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CHAPT};R I 

INTRODUCTION 

The roots of a polJ~omial over a given field are 

the most valuable pieces of information about polynomials. 

If the polynomial does not have roots over a given field, 

It is called irreducible over the given field. 

Irreducibility is a large topic in mathematics where­

by mathematicians have developed many tests for irre­

ducibility. 

I. ~he Problem 

The pur pose of' thi s papel~ 1s to present: (1.) the 

definition and construction of the polynomial ring; (2.) some 

properties of the polynomial ring; (3.) tests for irreduci­

bility of polynomial over the rational field. 

Limi tat ions. Since polyncmials is a very broad 

area, this paper will deal with only a few aspects of 

these areas. 

Importance of th~ ~roblem. The problem of factoriza­

tion of polynomials over the rational field appears very 

often in algebra. If the test for irreducibility and the 

theorems concernins roots of such polynomials are knoh~, 

then the ~roblem can be solved. 
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Brlef Histor.z 

In e 1 erne nt ary algebra J expr ess ions coming .und.er 

the more technical definition of polynomial are studied 

largely in connection with the equations formed by setting 

th em e qu a 1 t 0 Z er 0 • 

The theory of equations was developed first by 

Lagrange, D1alambert, Gauss, Ivory and Cauchy in the 17th 

century. 

The fundamental. theorem of algebra (all equations 

have a real or imaginary root) was prDved by Cauchy. On 

the nature of these roots, Budan and Fourier did a great 

amount of work. Aft er the equat ion of fourth degree was 

solved, m.athematicians becD..Y!le interested in solving equa­

t:i.ons of the fifth degree. Nie 1 Ab eJL (1802-1820) prov ed 

the impossibility of this solution. Then, in 1879 Kron­

eeker gave a demonstration of this problem which is cIa ssical 

and appears in the modern books of algebra. 

The remarkable theory ·of equation due to Galois 

has become one of the mos t irilportant branches of' algebra. 

Concerning the irreducibility of polynomials over 

rationals, it was Kronecker (1882) who gave a general 

solution to the problem. 

In 1530 Eisenstein proved a criterion for irreduci­

bility which was generalized by Dummas in 1906. Recently, 
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many irreducibility tests have been developed for particu­

lar polynomials, such as B~rnoulli, Legendre, etc~ 



CHAPTEH II 

CONSTRUCTION OF THE POLYNOHIAL RING 

This chapter contains some definitions and theoroms 

necessary for the development of the polynomial ring. 

Section 2.A • .... _­
Definition 2.1. A non-empty set R is said to be an 

associative ring if in n there are defined tHO binary 

operations denoted by + and • respectively such that for 

all a, b, c, in R: 

(1) a + b is in R 

(2 ) a+b=b+a 

( 3 ) (a + b) + c = a + (b + c) 

(4 ) There exists 0 in R such that a + 0 = a for 

every a in R 

($) There exists -a in R such that a + (-a) = 0 

(6) a.(b + c) = a·b + a·c and (b + c)·a = b.a + c·a 

(Remark: The product a·b will be written as ah to simplify 

the nota t ion. ) 

Definition 2.2. A ring R is said to be commutative 

if and only if the multiplication of R is such that ab = ba 

for eve r y a, b, in R. 

Definition~. A ring R is said to be a ring with 

unity if and only if there exists an element 1 in R such 

that a 1 = 1 a = a for every a in R. 
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Definition 2.4. An element a I- 0 in a comr:1Utative 

ring R is said to be a zero-divisor if there exists an 

element b in R, b I- 0, such that ab ~ o. 

Definition ~~. A com~utative ring R with unity 

is said to be an integral domain if and only if R is free' 

of zero-divisors. 

Definition 2.6. A commutative ring R with unity 

is called a field if and only if for every a I- 0 in R 

l lthere exists a- in R such that aa- = 1. 

Definition 2.7. A subset S of a ring R is said to 

be a sUbring of R if and only if, under the operation of 

addition and multiplication defined in R, S itself forms a 

ring. 

Definition 2.8. If a, b are in an integral domain 

H, then a divided b written alb, if there exists c in R 

such that b = ac. 

Definit_~9...ll: 2.2.. If a,b are in an integral domain R 

such that alb and b\a, then a and b are called associates. 

Definition 2.10. If a, in an integral domain R, is 

an associate of 1, then a is called a unit. 

Theorem 2. a. 

An elemen t u in an integral domain R is called a 

lunit if and only if u- is in R. 
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Proof: If u is unit, then by 2.10 there exists v 

in R such tha t UV ::: vu ::: 1; therefore v = u- 1 . If u- 1 

1is in H, then uu- = 1 and u 1. Since 1 divides every 

element in H, then 1 divides u illd thus u and 1 are associates. 

per in i..,U..@ 2.11. A mapp ing ¢ from the ring R int 0 

tbe ring R I is sai d to be a homomorphism if and onl y if 

(1) ¢ (a + b) = ¢ (a) + ¢ (b) 

and 

( 2 ) ¢ (ab) ::: ¢ (B.) ¢ (b). 

Defi nit ion £:..1.g. A homom orphi sm ¢ of H into- R' is 

said to be an isomorphism if ¢ 1.s a one-to-one mapping. 

The_oretl}! 2 .b • 

A fie Id is a n in tegt>al doma in. 

Proof: Let F' be afield. Let a I- 0 and b in F sucrJ 

that ab = O. 

Since F is a field, b ::: Ib = a- 1 ab = a- 1 0 = O. 

If ba = 0 with a i 0 the commutativity of F also 

implies b = O. Therefore, F is free of zero-divisors, and 

by 2.S, F is an integral doma in. 

Section 2.B. 
. I 

Qonstruction of the Polynomial ~ivg. Let Rand R 

be tv/a integral domains such that R .s- H' , and let X be a 
t 

variab le in R • 
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By adding, subtracting and mUltiplying X with the 

elements a. of R and with itself, all the expressions ofl. 
lthe form aoxO + alx + 0 . 0 + a Xn can be constructed • 

n 

The set R(x] is the set of all those expressions that 

have been constructed over R. The elements f(X), g(X). . . 
. ., h(X) in R LX] are called polyn.omials. 

In f(X) = a X° + 8 X·1 + • • • + ~Xn the e lemen ts 
o. 1

aO' a1' • an are in R, and are called coefficients.0 0' 

For any positive integer n Xn represents the product 

X.X 0 ~ •• X.• 

n
In the following BOXO + alxl + ••• + anx will 

n . 
bo written 2:: a.Xl. with the understanding that if n? 0,

i=O 1 

then ~ t 0. 

Example 2.1. The follm·ring is a list of' all the 

polynomials of the form a XO + a X l + a X + a X3 over II (.2) •° 1 

2 

32 

OXO lX l + OX O lXl + lX O + OXO 

lXO lX2 + OX l + OX o :X2 
+ OXl + lx° + OX O 

lX3 + OX2 + OX l + OXO lX3 + OX2 + lX O + OXO 

lX2 + lXl + OXO 

lX2
+ lX l + lX O + OX O 
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lX 3 + OX2 + lXl + OXO 

lIX3 + lX2 + ox + OXO 

Ix3 + lX1 + lXO + OXO 

lX3 + lX 2 + lXl + ox O 

lX3 + lX2 + lxl + lX O 

Definition	 2.~.1o 

n m • 
JIf p{X) :::; L aiX i and q (X) L-bjX= 

i ::: j :::; ° ° 
are in R [X} , 'v-1here R is an integral domain, then P{X) ::: q{X) 

if and only if f or every integer i ~ 0, a. ::: b . . 
~ ~ 

i. e., two polynomials are equal if and only if their cor­

responding coefficients are equal. 

Definition 2.1)+. If as before P(X) and q{X) are 
MAX{m,n) k 

in R [XJ, then P (X) + q ( X ) ::: L (a k + bk)X • 

k :::; ° 
Theorem 2 0 c. 

R[X], where R is an integral domain, contains a 

subring isomorphic to R. 

Proof: Cons ider the mapping T fro,m R 'eX] in to R, 
, 

where R tX]	 is the sUbring of R lX] which contains all t.."le 

polynomials	 of the form aXe for every a in R 0 

Let T be defined such that:
 

T{nXO) ::: a for every a in R.
 

