THE STUDENT MANUAL

FOR,/PROGRAMZIING Il FORTRAN IV

A Thesis
Presented to
the Faculty of the Department of Mathematics

Kansas State Teacheors College at Emporia

In Partial Fulfillment
of the Requirements for the Degree

Master of Arts

by
Mok Tokko

August 1968

<7348

ACKNOWLEDGEMENT

The writer wishes to thank Professor Lester E. Laird who

gave assistance and inspiration in the preparation of this paper,

TABLE OF CONTENTS

CHAPTER PAGE
T, JINTRODUCTION ¢ o o o o o o o o o o o o ¢ o ¢ ¢ s s ¢ ¢ s & i

ITI. COMPUTER AKD COMPUTER PROGRAMFING o o 4 o ¢ o o o o o o o'
Functional Components of a Computer + o 4+ ¢ o v ¢ o o ¢ &
Programming o« o o o o o s 5 o 1 s o 0 ¢ 8 5 ¢ ¢ 0 0 v 4
Equipments...‘....................
Dei‘irﬁ.tionoi‘KeyTerms...............;.

JIT. COHSTANTS, VARTABLES, SUBSCRIPTS, AND EXPRESSIONS + & & o &
Constante P T T

Int@gerconstants.ooo.locooooo.o.o--

v ® o oo O U FoOWw W

Real constants o« o o ¢ o ¢ ¢ ¢ o ¢ 0 ¢ ¢ 5 0 0 6 o 0 o

Variables ¢ e o e ¢ ¢ e ¢ € 0 8 e 0 0 o e 0

-
L]
L]
[
o

Subscripted Variabloes o« o « ¢ ¢ ¢ ¢ 5 ¢ o o o o o

-
-
-
L]
[y
-

Ari'thmetichiprOSSions " e 0 & ® 8 8 0 & & 0 0 ® s 0 ® @

[y
(V)

Relational Opera‘t.icn Symbols $ 0 e 0 0 e e o 0 9 0 @

[N
\n

IV. PRDGRQIVMIHG PMC@URE e o o e e e o @ o o & ¢ @ o e o

=
N O

ngrﬂm € ¢ o o 5 o o e & 8 8 0 8 8 s 8 8 ® 8 e e 0 s e

Flow Chart o o o s o o ¢ ¢ ¢ 5 o o 0 o ¢ 8 8 0 8 ¢ 8 o

[ors
ﬂ

WrifingProgI‘am.................

n
()

Preparation of Source Deck 4 v o o s ¢ o o ¢ ¢ o 0+ o o s 22
Li.sting Progra.m P T~
V. GENERAL FORTRAN STATEMENTS ¢ ¢ ¢ ¢ o o o ¢ o ¢ o o

The Arithmetic Statement ¢ ¢ o ¢ o ® o 0 o 2 & & 0 e 0 @ 24'

CHAPTER PAGE
The Control Statement + o 4 4 v ¢ o ¢ ¢ ¢ o ¢ ¢ 0 o 6 o o 27

GO TO statement '« o o ¢ o ¢ ¢« o o € 0 o ¢ o v s 0o 0 00 2

IF statemont o o v o o o 0 0 o 0 0 ¢ 0 0 0 0 0 0 s

DOS‘tatemont......-........o.....

3

COI‘:‘TINUESt&t@mGnt..--ooaonooonooo-

=
(o

Specification Statement 4+ v 4 4 4o o v v 0 4 0w o4 46
DIMENSION statement o v o 4 o o v o o o s o o 0 0 « 0 o U

COMMON statement o o 4 v v 4 ¢ o o ¢ o ¢ ¢ o &
EQUIVALENCE statement o v ¢ o o o o 0 o o 0 o 0 0 o o o U9

Type statonent v v o 4 o v ¢ o s o 0 0 0 0 s o 0 0 0 0o W9

- DATA statement o o o v ¢ o ¢ ¢ o o ¢ 0 6 0 0 0 o

VI, IKNPUT/OUTPUT STATEMENTS 4 4 4 4 o o o o o o o o o o o s o« 53
General Input/Output StatementsS o o o o ¢ o o o o o &
FORMAT statement v o o o o o o o o o o o v 0 0 0 o o o s 54
A-Conversion o+ o o o ¢ o o o ¢ 0 0 o 0 o 0 v
H=Conversion o« o o+ o o o o o ¢ o o o o o o «

Blank £3e1dS o v o o o o+ o o o o ¢ ¢ ¢ o o o s e 0 00+ 61
Ropetdtion of field FORMAT 4 v o o o o o « o o
Multiple-record FORMAT 4 o o 4 o o o o o o o o o o« « o o 64
Carriage control o o o ¢ o o o o o ¢ o o

Edited input data w 4 o 4 ¢ o 0 ¢ s 6 0 0 0 0 W

READ statementsS o o 4 o ¢ o o o o o 0 o o o s 0 0 ¢« o o 68

WRITE stotements o o o o o o o ¢ ¢ o o o o

FIND statement & o v ¢ v o 4 4 0 0 0 0 0 0 0 0 0o 00 73

VII. STORING TUDISK 4 o v o o o o o o

CHAPTER PAGE
ASGN Statement o o o o o o ¢ o o o o 0 ¢ ¢ o o o o s s 75

DEFINE FILE Statement o o o o v v v o 0 0 0 0 0 o 0 0 s 76

VITI, SUBPROGRAIS 4 4 o 4 o o ¢ o o o o o o o 2 o ¢ ¢« ¢ o o o s 81
Library Functions 4 o o o o ¢ o o o ¢ o o o o o &
FUNCTION SubprogTans o o o o o o o o o o o o &
SUBROUTINE Subprogramls o o « o o o o o o o o o o o o & 85

CALL statement « « o 4 o o ¢ o o o ¢ ¢ o o o o o o o 87

IX, CONTROL CARDS 4 o o 4 o o o o o o o o
X, CHECKING THE SOURCE PROGRAM 4 4 4 o o o v o o o o o » .o 91
XL. CONCLUSION 4 ¢ ¢ o o o o o o o o
BIBLIOGRAPHI....................--..-. ol

AP PEI‘IDIX LI) [LI] LI LI . L ¢ @ L] L L I N] ¢ o LI] L] L] 96

LIST OF FIGURES

FIGURE

PAGE

i. A Flow Chart Tllustrating the Program which

Adds Three Numbers

. 18

2, Diagran Tllustrating how the Elements of Three Matrices

areStoredintheDiskUnit.. e 0 6 s e e o 8 88 ¢ & @ 3106

CHAPTER L

INTRODUCTION

This manual is written for the students who are enrolled in
the Mathenatical Programming course offered by the Mathematics
Department at the Kansas State Teachers College at Euporia, It is
written for the student who has no knowledge of computer programming
and no more background in mathematics than the one acquired in the first
two years in college.

The primary purpose of this manual is to give a comprehensive
analysis of the language used in the FORTRAHN IV programming with
nunerous examples and illustrations. In the Mathematical Programming
course at this college, a large portion of the class periods are
devoted to learning how to solve problems, thus leaving little time
to learn theo language of the FORTRAN IV programming.

It is hoped that this manual will be easy to read and that the
student will acquire the basic knowledge of FORTRAN IV programming in
a short period of time. The sarple programs are written short to
better illustrate the subject in discussion., ILonger programs jillustrat-
ing the methods of solving mathematical problems are included in the
appendix,

This manual discusses only the topics which are essential to a
programmer in the field of mathematics. The detailed discussion of

physical components of the computer is not included, This manual is

written specifically for programiing in FORTRAN IV for IBHM 1401 which
is available at the present timo at the Data Processing Center at the
Teachers Colloge. The exact and complete details not included in this
manual can be found in the manual published by the International
Business Corporation, FORTRAN IV Language Specification, File Fo.
GENL~25, Form C24-3322-3,

CHAPTER IT

COMPUTER AND COMPUTER PROGRAMMING

To a mathematician, a computer is a machine that solves mathe-
matical problems in an incredibly short period of time, It can finrd a
square root of a number, add complex numbers, multiply matrices, solve
differential equations, and almost any type of problems a mathematician
encounters. But, what a computer really can do is to add two numbers.
It is a glant adding machine with one added feature which makes the
computer so versatile. It has the ability to store information.

In reality, a computer does not solve those complicated problenms,
It is the mathomatician who devised the technique of solving complicated
mathemati.cal problems by simply adding two numbers, In fact, a computer
cannot even multiply two numbers, In solving a simple problem such as
multiplying eight by five, the computer adds elight five times, Time is
not a problem to a corputer. A computer such as the IBM 1401 can

pexrform thousands of additions per second.
I. FUNCTIONAL COMPONENTS OF A COMPUTER

In general., all computers can be divided into four functional
units; the input, the output, the memory, and the control.

A1l information is entered into the computer by way of the
input unit. The information is usually recorded on a magnetic tape
or on the standardized card. The student in the pmgranmxiné course
will use IBM cards,

The information obtained by the computer reaches the programmer

by means of tho output unit., There are several output devices., The
results can be recorded on a magnetic tape, punched on IBM cards, or
printed on paper. The studont will normally receive the result of the
program printed on paper.

One of the most fascinating aspects of a computer is its
ability to store information., The memory unit enables the computer
to "remember." Once the information i: stored in the memory unit, it
can be brought out of the unit without destroying the record in the
nenory unit. The information can be stored in the core storage within
the computer, or on the magnetic tape, or on the disk storagek.

The control unit of a computer is considered as the "brain,"
This control unit receives information from the memory, interprets the
information, performs the necessary operation, and stores the results

back into the memory unit.
II. PROGRAMIING

Computer programming is writing a sequence of instructions
for a computer to carry out in the solution of a problem and the
written instructions are called a program. With the early cormputers
the instructions were written in machine language which is a basic
numeric code the computer could accept and execute. ‘Writing a program
in the machine language was a tedious Job, It was long and time
consuming. Consequentiy, there were many opportunities to make
mistakes, Then, one developed the FORTRAN system of writing a
program. The name stands for FORmila TRANslation., Thils system is

human or problem oriented language rather than machine oriented

5
language. By using the FORTRAN language, the time and effort for both

writing and correcting a program is greatly reduced,

The instructions written in FORTRAN larguage resembles the ex-—
pressions written in mathematics., These instructions are fed into the
corputer and the computer translates them into the machine language.
This translating system is known as a compiler., .The compller program
is written by an expert programmer,

One disadvantage of using a translating system is that the
system may not make as efficient use of the computer as an expert
prograrmer writing machine language. An expert programmer can take
full advantage of a computer's capabilities and write the program to
use a minimum amount of computer time, However, the use of a compiler

to write the machine language program saves much programming time,
ITT, EQUIPMENT

This is a 1list of the equipment available at the present

time at the Kansas State Teachers College Data Processing Center.

IBM 1401 Processing Unit., This is the control unit of the
conputer, It has an internsl memory unlt of 12,000 positions of

core storage, and all the corputation is performed in this unit,

IBM 1406 Storage. This memory unit has 4,000 positions of

core storage, thus giving the processing unit total core storage of
16,000 positions,

IBM 1311 Disk Storage Drive., At present, there are thrsee of

these memory units at tho Data Processing Center but only one is used
when processing a program written in FORTRAN, Each of these disks

has 2,000,000 storage positions.,

JBM Card Read-Punch, This is the primary input unit of the

computer. The information punched on caxds is transferred to the core
storage through this unit., It also punches out cards containing
output data if this type of output is desired,

IEM 1403 Printer. Most of the output and other communication

from the computer to the programmer is made through this high speed
printer.

IBM 407 Accounting Machine. The student in the programming

course will use this machine for the purpose of printing the inform-

ation punched on cards.
IV, DEFINITION OF KEY TERMIS

In order to be able to read this manual satisfactorily the

reader is vrged to become familiar with the meaning of following terus,

Compiler, This is a program written by an expert programmer to
translate the program written in FORTRAN language into machine

language, The process is called compilation,

Program. A program is a sequence of instructions which a

computer is to carry out in the solution of a problem.

7

Source Program, A program written in FORTRAN symbolic language,

Executeble Statement. A program statement which contains an

instruction for the computer to "do" something.

Non-Executable Statemont. A program statement which contains no

executable instruction.

Field, Record, and File, A field is the smaliest division of

data and refers to a single item or number. A record consists of one
or more fields., For example, a progranm which adds two four by four
matrices may contain eight data cards. Each card contains four
numbers, the elements of a row, The complete'set of data cards, eight
in this case; is a file, each card is a record, and each number on a
card is a field. In other words, this file contains eight records

and each rocord contains four fields.

Debugging, This term refers to a process of finding mistakes

by a programmer in a program,

Control Card. A control card contains the necessary infor-

mation for the operation of 2 computer., For example, FORTEAN RUN card
instructs the computer to start translating a source program, and
$EXECUTION card instructs the computer to start processing the progran
which has been translated into machine language.

Type. The type refers to the kind of variables or nurbers used
in a progran., There are two types of varlables and numbers; a real

type ard integer type.

CHAPTER ITI
CONSTANTS, VARTABLES, SUBSCRIPTS, AND EXPRESSIONS

The meaning of the terms, constants, variables, and subsciripts
is the same in FORTRAN programming as in mathematics, There are,

however, some limitations in the use of these terms in programming,
I. CONSTANTS

A constant is a real number, positive, negative, or zero, which
appears in a program statement. There are two types of constants;

integer constants and real constants.:

Interor Constants,

An integer constant ls an integer, positive, negative, or zero
that appears in a program statement, An integer constant is written
without a decimal point., In elementary mathematics the nunbers 2 and
2.0 are sometimes used interchangeably, but in FORTRAN programming,

this 1s not allowed. The following are examples of integer constants,

0

1

~27
35029

If a progranmer wishes to use an integer constant containing
six digits or more, the largest number of digits desired to be used

mist be indicated to the computer by using a speclal progrem statement.

