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CHAFTER I
INTHCDUCTION

The roots of a polynomial over a glven fileld are
the most valuable pleces of information about polynomlals.
If the polynomial does not have roots over a glven fleld,
it is called irreducible over the given fleld.
Irreducibility 1s a large topic in mathematics where-
by mathematiclans have developed many tests for lire-

duclblility.

I. The Problem

The purpose of this paper is to present: (1.) the
definition and construction of the polynomial ring; (2.) some
properties of the polynomiael ring; (3.) tests for irreduci-
bility of polynomial over the rational fileld.

Limitations. Since polyncmials is a very broad

area, this paper will deal with only a few aspects of

these areas.

Importance of the FProblem. The problem of factoriza-

tion of polynomlals over the rational field appears very
often 1In algebra. If the test for irreducibility and the
theorems concerning roots of such polynomials are known,

then the prroblem can be solved.



Brief History

In elementary algebra, expressions coming under
the more technical definition of polynomial are studled
largely in connection with the equations formed by setting
them equel to zero.

The theory of equétions was developed first by
Lagrange, D'slambert, Gauss, Ivory and Cauchy in the 17th
century.

The fundamental. theorem of algebra (all equetions
have a resl or imaginary root) was proved by Ceuchy. On
the nature of these roots, Budan and Fourier did a great
amount of work. After the equation of fourth degree was
solved, mathematiclans became interested in solving equa-
tions of the fifth degree. Niel Abel (1802-1620) proved
the impossibility of this solution. Then, in 1879 Kron-
ecker gave a demonstration of this problem which is classical
and eppears in the modern books of algebra.

The remarkable theory of equation due to Galoils
has become one of the most lmportant branches of algebra.

Concerning the irreducibility of polynomials over
rationals, 1t was Kronecker (1882) who gave a general
solution to the problem.

In 1630 Eisenstein proved a criterion for irreduci-

bility which was generalized by Dummas in 1906. Recently,



many irreducibility tests have been developed for particu-

lar polynomials, such as Bernoulli, Legendre, etc.



CHAPTER II

COMSTRUCTION OF THE POLYNOMIAL RING

This chapter contains some definitions and theorems

necessary for the development of the polynomial ring.

Section 2,A.

Definition 2.1. A non-empty set R is said to be an

assocliative ring if in R there are defined two binary
operations denoted by + and .« respectively such that for
all a, b, ¢, in R:

(1) a +Dbis in R

(2) a +b =Db + a

(3) (e +b) +c =a+ (b +c)

(LL,) There exists O in R such that a + 0 = a for

every a in R

(5) There exists =& in R such that a + (-a) = 0

(6) a+{b + ¢) = a+b + asc and (b + c)+a = b.a + c.a
(Remark: The product a*b will be written as ab to simplify
the notation.)

Definition 2.2. A ring R is said to be commutative

if and only if the multiplication of R is such that ab = ba
for every a, b, in R.

Definition 2.3. A ring R is said to be a ring with

unity if and only if there exists an element 1 in R such

that a 1 =1 a = a for every a in R.



Definition 2.4. An element a # 0 in a commutative

ring R is said to be & zero-divisor if there exists an
element b in R, b # 0, such that ab = 0.

Definition 2.5. A commutative ring R with unity

is said to be an integral domain if and only if R is free
of zero-divisors,

Definition 2.6. A commutative ring R with unity

is called a field if and only if for every a # O in R
there oxists a~t in R such that aa~! = 1,

Definition 2.7. A subset S of a ring R 1is said to

be a subring of R if and only if, under the operation of
addition and multiplication defined in R, S itself forms a
ring.

Definition 2.8. If a, b are in an integral domain

R, then a divided b written a|b, if there exists ¢ in R
such that b = ac.

Definition 2.9. If a,b are in an integral domain R

such that alb and bla, then a and b are called associates,

Definition 2.10, If a, in an integral domain R, is

an asscciate of 1, then & is called a unit,

Theorem 2.4,

An element u in an integral domain R is called a

unit if and only if uwl is in R,



Proof: If u is unit, then by 2.10 there exlists v

in R such that uv = vu = 1; therefore v = P £ u'l

is in R, then ua™t =1 and u 1. Since 1 divides every

element in R, then 1 divides u a? thus u and 1 are assoclates.

Definition 2,11, A mapping § from the ring R into
the ring R' is sald to be a homomorphism 1f and only if
(1) #(a+D) =g (a) + 7 (v)
and

(2) @ (ab) = g (a) # (b).

Definition 2.12. A homomorphism 4 of R into-R' is

gsaid to be an isomorphism if @ is a one-to-one mapping.

Theorem 2 .b.

A field is an integral domain.

Proof: Let F be a field. Let a # 0 and b in F such
that ab = 0.

Since F is a field, b = 1b = a~1 ab = a~10 = 0,

If ba = 0 with a ¥ O the commutstivity of F also
implies b = 0. Therefore, F 1s free of zero-divisors, and

by 2.5, F 1s an integral domain.

Section 2.B.

Construction of the Polynomial Ring. Let R and R

be two integral domains such that R S-R', and let X be a

t
variable in R .



By adding, subtracting and multiplying X with the
elements &y ef R and with itself, all the expressions of

the form aOXO + alxl + .. .+ aan can be constructed.

The set R[XJ is the set of all those expressions that
have been constructed over R. The elements f(X), g{X). . .

« ., h(X) in R[X} are called polynomials,

0 1
il X)) = X7+
n £{X) aol alx

Bys 815 o « o+, 8 &YE in R, and are called coefficients.

B, & o« F aan the eslements

For any positive integsr n X™ represents the product

E.x . . N2, . X,

In the following a X0 + a Xl

0 1
. n i
be written 2 a;X~ with the understanding that if n> O,

n .
$ i yie T anX will

then a # 0.

Example 2,1. The following is a list of all the

2

polynomials of the form aOXO + alxl + a2X 3 a3X3 over 1/(2).

ox© wxt + ox© 1xt + 1x9 + ox©

1x° 12 + oxt + ox© xZ o+ oxt o+ 1x0 + ox©
12 + 0ox2 + oxt o+ ox®  1x® + ox® + 1x° + oxO

%2+ 1xt + O

1% + 1xt + 1x0 + ox©



3+ ox? + 1xt o+ ox©

%3 + 1x2 + oxt + ox©
13+ 1xt o+ 1% + ox®
13 + 1x2 + 1t o+ ox©

1x3 + 1x2 + 1x1 + 1x0

Definition 2.13.

n ; mn .
If P(X) =5 &X' and q(X) = E ijJ
) i =0

are in R[X}, where R is an integral domain, then P(X) = q(X)

if and only if for every integer i1 20, 2, = b .
i i
i, e., two polynomials are equal if and only if their cor-

responding coefficients are squel.

Definition 2.1, If as before P(X) and q{X) are
i ] MAX{m,n) K
in R{X], then P(X) + q(X) = Z (a + b X7,

Theorem 2.c.

R[X], where R is an integral domain, contains a
subring isomorphic to R,

Proof: Consider the mapping T from R'[X] into R,
where R'{X] is the subring of R{X] which contains all the
polynomials of the form aXO for every a in R,

Let T be defined such that:

T(aXO) = a for every a in R,

It is easy to see that T is a one-to-one mapping.



Since:

(1) T(alXO + a XO) = T((al + a2) XO) = a, + a

2 L 2

0

= T(alxo) + T(aX")

(2) T(31X032XO) = T((aya,)) x7] = ala,

= T(alxo) T(aZXO); then T is an isomorphism from

R'(X) to R.

