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CHAPTER I
INTRODUCTION

Since the time of the Greeks, the concept of a curve
has been a common mathematical term, The first "definition"
of a curve was probably as follows: "A curve 1s the path of
a continuously moving point."1 This definition 1s usually
accompenied with equally aembliguous 1ldeas of "thinness" and
"two-sidedness." A curve may also be thought of as glven
in its entirety as an infinite set of points.

It was not until the 1870's that attempts were first
made to formulate a precise definition of & curve, Cantor
was the first to be credited with such a deflnition.2 What
he sctually determined was the set theorellic properties of a
set of points whose cardinality is that of the real numbers,
a continuum, Cantor slso proved that there 1s a one-to-one
correspondence between the points of an interval and the
points of a square together with 1ts interlor polnts. Thus,

sccording to Cantor's definition, a square together with its

interior points 1s also a curve, This hardly sesgrees with

1G. T. Whyburn, "What is a Curve?", Americen Mathe-

matical Monthly, Vol. 49(October 1942), p. 493.

2R, L. Wilder, "The Origin and Growth of MNethematical
Concepts", Bulletin of Americen Mathematical Society, Vol. 59
(September 1953), pp. 423-18,
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the usual idea of a curve. If, however, this continuum thet
is to be called e curve lies in a plane end is required that
the continuum contains no such square, the result is "can-
torian lines." If centorien lines could reasonably be
defined for dimensions other than a plane, it probably would
be an acceptable definitlion today.

The next importent attempt to define a curve was
made by Jorden, He defined a plane curve as glven by any
two functions x = f(t) and y = g(t) where the range of
parameter t 1s the real number interval [0,1]. 1In the orig-
inal publication, he made no mention of continuity. How-
ever, 1In a leter publicetion, he noted that if the functions
are continuous, the curve is continuous. This 1s usually
cited as the "origin'" of the concept of '"continuous curve."
Cantor had pointed out that if & curve 1s continuous, it
need not have o one-to-one relationship with the points of a
continuum. Jorden's definition was somewhere 1in between,

It did not requlre one-~-to-oneness and dild not require
contlnuity.

It was only three yeers after Jordan's formulation
that Peano showed 1t wes possible to construct a continuous
curve that would pass through every point of & square and
its interior. It was also pointed out that some configur-
ations that do form curves in the intultive sense are

excluded using Jordan's definition.. Thus 1t became apparent



- 2
that Jordant's definition, even with the condition that the
function be continuous, was inadequate as a definition of
the usual concept of a curve,

ILater, Schoenflies, Brouwer and others studied
curves in a topological structure and arrived at a charac-
terization of a continuous curve to be mentioned later.

A continuous curve was sald to be the image of
continuous functions. If the relationship is also required
to be one-to-one, the resulting confliguration 1s called an
arc., It 1s this speclial type of a curve with which this
paper 1s concerned. Also, as was mentloned earlier, a curve
may be considered as a path of a continuously moving point
or as an infinite set of points. This paper will consider
an arc as a set of points,

In Chaptér II, some concepts from elementary topo-
logy are included. In Chapter III, some topological proper-
ties of the resl number interval [0,1] will be discussed.
Necessary conditions for a topologlcal space to be an arc
will also be developed. In Chapter IV, sufficlent condi-
tions for a topological space to be an src will be developed,
and an arc will be characterized as a topological space,
Chapter V will contain a summary and suggestions for further

study.



CHAPTER IT

DEFINITIONS AND BASIC CONCEPTS

Definition 2.1. A tovologicel space (S,T) is a set

S end a collection T of subsets of S that satisify the
following axioms. (1) The union of any number of elements
of T 1s an element of T._ (2) The intersection of a finite
number of elements of T is an element of T. (3) Both S and
¢ ere elements of T. The collection T is called a topology

for the set S and the members of T ere called open sets.

Definition 2.2, The set G is e neighborhood of p

iff G is an open set containing p.

Definition 2.3. Let S be a set and T' a collection

of subsets of S, Then T' 1is sald to generete the collection
T of subsets of S defined as follows: A subset K of S is en
element of T iff K 1s the union of a collection of elements
of T'. The collection T' is sald to be & basis for the
collection T which it éenerates.

It is frequently more convenient to consider topo-
logical spaces in terms of a basls rather than the entire
collection forming its topology. The following theorem
gives a characterization of a topology of a space in terms

of a basis,



Theorem 2.1. Let S be a set and T a collection of

subsets of S, Let T' be a basis for the collection T. Then
($,T) is a topologicel space 1iff the following conditions
are true. (a) For every p In S, there exists an element U
in T' such that p 1s in U. (b) For every U and V in T' and
any point p in U A V, there exists an element W of T' such
that p€ W€ UN Vv,