$INTEGER SIZE = nn

The instruction for preparing this control card is on page 89 . The
maximm number of digits an integer constant can have is twenty., If
$INTEGER SIZE = nn card is not provided, only a constant with five or

less digits may be used.

Real Constants

In FORTRAN programming a real constant is a real nurber,
positive, negative, or zero, and must contain a decimal point, A real
constant may be written with an exponent. The following are examples

of real constants,

0.
1.
-2,04
700,
5.12E+02

In expressing a real constant in an exponential form, a nurber
with a decimal point is followed by the letter E, a plus or minus sign,
and a two-digit integer. The following are the examples of real con-
stants in an exponential form,

5.7E+02 for 5.7 x 102
“5.7E402 for -5.7 x 10°
2.38-03 for 2,3 x 1073
JE3 for A ox 103
4,1E 00 for 4.1 x 10° or 2.3

~3.458-02 for ~3.45 x 1072

10

If the space immediately following E is left blank, the computer
assumes the exponent to be positive., If an integer appears in the space
reserved for the sign, the computer also assumes the exponent to be
positive,

The number of significant digits a real constant can have depends
upon the computer., If a real constant contains more than eight
significant digits, this must be indicated to the computer using a

speclal program statement,
$REAL SIZE = nn

The instruction for preparing this control card is on page 89, A real

-constant can have at most twenly significant digits.
IT. VARIARLES

A variable is a symbol that represents an element of a set just
as in elementary algebra, For example, in expressing the area of a
circle, A =‘n:r2, r is a variable and 7T is a constant. In algebra a
single letter is used as a vardable, In FORTRAN language, however, a
variable may be written as one letter or up to six letters or digits,
4 variable can be written using both letters and nuﬁ:bérs, but the
first character must be a letter, The first 1ett91: must be chosen

carefully because it indicates whether the number represented by the

variable is an integer constant or a real constant.

Integer Variable, An ihteger variable is a variable for which

only an integer constant may bz substituted, The first letter of a

variable must be I, J, K, L, M, or N, The following are examples of

it

intoger variables.

I, J, MAX, JOB, IDIOT, N3,

Roal Variable. A real varlable is a vardsble for which only

a real constant may be substituted, The first letter of a real variable
must bs any letter except I, J, K, L, M, and N, Thé following are

examples of real variables,
X, Y, ALPHA, ROOT, SUM, PROD, Ci.

Subscripted Variables, In FORTRAN programming a suvbscript

cannot be written in the customary way., A subscripted variable consists
of a varizble name followed by parentheses enclosing one, two, or three
subscripts separated by commas. The first letter of the subscripted
variable must be choson with the consideration to the type of variable
involved, All the elements in one array must be of the same type,
either éll integer constants or all real constants,

Example. The matrix A below consists of five numbers and the
dimension of this matrix is said to be one, since there is only one
column of numbers. The matrix B consists of six numbers which are
arranged in two rows and three colurms. The dimension of this matrix is
said to be two, since the matrix consists of two or more rows and two or

more colwms,

. 2,3 3.4 5.1)
" \7.0 2.9 o.

-
]
o N Unow =

12

The matrix A, which consists of all integers, can be represented

with a subsecripted variable, M(I), where I varies from 1 to 5. The

elements of A are individually represented as follows.,

M(1)
M(2)
M(3)
ML)
M(5)

has the value 4,

has the value 3.

has the value 5.

has the value 2.

has the value 8,

It should be noted that the subscripted variable must be an integer

variable,

The matrix B can be represented with a real subseripted variable,

A(Z,J), since it contains 21l real numbers. I varies from 1 to 2 and

J varies from 1 to 3.

A(1,1)
A(1,2)
A(1,3)
A(2,1)
A(2,2)

A(2,3)

The

has
has
has
has
has

has

Form of Subscripts.

olements of B are represented as follows,

the value 2.3,
the value 3.4,
the value 5,1,
the value 7.0.
the value 2,9,

the value 0.4,

A subscript can take only one of the follow-

ing forms. V is an unsigned, nonsubscripted integer variable and C and

C' are unsigned integer constants, It should be noted that M{2+I) and

M(I*2) are not acceptable, but M(I+2) and M(2*I) are acceptable,

13

General form Example
c - 1 as in M(1)
v I as in M(I)
V4+C I+2 as in M(I+2)
V-C I-1 as in M(I-1)
CrV 2T as in M(2*I)
CxV4C* 2*I+1l es in M(2*I+1)
C*V-C* 2¥I-1 as in M(2*I-1)

Arithmetic Iixpressions

The function of an arithmetic expression is to produce a2 single
numerical value equivalent to the valus of the expression by performing

2 cortain operation or operations upon the constants or varlable names,

Symbols Meaning
+ Addition as A+B
- Subtraction as A-B
/ Division as A/B
* Multiplication as A*B
*ok Exponentiation as A**B (A to the B power)

Order of Operation,

Parentheses are used, as in algebra, in expressions to specify
the order in which the expression is to be evaluated, Expressions are
evaluated from left to right, If parentheses are omitted, the order

of computatlon is as follows,

AL
1. Function computation and substitution.
2. Exponentiation,
3. Multiplication and division.,

L, Addition and subtraction.

Examples., A¥%2 0%*B/C + D + 3,0 will be treated as in algebra

A2B

as < + D + 3.0,

(A-B*C/D+1.0)%#2,0 ill be calculated as (A - %9- + 1.0)2,

A/B+C will be treated as % + C, not as

A
=" as one might expect.

((A—B)/(C-l-i.o))**z-o will be caleulated as (%_}_:?’)2.

‘The student is urged to use parentheses liberally to make sure
the operations are performed in the desired order., The expressions
shoun below are improper. The first expression must be written as

A - B and the second expression must be written as A/(-B).

A+ =B
A/-B

Invalid Exoressions. It must be noted that an arithmetic ex-

prossion must all be either integer values or all real values, In other

- words, an integer camnot be added to or multiplied by a real number, or

15
vice versa. There 1s, howover, one exception. A real number can be

ralsed to an integer power.

ALPHA 4+ 1 (An integer constant cannot be added to a real variable)

A*T (An integer variable camnot be multiplied by a
real variable)
I*%2,0 (An integer variable cannot be raised to a real power)
§/2.0 (An integer variable cannot be divided by a real
nuriber)

Relational Operation Symbols

The rolational operation symbols are listed below together with
their meanings. These symbols are used primarily with logical IF

statements. The periods are part of the symbol.

Mathematical
Synbols Meaning notation
«GT. Greater than =
GE. Greater than or equal to =
LT, Less than <
.LE. Less than or equal to =
JR. Equal to =
NE. Not equal to 71'-'

CHAPTER IV
PROGRAMMING PROCEDURE

It is very important to follow a proper procedurs if a student
is to write a good program. This chapter is devoted to the discussion
of what a program consists of and how to write a program., It contains
some FORTPAN statements that are yet to be explained but these are

used so that the sample program is complete,
J. PROGRAM

In general, a progran consists of six major parts; (1) beginning
control cards; (2) the imput instruction; (3) computations; (4) the
output instructions; (5) ending control cards; and (6) data cards,

Boginning Control Cards, These cards contain the information

necessary for a computer to function properly. For instance, the
FORTRAN RUN card is necessary to start the compiler. The $NO MULTIPLY
DIVIDE caxd informs the compiler that the computer has no multiplying
device,

The Inout Imstruction., This part instructs the computer to

read the data and any other information necessary for solving a problem,
This is accomplished with a READ statement. A program may contain

more than one READ statement., The data read into the computer with

a READ statement is automatically stored in the core storage.

Combutations. This part may be considered as the main part of

a program. It consists of one or more arithmetic statements., When

the computation is long or corplex, this part may be divided inteo

17
subdivisions., These subdivisions are calleod subprograms and a detailed

discussion is given in Chapter VIII,

The Output Instruction. This instructs the computer to write

the data obtained from the computation., This is accomplished with a
WRITE statement, A program may contain one or more WRITE statements
and tho ocutput data is usually printed on paper.

Ending. Control Caxds., These control cards accomplish three

things; (1) they inform the compiler of the end of the program; (2)
they instruct the computer to store the translation of the program in
the core storage; and (3) they instruct the cowputer to start process-
ing the data,

Dats Cards., Finally, data cards are placed at the very end of

each program.
IT, FLOW CHART

A flow chart 1s a graphic representation of the method used
to solve a problem, The purpose of a flow chart is to help the reader
as well as the writer to understand the logic of a complicated
problem. Preparing a flow chart before writing a program helps the
student to write a better program. A flow chart also helps the student
to check the program after it is written.

A flow chart consists of wvarious geometric figures connected
by lines. The following is the description of various flow charting
symbols which are commonly used in computer pmgrmnﬁing.

A rectangle is used to represent computations. The statement

number can be written in the upper left hand corner.

18
A trapozoid is used for all imput and output.
A diamond represents a decision point in a program, such as IF
statement,
A small circle may be used to connect various parts of a flow
chart, The circle may contain a statement number,
A hexagon is used to represent a subprogram, a Library Function,

and FUNCTION or SUBROUTINE subprograms.

READ A.B,C

I INT=]'.NT-«-'L_J \

!jUM = A+1B+(I

WRITE [
SUMI A, ch

(THREE ADDEMNDS)

ISINT=15 "7

FIGURE 1

A FLOW CHART TLLUSTRATING
THE PROGRAM WHICH ADDS THREE NUMBERS

19

Sample Program, This program is for finding the sum of three

nunbers and it illustrates how a program is wrdtten from a flow chart.
Three numbers whose sum is to be found will bs on a data card. The
computer is instructed to read the numbers, label the first number A,
the second B, and the third C, and store them, The sun of the three
numbers is found, labled SUM, and stored. There will be fifteen data
cérds; The variable name INT has the value 1 when the first data
caxrd is processed., The valve of INT is, then, increased by one each
time an additional data card is processed. Vhen the value of INT is
15, that is, when the fifteenth card is processed, the progran is

terminated,

FORTRAN RUN
$NO MULTIPLY DIVIDE
. $%0 DICTIONARY
INT =0
4 READ (1,1) A, B, C
1 FORIAT (3F8.2)
SiM=A+B+C
INT = INT + 1
WRITE (3,2) 4, B, C, SUM
2 FORMAT (3F3.2, F12.2)
IF (INT.NE.15) GO TO &4
END
LOADER RUN
$EXECUTION

Input datat

/ . 30 5'

/1. & 7. -

/34 5.2 4.8
/10, 12, 3t

Output:
2,00 3.00 5.00 10.00
1.00 k,00 7.00 12,00
3.40 5,20 L.80 13.40
10.00 12,00 31.00 53.00

IITI. WRITING PROGRAM

To a mathematician, programming is solving a problem using a
computer. Therefore, it is necessary to know how to solve the problem
without a computer. The problem must be analyzed step by step., The
student rust, then, decide which method or algorithm to use to solve
the problem.

The program is written in FORTRAN IV language. Each statement
must be exact and accurate. FEach statement, then, is punched on a

standardized 1B card.

21

Control Cards., The following three control cards must precede

every source program, They are;

FORTRAN RUN
$NO MULTIPLY DIVIDE

$NO DICTIONARY

The FORTRAN RUN card nust always be the first card of every program
and subprogran,
The following two control cards must follow every program, They

are;

LOADER RUN

$EXECUTION

The $EXECUTION card must be the last card of every program, Data cards
are placed following the $EXECUTION card,

Name Card., It is recommended that a name card be included with
every program so that the computer operator can identify the source
deck. The name card must have C punched in the first column, The nanme
may be punched in any of the remaining columns. The name card should
be placed iwmediately following the first three control cards,

Corment Cards., The use of comment cards helps both the writer

and the reader to understand the program. A commez_m’c cax;d can be pre-
pared by simply punching the letter C in the first column. Any ex-
planatory comments can be punched in the columms 2-72. The student is
urged to make liberal use of comment cards in the program,

The corrient card can be placed anywhere in the program. When

the compiler encounters a C in the first column, it ignores the
remainder of the card, but the commont punched on the card will appear
in the program listing printed by the computer. Every program should
have a comment card containing the title of the program and it should

be placed immediately following the name card,
IV. PREPARATION OF SOURCE DECK

There are eighty columns on an IBM card for the FORTRAN IV pro-
grammor and they are divided into four groups.

Columns 1-5, The first five columns are reserved for a state-
ment numbor. This number must be unsigned and five digits or less. The
nuneral O may not be used as a statement number and all statement
nunbers must be unique., However, they need not be in any sequence. The
statemont number 25 can be writteon anywhere in the first five columns,
provided that 2 appears first,

4Column 6. If a statement is too long to write on one card,
additional cards may be used up to nine cards. In this case, all
additional cards must contain a character in the column 63 any lLetter
of the alphabet or any number between 1 and 9 inclusive, The numbers
or the letters need not be arrangsed in sequence if more than one
additional card is used, The numeral O should not be used., This
method is often used in a FORJIAT statement which prints headings or
titles,

Columns 7-72. The actual FORTRAN statoments are written in

thesa coluwms,

Columms 73~80, These columns are not procsssed by the compiler

23
and can be used for identification of the card.