This theorem identifies R‘[X] with R, and thus it
is possible to write a in place of axo, 0 in place of
s(x) = x°% 1 in plece of 1x°, X in place of 1x¥, xJ in
place of 1XJ and -aX in place of (-a)X to help simplify

the notation.

Definition 2.15. If as in 2.13 P(X) and q(X) are

m+n
in R(X] then P(X)q(X) = S __CSXS where
s =0
Cs = § ajbk = asbo + as—lbl t o . 0t aobs.

An illustration of this definition is the example:

PX) =1 + X +2X°  q(X) =2 + 3K + X3

then

ao =1, al =1, a2 = 2, a3 = aLL = 6 o« =0

bo =2, bl = 3, b2'= 0, b3 =1, bLL = bS ST e e =0
00 = adbo = 2

01 = albo + aobl =2 +3 =5

0y = asb, + albl + a0b2 =4 +3 =7



l
n

C, = a.b +agﬁ-k%p2+a&ﬁ O+6 +0+1 7

a
i —
|
=
o
(@]
+
o
o’
+
jas]
o
4
o
o
+

=0+ 0 +
pPp t By tagh =0+ 0+ 0

C,=8bP +ab +a8ab +a8ab +ab +ab =

5 50 L1 32 23 1L 0S5
= 0+ 0+0+2 + 0+ 0=2¢2

Therefore,
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(1 + X + 2x2) (2 + 3X + x3) =2 + 5X + 7X2 + 7x3 + xu + 2X5.

This definition is the same as the reader has always

known.

Theorem 2.d.

If the operations of addition and multiplication
are defined in R{X]by 2.1l and 2.15, respectively, and R
is an integral domain, then R[X}is en integral domain,

Proof:

(1) Closure of addition follcws from 2.1l.

(2) The commutativity of addition in R implies

the commutativity of R[X], 1e€4y

n 0}
= i = J
if P(X) E a.X* and q(X) §_mm~ ij
i=0, j=0
MAX(n,m)
are in R{X) then P(X) + q(X) = E s (ak + bk)xk =

MAX (n, m)

k<o -
3 E (b, + &, )X = E ajxj + ) agXx' = q(X) + P(X



(3) In a similar manner, associativity of addition

in R implies associativity of R{X].

n m .
For any P(X) = E aixl, q{X) = E ijJ
J =9

i=0

S

and h(X) = E chp in R( .

P =20
Consider:

I

m .
(P(X) + q(X)) + h(X) =[’Z agk+ S b
j=0

£ =
MAX (n,m) . s
= p _
i (ak + bk)x + E ch
k =0 P =20
MA¥X (n,m,s)

= 2 Uag vy °t)xt -
t =0

MAX (n,m,s)
(a, + (b, +¢ ))X® =
t £ £

n

t =0
i _ MAX(m,s) .
= E i ‘ =
agx= + (bv + cv)X
i=20 v =0
I

"

i=0

11

: p
) + E c X =
- p

. m ‘ 8
Z— aixl +(Z_'— bij + § chIj: P(X) + (g(X)+h (X))
i =0 P=20
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n i MAX (m, s )

- v

= 5 as;xX= + E (bV - cv)x =
i =0 v =20

il
H

En aiXi +(§T}" ijJ + Es chp>

i=20 j =0 P=20

It

P(X) + (q(X) + h(X)).

(L) The identity element of R(X] is S(X) = 0,
n -
— i _
since for every P(X) = E a;X* in RIx] P(X) + s(X) =
i=0
n i n 3
E (ag + O)X ;8 P(X)
i=0 is=
n
(5) For any P(X) = E aiX:1 in R{X] the inverse
i=0
n _ % )
of P(X) is E (-ai))(1 since 2 aixl +
i=0 1=0

n _ n . n :
*Y eyt =% (ap 4 (ma))xT =5 oxt=s(x) =0
g4 = 0 i =20 1i=0

(6) Closure of multiplication follows from 2.15.

n
(7) Since for every P(X) = E ai)(i and
i=0

m
a®) =5 vx) mr{,
S
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q(X)P(X), then multiplication

1
u N8
N
o
~
o
o+
S
v
I

in R[X] is commutative.
(8) If as before P(X), q(X) and h(X) are in R},

then
+ n S

atbkxs ) Z_Cpxp =

(P(XYq(X))h(x) =(

w ™A
1

n+n+ s

2—_——<> ' t(}'w)x
= t
n
E>
i =0

+ kK +wW=8

., M+ 8
Xl 7 > bucVXq =
aq = u

4 n i m J S P
~‘Z_ X (S ox? 3 e XP ) =

i=20 . 0 P=20

=P(X)(q(X)h(X)). Thus, multiplication in R{X]is associative.

(9) Consider: P(X)(g(X) + h(X)) where

P(X), q(X), h{X) are defined in R[X] as before, then



1y

n
i b Py _
. asX (L__ b X<+ Z_cpx ) =
i =0 j=20 P =20
_.n 1 MAX (m,s) t
) aiX (bt + ct)X ):
1i=0 t =0
n + MAX(m,n) R
= Z g aylby + ¢ )X =
R =20 u+ 1 =R

N
i

7
:
%DU

R =0 u+ 1 =R

n+ m n+ s
A R B _
_> > aubl}( + ) > auch &

R=0 u+1l=R R=0 U=1=R

n m s n $ s
=5 a.x1 b.xY + aX o X =

1 e s e ok S
i=20 j=20 L= o= U

P(X)g(X) + P(X)h(X). In a similar manner, (P(X) +
+g(X) ) h(X) = P(X)h(X) + g(X)h(X). Therefore, the dis-
tributive laws hold in R[X].

(10) Consider: w(X) = 1 where 1 is the unity
n
in R. Let P(X) =5 aiXi be any other polynomial in

=0

i
R by 2.15. P(X)1 = P(X), then 1 is the unisy of R[X].
n

(11) Suppose that P(X) = E aiXi # S(X) and
{ = o
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m
q(x) =3 bjxj # S(X) are in R{X] such that

]=0
P(X)g(X) = S(X) then by 2.15.
n+ m g
P(X)q(X) = X

s =0

Since P(X)q(X) = S(X) this implies that

Cs = S ajbk = 0 for all s.

J+k =s

Thus for s m+ n, C = anbm, and anbm = 0,

m+n

Since R is an integral domain, then &, = 0 or bm = 0
which is contrary to the assumption that for n >0, By # 0.
Therefore, fibﬂ is free of zero-divisors.

Therefore, R{X] is an integral domain,



CHAFTER TII

This chapter contains some important properties
of the polynomial ring R{X] over an integrsl domain R,

and of the polynomial ring FX] over a rield F.

Section 3.A.

n .
Definition 3.1. The polynomial P(X) = 5 a;x+,

i=20

P(X) # O, is said to have degree n, written as deg P(X) = n,
if and only if n>0 is the largest integer such that the
leading coefficient a # 0. The degree of the zero poly-

nomial is undsfined.

Definition 3,2. A polynomial f(X) is called a

constant if deg f(X) = 0,

Lemma 3.a.
n .

Ir P(X) # 0, P(X) =5 a3X" and q(X) # 0,
i=0

m
q(Xx) = E &_ijj are in R{X], where R is an integral domain,
=0

then deg (P(X)q(X)) = deg P(X) + deg q(X).
Proof: Since a_ # 0 and b # 0, then deg P(X) = n

and deg q(X) = m,

By 2.15:

Cm+n - Elnbm # Or
Consider:

Ci, i>m +n

Ci = a bi .