Proof: TFirst, suppose that (S,T) 1s a topological
space with basis T'. Since (3,T) 1s a topological space,
the union of two open sets is open. Also, since T!' is a
basis, each open set in T is the union of ‘elements of T',
Since evefy point p of S is in some open set U of S and U
is the union of elenents of T', p is 1in some open set U!' of
T'. Each element of T' 1is en element of T since it cen be
considered as the union of itself. Then considering ele-
ments U' and V! of T', U' Nl V' is an element of T. Now,
let » be en element of U'MN V', Then, since U' 1 V' is an
element of T containing p end T is the union of elements of
T', there 1s some W' of T' such that W' is contained in
gr ) V' and W' contains p. Thus conditions (a) and (b) are
satisfied. Conversely, suppose that conditons (a) and (b)
are true. Conslder the union of any number of elements of
T. Each of these is the union of elements of T'!', Thus the
union of any number of elements of T is the union of

elements of T' which by definition is an element of T. The



sets S and ¥ can be considered as the union of all and no
elements of T respectively., Therefore, conditions (1) and
(3) of definition 2.1 are satisfied. Let G and H be ele-
ments of T, Then each G eand H is the union of a collection
of elements of T'. Thus G = {q‘} and H = {HAJ where Gy and
Hg are elements of T' for eache& and eaohﬁ. Now G A H =
(UGe) N WHR) = (Gg, N Hg, ) U (6, N Hg)U ... U (Ga, N1 Hg,)
v (G«zﬂ Hﬂz) v...u (Gmkﬂ g, ) U (G“xn Egy) U ... From
condition (b), C—q!ﬂ Hgy is an element of T' for each d, and
each By. Thus G f1 5 is the union of elements of T! snd an
element of T, By mathematical induction, 1t can be shown
that the intersection of eny finite number of elements of T
is an element of T, Thus condition (2) of definition 2.1

holds and (S,T) 1is a topoloagical space.

Definition 2.4, Let S be a topological space and X

a subset of S. The subspace topology of X is that obtailned
by defining a subset U of X to be open in X 1if it 1s the

intersection of X with some open subset of S.

Definition 2.5. A set 1s closed iff its complement

is open,

Definition 2.6, A point x in S is a limit point of

g8 subset A of S iff every open set conteaining x contains a

point of A distinct from =x.



Definition 2.7, A set together with all its 1limit

points is called the closure of A and is denoted A,

Definition 2,8. The mapping f of & topological

space S Into another topological space T 1s continuous at s
in 8§ Iff for every open subset G of T such thet s is in
f_l(G), there exists an open subset G' of S such that s is
in G' and G' 1s a subset of f_l(G). The mapping 1s contin-
uous on S8 iff it 1s continuous at every point of S,

The followlnz theorem gives an equivalent definition

of continuity that 1s easler to epply in many instances.

Theorem 2.2, Let S and T be spaces and f:S~» a

mapping. Then f is continuous on S iff for every open sub-
set G of T, f—l(G) is an open subset of S.

Proof: First, suppose f is a continuous mapping and
that G 1s any ooen subset of T, From definition 2.8, for
each point x 1n f"l(G) there exists an open set conteining
X that is conteined in £71(G). Since £~7(G) is the union of
all such neighborhoods of x, f"l(G) is an open subset of S
by exiom (1) of definition 2.1. Conversely, suppose that
for every open subset G of T, f"l(G) is an open subset of S,
Let s be any element and G any open subset of T such that

-1

f(s) is in G. Define U = £ " (G). Then U is an open subset

of S such that s 1s in U and U 1s a subset of f_l(G). Thus



f is continuous at s. Since s was an arbitrary point of S,

f is continuous on S.

Theorem 2.3, If f:S—T and g:T-®W are continuous

mappings, then h:S-9W is a continuous mapping where h is
defined by h(x) = f(g(x)) for every x in S.

Proof: Pick any open set G in W. By theorem 2,2,
g'l(C) = H is an open set in T. Also, f"l(H) is an open set
in S. Since h'l(G) = f'l(H). h_l(G) 1s an open set and h is

a continuous mapping.,

Definition 2.9. A mapping is open iff the imege of

every open set is an open set.

Definition 2.10, A mapping 1s one-to-one iff

‘f(x) = f(y) implies x = ¥y.

Definition 2.11. A mapping f:S-2T is onto iff every

element of T is the image of some point in S,

Definition 2.12. Space S 1s homeomorphic to space T

iff there exists a one-to-one open continuous mapping of S

onto T, The mapping f 1s called & homeomorphism,

Definition 2,13. A property of space S 1s & topo-

logical invarient i1ff every space T homeomorphic to S hes

the same property.



Definition 2.14. A set S is said to be metric iff

there 1is associated with S & mapping p:(S x S)=®R(where R
is the space of real numbers) hsving the following proper-
ties for every x, y and z in S,

(2) p(x,y) 0

v

(b) p(x,y) =0 iff x = ¥
(¢) p(x,¥y) = p(y,x)
(d) p(x,z) < p(x,¥y) + p(y,2z)

The mapping p 1s cealled a metric for the set S.

Definition 2.15. Let K be a metric set, Then, with

each point x of X and each positive real number r, there is
associated a subset Sr(x) called a spherical neighborhood of

Xx. A point y of K is in Sr(x) iff p(x,y) < r.

Definition 2.16, A metric set S is said to be a

metric space iff the topology which is generated by the
collection of subsets of 8 consists of a2ll sphericael neigh-
borhoods of S, This topology of S is saild to be induced by

the metric p of 8.

Definition 2.17. Let (S,T) be a topological space.

Then S is metrizable iff it 1is possible to define a metric

on S which induces the topology T.

Definition 2.18. A topological space S is a Haus-

dorff svace 1ff for every two distinct points p and q of S,



10
there exists disjoint open sets U and V of S such that p is

in U and g is in V.,

Definition 2.19. A topological space is a Tl space

iff every point of S is a closed subset of S.

Definition 2,20. Let X be a subset of space S.