It is easy to see that T is a Ohe-to-one mapping.
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Since: 

(l) T(a xO + a XC} ==0 T( (a + a ) XC} = a + a
1 2 1 2 l 2 

:;: T(a XC} + T (a X )
1 2 ° 

(2 ) T(a XOa XC} = T ( (a
l

a )} X°} = a 8 
1 2 2 1 2 

= T(alxo} T(a XC}; then T is an isomorphism from 
2 

R' eX) to R. 

This theorem identifies R'(xl with R, and thus it 

is possible to write a in place ofaxO, ° in place of 

S(X} = OXO, 1 in place of lXO, X in place of lx l , xj in 

plnce of lX j and -aX in place of (-a}X to help simplify 

the notation. 

Defjnition 2.15. If as in 2.13 P(X) and q(X} are 
m + n 

in R(X] then P(X}q (X) == '5 c XS where 
J-.-_ S 

S = ° 
cs = > _ a J.b k = asb O + as_lb l 

+ • • • + a b •° sj + k == s 

An illustration of this definition is the example: 
2 

p(X) :;: 1 + X + 2X q (X) :;: 2 + 3X + X3 

then 

B0 = 1, a I = 1, a
2 

==0 2, a 3 ==0 a = • . . = 0 

=2, b == 3, b :;: 0, b = 1,
4

b = b == • • . :;: ° bO l 2 3 4 S
 
C =ab =2
 
o ° 0 

C == a b O + a b 2 + 3 = S
1 I 0 1 

==0
 

02 = 8 2b O + alb l + a Ob == 4 + 3 == 7

2 
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C) ~ a)b O + a2b + a b 2 + aOb) := 0 + 6 + 0 + 1 ~ 7l l 

C := a4b 0 + a b + a b + a b + a b :::; 0 + 0 + 0
4	 ) 1 2 2 130 4 

+ 1 '+ 0 :::; 1 

C :::; aSb + a b + a b +ab +ab +ab:=s o 4 1 3 2 2 3 1 4 0 S
 

::: o + 0 + 0 + 2 + 0 + 0 ~ 2
 

Therefore,
 

(1 + X + 2X2 ) (2 + 3X + x3) :::; 2 + Sx + 7X 2 + 7X 3 + x 4 + 2XS.
 

This definition is the same as the reader has always 

known. 

Theorem 2. d. 

If the operations of addition and mUltiplication 

are defined in R[X] by 2.l.ll and 2,lS, respectivel}", and R 

is an' integrDl domain, then R LX] is an integral domain. 

Proof: 

(1) Clos ure of add i t ion follc'Ns from 2 .1LI-.· 

(2) The commutativity of addition in R implies 

the	 commutativity of R[X], Le., 

n m 
if P(X) := L a.X i and q(X) :::; L_ bjXj

1 

i :::; 0	 j :::; 0 

MAX(n,m) 
are in R(X) then P(X) + q(X) :::; L + b )Xk =(a

k := 0 k k 

l'iAX.(n, In) m n 
)X

k 

J +L - p(X).:::; L (bk	 + a :=L a.X J a.X i q(X) +1 ­k
 

k "" 0 J :::; 0 i = 0
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(3) In a similar manner, associativity of addition 

in R implies associativity of R(X] 0 

n m 
jFor any P{X) == L_ a.X i q (X) == L bjX

1. ' 

i == 0 j == 0 

s 
and h (X) c xP in ReX) •=L P
 

P = 0
 

Consider: 

k j P(P{X) + q{X» + h{X) =ft- aiX + L
m 

bjX ) + L
s 

C X == 
P 

i = 0 j == 0 P == 0 

HAx(n,m) s
k 

== L (a + bk)X + L_ C xP -­k P
 
k == 0 P == 0
 

MAX{n,m,s) t
 
== L ({at + b t ) + ct)X ==
 

t = 0 

JVIAX (n, m, S )
 

== L {a t + (b t + C t) ) X t ==
 

t = 0 

n MAX{m,s.) 
i v 

== L a.X + L {b + c )X == 
1. V v
 

i == 0 v = 0
 

=L 80 i +(L bl j 
+ ~Cl'= p(X) + (g(X)+h(X),J. 

i = 0 j = 0 P = 0 
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n	 HAX(rn,s) 
:::: a·X i + ~ (b + c )Xv ::::~ 1	 V V 

i :::: 0 V :::: 0 

::::
n . (m j s 

:::::>= aiX). + ~-~ b jX + ~ CpX P ) 

i :::: 0 J - 0 P - 0 

:::: P(X) + (q (X) + h (X) ) • 

(4 ) The identi ty element of R(x) is S(X) :::: 0, 

n 
since	 for every P(X) :::: ~ aiXi in Rfx1 p(X) + S(X) -­

i :::: 0 

n n
 
:::: ~ (ai + O)X i :::: i - aiX i :::: p (X)
 

i :::: 0 i :::: 0
 

n
 
(5 ) For any p(X) :=) =._ aix i in RLX] the inverse 

i :::: 0 

n n. 
of p(X) is ~ (-ai)X i since ~aixl + 

i :::: 0	 i :::: 0 

n n

i

n 
i
(_a.)X i+L 1 ==L (a i + (-al))x == L Ox :::: S(X) :::: 0 

i :::: 0 i ::: 0 i :::: 0 

(6) Closure of multiplication follows from 2.15. 

n
(7) Since for every P(X) _ a.X i and1=r= 

i :::: 0 

m 
j

q(X) ::::.L bjX in R ~XJ J 

j :::: 0 
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t + k 

S 
P(X )q(X) = C L atbkX = 

s = 0 t + k = s 

n + m 
S::: C bkatx = q(X)P(X), then multiplication

"'--->--_ 

s = 0 t + k = s 

in R[X] is commutative. 

(8) If as before P (X), q (X) and h(X) are in R ~xj , 

then 
m + n 

P(P(X)q (X} )h(X) 
S 

= (C > a t b0 )f= cpX == 
s=O t+k:=.s P = 0 

m + n + 
::: ) S (atb )c X

S
­k w ­>t+k+--'·v = 0 W - S
 

m + n +
 
= ) 8 8

at(bc )X ­k, > wt + k _.v = 0 + W ::: S 

n ill + s 
i==L aiX > > buc~q == 

i =0 q=Ou+v=q 

n m 8 

== ~_ aixi () _bjX 
j L cpxP ) == 

i=O ,j=O p=o 

=p(X)(q(X)h(X)). Thus, multiplication in R[X} is associative. 

(9) Consider: P(X)(q(X) + h(X)) Hhere 

P (X), q (X), h (X) are defined in R [x1 as before, then 
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n In s
 

j P
L aixi(L b .X + L CpX ) ::: 
i ::: 0 j ::: 0 

J 
P ::: o 

n i MAX (m, s ) t) 
= r aiX (L (b + Ct)X :::

t 
i ::: 0 t :::: 0 

n + l1AX (m,n) 
:::~(bl + Cl)X=I =	 R= :::: RR = o u + 1 

n + HAX(m,n)
 
:::: ) - R
L,o_ (~bl	 ::::+ auCl)X
 

R :::: 0 U + 1 :::: R
 

n + In n + s 
:::: > L a u b 1X

R 
+ 2 L p 

X 
R 

:::auc
 

R :::: 0 U + 1 ::: R R :::: 0 U :::: 1 ::;; R
 

n	 In j n l. S 
P::: L a.X i ~ b.X + ~ a.X ~ c_x :::

1 L-_ J L-_._ 1 L-__ IT-

i :::: 0 j :::: 0 i :::: 0 P :::: 0
 

= P(X)g(X) + P(X)h(X). In a similar manner, (P(X) + 

+g(X» heX) :::: P(X)h(X) + g(X)h(X). Therefore, the dis­

tri butive laws hold in R [xl. 

(10)	 Consider: w(X):::: 1 where 1 is the unity 

iin R. Let p(X) :::: 2Q= aix be any other polynomial in 

i :::: 0 

Rexl by 2.15. P(x)l::: P(X), then 1 is the unity of R [X]. 
n . 

(11) Suppose that p(X) ::: ~aiXl # SeX) and 

i ::: 0 
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m

q(X) ==L: b jX j 'f; S (X) are in R \x.J such that 

j :::: o 

P(X)q(X) = S(X) then by 2.15. 

n + m 
P (X) q (X) :::: ) _=Cr:l S 

S = 0 

Since P(X)q(X) :::: S(X) this implies that 

CS :::: I . a j b :::: 0 for all s.k
 
j + k :::: s
 

Thus for s = m + n, C + :::: a b , and a b = O. 
ill n n m n m 

Since R is an integral domain, then a :::: 0 or b :::: 0n m 

which is contrary to the assumption that for n > 0, an 'f; O. 