V. LISTING PROGRAM

The source deck should be processed through the IBM 407, the
accounting machine. This machine transfers the information punched on
cards into a readable document. The student is strongly urged to check

for possible key-punch errors,

CHAPTER V
GENERAL FORTRAN STATEMENT

Three types of FORTRAN statements are discussed in this chapter;
(1) arithmetic statements which instructs a computer to perform an
arithmetic computation; (2) control statements which indicate the order
in which other statements are performed; and (3) specification state-
nents which provides a computer the necessary information for storingk

and handling of data,
I. THE ARITHMETIC STATEMENT

A FORTRAN arithmetic statement closely resembles a conventional
algebraic formula or an equation, except that the equal sign (=) does

not stand for equivelence, The general form is;
a=>b

vhere a is a single variable name ard b is either a single variable
name or an arithmetic expression. The following are examples of

arithmetic statements,

A=B
SIM=X+1Y
ROOT1 = -B 4 SQRT (B**2 - 4,*A%*C)

To a computer = means, "find a single numerical value equi-
valent to the expression on the right of the = sign and store it in

a location %o bo roferred to by the varisble name on the left side

25
of the = sign., The sample statement, SUM = X + ¥, causes the computer
to add the number represented by X and the number represented by Y and
store the sum which is to be referred to by a varlable name SUM,

In an arithmetic statement the variable name on the loft of =
sign detormines the type of the number obtained from the expression on
the right side of = sign, The expression cannot be of mixed types. When
an srithmetic cstatement, J = B, is executed, since J is an integer
variable and B is a real variable, the fractional part of the number
represented by B is discarded and resulting number, which is an integer,
is stored and given the name J.

When an arithmetic statement, A = L + M, is executed, two
integer constants represented by L and M are added, the single result-
ing integer is converted to a real constant, and this number is given
the name A, If L = 4000 and M = 500 in the statement above, then
A5 x 10% is stored in A.

Sampole Program., The following program is for finding the sum of

two numbers and illustrates the use of real variables and an arithmetic
statement,

The numbers whose sum is to be found will be on a data card. The
computer is instructed to read the numbers, label the first number X
and the second Y and store them, The sum of X and Y is found, labeled
SUM, and stored, Then, finally, the computer is instructed to print
X, Y, and the SUM, This progran is written to process only ono data
card, :

FORTRAN RUN
$NO MULTIPLY DIVIDE
$NO DICTIONARY
READ (1,10) X, Y
10 FORMAT (278.2)
SiM=X+7Y
WRITE (3,11) X, Y, sud
11 FORIAT (3¥8.2)

END
LOADER RUN
$EXECUTION
Input datas
ﬁoo 4,00
Ouputt
I 3,00 4,00 7.00

Every source program must contain three control cards at the
boeginning of the program and two control cards at the erd of the program
as shown in the sample program above, Further information concerning
these cards can be found on page 88.

The first number inside the parentheses of the READ statement
is a symbolic name of the input unit assoclated with reading of ecaxds
and this number is always 1. Tho second number is a statement number

of the FORMAT statement that tells the machine where and in what form

the numbers are to be stored in the meimory, The two numbers on the
data card are read in according to the FORMAT statement whose number is
10, A1l numbers must be read into the cormputer according to some FORMAT
specification, Further information concerning FORMAT statements can be
found on page 54.

The statement, S = X + Y, is an arithmetic statement vhose
function is to perform computation. An arithmetic statement always con-
tains an = sign., | |

The WRITE statement instructs the cormputer to write the result
of computation and any other information the programmer may wish to
have., The first number inside the parentheses in the WRLITE statement
is a symbolic name of an output unit associated with the printing of
data and this number is always 3 for the printer, The second number
is a statement number of a FORJAT statement, The three numbers are
printed according to the FORMAT statement whose number is 11, All
output ﬁmnbers rust be printed according to some FORMAT specification,

Every program must end with an EIND statement. This statement

instructs the compiler to stop translating.
ITI. THE CONTROL STATEMENT

There are, in general, three types of control statements;
(1) GO T0 statement; (2) IF statement; and (3) DO statement.

The Unconditional GO TO Statement

In a program, sometimes it becomes necessary to direct the

flow of a program to a statement other than the one immediately

following. The GO TO statement mekes it possible to go back to a
statement which has already becsn oxecuted or skip one or more state-

nments, The general form is;
GO TOn

vhere n is a statement number of an executable statement,

Sample Program, This program is written for finding the

reciprocal of a number and it illustrates the use of the unconditionai
GO TO statement,

The computer is instructed to read a nurber, label it R, store
it, and check it to see if the number is zero. If the number is zero,
the computer is instructed to skip the process of finding the reciprocal.
Even the computer cannot divide by zero. The number zero is labeled
Y and the computer is instructed to write R and Y, If the number is
not zero, the reciprocal is found and the computer writes the numbers

R and Y which is the reciprocal of the number,

FORTRAN RUN
$¥0 MULTIPLY DIVIDE
$NO DICTIONARY
READ (1,11) R
11 FORMAT (F6.2)
IF (X -~ 0,) 2, 4, 2
L Y=o0,
GO TO 7

2 Y=1./R

7 VRITE (3,12) R, Y
12 FORMAT (F6.2, F10.2)

END
LOADER RUN
$EXECUTION
Input datas
[/4.00
Output:
&,00 0.25

Note., The unconditional GO TO statement should not be used at

the end of a program for the purpose of repeating the computationali
process when more than one data cards are used, The following progranm
is fine if it is processed through the computer by itself. This
progran will continue processing the data cards until there are no more
cards left in the input card hopper. However, the computer operator at
the Data Processing Conter processes several programs at a time, After
the last card of this particular program is processed, the computer
will read the cards of the next program as data cards, If a repetition
is desired, the student should use a DO statement,

The following is a sample program which contains an unconditional
GO T0 statement at the end of the progran.

FORTRAN RUN
$NO MULTIPLY DIVIDE
$NO DICTIONARY
5 READ (1,21) S, T

21 FORMAT (2T6.2)
QUOT = S/T
WRITE (3,22) S, T, QUOT

22 FORMAT (2F6.2, F10.2)
GO 70 5
END
LOADER RUN
$EXECUTION

The Computed GO T0 Statement

This statement causes the couputer to be transferred backward
or foreward to the statement Dyy Ty 0 0 0y Dy dopending on the value
of 1. The goneral forn is;

GOTO(ni,nz,...,nm),i

where 1 is a nonsubscripted integer variable and it can represent a
number bstween 1 and 9 inclusive, and n is a statement number,
Since the limit of 1 is 9, m cannot be larger than 9. In other
words, the parentheses cannot contain more than nine statement numbers,
Illustration. In the statement below, if the value of K is 1,
the statement 4 will be executed, If the value of K is 2, the state-

ment 13 is executed, and if the value of K is 3, the statement 28 is

31

executed., Thus K is used as a code numbor,
Go TO (4, 13, 28), X

Sample Progrsm., The following program is for finding the square

root of a number or the square of the number. The computer is instructed
to rezd two numbers, label the first number X and the second K and store
them, If K is 1, the square of the number is found and given the name
Y. If the value of K is 2, the square root of the mutber is found and

given the name Y, The commuter then is instructed to write X, K, and Y,

FORTRAN RUN
$NO MULTIPLY DIVIDE
$M0 DICTIONARY
READ (1,31) X, K
31 TFORMAT (F6.2, I4)
Go 70 (42, 41), K
41 Y = SQRT (X)
GO TO 61
L2 Y = X*%2
61 WRITE (3,32) X, K, Y
32 FORMAT (F6.2, I4, F8,2)
END
LOADER RUN
$EXECUTTON

Input datas

12,00 1

32
Output;

l 12,00 i 144,00

The logical IF Statement

The purpose of the logical IF statement is to make a decision,
Depending upon the value of a logical .xpression, (a), choice is made,
deciding which one of two statements to execute next. The general

form is;
IF (a) s

If the loglcal expression, (a), is false, the computer executes
the next sequential statement. If (a) is true, the computer exscutes
the s, where s is a statement, not a statement number. GO TO state-
ment is often used along with the logical IF statement. In the partial
progran below, if I = 3 and L = 4, then (I.GT.L) is false and the state-
rnent immediately following the IF statement is executed, But, if I = L4
and L = 3, then (I.GT.L) is true and the s+atement 24 is executed next.
Thus, the second statement is bypassed.

IF (I.GT.L) GO TO 24
X=A-B

2 Y=A+B

33

Sample Program. This program finds the average of three

nurbers and illustrates the use of a logical IF statement,

The computer is instructed to read three numbers on a data caxd,
label the first A, the second B, and the third C, and store them. Then,
the three numbers are added and the sum is divided by three to i’iﬁd the
average, The resulting number is labeled AVEG and stored., The computer
is instructed to print three numbers and the average, AVEG, The value
of INT is initially zero and each time a data card is processed, one is
added to the value of INT, thus at the end of processing the fifth
card, the numerical value of INT is 5 and the program comes to an end,
As long as the value of INT is not 5, the loop is repeated, Naturally,

this program must be followed by five data cards,

FORTRAN RUN
$NO MULTIPLY DIVIDE
$NO DICTIONARY
12 INT = O
13 READ (1,5) A, B, C
5 FORIAT (3F6,2)
AVEG = (A+B+C)/3.0
WRITE (3,6) A, B, C, AVEG
6 FORMAT (3F6.2, F10.2)
INT = INT + 1
IF (INT.NE.5) GO T0 13
EXD
LOADER RUN

$EXECUTION

Irput data;

a -
2.0 3.0 7.0
//, —

1.5 2.5 Lb

/10.0 20,0 30,0

//20.3 30.1 bo.s

f;;o. 300, 500,

Output;
2,00 3.00 7.00 L,00
1.50 2,500 L .ho 2,80
10,00 20,00 30,00 20,00
20430 30.10 h0,50 30,30
100,00 300.00 500,00 300,00

The Arithmetie IF Statement

The arithmetic IF statement is very similar to the logical IF
statement, The only difference is that the arithmetic IF statement
contains an arithmetic expression inside the parentheses andlthe
logical IF statement contains a loglcal expression inside the

parenthoses. The general form is;

IF (a) Ny, Dy Ny

35

where (a) is an arithmetic expression of either type integer or type
real, and n is the statement number of an executable statement.

The purpose of an arithmetic IF statement is to instruct the
computer to execute one of three specified statements, depending on
the value of (a). If the expression (a) is negative, the computer
executes the statement nj. If (a) is equal to zero, the computer
executes the statement n,, If (a) is rositive, the computer executes
the statenent ns.

Mlustration. In the partial program below, if A = 3 and B = 5,
the statement 2 is executed. If A = B, the statement 4 is exeocuted,
and if A = 2 and B = 1, the expression (A - B) is positive and the

statenent 6 is executed,

IF(A-B)2 4 6
2 Y= (A~ B)#¥2
L, Y=0,

6 Y = SQRT (A - B)

Sample Program, This program finds the square root of a

- number and it illustrates the use of an arithmetic IF statement, The
computer is instructed to read a number, label it X, and store it.

If the number is negative, the additive inverse of the number is
found and the square root is ccmputed, If the number is positive,

the square root of the number is computed irmediately., The computer

36
is then inspructed to write the number and the square root, Check=~
ing of the number is done by the IF statement, If (0, = X) is negative,
the number is positive and the statement 3 is executed next, If

(0, - X) is zoro, the number is zero and the statement number 4 is

o

executed next. If (0, -~ X) is positive, the number is negative and

the statement 5 is executed next.

FORTRAN RUN
$NO MULTIPLY DIVIDE
$NO DICTIONARY
READ (1#,11) X
11 FORIAT (F6.2)
IF (0, - X) 3, 4, 5
5X = <X
Y = SQRT (X)
GO T0 7
LY =X
GO 10 7
3 Y = SQRT (X)
7 WRITE (3, 12) X, Y
12 FORMAT (F6.2, F10.4)
END
LOADER RUN
$EXECUTION

Input data;

2,00

37
Output;

2,00 1.4142

The DO Statenment

In computer programrming, the word loop means a sequence of
statements which is used more than once in a particular progran, The‘
use of loop is an important aspect of programming and most programs
usually contain at least one loop. One of several ways of performing
a loop is accomplished by the DO statement. The DO statement is an
instruction to execute repeatedly a certain set of statements that

follow, One DO statement performs four operations.

1. It designates the sequence of statements which is to be
dterated. '

2, It defines a variable initially to have some specific value,

3. It increases the variable by a glven amount after each
execution of the sequence of statements,

L, It tests that value to determine if the required number of

instructions has been performed.
The general form is;
DOni= My, Mo, m.3

where n designatss the number of the last of the sequence of state-~
ments to be executed. The i is any nonsubscripted integer variable.

The m is elther an integer or integer variable, Initially, the state-

38
ments following the DO statement and up to and including the statement

numbersed n are executed with the value of 1 equal to the value of m,
The loop is repeated with the value of i increased by the value of g
each time, The looping process is terminated when the value of i
exceeds the value of mp, At this time the computer executes the next
executable statement following the statement numbered n, If the valus
of) is not specified, the computer w.:ll assume it to be 1.