Then X is sa2id to be a cutting of S iff S - X is not con-
nected, A single point of S is called a cut point of S iff
it is 2 cutting of S; otherwise, 1t 1s called a non-cut

roint.

Definition 2.21., A set X 1s non-degenerate iff X

contains at least two distinct elements,

Definition 2.22. A subset B of X is dense in K iff

K is a2 subset of B.

Definition 2.23. A subset B of S 1s separable iff

there exists a countable subset H of B which is dense in B.

Definition 2.24, Two subsets A end F of a space S

are separated iIff A £ @, BZF, ENB=¢g, and AN3 = g,

Definition 2.25., A subset A of space S 1is connected

iff there exists no continuous mapping f:A=9R such that f(A)
consists of exactly two elements.

The following theorems give useful relationships



11

between cut points, connected sets, end separated sets,

Theorem 2.4, Let S be a connected space and x a

point of S such that S - x = AU B where A and B are sepsr-
ated sets. Then A U x and B U x are connected.

Proof: Suppose A U x is not connected. Then there
exists a continuous mepping f such that f(A U x)=?(a U b)
where 2 and b are distinct. Now, define a mapping f:S~?(aUb)
such that g(y) = f(y) if ¥ 1s in AU x and g(y) = b if y 1is
in B, Since g(S8) = a Ub and g is a continuous mapping, S is
not connected. This is a contradiction and therefore A U x

is connected., Similarily, B U x is connected,

Theorem 2,5, If A is a connected set that is

contained in the union of two sepsrated sets, then A 1s
contained in one of these,

Proof: Consider a commected set A and separated
sets G and H, Suppose A 1iIs not contained in G or in H.
Then there exists an x in A such that x i1s in G end there
exists a y in A such that y 1s in H. Let X be the set of all
points s such that x is in A and in G. Let Y be the set of
g1l points y such thset y is in A and in H. Thus A = X U v,
Since G and H are separated, X and Y are separated. There-
fore A is not connected since a connected set cannot be
expressed as the union of two.sseparated sets. This is a

contradiction to the hypothesis that A is connected.
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Therefore, if A is a connected set contained in the union of

two connected sets, A 1s contesined in one of these.

Theorem 2.6, Let A be e connected subset of space S

and A* any set such that A& A%¥* < A, Then A* is connected.
Proof: Suppose A¥ 1s not connected. Then A* can be
written, A*¥ = C U D, where C and D are separated sets. From
theorem 2.5, A is In C or in D, ILet A be in C. By defini-
tion of A%, every point of D 1s a limit point of C. This is
8. contradiction to the assumption that C and D are separated

sets., Therefore, A¥ is connected.

Definition 2.26, A subset H of space S 1s compact

1ff every open covering of H contains a finite subcovering

ol H.

Definition 2.27. A subset H of S is countably

compact iff every infinite subset of H has st least one

limit point in H.

Definition 2.28., A compact and connected space 1s

called a continuun,
The following theorem glves a relationship of compact

and countably compact sets.,

Theorem 2.7. A compact set 1s countably compact.

Proof: Consider any space S and en infinite subset
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K of S. Suppose K has no limit point in S. Then for each
point x in K, there is an open set containing x that
contains no other point of K. Also, for each point y in
S -~ K, there is an open set containing y that contains no
points of K. These open sets form an open covering of S.
Since S is compact, there is a finite subcollection of these
open sets that covers S. Thus K is finite as no two points
of X 1lie in the same open set. This is a contradiction as
K was gliven to be infinite., Therefore, i1f K is an infinite
subset of S, 1t must have a limit point in S and S must be

countably compect.

Theorem 2.8. If x is a cut point of a compect

connected space S and S ~ x = AU B, then A and B are con-
nected sets and each contain et least one non-cut point:of S,
Proof: Let x be an element of S - (a U b) where s
eand b are the two non-cut points of S. Then S - x = AURB
is a separation of S, Also, A U x »nd BUYU x are each count-
ably compact, connected, non-degenerate, separable subspaces
of S. Thus AU x and B U x each have at least two non-cut
points. Let z be a2 non-cut point of A VU x distinct from x.
Then S - z = ((AU x) - 2z) U (BV x) which is the union of
two connected sets each conteining x. Hence S - x 1is
connected and z is a non-cut point of AU x. Thus z is

either point a or point b, Let z be a. Then z is in A U x,
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Similarily, let m be a non-cut point of B U x distinct from
X, Then S - m = ((BUzx) - m)U (A U x) which is the union
of two connected sets with a common element x., Hence, S - nm
is connected and m i1s a2 non-cut point of B WU x. Therefore,
m is b and A and B each contain at least one non-cut point
of BU x. Since AU x contained only one non-cut point of
S, then x must be a non-cut point of A U x and A 1s connected,

Similarily BU x is connected.

Definition 2.29. A Dedekind cut in the set of real

numbers is a partition of the reals into two subsets A and R
such that ‘(a) neither A nor B is empty, (b) A UB = R, and
(c) every number in A 1s less than any number in B. Under
this definition there is either a meximum in A or a minimum

in B, but not both,

Definition 2.30. Consider a set A and & binary

relation % defined between elements of A, The relation * 1is
a simple-~-order relation, and A is simply ordered by *, pro-
vided that (a) for each two elements x and y in A, either
x*y or y¥x, (b) if x*y, then y¥*x 1is false, and (c) if x*y

end y*z, then x*z,

Definition 2,31, Consider a set A and a binary

relation % defined between elements of A. The relation * is

e partial-order relation, and A is partlally-ordered by *,
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provided that (a) for each x in A, x¥*x, (b) if x%*y and y¥x,

then x = 7, and (c¢) if x¥*y and y*z, then x%*z,

Definition 2.32., Let S eand T be ordered sets and

f:5~T a mepping. Then f is order preserving iff for any
two elements x end y in 8, f(x) precedes f(y) in T iff x

precedes y 1in 8.