Therefore, R Ix] is free ofz ero-di visors. 

Therefore, R [X] is an integral domain. 



CHAPTER III 

This chapter contains some important properties 

of the polynomial ring R ~X) over an inte gr 8,1 domain R, 

and of the polynomial ring F (xl over a fie ld F. 

Section 3.A. 
n 

Definition ~_. The polynomial P(X) =~aixi, 

i :::: 0 

p(X) t- 0, is said to have degree n, written as deg P(X) :::: n, 

if and only if n > 0 is the largest integer such that the 

leading coefficient an ~ O. The degree.of the zero poly­

nomial is undefined. 

Defini tion 3.2. A polynomial f (X) is called a 

constant if deg f(X) = O. 

Lemma H.
 
n
 

If P(X) :f 0, p(X) :::: ~ a.X i and q (X) ~ 0,L-l 
i :::: 0 

m 
q(X) ::::L_bjXj are in RfX],.where R is an integral domain, 

j = 0 

then deg (p(X)q(X» = deg P(X) + deg q(X). 

Proof: Since a t 0 and b t 0, then dog P(X) = n n m 

and deg q(X) :::: m. 

By 2.15= 

C =ab to 
m+n n m 

Consi.der: 

Ci , i >m + n 

Ci = ajb _ •
i j 
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Since i:=: j + (i - j»m + n, then j7 ill or 

i - j) n. This implies a j = 0 or a == O. Therefore,
i

_ 
j 

Ci := O. 

Since the highest non-zero coefficient of P(X)q(X) 

is C + ' then by 3.1 deg (P(X)q(X» = m + n := deg P(X)m n 

+ deg q(X). 

~.E! l~b. (Corollary of 3.a.) 

If P(X) and q(X) are two non-zero pol~1omials in 

R(x1, where R is an integral dom~in, then either p(X) + 

+	 q(X) := 0, or deg (P(X) + q(X)}~HAX(deg P(X), deg q(X». 

The proof of this theorem is evident from 2.J-4. 

Defin it ic:n :t.~. A polynomial q (X) in R [X], where 

R is an integral domain, is said to divide the polynomial 

P(X) in R [x]) wri tten q (X) II p (X). If in R (X] there exis ts a 

polynomial h(X) such that P(X) = q(X)h(X). 

Lemma H. (The division algorithm) 

If f(X) and q(X) "I 0 are in F[X] \-1here F is a field, 

then there exists unique polynomials g(X) and r(X) in F[X] 

such that f(X) = g(X)q(X) + r(X) where r(X) := 0 or 

deg r(X) L- deg q(X). 

Proof: 

If deg f(X) L deg q(X) then there exists g(X) = 0 

and r(X) := f(X) in F(X] such that f(X) := Oq(X) + f(X). 

If f(X) = 0, then there exists g(X) := 0 and r(X) := 0 in 
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F[x1	 such that f(X) ::: Oq(X) + O. Suppose that f(XJ ~ 

n m . 
::: Laixi and q(X) :: Lb.x J Hhere a :f 0, 

- J m 
i ::: 0 J ::: 0 

b 
n 

:f 0, and n ?ID. 

If n :: 1 (using ind~ction on n), f(X) = aX + band 

q (X) ::: eX + d, then there exists g(X) ::: ac 
-1 

and 

r(X)	 ::: b - ae-1d in R[X} such that f(X) = ae-1(eX + d) + 

+ b- ae-1d and the theorem is true. 

Assume that the theorem is true for k ~ n-l where 

k is a positive integer. 

Consider: 
a n-mn

f1(X) = f(X) - (b X )q(X). 
m 

NOvl,	 deg f (X) ~n-l, and thus by the inductive assumption
1 

there exists gl(X) and r(X) such that f1(X) = gl(X)q(X) + 

+r(X) where r(XJ ::: 0, or deg r(X) C deg q (X). 

Thus, f (X) ::: (an Xn-m)q(X) ::: g (X)q(X) <j, r(X) and 
b 1 ro 

f(X) ::: (an Xn - m + g (X»q(X) + r(X). If g(X) ::: 
b 1 

m 
a m::: bn	 Xn - ~ gl (X) then f(X) ::: g(X)q(X) + r(X) where 

m 

r(X)	 ::: 0 or deg r(X) L deg g(X). 
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Suppose: f(X) = g (X)q(X) + r (X) = g2(X)q(X) + 
1 1 

+ r 2 (x), then (gl(X) - g2(X))q(X) = r
2

(X) r (X).
1 

If r 2 (X) ~ r (X), then r (X) - r (X) ~ 0,l 2 1 

gl (X) - g2(X) ~ 0 and q(X) ~ o. 

By 3.b: deg (gl(X) - g2(X)) + deg q(X) = 

deg (r2 (X) - r (X)) ~r1AX (deg r (X), deg rl(X))
l 2
 

~deg q(X) which is impossible, then rl(X) = r (X).

2 

Since q(X} ~ 0, then gl(X) - g2(X) = 0, and q1(X) = Q2(X). 

This proves the uniqueness of the theorem. 

Theorem ~. 

The' polynomial P (X) in F LX] is a unit if and only 

if p(X} is a non-zero element of ~, where F. is a field. 

Proof: By Theorem 2.a, every element a ~ 0 in F 

is a unit. By Theorem 2.d, part 10, 1 is the unity in 

F[X]. If P(X) is a unit, then by 2.10, there exists 

h(X) in F[X] such that P(X}h(X) = 1 and by 3.a, 

deg (P(X)h(X)) = deg P(X) + deg h(X) ~ deg (l) = 0, 

which is possible only if deg P(X) = deg h(X) = O. There­

fore, P (X) = C ~ 0 in F [X] • 

If P(X) = C ~ 0 in F~)) then by 2.a, P(X) is a 

unit. 

Theorem 3.e. 

The polynomials p(X) and q(X) in F[X] are associates 

if and only if p(X) = Cq(X) where C ~ 0 is in the field F. 
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Proof: If p(X) and q(X) are associates, then by 

2.9, q(X)/P(X) and p(X) Iq(X), by 3.3, P(X) = h1(X)q(X) and 

q(X) = h (X)P(X)
2
 

P(X)q(X) = h (X)h (X)P(X)q(X) and hI (X)h (X) = 1. Thus,

l 2 2 

h1(X) = c, h
2

(X) = C- l • 

Therefore, p(X) = Cq(X), q(X) = C-1p(x). If p(X) :::: 

= Cq(X), then q(X)!P(X), since q(X) = C-lp(X), then 

p(X)lq(X), and P(X) and q(X) are associates. 
-n • 

Obviously, each polynomial P(X) =~aixl in 

i :::: 0 

F~l Yuth an~O is associated with the unique monic poly­

nomial a -lp(X). Where monic means a polynomial f(X)
- n 

in F [X] with leading coefficient 1 .. 

Definition 3.L!:. The moni.c polynomial d(X) in Flxl
 

is the go co d. of p(X) aJ.1d q(X) in F(xl if and only if
 

d(X) has the following properties:
 

(1) d(X)lp(X) and d(X)~q(X). 

(2) If h(X)~P(X) and h(X)(q(X), then h(x)ld(X). 

Theorem l...!..f.. 

Every pair of polynomials P (X) and q (X) in F [x1)
 

whel."'e F is a field, has a unique g. c. d. d(X) in Ff2<J
 

and v.rhich can be written in the form d(X) = a(X)P(X) +
 

+ b(X)q(X) for a(X), b(X) in F[X]. 

Proof:- Let k be the set of all polynomials in
 

F[X} of the form a(X)P(X) + b(X)q(X). k is not empty
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because p(X) = IP(X) + Oq(X) is in k. Let d(X) be a 

polynomial of least degree in k. d(X) can be monic since 

the monic associated with each polynomial in k is in k. 

Since d(X) is in k, then d(X) = a(X}P(X) + b(X)q(X). 

By 3.c, p(X} = s(X)d(X) + r(X) where r(X) == ° or 

deg r(X) <:deg d(X}. If r(X) == ° d(X)lp(X). If r(X) 'f 0, 

r(X} = p(X) - s(X}d(X) = P(X~ - s(X)((a(X)P(X) + b(X)q(X)) = 

= p(X) -s(X)a(X)P(X) - S(X)b(X)q(X) = ((1 - s(X)a(X))P(X) + 

+ (-s(X)b(X))q(X) = a(X)P(X) + b(X)q(X) where a(X) and
 

b(X) are in F[x1. Thus, r(X) is in k.
 

deg r(X) ( deg d(X) is a contradiction. Therefore, d(X)\P(X).
 