The range of the DO statement is that set of statements that
will be executed repsatedly following the DO statement., In the partial
program below, the value of I is initially 1, The value of I then in-
creases by one each time the loop is executed and when the loop has
been performed ten times, the program comes to an end,

READ (1,5.) P, S —
51 FORMAT (253,2)

RATE = P/S — Range

L 5 WRITE (3,52) P, S, RATE -
52 FORMAT (2F8,2, F10.3)
END

The two programs following illustrate the use of a DO statement,
The first program does not make use of any IO statement, but the second
one does, Each program reads in fifteen numbers and finds the sum of

2ll fifteen numbers,

39
In the first program the looping process is accomplished by an

arithmetic IF statement and an unconditional GO TO statement. The
value of INT is 1 during the first execution of the loop and increased
by one before each additional repitition. After the last data card is
processed, the value of INT is 16 and (INT - 15) is positive, Thus the

computer executes the statement 8,

FORTRAN RUN FORTRAN RUN
$NO MULTIPLY DIVIDE $8O MULTIPLY DIVIDE
$50 DICTIONARY $¥0 DICTIONARY
S = 0, SUM = 0,

INT =0 DOLI=1, 15

5 INT = INT + 1 READ (1,1) X
IF (INT-15) 9,9,8 L S = SUM + X

9 READ (1,1) X WRITE (3,1) SUM

1 TFORMAT (F6,2) 1 FORMAT (F6.2)

SM = S + X END

GO T0 5 LOADER RUN
8 WRITE (3,1) SUM $EXECUTION

END

LOADER RUN

$EXECUTION

. The Nested DO Loop

A DO statement can be econtained within another DO statement., The
index of each DO statement in a nest must have a different variable,

The maximum depth of nesting is twelve. That is, a DO statement can

contein & second DO statemont, the second can contain a third, the
thiyd can contain a fourth, and so on up to twelve statements,

The flow of the program may be transferred from a statement
within a DO loop to a statement outside of a DO loop but the flow of
the program cannot be transferred into the range of a DO loop fronm

outside 1ts range.

Permissible Mot permissible
[j- D6IT=1, 2, 1 — DO9 N=1, 40, 1
6 [] [] L L] [] 8 ¢ L[] [] [] L 2
L —— 5 L] L] [] [] [] - 9 L] L[] [] L[] [

Any statement that redefines the index is not permitted in the
range of a DO loop., The range of a DO loop cannot end with a GO TO
type statement or énother DO statement. But the range of a D0 can
end with a logical IF, In this case the control is transferred as
follows:

i, If the value of the expression is false, the control returns

to the DO statement,

2. If the value of the expression is trus, s is executed, and

the control returns to the DO statement.

The first and the last statement in the range of a DO statement

must be executable, It is recormmended that only executable statements
be written in a DO loop.

In

Sample Progron, The following program adds two three-by-three

matrices and it illustrates the use of a nested DO loop., This program
is followed by six data cards, Tho first data card contains the three
nunbers of the first row of A matrix. The second data card contains
the threc nunbers of the second row and the third data card contains
the three numbers of the third row of A matrix,

The fourth data card contains the three numbers of the first
row of B natrix, the fifth data card contains the three numbers of thé
second row, and the sixth data card contains the three numbers of the
third row of B matrix,

The first DO statement reads in the A matrix, When the computer
roads in the first data card, the first number is labeled A(1,1), the
second number A(1,2), and the third number A(1,3), and stores them.
When the second data card is read, the computer labels tho first
number on this card A(2,1), the socond number A(2,2), and the third
number A(2,3), When the third data card is read, the computer labels
the first number on this card A(3,1), the second number A(3,2), and the
third number A(3,3), and stores themn,

The second DO statement reads in the B matrix and the procedure
is the same as the one described for reading in the A matrix,

The last two DO statements are associated with the addition of
the matrices. During the first part of computation J and I are both
assigned the value 1., A(1,1) is added to B(1,1), the sum is labeled
€(1,1), and the number represented by C(1,1) is printed along with
the subserdipts I and J. J is now assigned the value 2 and A(1,2) is
added to B(1,2), the sum 1s labeled C(l,é), and it is printed along

k2
with its subscripts., It should be recalled that the value of I is
still 1. J is now assigned the value 3 and A(1,3) is added to B(1,3),
the sum is labeled C(1,3) and printed along with its subscripts.

The second DO loop is satisfied and the index of the first DO
statement I is assigned the value 2 and the second DO loop is repeated,
A(2,1) is added to B(2,1) and the sum is labeled C(2,1) and printed.
A(2,2) is addsd to B(2,2) and the sum is labeled C(2,2) and printed.
A(2,3) is added to B(2,3) and the sum is labeled C(2,3) and printed.

I is now assigned the value 3, and the second DO loop is repeated

for the third time; A(3,1) is added to B(3,1), and so on.

FORTRAN RUN
$NO MULTIPLY DIVIDE
$NO DICTIONARY
DIMENSION A(3,3), B(3,3), C(3,3)
O5I=1, 3
5 READ (1,1) A(X,1), A(X,2), A(I,3)
i FORMAT (3F6.2)
06I=1, 3
6 =EAp (1,1) B(I,1), B(I,2), B(I,3)
p7I=1, 3
07J=1,3
¢(I,J9) = A(T,J) + B(I,J)
7 WRLTE (3,2) ¢(1,J), I, J
2 FORMAT (F8.2, 2I4)
END

Input data:

Ouputs

LOADEZR RUN

$EXECUTION
G.oo 2,00 4,00
f

1.00 6.00 2,00
.

7.00 5400 9,00
e

3,00 6.00 8.00
%

5.00 1.00 3,00
v

3,00 2,00 1.00

6.00 i i

8.00 1 2
12.00 1. 3

6.00 2 1

7.00 2 2

5.00 2 3
10.00 3 1

7.00 3 2
10.00 3 3

b3

iy

The Imnlied DO Loop

The implied DO loop is very similar to the regular DO loop in
that a sequence of statements is executed more than once., However,
unlike the regular DO statement, the iwmplied DO loop does not use the
DO statement, Instead, the repetition is accomplished by the subscript
nethod. 4

The following partial program illustrates the use of the implied
DO loop in a READ statement, It is desired that an array of numbers
consisting of four rows and five columns be read into the computer.

M represents the number of rows and N represents the number of colums,

The following four statements accomplish this.

READ (1,1) ¥, W
1 FORMAT (2T4)
READ (192) ((A(IvK)v I'—"isN)a K'-'-'ipH)

2 FORMAT (F8,2)

The first data card contains two integers, M and N, four and
five repectively, At first, the subscript I is assigned the value 1
and the K is assigned 1 also, With the value of X fixed, I varies fronm
one to five., The first number is labeled A(1,1), the second A(1,2), and
so on, When the numbers of the first row are read in, the K is assigned
the value 2 and I varies from 1 to 5., The sixth number is labeled
A(2,1), the seventh number A(2,2), and so on, When the value of K is 4,
the last row is read in and all numbers are stored in the core storage.
The disadvantage of thils statement is that each number must be punched

on a card individually.

hs
The CONTIIUL Statement

The CONTINUE is a dummy statement that does not produce any
exocutable instructions. However, if it is desired to return to the
DO statement in such a way that the index will be incremented, but the
last intended statement in the DO range is one that is not permissible,
such as a GO T0 statemont, then a CONTIKUE is usgd as the last state-
ment of the DO range.

The partial program below contains the statement 12 which is
not to be executed with each repetition of the loop but only when the
value of K is 1, The value of K is limited to 1 and 2, The statement
12 is the last intended statement in the DO range but it is to be
executed only when the value of K is 1, Since it is not to be exscuted
with oach performance of the loop, it camnot be the last statement in
the range. VWhen the GO TO statement is executed, if the value of K is
2, the control is transferred to the statement 8 and from there to the
DO statement causing the value of I to increment., The CONIINUE state-

nent serves as a very convenlent last step of a DO range.

5 D08I=1, 100,11
READ (1,1) P, K
1 FORIAT (F8,2, I)
Go ™ (12, 8), X
12 70T = TOT + P

8 CONTINUE

The STOP Statement

This statement also halts the computer but the student in the

programning course is asked not to use this statoment sinco several
programs are processed at the same time and pressing the START key

will not start the computer to process the next program,

The ERD Statement

This statement must be the last statement in every FORTRAN
program and it defines the end of a program, This statement informs
the compiler that it is the end of the program, The END statement is

not executable and a program may contain only one END statement, The

general form is;
END

The DIMENSION Statement

This statement provides the compiler with the information
necessary to assign and locate storage spaces for arrays of numbers,
When the compiler encounters a non-subscripted variable, it assipgns a
sinpgle storage location to that vardiable and the variable is referred
to by its address., When a subscripted variable is used in a progran,
the size of the array must be designated to the compiler since many
numbers are represented by a single veriable, The compiler sets aside

the right amount of storage space for each subscripted variable., The

genoral form is;
DIMENSION vy (ky), va(k2), e

where v is thé variable name and k is composed of one, two, or three
Integers separated by commas. This number specifies the size of the array,

A single DIMENSION statement can specify the dimension of any

b7
number of arrays, The DIMENSION statement must procede the first
appearance of each subscripted variable, The Program B in the Appendix
i1lustrates the use of this statement,

The COMMON Statement

There are at least two occasions in which sharing of the storage
may be necessary; (1) the information used in the main program is used
again in a subprogram; and (2) the main program uses a certain amount
of storage space for a temvorary work and a subprogram uses a storage
space for a temporary work, With a COMMON statement, both the mein
program and the subprogram can use the same storage location, Some-
times a program which is too long for a smaller computer to handle
can be written shorter with a proper use of COMMON statements. The

general form is;
COLRION a, b, Cy oo

where &, b, ¢, ..+, are the names of variables assigned to a common
storage, Usually they are array names which can be dimensioned,

If one part of a program has the statement COMMON A and a sec-
ond part of the program or a subroutine has the statement COMION B,
the variables A and B will share the same storage location, If the
main program contains the statement COMZMON A, B, C, and a subprogranm
contains the statement COMMON X, Y, Z, then A and X will occupy the
same location, B and Y will occupy the same location, and C and 2
will occupy the same location,

A COMMON statement may contain a dqumry name. That is, if the

main program contains the ststement,

COMYON A, B, C

and it is desired that the array R in the subprogram share the same
location as the array B. This can be accomplished by writing in the

subprogran,
COMMON S, R

vhere S is a dumuy array name., The arrays B and R will occupy the
same location,

The storage area referred by the COMMON statement must be dimen-
sioned and the dimension statement must precede the COMHON statement,
However, it is possible to use COMMON statement with dimensions. The

first two statements below can be replaced by the third statement.,

[DIMENSION A(100), ©(30)

COMMON 4, C

COMMON A(100), C(30)

It is important to realize that the variables used in the
COMMON statement in the main program and the variables used with the
COMMON statement in the subprogram mist correspond in type and in order.
The first statement below belongs to the main program and the second
statement belongs to the subprogram., It should be noted that A and C
share the common location and they are both of the same typse, that is,
they are both real variables. J and I share the same locatlon and

they are both integer variables,

COMMON 4, J, K, R, S

L9

comton ¢, I, M, X, Y

The ERQUIVALENCE Statement

The EQUIVALENCE statement, a non-executable statement, is very
similar to the COMMON statement in that both are used to conserve
storage space, The COMON statement provides a facility of having a
main program and its subprogram reference the same location., The
EQUIVALENCE statement provides a means whereby the same location within
a single program may be used for the storage of more than one variable

or array., The general form is;
EQUIVALENCE (2, b, ¢, «ee), (s, t, ¥y see)y ves

In the sample statement below, variables A, D, and F share the

same location and P(I) and Q(J) share the same location,
EQUIVALENCE (4, D, F), (P(I), Q(J))

The EQUIVALENCE statement can be placed anywhere in the program,
Once the memory allocation has been made, it cannot be changed. It is
improper to wrdite another EQUIVALENCE staterment which contradicts the
previous allocation, The variables that are made equivalent must be

of the same type and none of the dummy arguments may appear in an

EQUIVALENCE statement,

The Tvoe Jtatenont

The purpose of a type statement is to specify the type of numbers

50
0o be associated to a varlable name. The type statement makes it

ossible to use real wvariables as integer variables and integer variables
s real variables, The general forms are;

INTEGER a, b, ¢, «4s

REAL a, b, €5 «es

EXTER-NAL p' q’ 1‘, LI

here a, b, ¢, ... are variable names appearing within the program and
s Qs Ty ses are function or subroutine names appearing as actual
rguments within the program.

The appearance of a name in the list of a type statement nullifies
he predefined type indicated by the first letter of the name. The
ppearance of a name in the list of type statement designates the type
ermanently in the program and it may not be changed. A name can
ppear in only one type statement and the statement must be placed in
he program such that it precedes the first use of it.

The first statement below specifies that all the names listed
re of integer type and the names COST and BETA assume integer values,
n the second statement names K and Max assume real values, The names
AT and BEE are names of a FUNCTION or SUBROUTINE subprogram and they

re passed as an argument from one program to another.

INTEGER COST, BETA
REAL K, MAX

EXTERNAL CAT, BEE

Sarmle Progran. The following program finds the area of a

ircle whose radius is N which is an integer variable but the type

51
statement made it a real vardable and it can be multiplied to a real

nunber,

FORTRAN RUN
$NO MULTIPLY DIVIDE
$¥0 DICTIONARY
REAL N
READ (1,5) N

5 TFORIAT (F6.2)
A = 3, 10 0en2
WRITE (3,5) A
END
LOADER RUN

$EXECUTION

The DATA Statement

This is a non-executable statement and its purpose is to assign
initial values to ordinary and subscripted variables., The general

form is;

DATA 1list/dq, d2, +ses dnf, 1ist/dq, do, eey dpfy oo

where list contains oxdinary or subscripted variables separated by

commas and d's are the initlal values to be assigned to each of the names
in the associated list separated by cormas,

IJ1lustrations,

Statement DATA R/34.5/

Stored value R= 345 x 102

52
Statement DATA A, B, X/ 32.7, 0.05, 54/

Stored values A= .,327 x 102

.5 x 1071

S

B

X

1]

There must be a correspondence between the initial values é.nd
the names in the list. The value of d1 is assignéd to the first name in
the list and d2 is assigned to the second name and so on. It should be
noted that the variable names appearing in a DATA statement cannot

appear in a COMMON statement.