Definition 2.33. Two simply ordered sets A and B

are of the same order type 1ff there exlsts & one-to-one
order preserving correspondence between the elements of the
two sets. Such a correspondence 1s called an order-iso-

morphismn,

Definition 2,34, A topological space is an erc iff

it is homeomorphic with J, the interval [O.l] of the space

of reel numbers.

Definition 2.35. Let S be a set partially ordered

by <, and X a subset of S, Then K 1s said to be a maximal
simply ordered subset of 8 iff K is simply ordered and
there exists no element x in 8 = K such that y < x for
every y in K.

The following theorem is eguivalent to the axiom of

choice and will be stated without proof.

Theoren 2.9. (Zorn's lemma) Let S be a partially
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ordered set, Then there exlists at least one nmeximal simply
ordered subset X of 5.3

Using the previously defined terms from elementary
topology, it 1s possible to discuss some of the properties
of the interval [0,1] and develop a charscterization of sen

arc as a topological space.

3chk Wick Fall and Guilford L. Spencer II, Ele-
mentary Tovology llew York: John Wiley & Sons, Inc.,
1955), p. 280.




CHAPTER III
PROPERTIES OF THE INTERVAL J

Definition 2.34 stetes that sn arc 1is homeomorphic
with J. Thus the topologlcal properties common to a2ll arcs
are exactly those possessed by J which are preserved under a
homeomorphism--topological invariants. Therefore, to deter-
mine properties of en arc, 1t 1s possible to consider proper-

ties of J and determine if they are topologlically invarient.

Theorem 3.1. J 1s a connected space.

Proof: Suppose there exists a continuous mapping
f:J=%(a2 U b)., Then there exists distinct points p and q in
J such that f(p) = a2 and f(gq) = b where notation 1is chosen
in such a way that p < q. Then £p,ql is conteined in J.
Now define a mapping f:R—?(a U b) as follows:

g({x) = f(p) 1if x <

IN ™

g(x) = f(x) if p<x<a

g(x) = f(q) 1if x > q.
Since f(p) and f(q) are constant mappings, they are contin-
wous., Also f(x) was given continuous on J and thus is

continuous on fp.q]. Therefore g:R=#(a U b) is a continuous

mapping. Let C-l be the open set consisting of all points x

- ; b and G2 the open set consisting of all points
x where x > 2 g b. It follows from the definition of g and

vwnere X <




the definition of continuity that R is the union of two
disjoint non-empty open sets g'l(Gl) and g"l(Gz). This is
contradiction as 1t 1s impossible for R to be expressed as
the union of two disjoint open sets. Therefore, J is a

connected space,.

Theorem 3.2. J is a non .degenerate space.

Proof: Consider 0 and 1 which are elements of J.
Thus J contains at least two distinct points and is non-

degenerate by definition 2,21.

Theorem 3.3. J 1s a sepsrable space.

Pfoof: Consider the set of rational numbers which
are elements of J, call them XK. The closure of K is J.
Therefore, J is a subset of ¥ and K 1s dense in J, Since

K is countable, J is a separable space by definition 2.23.

Theorem 3.4, J has exactly two non-cut points,

Proof: To show that 0 and 1 are non-cut points of
J, consider (O,I] and ﬁL]). These two intervals can be
shown to be connected in a manner similar to the proof of
theorem 3.1, Hence from definition 2.20, 0 and 1 are non-
cut points of J. Now suppose there exists some point p in
J other than 0 and 1 that 1is a non-cut point of J., Hence
J - p = [O,p) ¥ (p,ﬂ is coﬁneoted. Define a mapping f

such that f(x) = a 1f 0 < x < p and f(x) = b if p < x < 1.

18

a



19
Since £:(J - p)=?(a U b) is continuous, J - p is not con-
nected and p is a cut point of J. This contradicts the
asswnption that p was a non-cut point of J. Therefore, J

has exactly two non-cut points.

Theorem 3.5, J 1s a compact space.

Proof: Let {q1] be a collection of open sets cover-
ing J. Construct a Dedekind cut (L,R) of E1 as. follows, A
point p is put in L if p < 0 or if 0 < p < 1 and a finite
nunber of open sets Gg cover [O,p]. A point is in R other-
wise. By the definition of a Dedekind cut, there is a point
m that 1s either a maximum of I. or a minimum of R, 1In elther
case m is in [0,1], so thet there is some Gg! that contains
m. Since open intervals constitute a basis for El. there 1is
some interval (x,y) In G such thet 0 < x < m < y. Regard-
less of whether m 1s in L or in R, x is In L so that a. finite
number of open sets Gq', qu: Gq,. cos 9 qihcover [O,x].
Hence the open sets Gq., G,'u, G“,, cee s G“n’ Ggge cOvVer fO,y]
and y 1s in L. But y > m contradicting the hypothesis that
m be & meximum of L or a minimum of R. Therefore, J 1s a

compact space,

Theorem 3.6. J 1s & cduntably compact space.
Proof: From theorem 2.7, since J 1is compact it is

also countebly compact.
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Theorem 3.7. J 1s & metric space.