I i-3
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Since 1 = j + (i - j)>m + n, then j> m or
i - j>n., This implies aj = 0 or ai—j = 0. Therefore,
C; = 0.
Since the highest non-zero coefficient of P(X)q(X)
is Cm+n’ then by 3.1 deg (P(X)q(X)) = m + n = deg P(X)

+ deg q(X).
Theorem 3.b. (Corollary of 3.a.)
If P(X) and q(X) are two non-zero polynomials in
Rbﬂ, where R is an integral domain, then either P(X) +
+ q(X) = 0, or deg (P(X) + q(X))< MaX(deg P(X), deg q(X)).
The proof of this thsorem is evident from 2.1l.

Definiticn 3.3. A polynomial q(X) in R[X], where

R is an integral domain, is sald to divide the polynomial
P(X) in R[X})written q(X)}P(X). If in REX] there exists a
polynomial h(X) such that P(X) = q(X)h(X),

Lemma 3.¢. (The division algorithm)

If £(X) and q(X) # O are in F({X] where F is & field,
then there exists unique polynomials g(X) and r(X) in F[X]
such that £(X) = g(X)q(X) + r(X) where r(X) = 0 or
deg r(X) « deg q(X).

Proof':

If deg £(X) 4 deg q(X) then there exists g(X) = 0
and r(X) = £(X) in F{X] such that £(X) = 0q(X) + £(X).

If £(X) = 0, then there exists g(X) = 0 and r(X) = 0 in



FIX] such that £(X) = 0q(X) + O, Suppose that £(X) =

n

m .
P E aiXi and q(X) = 5 ijJ where a_ # 0,
=20

i=20
b # 0, and n>m,
If n = 1 (using induction on n), f(X) = aX + b and

-1
cX + d, then there existes g(X) = ac and

q(X)
r(X) = b - ac"td in R{Xx] such that £(X) = ac™ (eX + d) +
+ b - ac™1d and the theorem is true.

Assume that the theorem is true for k <n-1 where
k is a positive integer.

Consider:

an m
£,(x) = £(x) - (Sﬂ~x Ja(X).

m
Now, deg fl(X)fén-l, and thus by the inductive assumption
there cxists gl(x) and r{X) such that fl(X) = gl(X)q(X) +

+r(X) where r(X) = 0, or deg r(X) <cdeg q{X).

Thus, f(X) = (%E Mg (X) = gl(X)q(X) 4 r(X) and
m

£(x) = (2n xnm g, (X))a(x) + r(X). If g(x) =

Py

n=m

a
= SE X + gl(X) then f(X) = g(X)q(X) + r(X) where

=

r(X) = 0 or deg r(X) £ deg g(X).
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Suppose: f(X) = gl(X)q(X) + I'l(X) = 82(X)q(X) *
+ re(X), then (gl(x) - gZ(X))q(X) = r2(X) - rl(X).
If rz(X) # rl(X), then r2(X) - rl(X) # 0,
gl(x) - gZ(X) # 0 and g(X) # 0.

By 3.b: deg (gl(X) - gZ(X)) + deg q(X) =
deg (rz(x) - rl(x)) < MAX (deg re(X), deg rl(X))
< deg g{(X) which is impossible, then rl(X) = r2(X).
Since q(X) # O, then g,(X) = gp(X) = 0, and q,(X) = q,(X).

This proves the uniqueness of the theorem.

Theorem 3.4,

The polynomial P(X) in F{X]is a unit if and only
if P(X) is a non-zero element of F, where F is a field.
Proof: By Theorem 2.2, every element a # O in F
is a unit. By Theorem 2.d, part 10, 1 is the unity in
F[X]. If P(X) is a unit, then by 2.10, there exists
h(X) in F{X} such that P(X)h(X) = 1 and by 3.a,
deg (P(X)h(X)) = deg P(X) + deg h(X) = deg (1) = O,
which is possible only if deg P(X) = deg h{X) = 0. There-
fore, P(X) = C # 0 in FX].
If P(X) = C # 0 in F({X], then by 2.2, P(X) is &

unit.

Theorem 3.e.

The polynomials P(X) and q(X) in F{X]are associates

if and only if P(X) = Cq(X) where C # 0 is in the field F.



Proof: If P(X) and q(X) are associates, then by
2.9, q(X)[P(X) end P(X)|q(X), by 3.3, P(X) = hy(X)q(X) end
q(X) = hz(X)P(X)
P(X)g(X) = hl(X)hz(X)P(X)q(X) and h
hy (1) = €, h,(X) = ¢™L.

Therefore, P(X) = Cq(X), g(X) = ¢71P(X). 1If P(x) =

1(x)h2(x) = 1. Thus,

= ¢g(X), then g(X)|P(X), since q(X) = ¢”1P(X), then

P(X)lq(X), and P(X) and q{(X) are associates.

n Ll
Obviously, eech polynomial P(X) = E_— ain in

i=20
FDﬂ wi th an¢0 is associated with the unigue monic poly~-

-1
nomial a_ P(X). Where monic means a polynomial f(X)

in F[i] with leading coefficient 1.

Definition 3.li. The monic polynomial d(X) in F{X]
is the g. c. d. of P(X) and g{(X) in F{X] if and only if
d(X) has the following properties:

(1) at)|P(x0) and ax){q(x).

(2) 1 n(x)|P(X) and n(xX)(q(x), then h(X)ld(X).

Theorem 3.f.

Every pair of polynomials P(X) and q(X) in F[X))
where P is a field, has a unique g. c. d. d(X) in Fl
and which can be written in the form d(X) = a(X)P(X) +
+ b(X)g(X) for a(X), b(X) in F[X].

Proof: Let k be the set of all polynomials in

F{x] of the form a(X)P(X) + b(X)q(X). k is not empty
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because P(X) = 1P(X) + Oq(X) is in k. Let d(X) be a
polynomial of least degree in k. d(X) can be monic since
the monic associsted with each polynomial in k is in k.

Since d(X) is in k, then d(X) = a(X)P(X) + b(X)q(X).

By 3.c, P(X) = s(X)d(X) + r(X) where r(X) = 0 or
deg r(X) {deg d(X). If r(X) =0 a(X){P(X). If r(X) # 0,
r(X) = P(X) - s(X}a(X) = P(X) = a(X)((a(X)P(X) + b(X)q(X)) =
= P(X) =-s(X)a(X)P(X) = s (X)b(X)q(X) = ((1 - s(X)a(X))P(X) +
+ (s (X)b(X))q(X) = E(X)P(X) + B(X)q(X) where a(X) and
B(X) are in PIx]. Thus, r(X) is in k.
deg r(X) ¢ deg d(X) is a contradiction. Therefore, d(X)|\P(X).
| In a similar manner d(X)tq(X).

Suppose there exists d, (X) in F(X] such that
dl(x)lP(x) and 4, (x){a(x). By 3.3

P(X) = dl(X)hlfx)

q(X) = dl(X)hZ(X) and

a(x) = dl(X)hl(X)a(X) + dl(X)hz(X)b(X)
a{x).= dl(X)(hl(X)a(X) + h2(X)b(X))
a(x) =

dl(X)hB(X)
Therefore, dl(X)ld(X), which completes part (2) of 3.4, and
d(X) is the g. c. d. of P(X), q(X).