In a similar manner d(X)~q(X).
 

Suppose there exists d (X) in FCxl such that
 
1 

dl(x)lp(x) and dl(X)\q(X). By 3.3 

P(X) = d (X)hl(X)l
 
q(X) = d (X)h (X) and
l 2 

d(X) = d (X)h (X)a(X) + d (X)h (X)b(X)
l l l 2
 

d(X).= d (X)(hl(X)a(X) + h (X)b(X))

l 2
 

d(X) = d (X)h (X)
l 3 
Therefore, dl(X)ld(X), which completes part (2) of 3.4, and 

d(X) is the g. c. d. of P(X), q(X). 

Suppos e there exis ts d (X) in F eX] such that 
2 

d (X) satisfies 3.4- Then d(X)ld (X) and d (X)\d(X).
2 2 2 

Therefore, d
2 

(X) is an associate of d(X). By 3.e, d(X) = 
= Cd

2 
(X). Sinc~ d(X) and d

2 
(X) are monic, then C == 1 and 

d (X) is unique. 
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Definition~. THO polynomials p(X} and q(X) 

in F [x1	 not both zero are called relatively prime if their 

g. c. d. is I in the field F. 

Obviously, I := a(X)P(X) + b(X)q(X) for some a(X), 

b(X) in F[xl. 

Theorem~. (Euclidean Algorithm) 

This is an alternate method of proving the existence 

of the g. c. d. This method is also useful in expressing 

g. c. d. of two polynomials as a linear combination of 

these polynomials. 

Proof: Let P(X) and q(X) be two non-zero poly­

nomials	 in F [x1, where F i8_ afield. By 3. c, 

( I • ) p(X) := g(X)q(X).+ r1(x) 

r 
I 

(X) = 0 or deg r (X)
1 

L deg q (X) 

( 2 • ) q(X) := ql (x}r1(X) + r 
2 

(X) 

r 
2 

(X) == 0 or deg r 
2 

(X) I... deg r 
I 

(X) 

(J. ) r 
I 

(X) := q (x)r
2 

(X)
2 

+ r (X)
3 

r (X)
3 

= 0 or deg r (X)
3 

.t:.... deg r 
2 

(X} 

• 

·• . . . . . . . . . . . . . . . . . . . . . . . . . 
(k.)· r

k
_
3 

(X):= qk-l (x)rk_l(x) + rk(X) 

rk(x) := 0 or deg r (X) t.. deg r (X)
k k-l 

(k+l. ) r (X) := qk(X)rk(x) + rk+I(X)k-2 

r k+ (X) := 0 0r deg r k+ (X) ~ deg rk(X),
l	 1 
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Suppose r (X);::: O. By (k+l), rk(X) I r (X) and
k+l \ k-l 

then by (k) r k (X)\r _ (X)ok 2 
Using equations ((k-l), (k-2), (3), (2), (1)),0 0 • 

it follows rk(x)\rl(x), rk(x)'r(x}, Hhich implies Rk(X))P(X; 

and r k (X ) )q (X ) • 

If the polynomial h (X) is in F [xl such that 

h(X)jP(X) and h(X) !q(X), then by (1.) h(X)\r(X), and by 

(2.) h(X)Irl(X) in the same lUo.nJ.1er as before but using 

0 • 0 ,equations ((3), (4), (k-l), (k), (k + 1)) in the 

order shown, it concludes that h(X)\rk(x). 

Therefore, by 3.4, the monic c-lrk(X), associated 

with rk(X) is the go c. d. of P(X) and q(X)o 

Using induction on r (X), let prove the secondk .. 

part of 3og. For k ;::: 1, r (X) = P(X)-gl (X)q(X); thus,
l 

rl(X) can be written as a linear combination of P(X) 

and q(X), which is the desired form in 3.f. Suppose it 

can be done in this manner for all r (X) where n ~ k-l. 
n 

Consider: r 2(X) = r (X)q (X) + r (X) by thek- k-l k k 
above assumption, r _ {X) = hl(X)P(X) + h2 (X)q(X) and

k 2 
rk_l(x) == h (X)P(X) + h (X)q(X). Thus, h (X)P(X) + 

3 4 l 
+ h (X)g(X) = h (X)P(X) + h (X)q(X) )qk(X) + rk(X) and 

2 3 4
P(X}(hl(X) - h (X)qk(X)) + q(X)(h (X) - h4(X)qk(X)) = rk(X).23 

Therefore, by induction rk(X) can be written as a 

linear combination of P(X) and q(X), for k = 1, 2, ••• 
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Since deg r (X) ;> deg r (X) ).) .. by 3.1, there
l	 2 

exists r l(X) in F[X] such that deg r ::: O. By 3.2,k+ k+l 
r (X)::: C ~ 0 in F, then obviously 1 is the g. c. d. 
k+l 

of P(X) and q(X), and by 3.5, 1 ::: a(X)P(X) + b(X)q(X), 

which completes the proof of the theorem. 

Ex amp 1e ...l.!l. .. 

Using 3.g, and given p(X) ::: 2X 3 - 4X2 + X - 2 and 

q(X) ::: X3 - X2 - X - 2, in F [X] v.1here F is a field, the 

procedure to find the g. c. d. of p(X) and q(X) is the 

following: 
2(1)	 2X 3 - 4X2 + X - 2 :::' 2 (X3 - X2 - X - 2) -2X +3X+2 

x3 - X2 - X - 2 ::: (-1/2X - 1/4) (-2X2 + 3X + 2) + 

+3/4X - 3/2 
2_2X	 + 3X + 2 ::: -8/3X(3/4X - 3/2) - X + 2 

3/4X - 3/2 ::: -3/4(-X + 2) + o. 

Since the monic associated with -X + 2 is X-2, then X-2 

is the g. c. d. of P(X) and q(X). 

(2)	 The procedure to write X - 2 as a linear 

combination	 of p(X) and q(X) is the following: 

2p(X) - 2q(X) ::: -2X + 3X + 2 

q(X) - (-1/2X-l/4)(P(X) - 2q(X)) == 3/4X - 3/2 

q(X) - (-l/2XP(X) + Xq(X) - l/4P(X) + 1/2q(X)) ::: 

= q(X) + 1/2XP(X) - Xq(X) + 1/4P(X) - 1/2q(X) = 3/4X-3/2. 

p(X) - 2q(X) + 8/3X(q(X) + 1/2XP(X) - Xq(X) + 1/4P(X)­

- 1/2q(X))== -l(X - 2) 

I 
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2-p(X) + 2q(X) - 8/3q(X) - 4/3X 2P(X) + 8/3X q(X)-2/3XP(X) + 

+ 4/3Xq(X) = x - 2
 

q(X)(-2/3 + 4/3 + 8/3X
2 

) + P(X)(-4/3X 2 - 2/3X - 1)= X -2.
 

Definition~. A nonconst~t polynomial p(X) 

in F (X] where F is a field, is called irreducible or prime 

in Ftxl if its only divisors in F [xJ are its associates and 

the units. 

Definition~. A nonconstant polynomial p(X) 

in F [X], where F is a fi e1d, is called reduc i b1e if there 

exists at least q(X) and g(X) in F[X], 1>lhere q(X) and g(X) 

are not units or associa-tes of P(X), such that d(X) ~ 

:= q(X )g(X) •. The polynomial aX +. b is irreducible in any 

field F. 

Theorem 3.h. 

If P (X) is a prime polynomia.1 in F ex), where F is a 

field, and q (X) is any other polynomial in F [X], then 

either p(X) and q(X) are relatively prime, or else their 

g. c. d. is the monic associate of p(X). 

Proof: Suppose d(X} is the g. c. d. of p(Xj 

and q(X), then d(X) jP(X); this implies either d(X) is a 

monic associated with p(X) or d(X) is a unit in F[x1, 

i.e., d(X) is a non-zero constant, which implies that 

p(X) and q(X) are relatively primes. 
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Theorem H. 

If P (X) is a pr'ime polynomial in F [X], where F is a 

field, such that P(X)\g(X)h(X) for g(X}h(X) in F [xl, then 

either P(X)\h(X) or P(X)~g(Xl. 

Proof: Suppose d(X) is the g. c. d. of P(X) and 

g(X }. 

If d(X) is an associate of P(X), then d(X)\g(X). 