CHAPTER VI
INPUT/OUTPUT STATEMENTS

The input statements handles the transmission of data between
the computer and input devices such as the card reader and the output
statements handles the transmission of data between the computer and
the output devices such as the card punch or printer. The I/0 state-
ments fall into one of the following general categories; (1) FORMAT
statements; (2) Goneral IfO statements; (3) Manipulative I/0 state-
ments; and (4) I/O specification statemonts.

List Specifications, An I/0O 1list is a series of items that

are separated by commas. A single list item can be a subsecripted or
non-subscripted variable. An I/0 list is read from left to right.
The data card for the following partial program should have thres
nunbers and the first number on the data card will be labeled as X,
the second number as ¥, and the third number as P,

READ (1,5) X, X, P

5 FORIAT (3F3,2)

An I/0 1list is ordered. The order must be the same as the order
in which the numbers appear on the data card, The order must also be
maintained when numbers are printed.

The READ or WRITE statement can contain one or more implied

DO's. The I/O statement containing parenthese is exscuted in a manner

similar to the execution of a DO statement. The left parentheses
(except subscripting parentheses) are treated as though they were a
DO statoment. The two statements on the left are eguivalent to the
three statements on the right.

READ (1,3) (X(I), I = 1,10) DO&8I=1, 10
3 FORMAT (F8,2) 8 READ (1,3) X(I)

3 FORMAT (F8,2)

The FORMAT Statemont

The FORMAT statement tells where and in what form the data
appears on the card if the statement is used with a RBEAD statement.
It also tells where and in what form the data is to be printed if
the statement is used with a WRITE statement., The FORMAT statement
is non-soxecutable statement which must always be used with a READ

or WRLTE statement, The genheral form is;
n FORI"IAT (51' 52' evaeyp Sn)

where n is the statement number and s is a series of specifications
separated by cormas, Each FORMAT statement must always be given a
statement number and the specifications must be ordered and consistent
with the data on the input or output record. There are three types of
specifications. In the following list, I, F, and E indicate the type
of numbers, w indicates the width of a number or the number of digits
in a number, and d indicates the number of digits to the right of the
decimal point,

55

Specification Tvoe of Number Exanple
Iw Integer FORMAT (I4)
Fu.d Real without exponent FORMAT (F6,2)
Bw.d Real with exponent FORMAT (E10.L)

The data card for the partial program below rust contain tﬁree
numbers. The first number, which will be labeled K, must be an integer
with the width of four digits, The second number on the data card,
which will be laboled S, must be a real number without an exponent with
the width of six, of which two are to the right of the decimal point,
The third number on the data card, which will be labsled T, must be a
real number with an exponent with the width of ten, of which four are

to the right of the decimal point.

READ (1,4) K, S, T

Lk FORMAT (I%, F6.2, E10.4)

The w or the width of a number can be greater than that required
for the actual digits., Thls is often done to provide svacing of the
numbers. For example, the statement, FORMAT (I3, E12.l, F10.4) causes
the following line to print.

Number in storage 27 ~64,8923 -0.007634
Specification I3 Bi2.4 F10.4
Printed line b27b-0,6489Eb02bbb-0,0076 (b indicates a blank)

In determining the width w for E~-specification seven spaces

56
must be reserved in addition to the nunber of digits to the right of
the decimal point. The followlng accounts for the seven spaces; one
for the sign, one for the decimal point, one for a possible zero that
precedes the decimal point if the absolute value of the number is less

than one, one for E, one for the exponent sign, and two for the ex-

ponent., Thus w2d + 7.

In determining the width for F-specificalon, three spaces must
be reserved in addition to the number of diglts to the right of the
decimal point., The sign, the decimal point, and a possible zero that
precedes the decimzl, each take up a space.

For I-specification only one additional space is necessary for
the sign. Caution must be taken in punching integer numbers when I~
specification is used, In I-specification the numbers must be right
Justified, Blanks cannot be used to the right of the number., If a
number is read with FORMAT (I5), and the number is 25, 2 must be
punched in column four and 5 in column five, If 2 is punched in
column three and 5 in column four, the number is read in as 250.

The following are examples regardins the type of output various

specification will produce., The number stored in the memory is -345,6,

Soecification Output
F5.0 =345,
F6,1 -345,6
F7.1 b-345,6
E10,2 =34, 5E+01

The specification F5.2 is not acceptable since the width of 5 is

not large enough to accomodate the number, If two digits are to be
used to the right of the decimal point, the width must be at least 7.
The specification EQ,4 is also incorrect for this number, The width
must be at least 1l. The following are examples regarding the type

of output various specifications will produce., The number stored in

the memory is +22,I+5,

Spocification Output
8,0 22, E+05
E10.0 b22000,E+02
E5.6 bbb2, 200000E+06

The specification KL5,7 will not accomodate the number since
the width is not large enough if seven digits are to be allowed to

the right of the decimal point. The number in the memory is {5 for
the following 1llustrations,

Specification Output
I3 bl5
I6 bbbtl5

The specifications I1 and I2 are incorrect for this number,

Alphameric Fields

The alphamerie characters consist of numbers 0 through 9,
 letters A through Z, and other characters such as 3, =, blank, /, -,
(), (), +, and *, Alphameric values rather than numeric values may bo
substituted for variables. For example, the variable COST may be

replaced by the letter P just as in the case where X may be replaced

by 45,3,

A-Conversion

In order to read in or write out the alphameric data, A-specifi=~

catlon must be used, The general form is,
FORMAT (nAw)

where n indicates the number of repetition and w indicates the width
of the field or the number of charactors,

If an input record contains one character B and it is desired
that a five character variable, DELTA, to be defined as the value B,

The necessary statements are as follows;

READ (1,3) DELTA
3 FORMAT (A1)

The following sample program illustrates the use of alphameric
data, It reads in the letters A through Z and stores A in XA, B in

X8, Cin XC, and so on. Then, the computer prints two words, KANSAS
and COLLEGE,

FORTRAN RUN
$NO MULTIPLY DIVIDE
$NO DICTIONARY
READ (1,3) XA, %B, XC, XD, XB, XF, XG, XH, XI
READ (1,3) XJ, XK, XL, 3, XN, X0, XP, XQ, XR
READ (1,3) XS, XT, XU, XV, XV, XY, XX, XZ, X~
3 FORIAT (9A1)

59
WRITE (3,4) XK, XA, XN, XS, XA, XS,

WRITE (3,5) XC, X0, XL, XL, XE, XG, XE
L FORMAT (6A1)
5 FORMAT (7A1)

END i

LOADER RUN

$EXECUTION

Input data

(ABCDEFGHI

“JKLMNOPQR

P

STUVWYXZ -

Cutputi

KANSAS

COLLEGE

Since the FORMAT specification of the input is Al, the letters -
on each input card must be punched wlthout any space between letters and

the first letter must be punched in column one.

H-Conversion

The H-specification is used chiefly to print messages and head-
ings in the output, The general form is;

. nH

where n represents the number of characters following the H,

Sample Program, This program reads in two numbers, finds the

60

sum and the difference of the two numbers, and prints the headings and

the results,

Input datas

Outputy

21
22

23

FORTRAN RUN

$NO MULTIPLY DIVIDE

$NO DICTIONARY

INTEGER SUM, DIFF

READ (1,6) M, N

FORMAT (2I5)

SM =M+ N

DIFF = M = N

WRLTE (3,21)

WRITE (3,22)

WRITE (3, 23) SUM, DIFF
FORMAT (14H ASSIGNMENT #3)

FORMAT (15H JOHN PATTERSON)

FORMAT (7H SUM = , IS5, 14H DIFFERENCE = , I5)

END
LOADER RUN
$EXECUTION

ASSIGNMENT #3
JOHN PATTERSON

SU = i1 DIFFERENCE =

61
It is recormended that the space following the H is left blank,
unless the student wishes double spacing in the printing of output
records., In that case the numeral 0 is punched in the space immediately
following the H., The student must be careful not to punch the lettor O
instead of the numeral 0, The letter O following the H will cause the

printer to dispense many feet of printing paper uselessly.

Blank Fields (X-Conversion)

The general form is;
n¥

Used in an input FORIAT statement, this causes the next n
characters in the input record to be skipped or ignored regardless of
what they are. Used in an output FORMYAT statement, this causes n blank
characters to be inserted in the output record, This is useful in
providing a space botween successive output fields.

Sample Program, This program simply prints the two words,

PRODUCT and QUOTIENT, and two numbers represented by M and N, M = 123

FORTRAN RUN
$NO MULTIPLY DIVIDE
310 DICTIONARY
WRITE (3,6)
WRITE (3,7) M, N
6 FORMAT (8H PRODUCT, 5X, 9H QUOTIENT)
| 7 TFORAAT (I7, 5%, I8)

62
EXD

LOADER RUN
$EXECUTION
Output:
PRODUCGTbbbbbQUOTIENT (line 1)

bbbl 23bbbbbbbbbb32l (line 2)

Repetition of Field FORMAT

Whenever imput or output fields have identical FORMAT specifi-
cations, it is not necessary to repeat the FORVAT specification within
one FORMAT statement. This is accomplished by placing an integer in
front of the E, F, T, or A, The second FORAT statement is equivalent

to the first one,

3 FORMAT (F6,2, F6,2, F6,2)
3 FORMAT (3F6.2)

Repetition of Groups. It is also possible to repeat a group

of specifications by placing an integer in front of the left parenthesis
which contains the group of specifications, The following two state-

ments are equivalent,

L FORMAT (I5, F6.2, E1&,.2, I5, F6.2, EL4,2)
L FORAT (2(I5, F6.2, El4,2))

It is not permissible to have a repetitive group within

-another repetitive group. The statement below is not permissible,

5 FORMAT (2(I3, F6.2, 3(EL4.2, I5)))

63

A1 three statements below are equivalent,

6 FORMAT (I3, F6.2, Elh,2, Fl4,2, F6,2, E14,2, E14,2, I5)
6 FORMAT (I3, Fé.2, 2F1h,2, F6,2, 2uil4,2, I5)
6 FORMT (I3, 2(F6.2, 2E14.2), I5)

Scale Factors (P-Conversion)

The purpose of P-specification is to relocate the decimal point
in a real number during the process of input or output. A scale factor
is an integer constant which indicates the number of places the decimal

point is to be moved to the left or right of its original location., The
general form is;

nPs

vhere n is the scale factor and s is the FORMAT specification, A
positive integer moves the decimal point to the left while a negative
integer moves it to the right. For input, a scale factor may only be
used with F specification.

If it is desired that the decimal point in 342,67 is moved two
places to the left, the specificatlon required for this is 2PF7,2 and
the new number is 3.&267.' If the real number 342,67 is to be changed
to 3426.7, the appropriate specification is -1PF7.2, |

For output a scale factor may only be used with F and E
specifications. The explanation given for the input'is also appropriate
for the output. (See Program D in the Appendix)

A positive scale factor used for output with E-specifiéation
increases the bass and decreases the exponent. A negative scale factor

. decreases the base and increases the exponent.

6l
In the illustration below, the origianl number is 0,32457E+03,

FORMAT Output
1PE12.5 b3. 24570E+02

Note. Once the scale factor is given in a FORMAT specification,
it applies to all E and F specifications following the scale factor
within the same FORMAT statement. The following two statements are
equivalent,

6 FORVAT (1PE12.5, E14.7, F6,2)
6 FORMAT (1PE12.5, 1PE14,.7, 1PF6,2)

Jf it is desired that only the first item in a statement be
affected by a scale factor, the statement should be written in the

following manner,
FORMAT (1PE12,5, OPE14,7, F6,2) .

Multiple~Record FORMAT Statement

A single FORMAT statement can be used to accommodate more than
one input or output record. Separation by (/) indicates the beginning

of a new record. For example,
3 FORVAT (2F6.2, Ei14.4/4E12.3)

transfers the first, third, fifth, ..., records with the specification
2F6.2, Ei4.k, and the second, fourth, sixth, ..., records with the

specification 4E12.3. (See the Program D in the Appendix)

65

The use of two consecutive slashes, (//), causes an input
record to be read but ignored or an output record to be blank., For

exanple,
5 FORMAT (2r6.2//15//)

processes the first, sixth, eleventh, ..., records with the specifi-
cation 2F6,2, the second, seventh, twelfth, ..., records are blank, the
third, elghth, thirteenth, ..., records with the specification I5, the
fourth, nineth, fourteenth, ..., records are blank, and the fifth,
tenth, fifteenth, ..., records are also blank., It should be noted
that there is no specification following the second (//).

In a single multiple-record FORMAT statement, if it is desired
that the first two records are unique and all remaining records are
to be processed with the same specification, the specification of the
remaining records must be defined as repetitive group by enclosing 1t

in parentheses. For example,
L FORMAT (I5/2F6,2/(8F10,2))

will process the first record with the specification X5, the second
with the spocification 2F6,2, and all remaining records with the
specification 8F10,2., The four statements on the left are equivalent

to the two statements on the right,

3 FORMAT (F6,2, I5) 3 FORWUT (F6,2, 15/F8,2, Ik)
4 FORMAT (F8.2, I4) WRITE (3,3) P, K, R, M
WRITE (3,3) P, K
WRITE (3,4) R, M

66

Carriage Control

The carriage control controls the spacing of output records on
the printor. The carriage control character must appear in the space
immediately following the H in a FORMAT statement., The three

characters used for spacing are as follows,

Character Pasult
Blank Single space printing.
0 Double space printing.
i Skip to the first of the following page.