Suppose there exists dz(X) in F{(X] such that
d,(X) satisfies 3.4. Then d(X)[dz(X) and dz(x)id(X).
Therefore, d.,(X) is an associate of d(X). By 3.e, d{X) =

2

= Cd2(X). Since d(X) and d2(X) are monic, then C = 1 and

d(X) is unique.
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Definition 3.5. Two polynomials P(X} and q(X)

in FE{l not both zero are called relatively prime if their
g, ¢o de 18 1 in the field F,
Obviously, 1 = a(X)P(X) + b(X)q(X) for some a(X),

b(X) in F{X].

Theorem 3.g. (Euclidean Algorithm)

This is an alternate method of proving the existence
of the g. ¢c. d. This method is also useful in expressing
gs ¢ d. Of two polynomiels as a linear combination of
these polynomials.

Proof: Let P(X) and q(X) be two non-zero poly-
nomials in F(X], where F is a field. By 3.c,

(1.) P(X) = g(X)q(X) + rl(X)

rl(X) = 0 or deg rl(X) £ deg q(X)

(2.) q(X) = ql(X)rl(X) + rz(X)

rz(X) = 0 or deg PZ(X)<‘deg rl(X)
(3.) rl(X) = q2(X)r2(X) + r3(x)
rB(X) = 0 or deg rB(X) £ deg r2(X)

L] L] L] L] L] . - . ° L] . [ ] - L] L] . L] . L] L] L] . L] L]

(k.) rk_3(X) = qk_l(X)rk_l(X) + rk(X)
rk(X) = 0 or deg rk(X) ( deg rk—l(X)
(k+1.) rk_e(X) = qk(X)rk(X) + rk+1(X)
rk+l(X) = 0 or deg rk+1(X) { deg rk(X),
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Suppose rk+l(X) = 0. By (k+1), rk(X)&r —l(X) and

then by (k) r, (X)|r,_,(X). ’
Using equations ((k-1), (k-2), . . . (3), (2), (1)),
it follows rk(x)\rl(x), rk(x)\r(x), which implies Rk(x)]P(x)
and r, (X)]q(X).
If the polynomial h(X) is in F[X] such that
h(X)|P(X) and h(X)'q(X), then by (1.) h(X)|r(X), and by

(2.) h(X)]r (X} in the same manner as before but using

1
equations ((3), (L4), + « « 4 (k=1) (k), (k + 1)) in the
order shown, it concludes that h(X)\rk(X).

Therefore, by 3.l, the monic c'lrk(X), associated
with r, (X) is the g. c. d. of P(X) and q(X).

Using induction on rk(X), let prove the second
part of 3.g. For k =1, ri(X) = P(X)—gl(X)q(X); thus,
rl(X) can be written as & linear combination of P(X)
and q{X), which is the desired form in 3.f. Suppose it
can be done in this manner er all rn(X) where n $k-1.
SY
sbove assumption, rk_Z(X)
rk_l(x) = hB(X)P(X) + hu(X)q(X). Thus, hl(X)P(X) +

Consider:

thl(X)qk(X) + rk(X) by the

hl(X)P(X) + hZ(X)q(X) and

il

+ ha(X)g(X) = h3(X)P(X) e hu(X)q(X))qk(X) + rk(X) and

P(X)(hl(X) - h3(x)qk(x)J + q(X)(ha(X) - hh(X)qk(X)) =  [X].

k
Therefore, by induction rk(X) can be written as a

linear combination of P(X) and q(X), for k =1, 2, .
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Since deg rl(X) > deg re(XJ ™Y .. by 3.1, there

exlsts r X) in F[X]}such that deg r = 0. By 3.2,

k+1( k+1

e l(X) = C # 0 in F, then obviously 1 is the g. c. d.
+

of P(X) and q(X), and by 3.5, 1 = a(X)P(X) + b(X)q(Xx}),

which completes the proof of the theorem.

Example 3.1,

Using 3.g, and given P(X) = 2X3 - uxz + X - 2 and
g{X) = x3 - x2 - x - 2, in F[X] where F is a field, the
procedure to find the g. c¢. d. of P(X) and q(X) is the
following:

2 = 2(x3 - x2 - ¥ - 2)-2x%s3x42

]
N &
n
ol
P
t

X3 < X° « Xuo@ meleger, o 1AM -2R 4 3N + 2) +

+3/4X - 3/2

2

-2X° + 3X + 2 = ~8/3X(3/LX - 3/2) - X + 2

3/kX - 3/2 = =3/L(~X + 2) + O.

Since the monic associated with =X + 2 is X-2, then X-2

is the g. c. d. of P(X) and q{X).
(2) The procedure to write X - 2 as a linear

combination ;f P(X) and q(X) is the following:

CP(X) - 2q(X) = -2x2 4 X + 2

q(X) - (~1/2X-1/L)(P(X) - 2q(X)) = 3/LX - 3/2
q(X) (=1/2XP(X) + Xq(X) - L/4P(X) + 1/2q(X)) =
= q(X) + 1/2XP(X) - Xq(X) + 1/4P(X) - 1/2q(X) = 3/L4X-3/2.
P(X) - 2g(X) + 8/3X(q(X) + 1/2XP(X) - Xq{X) + 1/LP(X)~-

1

- 1/2q(X))= -1(X - 2)
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P(X) + 2q(X) - 8/3q(X) - L/3X°P(X) + 8/3X°q(X)-2/3XP(X) +
# U/3Xq(X) = X - 2

a(X)(=2/3 + 1/3 + 8/3%%) + P(X)(~L/3X2 - 2/3X - 1)= X - .2,

Definition 3.6. A nonconstant polynomisl P(X)

in.FE{] where F is a field, 1is called irreducible or prime

in Fﬂﬂ if its only divisors in F[X] are its associates and

the units,

Definition 3.7. A nonconstant polynomial P(X)
in F[X], where F is a field, is called reducible if there
exists at least q(X) and g(X) in F[X], where q(X) and g(X)
are not units or associates of P(X), such that a(X) =

= gq(X)g(X). The polynomial aX + b is irreducible in any
field F.

Theorem 3.h.

If P(X) is a prime polynomial in F{X), where F is a
field, and q(X) is any other polynomial in F[X], then
either P(X) and q(X) are relatively prime, or else their
g. ¢c. d. is the monic associate of P(X).

Proof: Suppose d(X} is the g. c. d. of P(X)
and q(X), then d(X)|P(X); this implies either d(X) is a
monic associated with P(X) or d(X) isva unit in F[X},

i.e., d(X) is a non-zero constant, which implies that

P(X) snd q(X) are relatively primes.
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Theorem 3.1i.

If P(X) is a prime polynomial in F[X], where F is a
field, such that P(X)|g(X)n(X) for g(XIn(X) in F{X], then
either P(X){n(x) or P(X)|g(x).

Proof: Suppose d(X) is the g. c. d. of P(X) and
g(X}.

If a(X) is an associate of P(X), then 4(X)ig(X).

If d(X) is not an associate of P(X), then by 3.h,
P(X) and g(X) are relatively prime consequently.

1 = a(X)P(X) + b(X)g(X).

R(X) = a(X)P(X)h(X) + b(X)g(X)h(X). Since P(X)|g(X)g(X),
then h(X) = a(X)P(X)h{(X) * b(X)P(X)hl(X) and

h(X) = P(X)(a(X)h(X) + b(X)hl(X)), thus P(X)|h(X).

Theorem 3.j. (Corollary of 3.1i.)

Let P(X) be a prime polynomial in F[X], where F 1is
a field, such that P(X)\gl(x)ge(x) v % gS(X) where the
product g (X)g,(X) + + . g () is in F{X], then P(x)[gi(x)
for some i = l, 2, « o« o5 Se

Proof: If s = 2 (using induction on s), the theorem
is true by 3.i. Suppose the theorem is true for n ¢s-1.

Ir gl(X)ga(X) o % @ gs(X) is arranged in the follow-

ing manner, gl(X)gg(X) e v o g (X)=¢g (X)gS(X) where
s

J
j=1, 2, «. « . , n, then by 3.1, P(X)ng(X) or P(X)\gS(X) and
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5 by the induction assumption P(X)lgt(X) where t is one

{ of the integers 1, 2, . . ., n, thus either P(X)\gt(X)

or P(X)(gS(X). Therefore P(X)lgm(X) where m is one of
the integers 1, 2, . . ., s, which completes the proof of

the theorem.,

Theorem 3.k. (Corollary of 3.i.)
If P(X) and g(X) are relatively prime polynomials
in F(X] such that P(X)|g(X)h(X) in F{X], then P(X)|n(X).

Proof: Since P(X) and g(X) are relatively prime,

by 3.5,
hl(X)P(X) + ha(X)g(X) = 1. Thus,
hl(X)P(X)h(X) + hZ(X)g(X)h(X) = h(X)

hi(X)P(x)h(x) + he(X)P(X)hB(X) = h(X)
P(X)(hy (X)h(X) + hZ(X)hB(X)) = h(X)

P(X)hh(X) = h(X), then P(X)}h(X).

Theorem 3,1.

Every non-zero polynomial P(X) in FE{) can be
written uniquely (except for the order of the factors)
in the form: .
P(X) = CPl(X)Pz(X) PR PP(X) where ¢ # 0 is in the field
Feand P (X)(jJ =1, 2, « + « r) is a monic irreducible
polynomial in FEG .

Proof: If deg P(X) = 0, P(X) = ¢ # 0 in F. Suppose

4

deg P(X) =n>0. Ifn=1, P(X) = aX + b = a(X + a2 ~b).
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Assume the theorem true for all polynomiegls of degree less
than n. If P(X) is prime, P(X) = cPl(X) where Pl(X)
is the monic associated with P(X). If P(X) is reducible
then by 3.7, P(X) = g(X)h(X) where deg g(X)>n and
deg h(X) > n.

By induction:

g(X)
h(X)

clgl(X)gz(X) v Bl gs(X)

il

cghl(X)hg(X)  » & ht(X) and
P{X) = (clcz)gl(X)gZ(X) PR gS(X)hl(X)he(X)
h3(X) i o & ht(X), which is the desired form.

Assume unigueness of factorization for polynomials
of degree less than n. If deg P(X) = 0, there is nothing
to prove.  If deg P(X) = 1, consider P(X) = a(X + a*lb) =
= ¢(X + ¢c~1a). By 2.13, a = ¢ and b = d. Therefore,
the theorem is true for n = 1.

Now suppose:

P(X) = cPl(X)Pl(X) ¥ b Pr(X) = dgl(X) § s gS(X).
Since Pi(X) and gj(X) are monic, ¢ = d.

By 3.3,

Pl(X)|gi(X) where 1 = 1, 2, . . . , s, and by 3.],
Pl(X)\gi(X) for some i.

Suppose Pl(X)lgj(X). Since Pl(X) end gJ(X) are monic
irreducible polynomials, then Pl(X) = gj(X). Therefore,
PE(X) . % % PP(X) =g

[X) & » = gj—l(X)g +l(X) . . .og (X)),

1 J 8
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which is of degree less than n. By the induction assump-
tion, r = 8 and Pi(X) are the gk(X) in some order. This
completes the proof of the theoremn.

a a
By collecting repeating factors P(X) = cPl(X) 1p (x)°2
2

v s .Ps(x)&s where P_(X), Pe(x) .+ « P (X) are the distinct
s
irreducible factors of P(X) and 8y ae, . « 5 8 are
8
positive integers.

Definition 3.8, The mapping Q from R({X] into R[]

where S is a fixed element in the ring R, and such that for
every P(X) in R{X], Q(P(X)) = P(8), is called a polynomial

function.

Theorem 3.m.

The mapping Q defined in 3.8, is a homomorphism
from R[XJ into R[S] .

n
Proof: Since for every P(X) = Y aixi and
i=20

m
qa(x) =3 ijJ in R{X)
5=0
1 _ I 4 m j
(1) Q(P(X) + q(X)) -Q[Ei _ Oaix * %bjx ):

MAX (n,m) MAX (n,m)
—Q(z gy ) =Y (agb, st =
t =0 '

n R st 5
E aisl+ y bJSJ=P(S) + q(S) = Q(P(X)) + Q(q(Xx)).
£ =0 3 =0
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n-+ m
2) a(r(am) =af ) o0 x%) =
q =0 k+ t =q
m+ n
= 27 > akthq = P(S)q(S) = Q(P(X))Q(q(X}).
q=0 k+ t =g

Then Q@ is a homomorphism.

Given any element P(S) in R[S] there exists a
polynomial P(X) in R[X] such that Q(P(X)) = P(S). There-
fore, Q is an onto mapping from R(X] to R[S].

Since for an element P(S) in P{S] may exist more
than one element in R{X] such that P(S) is the image of

those elements, then Q is not one-to-one.

Section 3.B. Roots of Polynomials

Definition 3.9. An element a in a field F is called

a root of the polynomial P(X) in F[X] ir P(a) = O.

Definition 3.0, The a in the field F is a root of

P(X) in F[X] of multiplicity m if (X - a)mlP(X), whereas
(x - a)mlTP(X) .

Theorem 3.n. (Remainder Theorem)

If P(X) is inIFEﬂ and a is in the field F, then
P(a) is the remainder on dividing P(X) by X - a.
Proof: By 3.c, P(X) = q(X)(x ~ a) + r(X) where

r(X) = 0 or deg r(X) {deg (x - a) =1, Thus, r(X) = 0 or
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deg r(X) = 0. 1In either case r(X) = r, a constant in F.

P(X) = q(X)(X-a) +
P(a) = q(a)0 + r
Pla) = r.

Theorem 3.0. (Factor Theorem)

The element a in the field F is a root of the poly-
nomial P(X) in F(X] if X - a|P(X).
Proof: If x ~ alP(X), then P(X) = (X - al)g(Xx) + r(X),

where r(X) = r = 0, by 3.n, r = P(a) = 0.

Theorem 3.p.

n 3
Let P(X) =§ " aixl ve in F[X] with a # 0.

i=20
Ry I R distinet elements of the field
F such that rl, Tys o o+ 5 T 8&TO roots of P(X), then
n
P(X) = an(x. - I‘l)(x = 1'2) - ] . . (X - I’n)o

Proof: By induction on the degree of P(X), if
n=1, P(X) = aX + b, If rl is a root of P(X), by 3.0,

P(rl) =ar; +b =0, b = =ary, P(X) = aX - ar, = a(X-rl),

then t he theorem is true.
Assume that the theorem is true for n = k.
Consider the polynomial g(X) in F[X] of degree k + 1

with leading coefficient a . Let r., r , « ¢« «, T be
n 1 2 k+1

distinet roots of g(X). If ry is a root of g(X), by 3.n,

g(X) = q(X)(X - rl), where deg q(X) = k. The leading
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coefficient of q(X) is a . Since a  is the coefficient

of XX*1 in g(X).

Suppose r,(i # 1) is any of the other roots of P(X).

i
By 3.0,

P(ri) = g(ri)(ri—rl) = O

Since ry - rl # 0, then g(ri) =‘O. Thus, by 3.n,

ro, T + + . Ty, 8re roots of g(X). Therefore,

3’

q(X) = a (X - rp)(X - r3) o o o (X -r ) and

P(X) a (X - rl)(X - r2) . W, OO~ Pk+1)

By induction, the theorem is true,

Theorem 3.q. (Corollary of 3.p.)
A polynomial P(X) in F([X] of degree n>1 has at most

n distinct roots in the field F.

2; . Pn are distinect roots of P(X)

then by 3.p, P(X) = an(X - rl)(X - 7T

Ir rl, r

2) . . e (X. - I’n).
Suppose r is another root of P(X) by 3.0,

P(r) = an(r - rl)(r - r2) e o o (r - rn) = 0., Since

8 # 0, then (r - ri) = 0 for some i.

Therefore, P(X) cannot have more than n distinct

roots.,

Theorem 3.r. (Corollary of 3.q.)
' n

. m $ .
Let P(X) =7 a;X" and g(X) = ijJ
; 5=

‘ i=20
with a  # 0 and b # O being two polynomieals in F[X]
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where n=m. If P(ai) = q(ai) for at least n + 1 distinct
elements in ¥, then P(X) = q(X).

Proof: Consider h(X) = P(X) - q(X)
If h(X) # 0, then deg h(X) < n
hia,) = Pla,) - q(ai) = 0 for n + 1 distinct elements in
f. This contradicts 3.q. Therefore, h(X) = P(X) - q(X) = 0
P(X) = q(X).

Newton's Interpolation Formula

By 3.r, there exists one, and only one, polynomial
of degree 4 n, which, at n + 1 points ay agsunes given
values P(ai). This polynomial is given by means of Newton's
Interpolaetion Formula,

(1) f£(X) =D, + Dl(X - ao) + DO(X - ao)(X—al) ..

0
« o« +D X-ag)(X ~ay) o .. (X -a q).

The coefficients DO’ & w ' Dn can be computed as
follows:
First, substitute X = &4 in (1) which gives

f(ao) - DO. Subtracting this from (1) and dividing

by X - 8yt

(2)

FIX) «
(X) (éo) B Dz(x .

X - =& 1

1
0

e + o (X - anal)' Where
£(X) - fag)
f(ao, X) = .
X - 8

] # 5§ & « +Dn(X—al). ;
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Substituting X = a, in (2), f(ao,al) =D

1 1°

Subtracting this from (2) and dividing by X - a,

f(ag,X) - f(ao,al)

(3) " =D, + D3(X - 32) + e e
- 8
1
. . . + Dn(x - al) L3 . . (X - an-]_)'
Wh
exe f(ao,X} - f(ao, al)
f(a ,a,,X) = .
0’1 X - =
1
If X = &

2,
f(ao,al,aa) = D2.

Now by complete induction, it is defined that:

f(ﬂ s ] . . &k‘l, X)"f(‘ao,acu,a

0 :a)

k-1" "k

f(ao, . e s ak,X) =

X - ak
As before,
flag o v vap )y X) =D # D (X-g) +e
. L] . + D (X = ak) . [ . (X - 8 _1) and
f(ao, . Ll ak) = Dkl



CHAPTER IV

The purpose of this chapter is to present some
tests for irreducibility of polynomials over the rational
field R.

In some cases, it is not difficult to see that
some polynomiagls are irreducible. For exaﬁple; consider

the polynomial X2 + 1 over the real field. X°

+ 1 is
irreducible over the reals but is reducible over the-com—
plexes, for there, X% + 1= (X + i)(X = 1) where 1% =-1.

Consider the polynomial X2 -~ 2 over the rationals.
Suppose X2 -2 = (X +al{(X + b). If X = -b then, (-b)2 + 2 =
(-b + &a)0 = 0 and (-b)2 = 2, which is impossible. There=-
fore, X2 - 2 1s irreducible over the rationals but not over
the reals, for thers, e~ 2\ (x - V2)(x » VE);

In a similar menner it is possible to prove that

2 + X+ 1, X3+X+1,

the polynomials X, X + 1, X° + 1, X3 + 1, X
X3 + X2 + X + 1 are irreducible over I/(2).
In tHe great majority of the cases, it is not as

simple as in the examples presented before to say that a
polynomial is irreducible or is not. To simplify this
work, mathematiclans have developed tests for irreducibility.

This chépter is concerned with some tests for irre-

ducibility of polynomials over the rational field.,
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Let g(X) be a non-zero polynomial in R{x]. Since
g(X) = (1/a)f(X) where a is the g. c. d. of the denom-
inators of the coefficients of g(X), then g(X) and f£(X)-
will have the same roots in the field of the rational
numbers R. Therefore, without loss of generality it is -

possible to work with polynomials with integral coefficients,

Theorenm lL.a.

n .
Let P(X) = ) aixl with a_ # 0 being a poly-
i=20
nomial in R{X] , where R represents the rationals. .If

r/s, (r, s) =1, is a root of P(X), then r a_. and s a .

0

£y : n n-1 _
By 3.9, an(r/s) + an_l(r/s) t e .ot ay =0,

eliminating denowminators

n-1g 4

n
a + & r o » *F 8.8 = 0,
nt n-1 A

It follows that:

n~-1 n-2 n-1y _ _ n

r(anr +a, qr o U a,s ) = -a_s
All the terms in

n-1 n=2 i n-1, _ n
r(anr +oa 4T T - w in a8 ) = 8,8
are integers; therefore,
rjaosn end since (r,s) = 1, then'r a5 In a similar
manner, s(a rB-1 4 s & ¥ A snhl) = -g_p"

n-1 0 n

slanrn and s|a_.
This theorem is very useful for polynomials of

degree < 3. For polynomials of higher degree, it may be
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very difficult to determine whether or not the polynomial
is prime.

Exemple .1, As an illustration of Theorem lj.e,

let P{(X) = 1OX5—15Xh-10X3+20X2-S. If r/s(r,s) =1 is
a rational root, then r|5 and r{lO. r = tl, S and s = 1, 2,
5, 10. The possible roots are: i, 1/2, 1/5, 1/10, -1,
-1/2, -1/5, -1/10.
Since P{1) = 0, then by 3,0, P(X) =
(an)(IOXu~5X3-15X2+SX+§). In & similar manner, it is
found that 1 is also a root of 10X+-5x3-15x2+6X+5; by
3.%? P(X) = (X - 1)2(10%3+5%°~10X~5). Since -1/2 is a
root of 10X3+5X°-10X~5, then P(X) = 10(X-1)2(X+1/2) (X%+5).

Kronecker's Method

Let P(X) be a polynomisl of degree n in R{X]. 1If

P(X) is reducible, it will have a factor of degreef&%.

Let s be the greatest integer é;%. Now it is necessary
to investigate whether P(X) has a factor g(X) of degree s.

Form the function values P(b P(bl), s & % 63 P(bs) for

ol »
8+l arbitrary integral arguments bo, bl' o o . bs. If
g(x)\P(x), then g(by) P(by); g(b ), etc. But P(b;) has

& finite number of factors; hence, there are only a

finite number of possibilities for each g(bi), 5 & 3 g(bs).