If d(X) is not an associate of P(X), then by 3.h, 

P(X) and g(X) are relatively prime consequently. 

1 = a(X)P(X) + b(X)g(X). 

h(X} = a(X)P(X)h(X} + b(X)g(X)h(X). Since P(X)\g(X)g(X), 

then h(X) ::: a(X)P(X)h(X) + b(X)P(X)h (X) and
l 

h(X) ::: P(X)(a(X)h(X) + b(X)h (X)), thus P(X))h(X).
1 

~heorem ~. (Corollary or 3. i . .) 

Let P(X) be a ppime polynomial in F [X], where F is 

a field, such that P(X)(gl (X)g2(X) • • • g (X) where the 
s 

product gl(X)g2(X) • • • g (X) is in F[X], then P(X)lgi(X)
s 

for some i = 1, 2, • . ., s. 

Proof: If s = 2 (using induction on s), the theorem 

is true by 3.i. Suppose the theorem is true for n ~s-l. 

If gl (X) g2 (X) • . . g (X) is arranged in the follow­
s
 

ing manner, gl(X)g2(X) ••• g (X) ::: gj(X)g (X) where
 
s s 

j:;; 1,2, ••• , n, then by 3.i, P(X)\gj(X} or P(x)\gs(X) and 
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by the induction assumption p(X}lgt(X) where t is one 

of the integers 1, 2, n, thus either P(X)\gt(X)0 •• , 

or P(X)(gs(X). Therefore P(X)\gm(X) where m is one of 

the integers 1, 2, . 0 s, which completes the proof of0' 

the theorem. 

Theorem~. (Corollary of 3.i.) 

If P(X) and g(X) are relatively prime polynomials 

in F[X] such that P(X)!g(X)h(X) in F[X], then P(X)!h(X). 

Proof: Since p(X) and g(X) are relatively prime, 

by 3.5, 

hl(X)P(X) + h (X)g(X) = 1. Thus,
2 

hl(X)P(X)h(X) + h (X)g(X)h(X) == h(X)
2 

h (X)P(X)h(X) + h (X)P(X)h (X) == h(X)
1 2 3 

P(X)(hl(X)h(X) + h (X)b (X)) == h(X)
2 3 

P(X)h (X) = h(X), then P(X)!h(X).
4

Theorem ..l.!...1.. 

Eve:r:y non-z ero polynomial P (X) in F LX] can be 

written uniquely (except for the order of the factors)
 

in the form:
 

P(X) == cPl(X)P (X) 0 P (X) where c ~ 0 is in the field

2 

•• 

r 

F and P (X)(j == 1, 2, ••• r) is a monic irreducible 
j 

polynomial in F[XJ • 

Proof: If deg p(X) == 0, P(X) == c ~ 0 in F. Suppose 

deg p(X) == n>O. If n == 1, P(X) == aX + b == a(X + a-lb). 
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AssD~e the theorem true for all polynomials of degree less 

than n. If p(X) is prime, P(X) ::: cP (X) where P (X)
1 1 

is the monic associated with P(X). If P(X) is reducible 

then by 3.7, p(X) = g(X)h(X) where deg g(X)n and 

deg h(X) >n. 

By induction: 

g(X) == c g (X)g (X) ••• g (X)
112 s 

h(X) = c2hl(X)h2(X) ••• ht(X) and 

P (X) == (c1c )g (X) g (X) • • • g (X) h (X) h (X )
212 s 1 2 

h (X) •. • ht(X), which is the desired form.
3 

Assume uniqueness of factorization for polynomials 

of degree less than n. If deg P(X) == 0, there is nothing 

-1to prove. If,deg p(X) = 1, consider p(X) == a (X + a b) = 
= c(X + c-ld). By 2.13, a = c and b ::: d. Therefore, 

the theorem is true for n = 1. 

Now suppose: 

p(X) ::: cP (X)p (X) ••. P (X) ::: dg (X) .•. g (X).
1 1 r 1 s 

Since Pi(X) and g (X) ar€ monic, c ::: d. 
. j 

By 3.3, 

P (X)'gi (X) where i = 1,2, ••• , s, and by 3.j,1
P (X)\gi (X) for some i.
1 

Suppose P (X)jg.(X). Since P (X) and g (X) are monic 
1 J 1 j 

irreducible polynomials, then P (X) = g.(X). Therefore,
1 J 

P (X) • • . P (X) ::: gl (X) • • • g (X)g (X) • . . g (X),
2 r j-l j+l 8 
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which is of degree less than n. By the induction assump­

tion, r = sand P (X) are the g (X) in some order. This 
i k 

completes the proof of the theorem. 

a1 a
By collecting repeating factors p(X) = cP (X) P (X) 2

1 2 

• • • P (X) as where P (X), P (X) . • • P (X) are the distinct 
s 1 2 s
 

irreducible factors of p(X) and a , a , • • , a are

l 2 s 

positive integers. 

Definition~. The mapping Q from R [X] into RrS] 

where S is a fixed element in the ring R, and such that for 

every P(X) in R[X), Q(p(X)) s p(S), is called a polynomial 

function. 

Theorem ~.
 

The mapping Q defined in 3.8, is a homomorphism
 

from R[xJ into R [sl •
 

Proof: Since for every p(X) a.X i and
=cn 

1 

i = 0 
m
 

q(X) b .x j in RtX}
=L J
 
j =: 0
 

n • ro • 
(1) Q(p(X) + q(X)) =Q(~ aiX 1 +;== bjX J )= 

t) MAX (n,m)MAX (n,m)=Qfr- (at+bt)X = ~ (a +b )S t =:L-. t t 
t=:O t = 0 

n m

=L a i Si + ~ bjS 
j = p(S) + q(S) =: Q(p(X)) + Q(q(X)). 

i = o J =: 0 
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n + m 
q(2 ) Q(P(X}q(X)) = Q( ~ L akbtX ) = 

q = 0 k + t = q 

m + n 
= akbtSq = p(S· )q(S:) = Q(p(X) )Q(q(X}).C L 

q = 0 k + t = q 

Tben Q is a homomorphism. 

Given any element P(S) in R[S] there exists a 

polynomial p(X) in R[x) such that Q(p(X)) = p(S). There­

fore, Q is an onto mapping from R[x] to R[s1 • 

Since for an element p(S.) in peS] may exist more 

than one element in R[yJ, such that p(S) is the image of 

those elements, then Q is not one-to-one. 

Section 3.B. Roots of Polyn~~ial~ 

Definition 3.9. An element a in a field F is called 

a root of the polynomial P (X) in F (X] if P (a) = O. 

Definitio~ ~Q The a in the field F is a root of 

P(X) in F[~ of multiplicitym if (X - a)mlp(x), whereas 

(X - a) m+11 P (x ) • 

Theorem~. (Remainder Theorem) 

If P (X) is in F [X) and a is in the field F, then 

P(a) is the remainder on dividing P(X) by X-a. 

Proof: By 3.c, P(X) = q(X)(x - a) + r(X) where 

r(X) = 0 or deg r(X) < deg (x - a) = 1. Thus, r(X) = 0 or 
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deg r(X} ~ O. In either case r(X} ~ r, a constant in F. 

P (X) ::: q (X ) (X _. a) + r 

P(a} ::: q(a}O + r
 

P(a} ::: r.
 

Theorem~. (Factor Theorem) 

The element a in the field F is a root of the poly­

nomial P(X} in Fexl if X - a\P(X}. 

Proof: If x - a\P(X}, then p(X) ::: (X - a)q(X} + r(X}, 

where r(X} ::: r ::: 0, by 3.n, r :::: P(a} = O. 

Theorem H' 
n 

Let p(X} :::: L a.X i be in F [X] with a f. O. 
l. n 

i ::: 0 

If r , r , • . . , r are dis tinct elements of the fi eld
1 2 n 

F such that r , r , . , r are roots of P(X}, then
l 2 n 

p(X) ::: an(X - rl}(X - r } . • . . (X - r ) • 
2 n 

Proof: By induction on the degree of p(X}, if 

n ::: 1, P(X) ::: ax + b. If r is a root of P(X}, by 3.0, 
. 1 

P(r } ::: ar + b ::: 0, b ::: ~arl' P(X) ::: ax - ar ::: a(X-r ),
l 1 l 1 

then t he theorem is true. 

Assume that the theorem is true for n ::: k. 