Proof: Define p(x,y) = 'x - yl, Prom the defi-
nition of ebsolute value, it can easily be seen that p
satisfies the proverties of definition 2,14 and thus is s
metric for J.

Thus J 1is a compact, countably compact, connected,
non-degenerate, separable metric space with two non-cut
points. The fact that J has these properties is not suffi-
cient to say that an arc also has these properties. For
example, J 1s bounded but R 1Is not bounded. Therefore, it
remains to be shown that the previously mentloned proper-
ties of J are preserved under a homeomorphism before it can

be concluded that an arc must also have these properties.

Theorem 3.8. The property of being connected 1is e
topologicel invariant.

Proof: Consider any connected set S and a mapping
f:35-9T such that f 1s a homeomorphism, Suppose that T is
not connected, Then there exlsts a continuous mapping
g:T=»R such that g(T) = a U b where & and b are distinct.
Consider a2lso a mepping h:S-?R where h 1s defined by
h(x) = g(f(x)) for each x in S, This mepping 1s continuous
by theorem 2.3. Since h(S) = alU b, S is not connected.
This contradicts the assumption that S 1s connected. Hence,

if S is connected, so is T under homeomorvhism f,.
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Theorem 3.9. The property of belng a non-cut point

is a topological inveriant.

Proof: Consider space S with non-cut point x and a
mapping f:S—#T such that f is a homeomorphism. Thus S - x
is connected, By theorem 3.8, f(S - x) i1s also connected,
But f(S - %) = f(8) - f(x) = T - f(x) since f is one-to-one.

Hence, f(x) 1s a non-cut point of T.

Theorem 3.10. Compactness is a topological invar-

lant,

Proof: Consider any compact set S and a mapping
f:S—=T such thaet f is a homeomofphism. Suppose T is not
compact, Let [Gdj be any open covering of T. Then Vg =
f'l(Gq) is an open covering of S. Since S is compact,
there exists a finite subcollection W,l,'wmz, ces § V°‘n
that covers S, Now f(Valﬂ 3) c:qu and hence f‘ga(v ( N s))

n n n (L]
cUGq;. Since s¢ -k’.“’aa N s), rf(s)e U Gg;. Thus £(s) is

(83
covered by a finite subcollection G“I' G“L’ iS58 Gx,‘of any

open covering {G“; of f(8S) and, therefore, f(S) is compact.

Theorem 3.11. Countably compactness 1s a topo-

logical invariant.

Proof: Let S be any countably compact space and f
a homeomorphism such that f:S-»T. Conslder an infinite
subset X of T. For each point x in X, select & point y in S

such that f(y) = x. The set Y of all such points y is an
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infinite set since f is a mapping. Also, since S is count-
ably compact, the set Y has some 1imit point p in S. For
each open set G containing f(p), f"l(G) is an open set of S
containing p.' Since p is a limit point of S, every neigh-
borhood of p contains a point y distinct from p. Also;
since f is one-to-one, f(y) is in G end distinct from f(p).
Thus every neighborhood of f(p) contains a point distinect

from f(y) and f(p) is a limit point of T. Therefore T is

countably compact.

Theorem 3.12. The property of being non-degenerate
is a topological inveriant,

Proof: Consider any set S which is non-degenerate
and a mapping f:S-¥T which is a homeomorphism., Since S 1is
non-degenerate, S has at least two distinet points, cell
them x and y. Also, since f is a mapping, there exists at
least one element of T, call it a. Suppose a is the only
element of T. Then f(x) = f(y) = a. Since f 1s one-to-one,
¥ =y by definition 2.10, But x and y were glven distinct.
Therefore T has at least two distinct elements and is non-

degenerate,

Theorem 3.13. The property of being separable is a

topological invariant.
Proof: Let f be a homeomorphism such that f:3-=pT

and let D be a dense subset of S. Then T = f(S)< (D).
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Also, f(D) = f(D) U f(D') where D' is the set of 8ll 1limit

points of D. Let x be sny point of f(D). Then x is either
in (D) or in £(D'). If x is in f(D), it is in T(D) by the
definition of clodosure. If x is in f(D'), it can be assumed
that x is not in f(D). Then there is some point y in ﬁ' - D
such that f(y) = x. Let U be any open set containing x. By
theorem 2.2, f*l(U) is en open set containing y. Since y 1is
o 1imit point of D, there is some point z of D in £ 1(U)
sﬁch that z and y are distinct. Then the point f(z) is in
UM f(D) and is distinct from x since the mapping is one-to-
one. Thus x is & limit point of f(D) and is in T(D). Thus
f(D) < T(D) and T& (D). Since f is one-to-one, f(D) is
countable, Hence f(D) is & countable subset of T dense in

T. Therefore T is separable.

Theorem 3.14, The proverty of being & metric space

is a topological invariant.

Proof: Consider the homeomorphism h:(X,T)=»(S,T')
where T' is induced by the metric d. Define d(h(x), h(y))
= p(x,y). Since h is one-to-one, p 1ls a metric on the set
S. Also, h is a homeomorphism of (X,T*) and (S,T') where
T+ is induced by p. Therefore T = T% and the image of a

metric space under a homeomorphism is a metric space,

As & result of the previous theorems about space J

and topological invariants, the following theorem may be
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stated giving 2 necessary condition for a topological space

to be an arc.

