0(mod 6) and
u,=1(mod 6) or 9vp=3(mod 6) and u =lh(mod 6), a solution

(r, q) is obvious. QED

Determining solutions of pg:p% is a simple matter

2

since equation (2) becomes xg—uy =0 where x=8qg+l. and

v=B8r-2. Thus g=2r-1 and solutions are obtained. The next

v

theorem follows from the above solution.

Theorem 12: If Tor an integer w>»0 there exists an r such

that w=pg then there exists a g such that w:p%.

The converse is obviously not true.
As a final example of triangular numbers that are
simultaneously polygonal, the problem of finding solutions
r g3 2 . &
for p11=p3 is treated. TFor this case, equation (2) becomes:

(13) x2-9y%=-360 where x=9(2g+1) &and y=18r-7. In this

example ab=9 is a perfect square and thus is indicative of
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a finite number of solutions. The exact number of solutions
(3y, x) determined by (3y+x)(3y-x)=360 is given by Theorem U
to be 7(360/lL)/2=6. These solutions are sasily obtained
from the six factorizations of 360 where both factors are
even and are: (91, 89), (L7, L3), (33, 27), (23, 13),

(21, 9), and (2L, 1). Of the above solutions for (13) only
3y=33 and x=27 lead to integral values of r and gq. This

solution implies r=1 and g=1.

Theorem 13: The only triangular number that is ll-gonal is 1.
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The problem of finding numbers that are square and

triangular was trested in Chapter IIL. In this chapter

s

ne determination of squares that are polygcnal in another
sprecliic manner will be the object of investigation.

Finding solutions (r, q) for pE:pi by direct substi-
tution in equation (2) indicates that m=5, a=3, n=l, b=2,
C=a2(b—2)2—ab(a-2)%=-6, ab=6, and thus all solutions of
x2—6y2=—6 must be examined. This ecuation may be simpli-
fied somewhat since x=2abg-a{b-2)=12g and (l2q)2—6y%=—6 is
equivalent to y2—2uq2=l. Here y=2ar-a+2=6r-1. According to
Theorem 7 alllsolutions of y2—2ﬁq2?1 are given by yd+J§E Gp=
(71 +\2L ql)n for n=1, 2, . . . where (yq, ql) is the funda-
mental solution of y2—2uq2=1. By trial (yq, ql) is found
to be (5, 1). Eence, all solutions are given by yn+J§E'qn=
(s+{2L)2 for n=1, 2, . . . . Table V shows the first nine
solutions for the above equation and the corresponding inte-
gral values of r and gq. It is once again noted that only
values of y which yleld integral values for r:X%l will Dbe
indicative of solutions for pg:pi.

As g Tinal illustration of the method, all solutions
(r, q) of p?:pi will be ccnsidered. This case differs fronm

the preceding examples 1n that there are two classes of



TABLE V

SOME SCLUTIONS FCR pgzpi

9 Li56,335,

n y=6r-1 T g 'p?:_‘_zi

1 5 1 1 |

2 49 - 10 -

3 .85 81 99 9,801

"l l,,801 - 980 -1

5 47,525 7,921 9,701 9,109,401

6 LTO,499 - 96,030 ]

7 l,,656,965 776,161 950,599  903,638,L58,801
8 16,099,201 - 9,409,960 -

oys 76,055,841 93,149,001 8,676,736,387,298,001

NOTE:

Solutions (y,q) are determined by y;{@qnz

(5+@)n and values for r are then obtained from y=b6r-1.
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solutions. Fere a=5, b=2, y=10r-3, x=20q and C=-90. By

1.8 © s g y . 2
direct substitution equation (2) bccomes x —10ya=—90 or

2

LL00g —lOyaz—QO or equivalently ya—QOq%=9. The fundamentsal

solution of u2—AOv2=l is found by trial to be (1S, 3), and

thus according to inequalities (L) and (5) possible funda-

mental solutions (y, g) Tor y2-QOq2=9 must satisfy 0€qg%

(9/2JT5K2 and O<\yh:3ji6<10.v Thus, the only possible funda-

mental solutions (y, ¢) must have g=0 or g=1. If o=0 then

a solution (yq, ql)=(3, 0). If g=1 a solution is (yg, q2)=
(7, 1). To see that there are indeed two classes the
expression Y1 Y2791 22 40 pyust be examined. Since this

9

expression is not integral there are two classes of solu-

~

tions. All solutions (y,, qn) associated with (3, 0) may

be obtained from yﬁfqndu0=3(uh+vp{_6) where (un, vn) is a

2=1. All solutions associated with (7, 1)

solution of ua-uOv
may be obtained from yn+qn{E6=(7+{Z6)(un+vn{H6). Table VI

shows the first few solutlons.

The following theorem identifiles those m-gonal sequences

that contain a finite number of sguares.

Theorem 1llL: There are at most a finite number of solutions

. r . . R .
(r, g) for pr=pl if m is of the form m=2k°-2 where k is an
s 4 m LI'

4

integer greater than 1.

A . . P

Proof: Using ecuation (2) where b=2, solutions for pm;pﬁ
. ' 2 L '

are given by x2-2ay2=-2a(a—2) . But since b=2, x=lag and

the above eguation can be rewritten as (uaq)2—2aya>2a(a—2)

2.
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TABLE VI
SOVME SOLUTIONS FOR p§=pq

Associated

n (un, v,) solution (¥ps an) T D?zﬁﬁ____
Fund. soln. (3,0) - - -

Fund. soln. (7,1) (7,1) 1 1

1 (19,3) (3,0) (57,9) 6 81

1 (19,3) (7,1) (253,9) = -

2 (721,11l) (3,0) (2163, 3421 ~ ;

2 (721,114) (7,1) (9607,1519) 961 923,561

NOTE: Solutions (u,, v,) of u2—u0v2=l are determined
by uﬁfvn{E6=(l9+3{E6)n for n=1, 2, . . . . Solutions (Trs Gpl
are determined by yﬁfqn{ﬁa=3(ug-vn{£6) if associated solution
is (3,0) andg yn+anH5=(7+JE6)(uﬁ+vn{E6) if associated solu-

tion is (7,1). Values for r, are given by rﬁ;yﬁ%lu
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or 16a2q2—2ay%=-23(a42520r equivalently y2-8aqa=(a—2)2.
According to Theorem l} there can be at most a finite
number of solutions if 8a is a perfect squars. YNow Ga

is a perfect scuare only if a is the double of a perfect

sqguare. Thus, m=2k2+2 implies a:m—2=2k2. QED



SUMMARY AND AREAS FOR FURTHER STUDY

The objJective of this paper has been 1o present =
general method for finding numbers polygonal in more than
one wayv. Chapter II presents such & method. This method
allows the ‘determination of values of r and g such that
pm—b+ Tor given values of m and n. The substitution of
these values of m and n in eguation (2) results in an
equation that may be solved, 1if possible, by rinding the
fundamental solutions of 2ll classes of solutions through
the use of inequalities (L) and (5) or (#) and (7). By
examining solutlons of tThese classes, tne values of r and
q may be determined. A few of the infinitely many theorems
that concern particular types of sinmultaneously polygonal
nambers nave been stated and proved. nere also seeris to
be no end to the number of available theorems concerning
simulvaneously polygonal numbers. Each particular pair
of values for m and n leads to a multitude of tnese theorems.

A source of further study seems to lie in tne nature
of the set P2, Also the definition of PP for n greater than
two seems evident and the nature of these sets is completely

unknown.
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