Illustrations. The first four statements illustrate the single

space printing and the second four statements illustrates the double

space printing,

Statement Output records

1 FORMAT (1H , F6.2) Line 1 bbb3.24
WRITE (3,1) A Line 2 bb23.5
WRLTE (3,1) B Line 3 b 278,54
WRITE (3,1) C

2 FORMAT (1HO, F6.2) Line 1 bbb3.24

WRITE (3,2) A Line 2
WRITE (3,2) B Line 3 bb23,56
WRITE (3,2) C Line &4

Line 5 b278,54

67

Fdited Trout Data

Edited input data must correspond in order, type, and fleld
width to the field specification in the FORJAT statement and must
conform to the following specifications.

1. Plus signs are indicated by a blank or + and minus signs
are indicated by a preceding =-.

2. Numbers for E and F-specification can contain any number of
digits but only the high-order f digits will be retained. The number
is truncated to £ digits of accuracy., For the IBM 1401, f is 8 unless
otherwise specified. The absolute value of the number must be between
the limits 107100 ang (1 - 10°T) x 1092, Numbers for I-specification
must be right justified.

3. HNumbers for E-specification need not have four columns
devoted to the exponent field, The start of the exponent field must
be represented by an E, or if the E is omitted, by a + or -, not a

blank. The following expresseions are permissible,
W 23HEH+02, L23HE 02, W 23HE+2, «234+2, 0 234-lly

4, Numbers for E and F-specification need not have the decimal
point punched. The computer will supply the necessary decimal point

according to the FORMAT specification,

Data Specification Result
~08765+2 El12.4 : «0,8765+2

05433 E12.3 0,544

68

The READ Statement

The READ statement is used to transfer input data from an imput

device to the memory unit of the computer, The general forms are;

READ (i,n) list
READ (i)

READ (5'e,n) list
READ (j'e) list

1 +4s is the symbolic unit number of an input device, This number
indicates from which one of several input devices the data
is to be read, The symbolic name of the card readsr at
the Data Processing Center is 1, This number must always
be an integer or integer variable,

n +ss 1s the statement number of the FORMAT statement by which
the data is read., »

J see 1s an unsigned one digit integer or integer variable
which specifies a specific memory space on a disk unit
from which the data is to be read,

' vve 1s 2 4-8 punch, equivalent to the @ symbol,

© ++s 1s an unsigned integer, integeor variable, or integer ex-
pression that refers to a specific record within the
memory space on a disk,

list . 1s an ordered series of varlable names separated by commas,

The READ (i,n) list., This statement tells the computer to read

data according to the FORMAT statement n and store the data in the core

storage until the list is satisfied,

69
The READ (i) 1list. This statement is used to transfer tho data

from a2 tape or disk unit to the core storage, The data processed is
unedited. This moeans that the data is processed without any FORMAT
spocification, Therefore, the data will be stored in the core storage
in the same form as it is stored in the disk or tape.

The READ (j'e,n) list, This statement is used to transfer the

edited data from a tape or disk unit., Zach record 1s read in order and
in accordance with the FOIMAT statement n until all the data in the
input list have been read and stored.

The READ (3'e) list, This statement is used 1o transfer data

from a tape or disk unit without any FORMAT specification, With this
statement, the programmer can specify the record to be read by sub-
stituting e with the number which corresponds to the position of the data,

Every number read in as an input data must be represented by a
variable, If an integer 274, punched in columns 3, 4, and 5 on a c&rd,
is to be read in as an input data, the two statemens below will
accomplish this.,

READ (1,5) M
5 FORMAT (I5)

If two numbers, 35 and 46, are to be read in as input data and
they are both punched on a single card -as four digit numbers, each
number must be represented by a variable, The necessary statements

to accomplish this are as follows,

READ (1,22) K, L
22 FORIAT (2I4)

70
If two numbers are punched on separate cards in the first four columns,

the following statements are needed.

READ (1,10) M
READ (1,10) N
10 FORVAT (I4)
The first number is represented by M and the second number is represented
by N, If many numbers are to be read in it is better to represent the
nurbers by a subscripted variable.
For the information concerning thé READ statement associated

with the disk, the student should read Chapter VII.

Sample Program. This program adds K numbers and illustrates

the use of READ statement. The computer is instructed to read K which
is the number of numbers to be added. Then the computer is instructed
to read the first number, label it AMES and add to TOT which is O gt
this time. The second number is read, labeled AMES, added to TOT, and
the sum is labeled TOT, Third number is r.ad, labeled AMES, added to
the previous sum TOT and the new sum is labeled TOT. This process
continues until K number of cards are read. The variable IN counts

the number of data cards processed.

FORTRAN RUN
$NO MULTIPLY DIVIDE
$NO DICTIONARY
READ (1,18) K

18 FORMAT (I12)

II\0T= o.

71
IN=1

21 READ (1,16) AMES
16 FORWUT (F8,2)
TOT = TOT + AMES
IF (IN.EQ.K) GO TO 40
IN=1IN+ 1
GO T0 21
4o WRITE (3,16) TOT
END
LOADER RUN

$EXECUTION

The WRLTE Statement

The WRITE statement is used to transfer data from ths core

storage to output devices. The general forms are;

WRITE (i,n) list
WRITE (1) 1ist
WRITE (j'e,n) list

WRITE (j'e) list

i ..¢ is the symbolic name of an output device., This symbol
indicates from which one of several output units the data
are to be processed. It must be one digit integer or an
integer variable. The symbolic name of the printer at
the Data Processing Center is 3, and the symbolic name of
the card puncher is 2. |

n ... is the statement number of a FORMAT statement by which

72
the data is written.

J «oe is an unsigned one diglit integer or an integer variable
. vihich specifies a special menory space on a tape or disk
vhere the data is stored.

ees is a 4-8 punch equivalent to the ® symbol,

© +es 15 an unsigned integer, integer variable, or integer ex-
pression that refers to a specific record within the memory
space on a tape or disk,

list is an ordered series of variable names to be written

separated by commas,

The WRLTE (i,n) list. The purpose of this stateoment is to tell

the computer to write the data through the output devico indicated by i
and according to the FORMAT statement n,

The WRITE (1) list, This statement is used to transfer the un-

edited data from the core storage to a tape or disk unit. The data will
be written in the same form as it is stored in the core storape,

The WRITE (i'e,n) list. This statement transfers the data from

the core storage to the memory space whose symbolic name is designated
by j. The data is transferred according to the FORMAT statement n.

The WRITE (4i'e) list. This statement transfers the data fronm

the core storage to a tape or disk unit in the same form as it is
stored in the core storage. The programmer can specify the record to
be written to be placed at a certain position in the memory space by
substituting the position number for e.

Whenever a number stored in the core storage is to be printed in

73

an output the numbor mist be represented by a variable in the list of

a WRITE statement. Every number stored in the core storage must have
a variable name. The following program reads in two numbers, finds the
sum, and stores the result in a location called SUM and the sum is 35.
Then SU is the variable which represents the number 35, The WRITE
statemont must have SUM in the list. This is illustrated by the

following partial program,

READ (1,11) 4, B
11 FORMAT (2F3,2)

SUf=A+B

WRITE (3,12) SUM

12 FORMAT (F10.2)

The information concerning the WHITE statement associated with

the disk can be found in Chapter VIL,

The Find Statement

This statoment is used to save computing time when a tape or
disk is used. This causes the access arm of a disk unit to move to
the next record to be processed while computing is going on. Therefore,
the greater the distance is between the last record and the next record,

the more time this statement will save, The general fomm is;
FIND (3'e)

where j is an unsigned one digit integer or an integer variable which
refers to the memory space on the disk. This j corresponds to the j

in READ or WRITE statements, The letter e is an unsigned integer,

7l
integer variable, or, integer expression which refers to the position
of the record where the access arm is to be placed. This e corresponds
with the e in the READ or WHITE statement. This statement is used in

the Prozram C in the Appendix,

CHAPTER VII
STORTNG IHN DISK

Information can be transferred from the core storage to
the disk storage or from the disk storage to the core storage. When a
program processes a large armount of data, the programmer may be forced
to store the data in the disk storage in order to conserve the core
storage for storing and processing instructions,

In order to store information in the disk storage the programmer
must inform the compiler; (1) what part of the disk is to be used and
what name is to be assigned to this part; and (2) how many numbers
are to be stored in the reserved area and how long each number is,

The ASGN card accomplishes (1) and the DEFINE FILE statement

accomplishes (2).

ASGH Card,

This card instructs the computer to reserve a certain area on
the disk for storing information and assigns a name to this area, The
name assigned to the reserved area on the disk must be one of the
following three names; WORKY, WORKS, or WORK6, The programmer may
reserve three distinct areas on the disk for storing information., The
storage areas, named WORK1L, WORK2, and WORK3, are used by the compiler
and they are not available to the student, The following is an example

of an ASGN card,

WORK6 ASGYN 1311 UNIT 2, START 001500, END 002000

The WORK6 is punched beginning at the column 6 and ASGN and the
remaining words and numbers are punched beginning at the column 16 with
a single space between the words and the numbers. The address number
must have six digits,

Each functional component of the computer has a name, For
instance, the card reader is given the name INPUT and the printer is
given the name LIST, For the sake of simplicity each of these com-
ponents 1s also given a numerdcal name, These numerical names can be
considered as the address of the component,

When the programmer reserves an area on the disk and gives it
the name WORK6, the corresponding numerical name for this is 9, The
number 8 is associated with the WORKS and 7 is associated with the
WORKL, as 1 is a numerical name given to the card reader and 2 is the

numerdcal name given to the card punch,

The DBEFINE FILY, Statement

This statement informs the computer the maximum number of
records which are to be stored in the area reserved with the ASGH

card and how many characters each record may bontain. The general

form is;
DEFINE FILE jl(mi’ 11, fi’ vi), jz(mz, 12, fz, vz), -

The J is an integer which 1s the numerical name of the area
reserved on the disk., The reader will recall that 9 is assigned to
the WORK6, 8 to the WORKS5, and 7 to the WORK4, This number appears
first inside the parentheses of READ or WRITE statements. For example,

when the computer encounters READ (9'I) it goes to the area on the disk

76

77

whose name is 9,

The i is an integer which indicates the maximum number of
‘records which are to be stored in the area on the disk,

The 1 is an integer. If the numbers transferred from the core
storage to the disk according to a FORMAT specification, the 1
represents the maximum number of characters in each record. If the
numbers are transferred to the disk without any FORMAT specification,
that is, the numbers are transferred to the disk as they appear in the
core storage, the 1 represents the maximum mmber of numbers each
rocord contains,

The f is either E or U, If the numbers are stored according to
a FORMAT specification E is used, If the numbers are stored without
any FORMAT specification U is used.

The v is an integer variable name, The student may use any
integer variable., The DEFINE FILE statement informs the computer t:at
this variable is used as the position counter in the READ or WRITE
statement. The number of position from which the number is to bs read
or in which the number is to be written is substituted for this vardable
before the appearance each READ or WRITE statement. Taerefore, this
variable must appear inside the parentheses of each READ or WRITE state-
ment, If 1 is assigned to this variable before the READ statement is
executed, the record in the first position is read., If the numerdical
value of this variable is 7, the seventh record is read.

Writing the data on the disk is accomplished with one of the

following two WRITE statements.

78
WRITE (j' e, n) list

WRITE (§' o) list

"where J 1s the same as the j and e is the same as the v in the DEFINE
FILE statement. The n is the FORMAT statement number,
Reading the data from the disk ard storing it in the core storage

is accomplished with one of the following two READ stateuments.

READ (3' e, n) list
READ (3' e) list

where j is the same as the j and e is the same as the v in the DEFINE
FILE statement. The n is the FORMAT statement number.

Sample Program. The following program reads in five numbers, one

at a time, stores it in the core storage, and transfers it on to the
disk., The ASGN card indicates to the computer that the memory space to
be resorved on the disk is to be called WORK6 and it begins at the
address 1500 and exds at 1510 on the disk unit 2. The DEFINE FILE
statement indicates to the computer that the maximum number of records to
be stored in the nemory space whose name is WORK6 and the numerical
namne is 9 is 10, each record is 20 characters long at most, the numbers
are stored according to a FORMAT specification, and finally, the
position of the records stored in the memory space is to designated by
the value of INT., The first number is stored in the first position in
the meumory space which has been resérved since the value of INT is 1,
I=1, The second number is stored in the second position since the
value of INT is 2, and so on.

After all five numbers are stored on the disk, the third number

79
is transferred back into the core and printed and the fifth number is

also transferred from the disk to the core and printed, Ten 20-digit
records will be stored in ten spaces starting from 1500 and ending
at 1510.

WORKS ASGN 1311 UNIT 2, START 001500, END 001510
FORTRAN RUN
$NO MULTIPLY DIVIDE
$N0 DICTIONARY
DEFINE FILE 9(10,20,E,INT)
D0 5I=1,5
READ (1,1) R
1 FORMWT (F6.2)
INT = I
5 WRITE (9' INT, 2)
2 FORMAT (F8.2)
INT = 3
READ (9'INT, 3) S
WRITE (3,3) S
3 FORIAT (¥8.2)
INT = 5
READ (9'INT, 3) P
 WRITE (3,3) P
END
LOADER RUN

$EXECUTION

Input datas

Outputs

80

CHAPTER VIII
SUBPROGRAMS

A programmer may wish to use the same sequence of instructions at
various points in a program, It would be a waste of time and computer
storaze space if the set of instructions were written whenever they are
needed, It is, however, possible to write the sequence of instructions
only once and refer back to it whenever necessary. This sequence of
instructions is called a subprogram. The program which utilizes a
subprogram is called a calling program,

Three types of subprograms will be discussed in this chapter;

(1) library functions; (2) FONCTION subprograms; and (3) SUBROUTINE
subprograms,

In writing a subprogram the student must be aware of the following;
(1) the main program must contain the name of the subprogram; (2) some
provisioh must be made for passing data to the subprogram; (3) some
provision must be made for receiving values returned from the subprogram
back to the calling progran, and (4) some provision must be made for

returning from the subprogram to the calling program.