Theorem 3.15. If a topological space 1s an arc,

then 1t 1s a compact, countably compact, connected, non-
degenerate separable metrlic space with at most two non-cut

points.



CHAPTER IV
CHARACTERIZING AN ARC

In order to arrive at a characterization of an arc
as a topologicel space, a set of conditions that aere both
necessary end sufficient must be established. In Chapter
ITI necessery conditions for e topological space to be an
arc were discussed, The next question to consider is then
an obvious one., Given a topological space, what conditions
are sufficient to make it an arc? For 2 topologicsl spece
to be an arc, it must be homeonorphic with the interval J.
Thus e homeomorphism betwveen a space with certain properties
and J must be exhibited. Eefore this can be done several

ideas must be developed.

Definition 4.1. A subset X of a space S is ssgid to

separate a subset Y of 8 In S Iff S - X can be expressed as
the union of two separated sets Ml(X) end MZ(X), such that
Hl(X) Ny £ ¢ ana M2{X) N Y # ¢§. The union of two such sets
is called a separation of Y in S. A subset X of a space S
is said to separate two subsets A and B of S in S iff S ~ X
can be expressed as the union of two separated sets Ml(x)
and HZ(X) such that A is contained in one of these and B is
contained in the other. The union of two such sets is

called a separation of A and B in S.
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This definition mekes it possible to obtein the
existance of non-cut points in a topological space with
certain properties. It should be noted that the Nl(X) and

MZ(X) described in .definition 4.1 are by no mesns unique,

Theorem 4,1. Let S be & countably compact, con-

nected, non-degenerate, separable T, space. Then S has at

1
least two non-cut points,

Proof: Since S 1s separable, there exists & count-
able subset H of S which is dense in S. Suppose S hes et
most one non-cut point. Since S 1s non-degenerate, H must
contain et least two points. But by assumption, there
exists at most one non-cut point. Thus there must be et
least one cut point. Define ny to be the least integer

such that the element prll of H is a cut point of S. Since
pnl is a cut point of S, there 1s a sepsration of S given
by S - pnl = Al\J B1 where the notation is chosen in such a
wey that the non-cut point of S, if there is one, lles in

B Thus every point of the countably compact set A, is a

1
| may be expressed by A} = 5 - B

ll
cut point of S. The set A 1°
Therefore Al is en open subset of S, Now there must exist

a least integer n, such that the point Py of H lies in Al'
2

Define A, and 82 to be a separetion of S such that S -

2
A2lJ B, where the notation is chosen in such a way that the

®n
2

connected set By = Bll) pnl is contained in B,. Hence A2 is
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1+ In general, for k > 2, define p = to be the
k
element of H with the least Index that lies in Ak-l’ end

y to be the sets of a separation of $ such

a subset of A

define Ak anad Bj

that 8 - p = Ak|J B, where the notation is chosen in such
k .

e manmmer that the connected set Ek—l =B, 1 U pnk y is

, and consequently, A < A . Now, define

k k k-1

B :l}ﬁk = U(bk(J pnk). Since B is the unlon of connected

contained 1in B

sets each containing the polint Pp B 1s connected., But for
1

each index k, all elements of H having index less than nk+l

lie iIn B Therefore, B contains H and B 1s dense in S,

k+1°

Then define A :l}Kk. For each index k, the set & is a

k+1

countably compact set contained in A Thus by the Cantor

K"
intersection theorem, A is not empty.4 Since A contalns at
least one element and A is a subset of S - B, there is at
least one element p of S not in B. Hence, B 1s a prover
subset of 8. Since B& S - p& B, then by theorem 2.6,
S - p 1s connected. Therefore, p 1s a non-cut point of S.
This 1s e contradiction since the set B was constructed so
that it contained 211 non-cut voints. Therefore, S has
at least two non-cut points.

Since the property of being a non-cut point was

shown to be a topological invariant in theorem 3.9, if f

is to be a homeomorphism from S to J, then the non-cut

uﬁall and Spencer, op. cit., p. 69.
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points of S must map to the non-cut points of J. Thus in
defining such a mapping f, f(a) = 0 and f(b) = 1 or f(a) =1
and f(b)

n

0 must be true. In order to define f for other

points of S, additional ideas and notetion must be discussed.

Definition 4.2, ILet p and g be points of & con-
nected space S. Then E(p,q) will denote the subset of S
consisting of the points p and q together with all the cut

points of S that separate p and q.

Definition 4.3. The sevaration order in E(p,q) is

defined as follows, Let x a2nd y be two points in E(p,q).
Then x precedes y, x <y, in E(p,q) if either x = p or if

X separates p and y in S,

Theorem 4,2. Let r end s be two points of E(p,c) -

(pU q) = E(p,q)%. Also, let r have the separation S - r =
Ar U Br end s the separation § - s = ASU B, If s is in
B., then A_ contains ArlJ r end B_ contains Bs\) s, If s
is 1in Ar' then A contains BS\) s and BS contains Br\} ¥,
Proof: Cese 1. Let s be in B . ArLJ r is
connected by theorem 2.4, Also, from theorem 2.5, since
ArlJ r is contained in the union of two separated sets, it
must be in one of these. Now, ArlJ r contains p but not s,
Thus A_U r lies in A_. The set (B U s)N (A, U 1) is

then empty. Thus BS\J s must lle in B_.
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Case 2, Let s be in Ar' As 1in caese 1, Brlj r is
connected and lies in one of the separated sets. The set
Br\] T .contains the point p but not the point s. Thus
BrU r lies in BS._ The set (BrU T) N (BS U s) is then

empty. Thus BSlJ s must lie in A_.

Theorem 4.3. The separation order in E(p,q) 1is a

simple order.

Proof: For each point x in E(p,q), x # p end
X # q, there 1s a separation S8 - x = AXlJ BX where p 1s in
A, end q is in B_. By theoren 2.4, AX:U x and B, U x are
connected sets. Now let r and s be two points of E(p,q)*.
Then either s is in Br or s is in Ar' If s is in Br' then
r < s in E(p,q). If s is in A, then r is in B  and s < r
in E(p,q). Thus for any two elements of E(p,q), elther
r<sors<r, From theorem 4,2, if r < s end s < t, then
B, contalns BSLJ s which contains B . Also, B, conteins
Bt\J t. Thus B, contains BtlJ t and r < t. Therefore, the
relation < is trensitive, If r < s and s < r, then using
the transitive property of <, r < r 1s a true statement.
But r cannot separate p and r. Thus r < r is a false
statement. Therefore, if r < s is true, s < r cannot be
true, The case vhere E(p,q) = p L,q must also be consid-

ered. If x = p, then y = g and x < y. If x

It

q, then

y = peand y < x,. If x <y, then x = p end y q. Then y



30
cannot equal p, and 1t cannot be true that y < x. The
transitive property 1is satisfled vacuously. Hence, the
conditions of definition 2,30 are satisfied and the sepa-

ration order in E(p,q) is a simple order.

Theorem 4,4, If A is a countable simvly-ordered set

such that (1) A has no least element and no greatest element
in 1ts order, and (2) for any two elements a and b of A with
g < b, there is an element ¢ in A such that a < ¢ < b, then
A has the same order type as the rationals.

Proof: The proof of thls theorem will make use of
the fact that there 1s an order isomorphism bétween the set
of rationals and the set of dyadic fractions., The set of
dyadic fractions 1is the set of fractions of the form k/2n
where n =1, 2, 3, ... and k is any odd number less than
2" for each n.

Let A = {al, 81 831 wees By, ...} where a, #£ e
when 1 # j. Define f(al) = %, Let n, be the first integer
such that anl < a
integer such that 2, < an2 in the order of A, That ny
n, exist follows from condition (1). Define f(anl) = 1/4
and f(an ) = 3/4. DNow let Nys Ny, Nge N be the first

2

integers such that a < a < a < a, < a < a < a_ .
n n, n, 1 n5 n, ng
)

3
1/8, f(a. ) = 3/8, f(an ) = 5/8, and
f(a. ) = 7/8. Similarily determine a_ , a
n6 : n

1 in the order of A and n2 be the first

and

Define f(g.n

nu 5
y es. and
7 8

i
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define f(a_ ), f(

n, an8). ... Thus A has an order isomorphic
to the set of dyadic fractions under the isomorphism
described above. Since the relation "is an order isomor-
phism of" is a transitive relation, A is an order isomor-
phism of the set of rational numbers,

From theorem 4.4 i1t is noted that for a set to be
order isomorphic to the set of retionals, the set must first
be simply ordered. Thus it 1is necesssry to define an order

on a topological space S and show thet this is a simple

order.

Definition 4.4, Let A be 2 simply ordered set. The

order topology in A is the topology given by a basis whose
elements are (1) the set A, (2) for each element x in A, the
set of all y such that y < x, (3) for each element x in %,

the set of all y such that x < y, and (4) for each pair x

end y in A with x < y, the set of all z such that x < z < y,

Theorem 4.5. Let S be a connected space and let p
and g be two points of S such that E(p,q) contains a point
of S distinct from p and gq. Let E(p,q) have the subspace
topology and let E* denote the set E(p,q) with its order
topology. Then the mapping h:E(p,q)=?E¥%, defined by h(x) =
x 1s continuous.

Proof: For any point x in E(p,q) - (pU q), let

S - X = Ale B, where A_'and B, are disjoint open sets such
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that AX contains p end BX contains gq. A besis element of E%
may be of type (2), (3) or (4) as described in definition
4,4, If a baesls element is of type (2), then it 1s in the
form AXfT E(p,q). .If 2 basis element of E* is of type (3),
it 1s of the form Bx_n E(p,q). If & basis element of E¥ 1is
of type (4), it 1s of the form (Bxf1 Ay)(] E(p,q). In each
case, the basls element is open in E(p,q) &s they are the
intersection of a finite number of open sets. Thus for each
open set G in E*, h"l(g) is en open set in E(p,q). There-

fore h is continuous by theorem 2.2.

Theorem 4,6, Let S be a compact, connected,

Hausdorff spaece with exactly two non-cut points, a end b,
Then E(a,b) = S and the order topology defined by the points
in E(a,b) is the same as the tovology in S.

Proof: Suppose there is some x in S that is not in
E(e,b) - (a|J b). Therefore, x is & cut point end S8 - x =
U U VvV, where U end V are separated sets, If a 1s in U end
b is in V, then x i1s in E(a,b) by definition, If the non-
cut points a end b are in U, then by theorem 2.8, V must
contain a third non-cut point of S. This 1s a contrediction
of exactly two non-cut points., Therefore, S 1s a subset of
E(e,b). By definition 4.2, E(a,b) 1s defined to be & sub-
set of S. Thus E(a,b) = S.

From the proof of theorem 2,8, it is known that open
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sets 1in the order topology are open in S. Thus, to show
that the order topology defined by points in E(a,b) is the
same as the topology in S, it is sufficient to show that
open sets in S are vnions of basis elements of the order
topology. If this is not true, then for some open set U

in S there 1is a point x in U such that no basis element of
the order topology lies in U, If x #£ 2 and x #£ b, then
basis elements of type (4) of definition 4.4 need to be
considered., Let (y,z) denote a basis element determined
by y end z where y < z, DBy use of Zorn's lemma, & collec-
tion of sets {(xz,qr)} is obtained, Each (Mx,’&x“) is
picked so that (MKK’Z“K) is contained in (M“_',ng_‘).
This collection 1s simrly ordered by set inclusion and the
intersection of this collection i1s x. The previous staste-
ment is also true for the closed sets [yg.zg) = (i %)
UixVUze. Now, Lye.zgd 1 (S -~ U) is closed in S end has

a non-empty Intersection for eache , It i1s also simply
ordered by set inclusion. Thus there 1s a point w in the
intersection of the ooilection {(xx.zu)f] (8 - U)}. Then w
is also in the intersection of the collection {(xm'ZK)}'
Since x 1s iIn U, x 1s not in S - U and w cannot be x. Thus
2 point w distinet from x 1s in the intersection of the
collection {(x‘,zadz. This is a contradiction. Therefore,
x must be in some basls element of the order topology. If

X = a or x = b, then basis elements of type (2) or (3) in
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definition 4.4 need to be considered. Since the order
topology of E(a,b) is a simple order relation, either x < y
or ¥y < x. In eilther case, x is 1in some basis element of the
order topology. Therefore, the order topology of E{a,b) is
the same as the topology of 2. '

The next theorem mives the sufficient conditions for

g topological space to be an arc,

Theorem 4,7, If 8 is a2 non-degenerate, countably

compact, connected, separable metric space having at most
two non-cut points, then S is an arc.

Proof: Since S 1is separable, there 1s a countable
dense subset R contained in S. It can be assumed that R
does not contain the two non-cut voints a and b of S. Thus
R is a subset of E(a,b). As a subset of E(e,b), R has an
order that satisfies the conditions of theorem 4,4, Hence
there 1s an order 1isomorphism h of R onto K where X is the
set of rationals in J. Since h 1s en order isomorphism of
R onto X, open sets of R map to open sets of K and the pre-
imege of ovpen sets in K are open sets of R, Thus h 1is also
a homeomorphism of R onto X, Now, let x be & point of S
other than the non-cut points, Also, let KA be the set of
all points y of X such that y < x and let kB be the set of
all voints y of K such thaet x < y. Then the sets h(KA) and

h(X,) determine a partition}of K. This partition of K is
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elso a partition of J. From the Dedekind cut theorem, such
a partition determines a unique point y. Define h'(x) = y.
Then h' defines a mappine of S onto J. Since a unigue roint
is determined by h'(x), h' is one-to-one. For any open set
of J, say (h'(x),h'(y)), h‘_l(h’(x),h'(y)) is the set of all
z such that x < z <y in S, This is a basis element in S
and hence an open set of S, Also, any open set in S is of
the form {x[x < y}. ley < x} or {z,x < z < y}. The 1images
of these setes are {h'(x)lh'(x) < h'(yd}, {h'(x)'h'(y) <
h'(x)} and {h'(z)lh'(x) < .hidg}) < h'ty& respectively. Each
of these are open in J., Hence, h' is a homeomorphism of S
onto J and S is an src.

As a result of the preceding theorem and theorem
3.15 a characterization of an arc as a topological space

may be stated.

Theorem 4.8, A topological space is an arc iff it is

a non-degenerate, countably conpact, connected, separabvle

metric svace with at most two non-cut points.



CHAPTER V
SUITITARY AND CONCLUSIONS

An arc was defined to be a topological space homeo-
morphic to J, the real number interval [0.1]. A character-
ization of an arc in topological terms was developed in
Chavnter III and Chapter IV. Thils was done by filrst consid-
ering properties of J whilch are invariant under a homeo-
morohism, Then a topological space with these properties
was shown to be & homeomorphic to J. The result was
stated in theorem 4.7,

It was mentioned in Chapter I that en arc was a
special type of a continuous curve. A continuous curve can

also be defined with respect to the interval J.

Definition 5.1. A topological space S is a contin-

uous curve iff it is the continuvous image of the interval J.
Continuous curves are sometlimes called Peano spaces,
A characterization of Peano spaces could be derived in a
manner similar to deriving a characterlization of an arc.
Instead of considering properties of a topological space
invariant under a homeomorphism, properties invariant under
a continuous mapping would need to be considered. A char-
acterization of a Peano space was first developed by Hahn

and liazurkiewicz at about the same time although they
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worked independently., The result is given in the follcwing

theoren.

Theorem 5.1, A topological svace S is a Peano space

iff S is non-empty, compnact, connected, locally connected

and metrizable.5

5Hall and Spencer, op. cit., p. 204,
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