For each possibility, there corresponds one and only one

polynomial g(X), which can be found by the aid of Newton's
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interpolstion formula. Hence, there will be a finite
number of polynomials g(X) which are possible factors of
P(X).
By 3.3, it can be determined whether or not any of
these actually are factors.

Example .2, As an illustration of Kronecker's

Method, let P(X) = X3 + 1.

n =3 implies 8 £ 1

bO = 0 P{O) = }
b =1 B{l) .= 2
1

g(0)|P(0) implies g(0) = 1

i

g(1)|P(1) implies g(1) =1 or g(1) = 2,
The possible combinations are:
(1) 1, 1 (2)3..2 .(3) 2, 1
Checking (1) by Newton's interpolation formula, it is

found g(0) =1, g(1) = 1.

g(X) = Dy * DX for X =0
g(0) = Dy =1
g(X) - g(o0) _ _1-1
P(1,X) = % =Dy = = 0

Therefore, g(X) = 1, which is a factor.
(2) g(0) =0, g(1) =2
g(X) = D, + D)X for X = 0
g(0) Do = 3

g(X) = g(o) _ 2-1
1

1]

D =52 =)

P(1,x) = X 1
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Therefore, g(X) = 1 + X,

Since P(X) = (X + 1)(X° < X + 1), then g(X) is =

factor.
(3) g(o) =2 g(l) =1
g(x) = Dy # DX for X =0
g(0) = Dy = 2
g(x) - g(0) _ 12
P(1,X) = 5 =Dy =7 = -1

g(X) =2 = X.

Since g(X)TP(X), 2-X is not a factor.

It is evident that these calculations will usually
be prohibitive in length. Frequently, the interest
about polynomials is whether a particular polynomial is
reducible or irreducible. A simple test or criterion that
would give this information would be very useful., No
such criterion which will apply to all classes of poly-
nomials has been found, but some tests have been found
which give information for particular polynomials., The

next sections of this chapter will present some of these

criteria.
Lemma l.b.
n . m s
Let the polynomials P(X) =35 aixl, q(X) = E ijj
i=20 j = Q

S
and h(X) = E chp be in I (XJ], where I represents the
p=20
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integers, such that P(X) = g(X)h(X). If P is a positive
integer which is a divisor of every coefficient of P(X}, then
P is a divisor of every coefficient of g(X) or a divisor

of every coefficient of h(X).

Proof: Assume that g(X) has at least one coefficient
which is not divisible by P and also that h(X) has at least
one coefficient which is not divisible by P. Let by be
the first coefficient of g(X) such that Pb_ and let ¢
be the first coefficient of h{(X) such that PTck.

By the statement of the theorem P(X) = g(X)h(X)
and by 2.15, ‘

(1) .agsy = bge, + (bs+1ck+1 + bs+20k-2 L
e oo bggel) (b jep g D Gt e
. o i bOcs+k)

Now, by the choice of €

P|ck_1, ck_2, I consequently,
Plbs+1°k-1 + e e e bs+k°0 in a similar manner,

Plbs-lck+1 * bs~20k+2 s ¢ bOcs+k
Since P‘as+k’ then P‘bsck which contradicts the assumption
since PTbS and PTck.

Lemma L.c. If P(X) is a polynomial in I({X] and
q(X), h(x) are in R{X] such that P(X) = q(X)h(X), where

I represents the integers and R the rationals, then there
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exists ql(X) and hl(X) in IX] having the same degrees
as q(X) and h(X), respectively, such that P(X) = ql(X)hl(X).
Proof: If k and e are the 1. c. m, of the de-
nominators of the coefficients of g{X) and h{(X) respec~-
tively, then q{X) = kql(X) and h{X) = ehl(X), where
ql(X) and hl(X) are in I{X] « Therefore,
(1) keP(X) = ql(X)hl(X). If P is & prime such
that Pl ke, then by L.b, P must divide all coefficients of
g, (X) or of hl(x).
Therefore, P can be divided from both sides of
(1)« This can be done for all the prime factors of ke
and finally get:
P(X) = q, (X)hy (X).
It is almost trivial that
deg q{X) = deg ql(X) and deg h(X) = deg hl(x),
which eompletes the proof of the theorem.
Lemma L.d. The mapping B of I[Xl into I/(n)Xl,

I represents the integers, defined such that for all

P(X) = X%:_waixi in I[X] B(P(X)) = P'(X) where
i=20

p'(X) = En [ai] x1  ana [a{] = a;
i=20

represents the class ay for every i is an homomorphism of

I X1 onto I/(n)EKI for each positive integer n.
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Proof: Since for all P(X) = Z‘- ai){i and
i =0
- 3
X) = 3
q(X) =5 b’ in I ]
j=0
MAX (m,n)
(1) B(P(X)) + q(X)) = B( ] (ap + bt)Xt>=
t =0 ‘
MAX (m,n) ik MAX (m,n) -
= Z_- B(at+bt) X" = E (at':+bt)x =
t =0 t =20
n . m i
= E ain + ) .bj)'ﬁj =P (X) + q (X) =
i=0 j =0
= B{P(X)) + B(q(X))
m+4 n
2 B X { = B S =
(2) B(P{X)q(X)) ) 2 a b X
s =0 J+k=s
m+ n 1
5 () e -
s =0 J+k=s
HLXI S vt = 2 (x)g' (@)
= L 1= P X) =
ik 7=0 Y o
= B(P(X))B(P(X)).
(3) For every polynomial P'(X) in I{X] such that
B(P(X)) = P"(X), thus B is an homomorphism of I{X| onto

1/(n) [x] .

L2
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Lemma l.e. Let P(X) be a polynomial in I{X] such
that deg B(P(X)) = deg P(X), wherc I represents the inte-
gers and B is the mapping defined in l.c. If B(P(X))
is irreducible in 1/(n) [X] then P(X) is irreducible -in
114 .

Proof: Let P(X), g(X), h(X) be polynomials in
I1{X] such that P(X) = g(X)n(X). By L.d,

B(P(X)) = B(g(X))B(h(X))

Since deg B(P(X)) = deg P(X), then
deg B(g(X)) = deg g(X) and deg B(h(X)) = deg h(X).

Therefore, B(P(X)) is reducible in I/(n)tﬁ). In a
similar manner if B(P(X)) is reducible and deg B(P(X))=deg P(X),
then P(X) is reducible. This implies that if B(P(X)) is
irreducible and deg B(P(X)) = deg P(X), then P(X) is irre-
ducible,

The Lerma li.e states deg B(P(X)) = deg P(X) because
if deg B(P(X)) L deg P(X), then P(X) can be reducible and
B(P{(X)) can be irreducible. Such is the case when P(X) =
=1x° «11X - 3 = (4X + 1)(X - 3) and n = 2.

B{(4X + 1)(X = 3)) =X + 1, which is reducible.

The polynomiél X3 + XZ + X + 1 is irreducible over

I/(3) but w(X3+XZ+X+1) = X34+x2-2X-2 = (X°

- 1)(X + 1)0
Therefore, if w(P(X)) is reducible in I/(n){ﬁl for some n,

then no conclusions are drawn.,



Ll

The Lemma li.e, is useful in proving the criteria
known as the Eisenstein's Criteria for irreducibility.
Consider the polynomial P(X) = 2?:;_gixi, 8 # 0 in T}

i=0
where I represents the. integers, and also consider the
prime P, If B(P(X)) is reducible, it must be divisible by
an irreducible polynomial over I/(P) of degree not exceeding
S £n/2. If no one of the prime polynomials of degree
S divides w(P(X)), then by l.e, P(X) is irreducible, If
w(P(X)) is reducible over I/(P), then no conclusions are
drawn, and then it is possible to choose either a different

prime or P2. When P2 is chosen, the situation is handled

by Eisenstein's Criteria for irreducibility.

Theorem L .f. (Eisenstein's Criteria)

n “
If P(X) = 2:: aix% a_ # 0 is a polynomial in I{X]

i-20
and let P be a prime such that Plai 1=0,1, « « « n=1,

Pran and PeTao, then P(X) is irreducible, over integers I.

Proof: Suppose P(X) is reducible in I/(PZ). By 3.7

n o _ m k
8, + a X + .. .t anX = (b0 +b1X + . . .+me )(co+ - .ckx )
By 2.15:
ao :bOCO

Since P boco, then P divides co or P divides bo or P

divides both colané bo.
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Assume P\cO and P'b

o
bo = Pkl

OO = Pk22

boco =P klkz’ then

<

’2lboco, which contradicts the statement of the theorem.

herefore,
P\co or P\bo.

uppose Pico, then PTbO.
an = bmc
PTan
PTbmck
chk

hoosing s as the smallest positive integer such that

k

>\cs, 0<s<k By 2.15,

as = bocS + blcs—l + . 4 . * bsco.

f s, PTbOCs’ and P divides all other terms of'as. Then

By the choice

Since s  1s the only coefficient of P(X) such that
?Tan, then s = k = n. Therefore, one of the factors will
1ave degree n which makes P(X) irreducible over I/(PZ}.

Obviously, for any positive integer n, there exists
>olynomials of degree n over I that are prime over I,

Given n = Iy and P = 5, 1t is very easy to construct
the polynomial 10 + 15X + SX2 + 25}(3 + 3Xu, which is irre-

lucible over I,



Theorem L.g .

into itself defined such that A(a) = a for every polynomial

constant in D[X]. For all P(X) = E aixi, a 7 0, in

D (X].

q(X) =

L6

Let D be an integrel domain., The mapping A frmnI)Dﬂ

I

i=0

A(P(X)) = P(X + 1) is an homomorphism.

Proof:

(1) For the constant polynomial the proof is trivial.

Now consider P(X) = En aiXi, C # 0, and
i=20
m .
ij‘], b, # 0, in D(X] .
j =0
MAX(m,n) "
(2) A(P(X) + q(X)) = A X" (a, + b )X =
t = 0
MAX (m,n ) .
= (a, + b )X +1)" =
=0
n " m
= E e, (X +1)% + bJ(X+l)j=
i =0 j=0
= P(X + 1) + q(X + 1) = A(P(X)) *+ A(q(X))
m + n .
P(X X = A
(3) A(P(X)q(X)) 5 ajka

s =0 j+k=s3s



L7

m + n
= > > ajbk(X +1)8 =
‘s =0 J+k=3s
Sn__ 1 m .‘ )
= ay (X + 1) EE:: bj(X + 1)Y= P(X + 1) q(X + 1)=
i =0 =0

i

A(F(X))Aa(q(X)).

Obviously deg A(P(X)) = deg P(X), and by Lemma lj.e,
if A(P(X)) is irreducible,oso will be P{X).

An application of the Theorems I .f and lj.g are the
polynomials ceaelled cyclotomic.

Definition h.l. A comprlex number w is said to be a
th

primite n®? root of unity if and only if w" = 1, but

Ww" #1 for any positive integer m n.

If w = egTT/n = Cos 21l/n + Sin 2T71/n, then w is a

primitive, n'? roots of 1.

Definition L.2. The polynomial Qn(X) =T (X - w)

where this product is taken over all the primitive n
root of unity is called cyclotomic polynomial.

For example:

Qy({X) =X = 1

QX)) =X + 1

Q;(X) = (X - (1/2 * 1V3/3)(x-(-1/2-1|3/2) =

X2 + AL

Theorem L .h.

Qn(X) is a monic polynomial with Integer coefficients.
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Proof: Consider the polynomial X?-1 over the complex
number such that X -1 =T[(X - a), where this product is
taken over all a satisf&ing a¥ =1, By previous theorems
in group theory this primitive root exists.

It is possible to write X"'-1 as follows:

xP-1 = X).
e

Ir n = 1 (using induction on n) Ql(X) = X - 1, which
is a monic polynomial with integral coefficients, then theor-
em is true for n = 1.

Assume the theorem 1s true for k £n where k is an
integer. Since d\n, then d £n and by the induction assump-
tion Q4(X) 1s a monic polynomial with integral coefficient.
If Q3(X) is Mmown for all positive d<n, then Qj(X) TTQ&(X),
and ]‘TQd(X) = Qn(x)g(X) where g(X) is monic polynomial
with Integral coefficients, which implies that
X"-1 = q_(X)g(X). Therefore, Q (X) = x*-1/g(X). By actual
division, Qn(X) is a monic polynomial with integral coeffi-
cient .

Example lt.1, Consider the cyclotomic polynomial

P(X) = Xh +x3 +x2 +1 in this polynomial does not exist
such a prime which satisfies Eisenstein's Criteria.

In A(P(X)) = (X + DY + (x + 1)3+(x+1)2+(x41) 41 =
= Xu + 5X3 + 10X + 10X + 5. 5 divides all coefficients
except 1 and SBTS.
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By L.g, P(X) is irreduciblec.
In general, given the cyclotomic polynomial
P(X) =1+ X+ .. .+x71

(X - 1)P(X) = X -1.

AC(X-1)F(X)) = A(X-1)A(P(X)) = A(X - 1) =
= xa(Px)) = (x+ P -1 =xF + XXt 4 (7_)XP”2+ . .
¢ u w T (;ﬁ,)x
arx)) = X7 (DX L I
e P(P-1) (P-2) « » « (P-(v - 1)) (P - v)I
Since V) = =
vi(P - v)!

P(P-1)(FP-2) . ..PFP=-v+1
= , then P divides all the
vi

coelficients except the coefficient of XP_l.

wBkP » 1)1
(P - 1)t(P - P + 1)!

P
The constant term (P—l) =P

is not divisible by B2, Therefore, P(X + 1) is irreducible,
and so is P(X).

2 4 4

There are many irreducible polynomials such as X
to which thé criterion will not apply. This meens that all
the polynomials that satisfy the criteria are irreducible,
but it does not mean that the polynomials that do not satisfy

the criteria are reducible.



CHAPTER V
SULARY

This thesis contains definitions and theorems
concerning the development of the polynomial ring in
Section 2A of Chapter II. In Section 2B of the same
chapter, the development of the polynomial ring was pre-
sented. Theorem 2.d in the same sectlion shows that the
polynomial ring R([X] is an integral domain.

Chapter IITI presents in Section 3A, some proper-
tles of the polynomial ring, such as the division algorithm,
the existence of the greatest common divisor in the poly-
nomial ring, the Buclidean Algorithm, the factorization
of a polynomial, and Theorem 3.m, which shows the existence
of a homomorphism from R{(X] into R{S].

Section 3B contains the remainder theorem, the
factor theorem end some other theorems concerning roots
and factori%ations of polynomials. The Newton's inter-
polation formula is also in this section. In the fourth
chapter, some general tests for irreducibility were pre-
sented, such as Theorem l..a, the Kronecker method and
the Eisenstein criteria. In order to present an applica-
tilon of the Eisenstein's criteria, the cyclotomic poly-
nomial was defined. It was proved that the cyclotomic

polynomial is a monic polynomial.
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