The Library Funetion

If a programmer wishes to find the square root of a number, it is
not necessary for him to write a sequence of instructions which computes
the square root., A program necessary to compute the square root has
been written by another programmer and permanently stored in the
computer. The computation of a square root is only one of several

functions which are available with IBM 1401, The collection of these

82
functions is called "Library Functions" and the list of these functions

is on page 29 of the IBM 1401 manual,
If a prograrmer wishes to compute the square root of a number
which is represented by a variable X, he would use the first expression

below.

SQRT (X)
ALOG (2,0)

The second expression will compute the natural logarithm of 2.0, Yote
that some of the functions listed on page 29 will accept only certain
type of data, TFor example, if the square root of 2 is to be computed,
it must be written as 2.0. In other words, the function SQRT will not

compute the square root of integer constants or integer variables,

The FUNCTION Statement

The purpose of a function subprogram is to receive data froﬁ
the main program (or calling program), perZorm operations, obtain a
single value equivalent to the value of the function, and return that
value to the main program. The function subprogram is a separate and

complete program in itself, but it is used by other programs. The

general forms are;

FUNCTION name (al, 85y sery 2p)
REAL FUNCTION name (a, 2, svsy 2p)

INTEGER FUNCTION name (a;, 82, «vs, 2y)

where name is the name of the function which is written just like the

ordinary variable name. It conslsts of one or more letters and numbers

83
up to six characters, The first character must be a letter and it must
be chosen carefully since it determines the type of values to be processed,
The a represents one or more variables names, array names, or simply
dumy names.

The REAL FUNCTION statement means that all the variables inside
the parentheses are treated as real variables regardless of what they
are and the INTEGER FUNCTION statement means that all the variables are
treated as integer variables regardless of what they are.

The FUNCTION statement must be the first statement in a FUNCTION
subprogramns Following the FUNCTION statement there must be at least one
statement which defines the function name, at least one RETURN state-
ment, and one END statement., The RETURN statement 1s necessary since
the value obtained for the function is passed back to the main program
when this statement is executed. The END statement is necessary since
this statement notifies the compiler that the final statement in the
subprogram has been translated,

It is very important to remember that the dummy variables used
in the FUNCTION statement rmust correspond ir types to the dummy
variables used in the function in the main program. Therefore, the
dummy variables must be placed in proper order. A4s an example, two
statements are shown below. The first is the calling statement in the
nain program and the second is the FUNCTION statement in the subprogram,
The arrows indicate the correspondence.

SU}'I = CALC (K' .A' B' I' X' Y' L)

Yy VYNV VY
FUNCTION CALC (J, P, R, N, C, D, M)

8l
A FUNCTION subprogram cannot contain another FUNCTION subprogranm
within the program. Also it may not contain a SUBROUTINE statement,
Since a FUNCTION subprogram is a separate and complete program
in itself, it is necessary that each FUNCTION subprogram contains the
three beginning control cards and the two ending control cards as:

shoun below,

Berinning control cards Ending control cards
FORTRAN RUN LOADER RUN
$NO MULITPLY DIVIDE $EXECUTION

$NO DICTIONARY

Samole Program., The program below computes the sum of the

squares of a set of numbers using a FUNCTION subprogram, It should be
noted that the statement number 7 appears twice in this program, once
in the main program and once in the subprogram., This is permissible

since the subprogram is a separate and complete program in itself,

FORTRAN RUN
$¥O MULTIPLY DIVIDE
$NO DICTIONARY
DIMENSION A(100)
READ (1, 3) X

3 FORMAT (I4)
DO7I=1,K

7 READ (1,2) A(T)

2 FORIAT (m14.2)

TOTSW = PARSIM (N,A)

85
WRITE (3,2) TOTSU
END
LOADER RUN

$NO EXECUTION

C e o ¢ o o 0 ¢ » BEGIIH‘:II\IG OF THE SIJBPmGRAI‘I

FORTRAN RUM
$NO MULTIPLY DIVIDE
$NO DICTIONARY -
FUNCTION PARSUM (i,C)
DIMENSION C(100)
DD7I=1, n

7 PARSUM = PARSUM + C(I)**2
RETURN
END
LOADER RUN

$EXECUTION

The SUBROQUTINE Statement

This statement accomplishes what the FUNCTION statement does in
the previous section but the difference between these two statements
is that the FUNCTION subprogram must receive data from the main program
but the SUBROUTINE subprogram may or may not receive data from the main
program. The SUBROUTINE subprogram can contain its own data,

A SUBROUTINE subprogram is called only by a CALL statement. When

the subprogram is completed, the next executable statement following the

86
CALL statement is executed., YLike the FUNCTION subprogram, the SUBROUTINE
subprogram is a separate and complete program in itself, It may be
translated separately, but ordinarily it is translated following the
main program. .The general form of the first statement in the SUBROUTING

subprogram is;
SUBROUTINE name (a7, 85, «ee, ap) |

where name 1s an ordinary variable name which is substituted by the
programmer, It may consist of one or more letters and numbers up to
six characters, but the first character must be a letter, The first
letter can be any letter since the type of the name has no significance
in a2 SUBROUTINE statement, The a represents variables separated by
conmas,

A SUBROUTINE subprogram may not contain a FUNCTION statement or
another SUBROUTINE statement within the subprogram, It must contain
at least one RETURN statement and one END statement.

Since a SUBROUTIEE subprogram is a separate and complete program
in itself, it is necessary that each subpragram contain the three
beginning control cards and the two ending control cards, Each program
must also contain the $HO EXECUTION card since the execution of the
program is not desired until the complete program is loaded. The
$EXECUTION card, however, must bs placed at the end of the last program,

It should be noted that if the vardables ars 1i$ted in the CALL
statement and the SUBROUTINE statement, they must correspond in order
and in type. Also each statement must contain exactly the same number

of variables. The arrows in the following two expressions indicate the

87

correspondence between variables,

CALL, caLc (X, A, T0T, J, C)

MR

SUBROUTINE CALC (4, S, SUM, N, X)

A complete sample program illustrating the use of a SUBROUTINE

subprogram is included in the Appendix,

The RETURN Statement

This statement is primarily used in a subprogram, At this point
the program returns to the main program, This statement also returns
the data obtained in the subprogram back to the main program., The

general form is;
RETURN

The CALL Statement ’

This statement is used only in conjunction with the SUBROUTINE
statement, It links the main program with the SUBROUTINE subprogram,

The general form is;
CALL name (ai’ a2. vaay an)

where name is the name of the SUBROUTINE subprogram and a represents
the variable names or array names which are passed on to the SUBR)UTINE
subprogram, Each of these names must have been assigned values before

th2y are passed on to the subprogran,

CHAPTER IX
CONTROL CARDS

The control cards are used to give instructions to the computer.
These instructions must be punched in the columns designated and must
be placed correctly in the program. The student will normally place

at the front of any program the following three control cards.,

FORTRAN RUN
$8O MULTIPLY DIVIDE
$NO DICTIONARY

Each program must also contain the following two control cards
at the end of the program, These cards must be placed between the

program and the data cards.

LOADER RUN

$EXECUTION

FORTRAN RUN

This card is & required control card. This card activates the
FORTRAN compller and the comﬁuter starts translating the source state-
ments into the machine language. The card must be punched as follows.,
The number above the word indicates the coluﬁn number where the first
letter of the word must be punched,

Columns 6 16

Contents FORTRAN RUN

89
LOADER RUN

The FORTRAN RUN card causes the compiler to translate the source
program, and the LOADER RUN card causes the translation to be stored

in the core storage.

Columns 6 16

Contents LOADER RUN

EXECUTION

The execution of the program begins with this card,

Columns 1
Contents $EXECUTION

$NO EXECUTION

If the execution of the program is not desired, this card must
be placed following the program, This occurs when a FUNCTION sub- ;
progran or a SUBROUTINE subprogram is used in the program, This card

must be present following each program except the last progranm,

Columns 1 5
Contents $NO EXECUTION

$REAL, SIZE and PINTEGER SIZE

These cards are used to designate to the computer the maximum

number of digits the data will have,

Columns i 6
Contents $REAL SIZE = nn
Columns i 10

Contents $INTEGER SIZE = nn

90
$80 MULTIPLY DIVIDE

The computer at the Data Processing Center does not have a
unit which performs multiplication and division. A subprogram which
performs these opsrations is contained in the FORTRAN compiler and

this control card is necessary to automatically utilize the subprogran,

Columns 1 5 14

Contents $NO MULTIPLY DIVIDE

$N0 DICTIONARY

Without this card, the computer will print the Name Dictionary
and the Sequence Number Dictionary. The Nam_e Dictionary contains the
addressos of all the variables used in a program and the Sequence
Number Dictionary contains the address of every machine language
statement. The student is roquired to insert this card in every

program.

Colurms 1 5

Contents $NO DICTIONARY

$r0 LIST
Unless this card is included in the program, the computer

will print a list of the source program. This card is normally not
included in the program.

Columns - 1 5

Contents $NO LIST

CHAPTER X
CHECKIKG THE SOURCE PROGRAI{

Following are some of the common mistakes made by a beginning
programuer,

Spelling. Correct spelling is mandatory in writing the FORTRAN
statement such as SUBROUTINE, FUNCTION, FORMAT, ete, Variabls names
can be spelled any way the programmer wishes but the spelling must be |
consistent through out the program,

Parentheses. The number of left parentheses must coincide with
the number of right parentheses, 4 mistake is often made when one
or more parentheses are used within another pair. For example, the

statement bslow is incorrect; it needs another left parenthesis,
A = ((((C+B)*C+D)*D+E)*E+F)*F4G)

Comuas, The student must place the comma whenever necessary. If
more than one variable are used, they must be separated by a comma., In a
FORMAT statement each specification must be separated by a comma,

Arithmetic expressions, The student must not mix real numbers

and integer numbers. Often the student writes a real number without

the decimal point.

Control. Cards, The words and symbols on control cards such as

FORTRAN RUN, LOADER RUN, $NO MULTIPLY DIVIDE, and others must be
punched in the designated column,

Statement MNumbers., If a statement is referred to by another

statement, it must have a statement number., Two different statement

92
cannot have the same statement number.
One of the best ways to check the validily of the source

program is to "play computer." Using the data to be processed the

student goes through each statement step by step, performing all

computations by hand., This process should be repeated with the data

which are the extremes.

CHAPTER XI
CONCLUSTION

The purpose of this paper as stated in the introduction was to
discuss the topics in FORTRAN programming which are essential to the
student in the Mathematical Programming course at the Kansas State
Teachers College., As old machines are constantly replaced by new
" machines, the student should f‘lnd out exactly what kind of machines
are available at the Data Processing Center when he enrolls in the
course.

A complete sample program and a detailed explanation of each
statement of the program is provided in one of the introductory
chapters of this paper so that the reader may have a better under-
standing of the other sample programs that follow., Many of the sample
programs are complete with the necessary control statenents and they
are res.ciy to be processed if the reader so desires. Many of the
sanple programs aJ.so contain some sample data and the corresponding
ogtput to make the illustration bomplete.

Even though computer prograrming is a relatively new field,
many books have been written in this field and they are readily
available, It is hoped that this paper will help to fill some gaps

and make a small oonti'ibution to tho field of computer programming,

BIBLIOGRAPHY

BIBLIOGRAPHY

Anderson, Decima M, Computer Programming FORTRAN IV, New York:
Appleton-Century-Crofts, 1900,

Golden, James T, FORTRAN IV Programning and Computing. Englewood
Cliffss Prentice-Hall, Inc., 1965.

IBM Corporation., FORTRAN IV Language Specifications, Program
Speci.fications, and Operating Procedures, IBM 1401, 1440, and
1460, Systems Reference Library, File No, GENL-25, Form C24-
3322-3, 1966,

McCracken, Daniel D. A Guide to FORTRAN Programring, New York:
John Wiley & Sons, Inc., 1961,

APPENDIX

PROGRAM A

This program solves a quadratic equation., It also illustrates
the use of the FUNCTION and SUBROUTINE subprograms and the Library

Funetion.