Cons ider the poly---nomial g (X) in F [xl of degree k + 1 

with leading coefficient a. Let r , r , • • ., r be 
n 1 2 k+l 

distinct roots of g(X). If r is a root of g(X}, by 3.n,
1 

g(X) ::: q(i}(x - r ), where deg q(X) ::: k. The leading
1 

I 
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coefficient of q(X) is a • Since an is the coefficient 
n 

of Xk+l	 in g(X). 

Suppose r (i ~ 1) is any of the other roots of P(X).
i 

By 3.0, 

P(r ) =	 g(r. ) (r. -rl ) = O. 
ill 

Since ri - r ~ 0, then g(r.) = O. Thus, by 3.n,
1 1 

r 2 , r , • • • r + are roots of q(X). Therefore,
3 k l 

q (X) == an (X - r 2 ) (X - r 3 ) • • . (X - r k+l ) and 

P(X) == am (X - r 1 ) (X - r 2 ) • . . (X - r k+l ) 

By induction, the theorem is true. 

Theorem~. (Corollary of 3.p.) 

A polynomial P (X) in F (X] of degree n ~ 1 ha.s at mos t 

n distinct roots in the field F. 

If r l , r , ••. r arc distinct roots of P(X)
2 n 

then by 3.p, p(X) = a (X - r )(X - r ) ••• (X - r ).
n 1 2 n 

Suppose r is another root of P(X) by 3.0, 

P (r) = a (r
n 

~ r )(r
1 

- r 2 ) •• • (r r )
n 

= O. Since 

a 
n 

~ 0, then (r - r. ) 
~ 

:::: 0 for some i. 

Therefore, p(X) cannot have more than n distinct 

roots. 

Theorem ~. (Corollary of 3.q.) 
n m 

Let P(X) == L aix i and q(X) = L bl 
j 

i = 0 j= 0 

wi th an ~ 0 and bm ~ 0 being two polynomials in F (x1 
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\.;rhere n :::m. If P(a ) = q(a.) for at least n + 1 distinct
i 1 

elements in F, then P(X) :::: q(X). 

Proof: Consider h(X) = p(X) - q(X) 

If h(X) ~ 0, then deg h(X) ~ n 

h(a.) = P(a.) - q(a.) :::: 0 for n + 1 distinct elements in 
111 

f. This contradicts 3.q. Therefore,. h(X) = p(X} - q(X) = 0 

P(X) :::: q(X). 

Newton's Interpolation F'o~!Uule 

By 3.r , there exists one, and only one, polynomial 

of degree L n, which, at n + 1 points a i assumes given 

values p(a i ). This polynomial is given by means of Newton's 

Interpolation Formula. 

(1) f(X):::: DO + Dl(X - a O) + DO(X - aO)(X-a1 ) + • • . 

• . . + Dn{X-aO)(X - 8 ) • • • (X - a _l ).1 n 

The coefficients DO' • • • D can be computed as 
n 

fol10Hs: 

First, sUbstitute X :::: a in (1) which givesO 

f(a O) = DO' Subtracting this from (1) and dividing 

by X - a O: 
f(X) - f(aO)

(2 ) = Dl + D2 (X - all + • •• +Dn(X-a l )· • 
X - 8 0 

(X - a _ ). Where 
n l 

f(X) - f(a O) 
f(a o' X) = • 

X - a O 
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Substituting X ~ 8 in (2), f(u ,81 ):= Dl ,
1 O

Subtracting this from (2) and dividing by X - a l , 

f(ao'X) - f(a O,8 )1(3 ) =D2 +D (X - 8 
2

) +. ,.
3X - 8 

1 

• • , + D (X - a l ) •• , (X - 8 1)'
n n-

Where 
f(ao'X) - £(8 0 , 8 )1

f(8 ,al'X) := •Q X - 8 
1 

If X = 8 
2

,
 

f(aO,8 1,82 ) ::: D2 "
 

NO\\1 by complete induction, it is defined that: 
... _ f(8 0 , • • • 8k _l , X)-f(aO,···,ak_l,a ) 

f(a O' ' •• 8 k ,X) - k 

X - 8 
k 

As before, 

f(a o' ' • " ak _ 1 , X) ::: Dk + Dk+l(X - B
k 

) + ••• 

• • • + Dn(X - 8 k ) • • • (X - 8 1) and n-

f(a O' . • . 8 k ) := Dk' 



CHAPTER IV 

The purpose of this chapter is to present some 

tests for irreducibility of polynomials over the rational 

field R. 

In some cases, it is not difficult to see that 

some polynomials are irreducible. For example, consider 

the polynomial X2 + lover the real field. X2 + 1 is 

irreducible over the reals but is reducible over the com­

plexes, for there, X2 + 1 ~ (X + i){X - i) where i 2 ~-l. 

Consider the polynomial X2 - 2 over the rationals. 

2 2Suppose X - 2 ;:; (X	 +a)(X + b). If X ;:; -b then, (-b) + 2 = 
{-b + a)O ;:; 0 and {_b}2 ;:; 2, which is impossible. There­

fore, X2 - 2 is irreducible over the rationals but not over 

the reals, for there, X·
2 

- 2 ;:; (X - V2)(X + V2).. 

In a similar manner	 it is possible to prove that 

·23
the polynomials X, X + 1, X2 + 1, X3 + 1, X + X + 1, X +X+l, 

x3 + X2 + X + 1 are irreducible over 1/(2). 

In tne great majority of the cases, it is not as 

simple as in the examples presented before to say that a 

polynomial is irreducible or is not. To simplify this 

work, mathematicians have developed tests for irreducibility. 

This chapter is concerned with some tests for irre­

ducibility of polynomials over the rational field. 
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Let g(X) be a non-zero polynomial in R~J. Since 

g(X) ::: (l/a)f(X) where a is the g. c. d. of the denom­

inators of the coefficients of g(X), then g(X) and f(X)" 

will have the sam~ roots in the field of the rational 

numbers R, Therefore, without loss of generality it is 

possible to work with polynomials with integral coefficients. 

Theorem ~.
 
n
 

Let p(X) = L a.X i with a f 0 being a poly­
1, n 

i ::: o 
nomial in R Dc] , where R represents the rationals. .If 

rls, (r, s) = 1, is a root of P(X), then r a and s a ,
O n 

", ("/)n ( I )n-lBy 3.9, a r s + a 1 r s + •• , • + a = 0,n n- O 
eliminating denominators 

n n-lar +a lr s+ •• + a sn = 0 
n n- o •
 

It follows that:
 

n-l n-2 a sn-l)r (a r + a lr +. • • + -a sn 
n n- 1 = o
 

All the terms in
 

n-l n-2 a n-l
r ( a r + a lr +., • + 1 s ) = a sn 
n n- o 

are integers; therefore; 

r)aosn and since (r,s) = 1, thenr\a
O

. In a similar 

manner, s(a r n - l + • • + a sn-l) ::: -a r n 
n-l o n 

s(anrn and slane 

This theorem is very us eful for polynomia ls of 

degree ~3. For polynomials of higher degree, it may be 
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very difficult to determine whether or not the polynomial 

is prime. 

Example~. As an illustration of Theorem 4.a, 

let P{X) = 10XS-lsx4-10X 3+2OX 2-So If r/s(r,s) = 1 is 

+a rational root, then rlS and rtlO. r = -1, S and s = 1, 2, 

S, 10. The possible roots are: 1, 1/2, liS, 1/10, -1, 

-1/2, -liS, -1/10. 

Since P{l) = 0, then by 3.0, p(X) = 
(X~1)(10X4_SX3_1SX2+SX+S). In a similar manner, it is 

found that 1 is also a root of lOX4 -SX 3-1SX2+SX+S; by 
10 

3 .1, P (X) = (x - 1) 2 ( lOX 3+SX 2-lOX - S ) . Sinc e -1/2 is a 

root of 10x3+SX2 - 10X-S, then P(X) = 10(X-l)2(X+l/2)(X2+S). 

Kronecker's Method 

Let P{X) be a pol~nomial of degree n in R~J. If 

P{X) is reducible~ it will have a factor of degree~Q. 
2 

Let s be the greatest integer ~¥. Now it is necessary 

to investigate whether p(X) has a factor g(X) of degree s. 

Form the function values P(bO)' P{b ), •• " ., P(b ) for
1 8 

8+1 arbitrary integral arguments b
O

' bl " • • • b
s 

• If 

g(X)\P{X), then g{bO) P{b O); g{b ), etc. But P(b i ) has
l 

a finite number of factors; hence, there are only a 

finite number of possibilities for each g{b ), •• , g(b ).
i s 

For each possibility, there corresponds one and only one 

polynomial g(X), which can be found by the aid of Newton's 



38 

interpolation formula. Hence, there will be a finite 

number of polynomials g(X) which are possible factors of 

P (X) • 

By 3.3, it can be deter'mined whether or not any of 

these actually are ractors. 

Example 4.2. As an illustration of Kronecker's 

Method, let p(X) ::: X3 + 1. 

n ::: 3 implies s ~ 1 

b ::: 0	 P(O) = 1o 
b ::: 1	 P(l) ::: 2 

1 
g(O)jP(O) implies g(O) = 1 

g(1) I'p (1) implies g(l) ::: 1 or g(l) ::: 2. 

The possible combinations are: 

(1) 1, 1 (2) 1, 2 (3) 2, 1 

Checking (1) by Newton's interpolation formula, it is 

found g(O) ::: 1, g(l) ::: 1. 

g(X) ::: DO + DIX for X ::: 0
 

g(O) ::: D ::: 1

0
 

g(X) - g(O) 1-1
-D ---0P(l,X) :::	 - 1 - 1 ­X 

Therefore, g(X) ::: 1, which is a ractor. 

(2 ) g(O) ::: 0, g(l) ::: 2
 

g(X) ::: DO + DIX ror X ::: 0
 

g(O)	 = D ::: 1
 
0
 

_ 2-1 _Pl1~X) ::: g(X) ~ ~(O) ::: D -- - 1
X 1 1 
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Therefore, g(X) :::: 1 + X. 

Since p(X) :::: (X + 1)(X2 ~ X + 1), then g(X) is a 

factor~ 

(3 ) g(O) :::: 2 gel) ::: 1 

g (X) :::: DO -t DIX for X ::: 0 

g(O) :::: D :::: 2 
0 

g(X) - g(O) 1-2 
P ( 1,X) :::: :::: D :::: -1- :::: -1

lX 

g (X) :::: 2 - X. 

Since g(X)IP(X), 2-X is not a factor. 

It is evident that these calculations will usually 

be prohibitive in length. Frequently, the interest 

about polynomials is whether a particular polynor~al is 

reducible or irreducible. A simple test or criterion that 

would give this information would be very useful. No 

such criterion which will apply to all classes of poly­

nomials has been found J but some tests have been found 

which give information for particular polynomials. The 

next sections of this chapter will present some of these 

criteria. 

Lemma ~. 
n . m 

Let the polynomials P(X} :::: ~ aix1, q(X) :::: LbjXj 
i :;; 0 j :::: 0 

s 
and h(X) :::: L cpXP be in I [X], Vlhere I represents the 

p :::: 0 
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integers, such that P(X) ~ q(X)h(X). If P is a positive 

integer which is a divisor of every coefficient of P(X}, then 

P is a divisor of every coefficient of q(X) or a divisor 

of every coefficient of h(X). 

Proof: Assume that q(X) has'at least one coefficient 

which is not divisible by P and also that h(X) has at least 

one coefficient which is not divisible by P. Let bs be 

the first coefficient of q(X) such that PJbs and let c
k 

be the first coefficient of h(X) such that ptck. 

By the statement of the theorem P(X) = q(X)h(X) 

and by 2.15, 

(1) ,as+k = bsck + (bs+lck + l + b _ + • • •s +2ck 2 

• • • + bs+kco) + (bs_lck+l + b s _2c k+2 + • • • 

• • • + bOc +k )s

Now, by the choice of c ' 
k 

P\ck _l , c _ ' • • • , Co consequentlJ-,k 2 

P\bs+lck _l + • • • bs+kc O in a similar manner, 

plbS_1Ck +1 + b s _2 ck +2 + • • • + bOc s +k 

Since p\a~+k' then P\bsCk which contradicts the assumption 

since Plbs and PIck. 

Lemma ~.c. If p(X) is a polynomial in I~J and 

q(X), h(X) are in Rr~ such that p(x) = q(X)h(X), where 

I represents the integers and R the rationals, then there 
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41 
exists ql(X) and hl(X) in IDa having the same degrees 

as q(X) and h(X), respectively. such that P(X) = q](X)h (X). 
- 1 

Proof: If k and e are the 1. c. m. of the de­

nominators of the coefficients of g(X) and h(X) respec­

tively, then q(X) = kql(X) and h(X) = ehl(X), where 

ql(X} and hl(X) are in I [x] • Therefore, 

(1) keP(X) = ql(X)hl(X). If P is a prime such 

that pIke, then by 4.b, P must divide all coefficients of 

ql(X) or of hl(X). 

Therefore, P can be divided from both sides of 

(1). This can be done for all the prime factors of ke 

and finally get: 

p(X) = ql (X)h1(X). 

It is almost trivial that 

deg q(X) = deg ql(X) and deg h(X) = deg h (X),- 1 

which completes the proof of the theorem. 

Lemma~. The mapping B of I LX] into I!(n) [Xl , 
represents the integers, defined such that for all 

n 
a XiP(X) = L in I [XJ B(P(X)) = p' (X) where 

o ii .:::: 

, ni' 
P (X) = L ~aiJ X and [ail = a i 

i = 0 

represents the class a. for every i is ari homomorphism of 
1 

I C'<) onto I!(n) [X] for each positive integer n. 
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n_ i 

Proof: Since for all P(X) = ~aix and 

i = a 
m 

jq(X) = L b x in I (X]j
 
j = 0
 

~~(m,n) )
t(1 ) B(P(X)) + q(X)) == B( - . (at + bt)X = 

t = a 

MAX(m~n) , ~UX(m,n) ,t
t 

== ~__ B(at + bt' X == ~ (a~ + bt)X = 
t == a t == a 

n m 
~ ,.x1 Lb.Xj = P

,

(X) +- q 
I 

(X) = == L-..a i + - J 
i == a j = 0 

= B(P(X)) + B(q(X)) 
m + n 

(2) B(P(X)q(X)) == B S 
~ ~ .ajbkX == 

8=0 j+k==s 

m + n I 

= C () a jbk ) Xs = 
j+k=sS == 0 

n m ; 
b.X = P (X)q (X) == 'xi' ;- I J ' IL a i 

i = a j == a J 

= B(P(X) )B(P(X)). 

(3) For every polynomial P I (X) in I ex] such that 

B (P (X)) = P ,. (X), thus B is an homomorphism of I eX] onto 

II (n) [X] • 
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Lemma ~ Le t P (X) be a polynomial in I (Xl such 

that deg B(P(X» ~ deg p(X), where I represents the inte­

gers and B is the mapping defined in 4.c. If B(P(X» 

is irreducible in I/(n) Ix] then P(X) is irreducible -in 

I [XJ • 

Proof: Let P(X), g(X), h(X) be polynomials in 

I[X] such that P(X) ~ g(X)h(X). By 4.d, 

B(P(X» ~ B(g(X»)B(h(X» 

Since deg B(P(X» == deg P(X), then
 

deg B(g(X» == deg g(X) and deg B(h(X» == deg h(X).
 

Therefore, B(P(X» is reducible in I/(n>tX]. In a 

similar manner if B(P(X» is reducible and deg B(P(X»=deg P(X), 

then P(X) is reducible. lJ.'his implies that if B(P(X» is 

irreducible and deg B(P(X» == deg P(X), then P(X) is irre­

due ible. 

The Lemma 4.8 states deg B(P(X» = deg P(X) because 

if deg B(P(X» -(deg P(X), then P(X) can be reducible and 

B(P(X» can be irreducible. Such is the case when P(X) = 
2' . 

== 4X .. llX - 3 == (4X + 1) (X - 3) and n = 2. 

B«4X + l)(X -3» =X + 1, which is reducible. 

The polynomial X3 + X2 + X + 1 is irreducible over 

1/(3) but w(X3+X2 +x+l ) = X3+X2_2X -2 == (X2 - l)(X + 1). 

Therefore, if w(p(X» is reducible in I/(n)LX] for some n, 

then no conclusions are dra}m. 
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The LernmB 4.e, is useful in proving the criteria 

known as the Eisenstein's Criteria for irreducibility. 
n 

Connider the polynomial P{X) = l:: a .xi, a f 0 in I tx1 
1. n 

i = 0 

where I represents the- integel's, and also consider the 

prime P. If B{P(X)) is reducible, it must be divisible by 

an irreducible polynomial over I/{P) of degree not exoeeding 

S ~ n/2. If no one of the primo polynomials of degree 

S divides w{p{X)), then by 4.e, P{X) is irreducible. If 

w{P{X)) is reducible over I/{P), then no conclusions are 

drawn, and then it is possible to choose either a different 

2 2prime or p • When p is chosen, the -si tuation is handled 

by Eisenstein's Criteria for irreducibility. 

;'J'heorem 4.f. (Eisens te in's Cri tar ia ) 

n
If p{X) =c a.X~ 

1. 
a 

n 
t 0 is a polynomial in I eX] 

i - o 
and let P be a prime 

Plan and p 
2[80 ' then 

such that pla i i = 0, 1, ••• n-l, 

p(X) is irreducible, over integers I. 

Proof: Suppose p{X) is reducible in I/(P2 ). By 3.7 

a + alX + • • • + anx 
n = (b + blX + ••• +bmXm)(c O+ ••• ckX

k 
).o o 

By 2.15: 

8 0 = bOc O 

Since P)bOC , then P divides c or P divides b or P
000 

divides both Co ,and boo 



~5 

Assume p\c and P\b O' 
o
 

b = Pk
o 1
 

c = Pk
 a 2 
2

bocO = P k k , then
l 2 

~ 

p2 \b OC ' which contradicts the statement of the theorem.
O 

Therefore, 

p\c o or P\b 
O

• 

Suppose PI cO' then PIbo. 

a = b c 
n m k
 

Plan
 

ptb c

I m k 

p\Ck 

Choosing s as the sWlllest positive integer such that 

p\C
S 

' O(s~k By 2.15, 

a = bOc + blc ) + 0 + b cO. By the choice0 0 s s s-. s 

of s, PfbOC ' and P divides all other terms of' as' Thens 

prase 

Since a is the only coefficient of P(X) such that 
n 

Plan' then s = k = n. Therefore, one of the factors will 

have degre e n wh ich makes p(X) irreduc ib le over II (p2 ). 

Obviously, for any positive integer n, there exists 

polynomials of degree n ·over. I that are prime over Io 

Given n = 4 and P = 5, it is very easy to construct 

the polynomial 10 + 15x + 5X2 + 2sx3 + 3x4, which is irre­

duc ible over 1. 
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Theorem bl.!J;. 

Let D be an integral doma in. The mapping A from D tX] 

into itself defined such that A(a) ::: a for every polynomial 
n 

constant in D[XJ. For all P(X) = r= oiXi, an t: 0, in 

i = 0 

D [xl. 

A(P(X)) = P(X + 1) is an homomorphism. 

Proof: 

':( 1 ) For the constant polJ'1l.o!'llia1 the proof is trivial. 
n . 

Now consider P(X) =: L aiX\ an -p 0, and 

i ::: 0 
m 

q(X) = L b jX j, b F 0, in D eX] •m 
j ::: 0 

NAX(m,n) t 
(2 ) A(P(X) + q(X)) ::: A (a -i- bt)X- :::I __ 

t 

t ::: 0 

MAX (m,n )


==L.- (at + bt)(X + l)t:::
 
t ::: 0 ­

n m 

::: Lai(X + l)i + 1) j == + L-bj(X 

i ::: 0 j ::: 0 

::: p(X + 1) + q(X + 1) ::: A(P(X)) + A(q(X)) 

m + n 
S :::(3) A(P(X)q(X)) == A ~ > ajbkX

s=O j+k=s 
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m + n 
= C )- Bjbk(X + l)S =
 

S ;:: 0 j + k = s
 

n m 
ai (X + l)i bj(X + l)j= P(X + 1) q(X + 1)==)	 2

i ;:: o	 j = 0 

;:: A(F(X»A(q(X). 

Obviously deg A(P(X» = deg P(X), and by Le~~a 4.e, 

if A( P ( X» i sir'reduc i b1e ,.,1 sowill b e P(X) • 

An application of tbe Theorems 4.f and 4.g are the 

polynomials called cyclotomlc. 

Definition~. A comrlex number w is said to be B 

primite nth root of unity if and only if wn = 1, but 

wm I 1 for any positive integer m n. 

cn/nIf w = e = Cos 2fT/n + Sin 2Tf/n then w is a .	 ' 
primitive, nth roots of 1.' 

Definition ~.. The rolynomial Q,n(X) =TI(X - w) 

where this product is taken over all the primitive n 

root of unity is called cyclotomic polynomial. 

For example:
 

Q,~(X) = X - 1
 

Q,2(X) = X + 1
 

Q,3(X) = (X - (1/2 + iV3/3) (X-(-1/2-iV}/2) =
 
2= x: + X + 1 

T1'1eorem	 U. 

Q,n(X) is a monic polynomial with integer coefficients. 
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Proof: Consider the polynomial Xn_l over the complex 

number such that Xn_l =n(X - a), Hhere this product is 

taken over all a satisfying an = 1. By previous theorems 

in group theory this primitive root exists. 

It is possible to write Xn_l as follows: 

Xn_l == Qd(X), 
d\n 

If 11. == 1 (using induction on 11.) Ql(X) = X - 1, which 

is a monic polynomial with integral coefficients, then theor­

em is true for 11. == 1. 

As sume the the orem is true for k ~ 11. where k is an 

integer.. Since dln, then d! 11. and by the indue tion assump­

tion Qd (X) is a monic polynoraiR.l ....ii th integral coefficient. 

If ~(X) is known for all positive d.(.n, then Qd(X)!TTQa(X), 

and TTQ,Ci (X) == ~ (X) g (X) \olhere g (X) is monic polynomial 

with integral coefficients, which implies that 

Xn-l == ~(X)g(X). Th0reforc, ~(X) = Xn_l/g(X). By actual 

division, ~(X) is a monic polynomial with integral coeffi­

cien t . 

Example 4.1. Consider the cyclotomic polynomial 

p(X) == X~~ + X3 + X2 + 1 in this polynomial does not exist 

such a prime which satisfies Eisenstein's Criteria. 

In A(P(X)) == (X + 1)4 + (X + 1)3+(X+l)2+(X+l)+1 == 

= x4 + 5X3 + lOX2 + lOX + 5. 5 divides all coefficients 

except 1 and 52J5. 
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By 4.g, p(X) is irreducible. 

In general, given the cyclotomic polynomial 

XP lp(X) = 1 + X + ••• + ­
P

(X - l)P(X) == X -1. 

A((X-l)F(X» = A(X-l)A(P(X» == A(XP - 1) = 
= XA(P(X» = (X + l)P - 1 = xP + PXP- l + ( ~.) XP- 2 + • • • 

P
• • • + (p_ I )X 

P l P P-2 PA(P(X» == X - + (l)X + ••• + ( )P-l 
P(P-l) (P-2) ••. (P-(v - ll) (p - v)t 

Since ( ~) = == 
v!(P-vH 

P(F - 1) (F - 2) • p - v + 1 
, then P divides all the= 

v t 

XP l-coefficients except the coefficient of • 
P p(P - l)l

The constant term (p 1) = = P 
- (P - l)t(P - p + 1)1 

is not divisible by p2. Therefore, P(X + 1) is irreducible, 

and so is p(X). 

There are many irreduclble polynomials such as X2 + 1 

to which the criterl.on will not apply. This means that all 

the polynomials that satisfy the criteria are irreducible, 

but it does not mean that the polynomials that do not satisfy 

the criteria are reducible. 

I • 



CHAPTER V 

SUi·Il·;:'\RY 

This thesis contains definitions and theorems 

concerning the development of the polynomial ring in 

Section 2A of Chapter II. In Section 2B of the same 

chapter, the development of the polynomial ring was pre­

sented. Theorem 2.d in the same section shows that the 

polynomial ring Rrx] is an integral domain. 

Chapter III presents in Section 3A, some proper­

ties of the polynomial ring, such as the division algorithm, 

the existence of the greatest common divisor in the poly­

nomial ring, the Euclidean Algorithm, the factorization 

of a polynomial, and Theorem 3.m, which shows the existence 

of a homomorphism. from ReX) into RCSJ • 

Section 3B contains the remainder theorem, the 

factor theorem and some other theorems concerning roots 

and factorizations of polynomials. The Newton's inter­

polation formula is also in this section. In the fourth 

chapter, some general tests for irreducibility were pre­

sented, such as Theorem 4.a, the Kronecker method and 

the Eisenstein criteria. In order to present an applica­

tion of the Eisenstein's criteria, the cyclotomic poly­

nomial was defined. It was proved that the cyclotomic 

polynomial is a monic polynomial. 
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