98

FORTRAN RUN
FORTRAN COMPILATION VER 2 MOD 2
$NO MULTIPLY DIVIDE
$ND DICTIONARY

C

C eeeeecesee SOLVING QUADRATIC EQUATIONS

C FUNCTION AND SUBROUTINE SUBPROGRAMS

C
001 READ (1,52) NUNMR4
002 52 FORMAT (14)
003 IN=
004 9 READ (1,53) AQ, BQ, CQ
005 53 FORMAT {3F12.5)
006 CALL QUADZ (AQ, BQ, CQ, RQ1, RQ2y KMPXZ)
007 WRITE (3,63)
008 63 FORMAT (3X, 33H CUADRATIC EQUATION VALUES

3 v 14Xy 25H +....R0O0TS)
009 HRITE (3,65)
Ol0 65 FCRMAT (8X, 2H A,8X,2H B,8%X,2H C, 88Xy 8H COMPLEX,
A8X, 3H Rl, 10X, 3H R2)

011 IF {(KMPXZ.EQ.0) GO TUO 75
012 RADZI=BQ##2~4,2AG%CQ
013 DENOZ=(2.+AQ)
014 WRITE (3,66) AQ, BQy CO, RQl, RADZ, DENDZ
015 66 FORMAT (1HO, 3F10.3,10X, 4H YES, 5X, F10.3, 3X,

718H + AND = SQ RCOT {4y F8+.2,3H)}/, F6.2)
0lé6 GO 10 70

017 15 WRITE (3,67) AD, BO, CQ, RQL, RQ2

018 67 FORMAT {1HO, 3F11.3, 12X, 2HNO, 7X, Fll.3, 3X, Fll,3)
019 70 CONTINUE

020 [F (INJ.EQ.NUMB4) GO 10 77

021 IN=IN+1

022 GO 10 9

023 77 CONTINUE

024 END

#es $NO EXECUTION

FORTRAN RUN

FORTRAN COMPILATION VER 2 MOD 2
$NO MULTIPLY DIVIDE
$NO DICTIONARY

001
002
003
004
005 90
. 006

SUBROUTINE QUADZ (AQ, BQ, CQ, RQl, RQ2, KMPXZ)
RQ1=RUUT]1 {AQ, BQ, CQ, KMPXZ)

IF {(KMPXZ.EQ.1l) GO TO 90

RQ2=RUUT2 (AQ, BQ, CQ)

RETURN ’

END

#x% $NQ EXECUTION

FORTRAN RUN

FORTRAN COMPILATION VER 2 MOD 2
$NO MUTIPLY DIVIDE
$NO DICTIONARY

col
002
003
004
cos
006
007 25
cos8
009
ol10

FUNCTION RUUT1 (AQ, BQ, €CQ, KMPXZ)
RADZ=BQ#%2-4,8AQ#CQ

IF (RADZ.LT.0.0) GO TO 25
RUUTL=(-BQ+SQRT{RADZ))/(2.2AQ)
KMPXZ=0

RETURN

RUUT1=-8Q/(2.2AQ)

KMPXZ=1

RETURN

END

##% $NO EXECUTION

FORTRAN RUN

FORTRAN COMPILATION VER 2 MOD 2
$NO MULTIPLY DIVIDE
$NO DICTIONARY

001
002
003
004

$EXECUTION

FUNCTION RUUT2 (AQ, BQ, CQ)
RUUT2={-BQ-SQRT{BQu=2-4.2AQ=CQ))/ (2.2AQ)
RETURN

END

100

00°¢

/{ 00°9¢-

} 100y OS

000°¢-

000°1

000°¢

aNv + 000°1
2y 1Y
S100y°**"*
600y
24 1Y
S1004Y°**"
000G °g
[4: T
S100¥***
000 °%
Zd 1Y

$100y**"

S3A
X3TdW0D
ON
X31dW0D
anN
X3TdW02
aN

X3 TdW0D

000°01 000°¢-

J d
S3NIVA NOIL1VND3I
000°*8- 000°* ¢~

3 d
SINIVA NOI1vNO3
000°*9 000°*9-

2 d
S3INAVA NOILVNO3
000°21 000*L~-

J d
S3INIVA NOI1VNO3

000°1

v
311vy0avno
000°1

v
J11v¥avno
000°1

v
J11vdavno
000°1

v
J14v¥0vND

PROGRAM B
This program reads in a set of test scores, finds the average
and the standard doviation, and sorts the scores, It illustrates the
use of the DIMEFSION statement, the implied DO loop, and the IF

statement.,

io2

FORTR AN RUN
FORTRAN COMPILATION VER 2 MOD 2

$NO MULTIPLY DIVIDE
$NO DICTIONARY

c
C eeccececcnceess MOK TOKKO
C
Ceeccccccanceeees STORING EDITED DATA IN THE DISK
¢ .
001 DIMENSION A(20), D(20)
002 DEFINE FILE 9{(50420,E,INDEX7)
003 READ (1,11) M
004 11 FORMAT (I4)
005 READ (1,12) (A(I), I=1,M)-
006 12 FORMAT (F10.3)
007 WRITE (3,53)
008 53 FORMAT (10X, 13H THE INPUT 1IS)
CeeeaeePRINT THE INPUT DATA
009 WRITE (3,55) (A(l), I=1,M)
olo0 55 FORMAT (F10.2)
Ceeeees STORE THE EDITED DATA INTO THE DISK
01l1 WRITE (9'1,22) (A(1),I=1,M)
012 22 FORMAT (El2.4)
013 DO 14 I=1,M
0l4 14 A(I)=0.
015 READ (9'1,522) (A({I),1=1,M)
olé6 CONST=M
017 SUM=0.
018 DO 31 I=1,M
019 SUM=SUM+A (1)
020 31 CONTINUE

Ceeeeees COMPUTATION OF MEAN AND THE STANDARD DEVIATION
021 AVER=SUM/CONST

022 TOT=0.

023 DO 32 I=14M

024 32 DUI)=(A(I)-AVER)#=%2 .
025 DO 33 I=1,M

026 33 TOT=T0OT+D{(1I)

027 STDEV=SQRT(TOT/CONST)

028 WRITE (3,51) AVER, STDEV

029 51 FORMAT (15H THE MEAN IS .ey F8.25 10X,

829H THE STANDARD DEVIATION I1S..., F8.2)
Ceeeenaeeo SORTING PROCESS

030 LIMIT=M-1

031 5 INT=1

032 DO 88 I=1,LIMIT

033 IF (A(I+1).LE.A(I)) GO TO 88
034 TEMP=A(I+1)

035 . A(I+1)=A(1)

036 \ A(I)=TEMP

037 INT=1I

038 88 CONTINUE

103

039 IF (INT.EQ.1) GO TO 77
040 LIMIT=INT-1
041 GO 10 5
042 77 CONTINUE
043 WRITE (3+37) '
044 37 FORMAT (3X, 17H THE SORTED SCORE)
045 DO 78 I=1.M
046 78 WRITE (3,79) A(1)
047 79 FORMAT (F10.2)
048 END
e
LOADER RUN

$SEXECUTION

: 104
THE INPUT IS
98.00
93.00
95.00
78.00
80.00
82.00
85.00
88.00
92.00
90.00
72.00
69.00
49.00
52.00
57.00
75.00
62.00
41.00
| 43.00
! 75.00
THE MEAN IS .. 73.80 THE STANDARD DEVIATION IS... 17.34
| THE SORTED SCORE
$8.00
95.00
{ 93.00
92.00
90.00
88.00
85.00
82.00
80.00
78.00
| 75.00
75.00
72.00
69.00
62.00
57.00
52.00
49.00
43.00
41.00

PROGRAM C

Whenever a large number of data is to be processed, the data can
be stored in the disk storage. In order to store the data in the disk,
the data must be stored in the core storage first, If all the data is
read into the core before transferring to the disk, a large amount of
core storage is used. If a number is read into the core and stored in
the disk one at a time or, in case of a matrix, one row at a time, a
considerable amount of core storage space is saved,

This program is designed to read in two M by N and N by K
matrices one number at a time, store it in the disk, and find the product
of the two matrices, The uniqueness of this program is that the
elements of the two matrices and the elements of the product matrix are
stored linearly, That is, after the first row of the first matrix is
stored, the second row is stored lmmediately following the first row,
and the third row immediately following the second row, and so on,
After the first matrix is stored, the first row of the second matrix
is stored irmediately following the last row of the first matrix,

Then the second row is stored following the first row, and so on,

The following diagram illustrates. the way the numbers are stored

in the disk, Tl;e elements of the first matrix are represented by apy,

and that of the second matrix by by, and that of the product matrix

by cnke

106

IINN NSTQ EHI NI GEYOLS BV SEOTMIVH THIHL

40 SINEWETH JHI MOH SNIIVIISATII WvEOVIA

T TuNO1A
&.&U N\U \O V\QQ "sae tug zug :«Q
Nt Ul Z+llFU | T U Ut X+ seo e | SHURON AW | TH(-uAFwetsd | T+ (1) N Ul
ceee| XEg . €zg Trg g xtq e £/g z1g g | wwy
eoer | JTCHUW | & .. CHY AU U TN UM TrXAUU v?Q?E e+l | THUK| THUWU| Uy
o s @a mtﬁw ﬂt\“ ~£G . . Mﬂq NN% . Nﬂw §\6 .o & m.\Q ﬂsu :G dmmzaz QNMOF@
veee | zo(r-w)u |ZH(T-WIU| (3= 1) u €su| T+U| T+u] c| 7z T "ON NOIL{S0d

107

FORTRAN RUN
FORTRAN COMPILATION VER 2 MOD 2
$NO MULTIPLY DIVIDE
$NO DICTIONARY

C eeececeeess MOK TOKKDO
c
C ecececencesceces MULTIPLICATION OF TWO MATRICES
C THE ELEMENTS OF THE MATRICES ARE READ IN ONE
c AT A TIME AND STORED ON THE DISK IN ONE ROW
C

001 DEFINE FILE 9{(1000, 20, U, INDEX9)

002 11 FORMAT (314)

003 26 FORMAT (214, F10.2)

004 12 FORMAT (F10.2)

005 READ (1,11) M, Ny K

006 WRITE (3,41)

007 41 FORMAT (16HOTHE MATRIX A 1S)

008 DO 100 I=1,M

009 DO 100 J=1,4N

010 READ (1,12) X

C ® oo s 0tn 0 0tee oo STORING OF A MATRIX ON THE DISK
011 IND=(I-1}aN+J

012 FIND (9'IND)
013 WRITE (9'IND) X
014 100 WRITE (3,26) I, J, X
015 WRITE (3,38)
016 38 FORMAT (16HOTHE MATRIX B IS)
o017 DO 101 I=1,N
018 DO 101 J=1,K
019 READ (1,12) Y
C eveececcscccneces STORING OF B MATRIX ON THE DISK
020 IND =MaN+(I-1)2K+J
021 FIND (9'IND)
022 WRITE (9'IND) Y
023 101 WRITE (3,26) I, J, Y
024 WRITE (3,24)
025 24 FORMAT (3S5HOTHE PRODUCT OF A AND B MATRICES IS)
026 JOB=0
027 KET=0

C eecevceccacaceaes MULTIPLICATION OF A AND B MATRICES
028 DO 102 I=1,M

029 D0 102 L=1,K

020 vV=0. -

031 _ DO 102 J=1,N

032 IND=(1-1)#N+J
033 FIND (9'IND)

034 READ {(9VIND) X

108

035 _ IND=M&N+{J—-1) *K+L
036 FIND {(9'IND)
037 READ (9'IND) Y
038 V=V+X#Y
039 KET=KET+1
040 IF (KET.NE.N) GO TO 102
041 KET=0
042 JoB=J40B+1
C ecocncnsccssccscse STORING OF PRODUCT MATRIX ON THE DISK
043 IND=MeN+NsK+ JOB
044 FIND (9'IND)
045 WRITE (9'IND) V
046 WRITE (3,26) I, Ly V
047 102 CONTINUE
048 END

LOADER RUN

$EXECUTION

THE

WWWWNNNN P -

-1
X
m

S PPV WLWULNNNNN - - -

W W W WWNNNNN M =T

MATRIX A
1

PWNFDWN-=SWON

MATRIX B

VWD WNENDWN NS WN -

1

NPV~ DWW N

IS

3.00
2.00
5.00
1.00
4.00
1.00
6.00
3.00
4.00
1.00
2.00
3.00

IS
2.00
1.00
3.00
4.00
2.00
3.00
1.00
2.00
3.00
2.00
1.00
5.00
6.00
2.00
4.00
2.00
5.00
1.00
2.00
3.00

PRODUCT OF A AND B MATRICES IS

19.00
35.00
44,00
30.00
33.00
23.00
50.00
53.00
37.00
43.00
19.00
30.00
29.00
29.00
27.00

109

110
PROGRAI{ D

This program illustrates the use of the P-specification and
slashes in a FORMAT statement. This program contains two data cards,
Each data card contains four numbers, each of which has two digits'to
the left of the decimal point, The first specification in the FORMAT
statement 11 moves the decimal podint in the first number one place to
the left and the second specification moves the decimal point in the
second number ene place to the right, The third and fourth numbers
are read in as they appear on the data card, The sum of the first two
numbers is labeled X and the sum of the last two nuwbers is labeled Y,

The list of the WRITE statement contains six items, 4, B, X%, C,
D, and Y, Ordinarily these items are printed on a single line but,
due to the slashes between the specifications in the FORMAT statement,
each item is printed on a separate line, The blank lines between
numbers on the output are caused by the double slash. The double
slash at the end of the FORIAT statement causes the double blank lines

between the first and the second sets of numbers,

Inputs

//;2.215 31,217 12.321 12.325

14,321 b, 214 13. 214 54,102

FNDRTRAN COMPILATION VER
SND MULTIPLY DIVIDE
$NO DICTIONARY

C ..no..noooo‘P"CONVERSION

C
001
0e2

003 11

004
CO05

006 21
007 12

008
009

$EXECUTION

2.222
312.170

314.392

12.321
12.325

24.646
" 1.432
412.140
413.572

13.214
$54.102

67.316

DO 21 I=1,2
READ (1,11) A,
FORMAT (1PF10.
X=A+B

Y=C+D

WRITE (3,12) A,B4X,CyD,Y

FORTRAN
2 ¥OD 2

By C,y

RUN

AND SLASHES

2y —1PF10.2,

OPF10.2,

111

FORMAT (F10.3/F10.3//F10.3//F10.3/F10.3//F10.3//)

stae
END

LOADER

RUN

http:���.��..�

