
THE STuDENT .Jv1AHUAL 

FOR/PROGRA.\·;J;ITNG III FORTAAN IV 

-~._.- 

A 'l'hesis
 

Pres ented to
 

the Faculty of the Departinent of l'~at.ltcmatics
 

Kansas State Teachors College at ~apori~
 

In Partial Fulfillment
 

of the Requirements for tho Degroe
 

Haster of Arts
 

by
 

Nok Tokko
 

August 1968
 





ACKNO!JlLEOOEHENT 

'!he 'Hrlter vr.ishes to thank Professor L0stel" E. La:l.ro who 

gave assistance and inspiration in the preparation of this paper. 



• • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • 

TABLE	 OF CONTENTS 

CHAPT'C~R	 PAGE 

I. INTOODUC'rrON • • • • • • • • • • • • • • • • • • 1· · ·	 · • 

ll. COHPUTER AND COHPUTER PROGRAHIHNG • • • • • • • • • • • • • 3
 

Functional Components of a Computer • • • • • • •
• • • • 3 

Programming • 4• • • • • • • • • • • • • • · · · · · · · ·
 
Equipments • • • • • • • • • • • • • • • • • • • • • • • 5
 

Definition of Key Terms 6
• • • • • • • • • • • • • • • · · 
TII. COliSTANTS , VARIABLES, SUBSCRIPT3, AND EXPRESSlm5 8• · · •	 · 

Constants	 8• • • • • • • • • • • '. • • • • • • • • • · · 
Integer constants 8• • • • • • • • • • • • • • • • • · ·
 
Real constants 9
 

Variables 10
 

Subscripted Variables 11
 

Arithmetic EA~ressions	 13
 

Relational O>.iCeration Symbols	 15
 

IV. POOGRl\t,nUNG PROCEDURE	 16
 

Program • • • • • • • • • • • • • • • • • • • • • • • • 16
 

FlOi"f Chart 17
 

Writing Progl'am • • • • • • • • • • • • • • • • • • • • • 20
 

Preparalion of Source Deck 22
 

Listing Pl'ogram • 23
 

V.	 GENERAL FORTRAN STATEHEN'IS 24
 

The Arithmetic Statement 24
 



CHAPTER
 

VI.
 

VII.
 

Tne Control Statement
 

GO '1'0 st9:wment
 

IF statenent •
 

DO statement.
 

CONTINUE statement.
 

Specification Statement
 

DHlEr,1SION statement
 

COHHON statement •
 

EQUIVALENCg sUt tement
 

Type statement •
 

DATA statement.
 

IHPUT/OUTPUT STATEHENTS 

General Input/Output Statements 

FOHl:!AT statement • 

A-Conversion • 

H-Conversion • 

Blank fields • 

Repolition of field FORiA.T • 

Hul tiple-l'ecord. FORUT • 

Carriage control • 

Edi ted input data 

RF...AD statel1lcnts 

WRITE statements 

FIND stata'11ont 

STORInG Ilr DISK 

v 

PAGE 

Z1 

Z1 

32
 

J7
 

45
 

46
 

46
 

47
 

49
 

49
 

51
 

53
 

53
 

54


58
 

59
 

61
 

62
 

64
 

66
 

67
 

68
 

71
 

73
 

75
 



vi 

CHAPTER PAGE 

ASGn Statement • • • • • • • • • • • • • • • • • • • • 75
 
DEFINE FILE Statement. • • • • • • • • • • • • • • • • 76
 

VIII. SUBPROGRAHS • • • • • • • • • • • • • • • • • • • • • • • 81
 

• • • • • • • • • • • • • • • • • • • 81
Library Functions
 

• • • • • • • • • • • • • • • • • 82
FUNCTION Subprograms
 

• • · • • • • • • • • • • • • • 85
SUBROUTIt'E Subprograms
 

• • • • • • • • • • • • 87• • · · · · ·CALL statement
 

IX. CONTROl, CAlIDS • • • • • • • • • • • • • • • • • · • • • • 88
 

X. CHECKING THE SOUHCE POOGRfJ·1 • • • • • • • • • • • • • • • 91
 
XI. CONCLUSION • • • • • • • • • • • • • • • • • • • • • • • 93
 

BIBLIOGMPHY • . . • • • • • • • • • • • • • • • • • • • • • • • 94
 
APPENDIX •
 . . . . • • • • • • • • • • • • • • • • • • • • · · · 96 



LIST OF FIGUnES 

2. Diagram illustrating hOI" the Elmnonts of Three Hatrices 

FIGUm~ 

• • • • • • 

• • • • • • • • •• • • •are Stored in the Disk lJnit 

A F1mv Chart nlnstrating the Program j.lhich 

Adds Three Ntunbers • • • • • • • • • • • 

1. 

18 

PAGE 

• • • • 106 

• • • • 



CHAPTER I 

INTRODUCTION 

This manual is written for the students \-Tho aro enrolled in 

the Nathe.aatical Programming course offered by t.~e Hathematics 

Department at the Kansas State Teachers College at &l1poria. It is 

wri tten for the student who has no kn01-1ledge of computer proeranlming 

and no more background in mathematics than tho one aC<luired in the first. 

two years in college. 

The pr:1.lnary purpose of this luanua1 is to give a comprehensive 

analysis of the language used in the FORTAAN IV programming vIi th 

nUlllorous examples and illustrations. In the lhthematical Programming 

course at this college, a large portion of the class periods are 

devoted to learning hOToT to solve problems, thus leaving little time 

to learn tho language of the FORTRAJ~ IV programming. 

It is hoped that this manual will be easy to read and. that the 

student will acquire the basic knowledge of FORTRAN IV programming in 

a short period of time. Tho sam...u1e programs are written short to 

better illustrate the subject in discussion. Longer programs illustrat

ing the met-hods of solving mathematical problems are included in tile 

appendix. 

This manual discusses only the topics which are essential to a 

programmer in the fie-ld of mAthematics. The detailed discussion of 

physical components of the computer is not included. This manual is 



2 

written specifically for programming in FORTRl\.N IV for D31·! 1401 "1hich 

is available at the present time at the Data Processing Center at the 

Teachers Col1oge. The exact and complete details not included in this 

manual C<'ln be found in the rnanuDJ. published by tho International 

Business Corporation, FORTRAN IV Language Specification, File No. 

GElJ..-25, Form C24-3322-3. 



CHAPTER II 

0011PUTER AND COr,IPUTER PROGIW·ll,rrm 

To a mathematician, a computer is a machine that solves ma.the

matical problems in an incredibly short period of time. It can find a 

square root of a number, add complex numbers, multiply ma.trices, solve 

differential equa.tions, and almost any type of proble..l1ls a mathematician 

encounters. But, \."hat a computer really can do is to add bID nUI:lbers. 

It is a giant adding machino with one added feature vmich makes the 

computer so versatile. It has the ability to store inforlll.ation. 

In reality, a computer does not solve those complicated probloms. 

It is the mathomatician who devised the technique of solving complicated 

Dlathemati.cal problems by simply adding two numbers. In fact, a computer 

cannot oven multiply bro numbers. In solving a simple problem such as 

mult.i.plying oight by five, the computer adds eight fivo times. TilN~< is 

not a problem to a cOl""JPuter. A computer such as the IBH 1401 can 

perform thousands of additions p€lr second. 

I. FUNCTIONAL (XlNPONENTS OF A CO~1PUTER 

In general, all computers can be divided into fe'ur functional 

un!ts; the input, the output, the memory, and the control. 

All information is entered into the computer by way of the 

input unit. 'Ihe information is usually recorded on a magnetic tape 

or on the standardized card. The student in the programming course 

will use IEH cards. 

The ini"ormation obtained by the computer reaches the programmer 



4 

by means of the output unit. There are several output devices. The 

results can be recorded on a magnetic tape, punched on IBH ca.rds, or 

printed on paper. '!he student ,.rill normally receivo the restut of the 

program printed on paper. 

One of the most fascinating aspects of a computer is its 

ability to store infor-JlS.tion. The memory un.i.t enables the computer 

to tlremember. II Once the information i~. stored in the lllell10ry unit, it 

can be brought out of tho unit without destroying t.l}e record in the 

memory unit. '!he informa.tion can be stored in the core storage within 

the computer, or on the magnetic tape, or on tho disk storage. 

The control unit of a computer is considered as the "brain. II 

This control unit receive.s information from the memory, interprets the 

information, performs the necessary operation, and stores the results 

back into the memory \Url.t. 

II. PROGRA.ENING 

Computer programming is writing a sequence of instructions 

for a computer w carry out in the solution of a. problem and tho 

written instructions are cal16d a program. \Vith the early computers 

the instructions were lmtton in machine language which is a basic 

numeric code the computer could accept and. execute. 'Writing a program 

in the machine language was a tedious job. It was long and time 

consUITJing. Consequently, there were many opportunities to make 

mistakes. 'ilien, oi:~e developed the FORTRAN system of writing a 

program. The name stands for FOT:mtu.la TRANslation. This system is 

htUl1rol or problom oriented la.nguage rather than machine oriented 



5 

lan~ua~e. By using the FORTRAN language, tile time and effol't for both 

wrlting and correcting a program is greatly reducod. 

The instructions written in FORTRAN language resembles the ex

pressions lmtten in rnathema.tics. These instructions are fed into the 

cor.1:puter and the computer translates them into t.~0 machine laneuage. 

'!his translat,ing system is knovm as a compiler. The compiler program 

is written by an expert pl'ograJl'.Jt1er. 

One disadvantage of using a translaling system is that the 

system may not make as efficient use of tl'l.e computer as an export 

programmer writing machine language. An expert programmer can take 

full advantage of a computel'- s capabilities and wrlte tho program to 
• 

use a minimum amount of computer time. Honover, the use of a compiler 

to writo the machine language program saves muc...'l programming timo. 

rr.c. mUIPNENT 

This is a list of tlle equipment available at the present 

time at the Kansas State Teachers College Data Processing Center. 

J!lli jl+Ol .E.ro~essing Jlni!:.. This is the control unit of the 

computer. It has an internal memory unit of 12,000 positions of 

core storage, and all the cot1putation is performed in this unit. 

!ill! .!!t96 Storage. 'lhis memory unit has 4,000 positions of 

core storage, thus giving the processing unit total core storage of 

16,000 posilions. 



6 

!?H ,1;11 ~ Stom$.2. D:Jj~. At present, there are throe of 

these memory lUli ts at tho Data. Processing Conter but only one is used 

when processing a program 'toTrltten in FORTRAN. Each of these disks 

has 2,000,000 storage positions. 

l.8.1i ~ £?a~~. This is the primary input unit of the 

computer. The inforraa.lion punched on cards is transferred to the core 

storage through this unit. It also punches out cards containing 

output data if tirls twe of output is desired. 

ml1!i<:JJ. Prlntc.r.. Host of the output and other COITl!llUnication 

from the computer to the programmer is made through this high speed 

printer. 

]]]j Lt.()2 f~_CP:'-~l1g .tlach:i.n!3' The student in the programming 

courso will use tilis machine for the purpose of printing the inform

ation punched on cards. 

IV. DEfINITION OF KEY TEnt-iS 

In order to be able to read this rllanua! satisfactorily the 

reader is t.".rged to become familiar ldth the moaning of following terms. 

Compge,r. This is a program ,vritten by an expert programmer to 

translate the program 'tomtten in FORTRAN language into machine 

language. 'ilie process is called compilation. 

f.rog,r,.?J11. A program is a sequence of instructions which a 

computer is to ('.arry out in the solution of a problem. 



- -

? 

~!:£2. P.rogl·[~!. A program vr.ci tton in FORTRAN symbolic language. 

Executp::,b).~~ St-3.tement. A program statement which contains an 

instruction for the computer to "doll something. 

Non-Ex~tabJe S't:ltel'J'!.en~. A progl'am statement 'Which contains no 

executable instruction. 

Field, Recoro, and File. A field is the smallest division of 

data and refers to a single item or number. A record consists of one 

or more fields. For example, a program. lYhich adds two four by four 

matrices may contain eight data cards. Each card contains four 

nUJJ1bers, the elements of a roUt 'The complete set of data. cards, eight 

in this case, is a file, each card is a record, and each number on a 

card is a field. In other words, this file contains eight records 

and each record contains four fields. 

Debuggit!g,. '!his term refers to a process of finding ndstakos 

by a progran'J111er in a program• 

.QQn..1;;!'£l .92-l'5!.. A control card contains the necessa.ry info1''''. 

mation for the operation of a computer. For example, FORTP.AN RUN card 

instl"'Ucts the computer to start translating a source program, and 

$EXECUTION card instructs the computer to start. processing the program 

which has been translated into machine language. 

~., The type refers to the kind of variables or nw.bers used 

in a progrant. Thera are two types of variables and numbers; a real 

type and integer type. 



CHAPTER III 

CONSTANTS, VARIABLES, SUBSCRIPTS. AND EXPResSIONS 

The meaning of the ter'.ns, constants, variables, and subscripts 

is the same in FORTRAN programming as in mathematics. There are, 

however, some limitations in the use of these terms in programming. 

I. CONSTANTS 

A constsnt is a real number, positive, negative, or zero, l-lhich 

appears in a program statement. There are t"ro types of constants; 

integer constants and real constants •. 

Integer Cpngt.ant.,i. 

An integer constant is an integer, positive, negative, or zero 

that appears in a program statement. An integer constant is written 

without a decimal point. In elementary mathematics the numbers 2 and 

2.°are sometimes used interchangeably, but in FORTRAN programming, 

this is not al101ved. The foJ~o'tdng are examples of integer constants. 

o
 

1
 

-27
 

35029
 

If a programmer inshes to use an integer constant containing 

six digits or more, the largest number of digits desired to be used. 

must be indicat.oo to the computer by using a special progrD.!11 statament. 

$INTEGER SIZE = nn 



9 

The instruction for prepe'll"lng this control card is on page 89. The 

ma.:x:ilnu.,'11 ntU11ber of digi ts a.n integer constant can have is twenty. If 

$INTEGER SIZE = nn card is not provided, only a. constant 'With five or 

less digits may be used. 

Real Constan~~ 

In FORTRJUI progrromning a real constant is a real nurlber, 

positive, negative, or zero, and must contain a decimal point. A real. 

constant may be wrltten with an exponent. The follo'tdng are examples 

of real constants. 

o. 

1. 

-2.0/40 

700. 

5.12E+02 

In expressing a real constant in an exponential form, a n~ber 

'With. a decimal point is fo1101'1ed by the letter E, a plus or Illinus sign, 

and a tvro-digit integer. The following are the examples of real con

stants in an exponential form. 

5.7E+02 for 5.7 x 102 

-5.7E+02 for -5.7 x 
2

10 

2.)E-0) for 2.) x 10-3 

.4EJ for .4 x 10) 

4.1E 00 for 4.1 x 100 or 2.) 

-).45E-02 for -).45 x 10-2 



10 

If the space immediately following E is left blank, tho computer 

assumes the exponent to be positivo. If an integer appears in the space 

reserved for the sign, the computer also assumes the e:lrponent to be 

positive. 

The nurnber of significant digits a real conste,mt can have depends 

upon the computer. If a real constant contains more than eight 

signific-'1.nt digits, this must be indicated to the computer using a. 

special program statement. 

$R.SAL SIZE = nn 

The instruction for preparing this control cal"Cl is on page 89. A real 

. cons-w.nt O<.'\n have at most tHenty significant digits. 

II. VARIABLES 

A variable is a symbol tl1at represents an element of a SElt just 

as in elemente.1.ry algebra. For example, in expressing the area of a 

circle, A =T( 1"2, r is a variable and 1[ is a constant. In algebra a 

single letter is used a.s a variable. In FORTRAN language, h01Vever, a 

variable may be vm tten as one letter or up to six letters or mgits. 

A variablo can be 'tvri tten using both letters and n~gers, but the 

first character must be 11. letter. The first letter must be chosen 

carefully because it indicates 't~ether t~e number represented by the 

variable is an integer constant or a. real constant. 

1!ltege~ Va..r}_~ble. An integer variable is a variable for whic.1>
 

only an integer constant may b,~ substituted. The first letter of a
 

variable must be I, J, K, L, H, or N. The following are exa.mples of
 



11 

intoger variables. 

I, J, HAX, JOB, IDIOT, N]. 

Real y'a,1i.apl"e.. A real variable is a variable for which only 

a real constant l'l.a.y be substituted. The first letter of a real variable 

must be any letter except I, J, K, L, N, and N. The folloi,Iing are 

exa..nrples of real variables. 

X, Y, ALPHA, R(X)T, SUH, PROD. Ci. 

SUbsc1"te:t~r! Vllri~b:l;,~.. In FORTRAN progranuning a subscript 

cannot be 'Wr"ltten in the customary way. A su.bscripted var-lable consists 

of a variable name follovTOd by parent.lteses enclosing one, tuo, or three 

subscripts separated by commas. The first letter of the subscripted 

variable must be chosen with the consideralion to the type of variable 

involved. All the elements in one array must be of the same type, 

either all integer constants or all real constants. 

~am.ple. The matrix A below consists of five numbers and the 

dimension of this matrix is said to be one, since t.ltere is only one 

column of nu.."'1bers. The matrix B consists of six numbers which are 

arranged in blO rows and three columns. The dimension of this rna trix is 

said to be tiro, since the matrix consists of tHO or more rows and U10 or 

more columns. 

4 

3 
B= (2.3 3.4 5.1)A = , 5 I 

7.0 2.9 0.4 
2 

8
 



12 

'!he matrix A, which consists of all integers, can be represented 

with a subscripted variable, N(I), where I varies from 1 to 5. The 

elements of A are individuaJ~y represented as folloHs. 

M(1) has the value 4.
 

1-1(2) has the value 3.
 

M(3) has the value 5.
 

M(4) has the value 2.
 

1-1(5) has the value 8.
 

It should be noted that t.'l-J.e subscripted variable rnust be an integer 

variable. 

The matrix B can be represented 'With a real subscripted variable, 

A(I,J), since it contains all real numbers. I varies from 1 to 2 and 

J varies from 1 to 3. The elements of Bare repres€lntoo as follows. 

A(1,1) has the value 2.3.
 

A(1,2) has the value 3.4.
 

A(1,3) has the value 5.1.
 

A(2,1) has the value 7.0.
 

A(2,2) has the value 2.9.
 

A(2,3) has the value 0.4.
 

~ of Subscripts. A subscript can take only one of the follow

ing forms. V is an unsigned, nonsubscripted integer variable and C and. 

C' are unsigned integer constants. It should be noted that N(2+I) and 

M(I*2) are not acceptable, but H(I+2) and H(2*I) are acceptable. 



13 

General .for-m ~1HT2le 

C 1 as in M(1) 

V I as in M(l) 

V+C 1+2 as in H(l+2) 

V-C 1-1 as in 1-1(1-1) 

C*V 2*1 as in H(2*I) 

C*V+C· 2*1+1 as in H(2*I+1) 

C*V-C' 2*1-1 as in 1-1(2*1-1) 

Ant.h~tic J&::pressions 

The funotion of an arithmetic expression is to produoe a single 

numerioal value equivalent to the value of the expression by perfoming 

a certain operation or operat.i.ons upon the constants or variable names. 

§xmbols	 Meaning 

+	 Addition as A+B 

Subtraction as A-B 

I	 Division as AlB 

}<lu.ltiplicalion as A*B*
 
Exponentiation	 as A**B (A to the B power) **
 

prder of 0E.erati~:m. 

Parentheses are used, as in algebra,in expressions to specify 

the oroer in which the expression is to be evaluated. Expressions are 

evaluated from left to right. If parentheses are omitted, the order 

of col!1puta. tion is as folIous. 



14 

1. Function computation and substitution. 

2. Exponentiat.i.on. 

3. Multiplication and division. 

4. Addition and subtraction. 

~amRl.e~. A**l.O*B/C + D + 3.0 will be treated as in algebra 

AlB 
as C + D + 3.0. 

(A-B*C/D+1.0)**2.0 "Till be calculated as (A _ ~C + 1.0)2. 

A/B+C "Till be treated as BA + C, not as --1:.-_ as one might expect.
B+C 

( H)l«A-B)/(0+1.0»**Z.0 vrill be calculated as 
0+1 • 

The student is urged to use parentheses liberally to make sure 

the operalions are performed in the desired order. The expressions 

shotm be1.01v are improper. The first expression must be written as 

A - B and the second expression must be 10mtten as A/ (-B) • 

A + -B 

A/-B 

Invalid ~e~.sions. It must be noted that an arithmetic ex

pression must all be either integer values or all real values. In other 

. words, an integer cannot be added to or Dlll1tiulied by a real nu.rnber, or 
, 



15 

vice versa. Thore is, hot'1Clver, one exception. A real number can be 

raised to an integer pOlver. 

ALPHA + 1 (An integer constant cannot be added to a real variablo) 

A*I (An integer variable cannot bo multiplied by a. 

real variable) 

1**2.0 (An integer variable camot beraisoo to a real power) 

N!2.0 (An integer variable cannot be divided by a. real 

number) 

Relational OperaUon SYll1bols 

The relational operation symbols al'e listed belo'll together with 

their mealungs. 'lhese symbols are used primarily \dth logical IF 

statements. The periods are part of the symbol. 

Hathematical 
Synibo1§. Meanip...g;, no.tn.tion 

.GT. Greater than > 

.GE. Greater than or equal t,-:> ~
 

.LT. Less than <:
 

.LE. Less than or equal to ::;
 

.~. Equal to
 

.NE. Not equal to i=
 



CHAPTER IV 

PIDGRANHING PROCEDURE 

It is very important to follo'l a proper procedure if a student 

is to Hrite a good progl'am. This chapter is devoW to the discussion 

of l'mat a program consists of and hm'l to ,mte a program. It contains 

some. FORTP.AN statements that are yet to be expla.ined but these are 

used so that the sample program is cOItlplete. 

I. PIDGRAJ.'1 

In general, a progl'am consists of six major parts; (1) beginning 

control cards; (2) the input instruction; (3) computations; (4) the 

output in.structions; (5) ending control cards; and (6) data cards. 

Begip,n1.:!J.g Cpnt.~l Card,s. These cards contain the informa.lion 

necessary for a computer to function properly. For instance, the 

FORTRAN RUN calU is necessary to start tho compilel-. '!he $NO HU1TIPLY 

DIVIDE ca:rd informs the compiler fuat the computer has no multiplying 

device. 

'!he Inm!!:, Instruction. This part instructs the computer to 

road the data and any other information necessary for solving a problem. 

'!his is accomplished. "rl.th a READ statement. A program nay contain 

IDOre than one READ statement. The data rea.d into the computer with 

a READ statement is automatically stored in the core storage. 

~mR..uta.,ti9lUi' This part I:lay be considered as the main part of 

a program. It consists of one or more aritb.n1etic statements. When 

the computation is long or cor..plex, this part may be divided into 



17 

sub::livisions. These subdivisions 801'0 ca.llod subprograms and a clet:liled 

discussion is given in Chapter VIII. 

~ Output Instructioll' This instructs the computer to write 

the data obtained from tho computation. This is accomplished with a 

WRITE statement. A prograrl1 may contain one or more ,.,RITE sta.tements 

and tho output data is usually printed on paper•. 

fu,ding ~.!:.!:2l Cards.. These control cards accomplish three 

things; (1) they inform the compiler of the end of the program; (2) 

they instruct tho computer to store the translalion of the program in 

the core storage; and () they instruct the cOlnputer to start process

ing the data. 

~ .9ards. Finally, data cards are placed. at the very cnd of 

each program. 

n. FLm'l CHART 

A fi01-T chart is a. graphic represontation of the method used 

to solve a problem. The purpose of a. nOH' chart is to help the reader 

as well as the writer to undorstand the logic of a complicated 

problom. Preparing a now cha.rt before wriling a. program helps the 

student to write a bettor program. A flow chart also helps the student 

to check the program after it is writton. 

A fiOH chart consists of 'trarious geometric figures connected 

by lines. The following is the doscription of various flow charting 

symbols which are commonly used in computer programming. 

A rectangle is used to represent computations. The statement 

number can be written in the upper left hand corner. 



~o 

END 

5TART 

READ A~BJG 

(THR.Ee AP!>E-ND$) 

FIGURE 1 

A FLO,' CHART ILLUSTRATING 
THE PIDGRAH W".r!ICH ADDS THREE NUl,mEre 

18 

A dinmon~ represents a decision point in a program, such as IF 

A ,;tra:pozoid is used for all input and output. 

A small circle may be used to connect various parts of a flow 

A hexag9_11 is used. to represe-nt a subprogram, a Library FUnction, 

SUM::: A-tB"'v 

chart. The circle may cont..'\.in a statement number. 

and FUNCTION or SUBROUTINE subprograms. 

statement. 

INT = LNT"t" 1.1 \ 

. I . 



19 

Sample !J.'ogram.. This program is for finding the awn of three 

numbers and it illustrates how a program is written from a flo'" chart. 

Three numbers whose sum is to be found will be on a data card. The 

computer is instructed. to read the numbers, label the first number A, 

the second B, l'.nd the third C, and store them. The sum of the three 

numbers is found, labled SUl1, and stored. '!here will be fifteen data 

cards. '!he variable name INT has the value 1 when the first data 

card is processed. The value of INT is, then, increased by one each 

time an additional dat-:t card is processed. \-1hen the value of INT is 

15, that is, when the fifteenth card is processed, the program is 

terminatoo. 

FORTFAN RUN 

$NO HOLTIPJ.,Y DIVIDE
 

. $lJO DICTIONARY
 

INT =0
 

4 READ (1,1) A, B, C
 

1 FOR·rAT (JFB.2)
 

SUM =A + B + C
 

INT =INT + 1
 

WRITE (3,2) A, B, C, SU}1
 

FORMAT (JF'8.2, F12.2)
 

IF (INT.NE.15) GO TO 4
 

END
 

LOADER RUN 

$EXECUTION 

2 



20 

Input datal 

2. 3. 5. 

1. 4. 7.	 
~ 

/	 3.4 5.2 4.8
 

lO. 12. 31.
 

'J 

Output: 

2.00 3.00 5.00 10.00 

1.00 4.00 7.00 12.00 

3.40 5.20 4.80 13.40 

10.00 12.00 31.00 53.00 

III. WRI'fING PROGlW1 

'1'0 a mathematician, programming is solving a problem using a. 

computer. Therefol'e, it is necessary to know how to solve the problem 

wi thout a. computer. The problem must be analyzed step by step. The 

student must, then, decide \~hich method or algorithm to use to solve 

the problem. 

The program is written in FORTRAN IV language. Each statement 

must be exact and accurate. Each statement, then, is punched on a 

standardized IBH card. 



Z1. 

Contro]~ Cams. The folloHing throe control cards must precede 

every source program. They are; 

FOHTMN RU1J
 

$NO HULTIPLY DIVIDE
 

$NO DICTIONARY
 

The FORTRAN RUN ~'l.rd must all-rays be the first card of every program 

and subprogrron. 

'!be follo'tdng two control cards must follo1-T every progra.m. They 

are; 

LOADER RUN 

$EXECUTION 

'!he $EXECUTION card must be the last ca.rd of evel-ry program. Data cal'ds 

are placed follO'tdng the $EX.ECUTION C<.1.rd. 

NamE'!. .Card. It is recommended that a name card be included 'tdth 

every program so that the computer opera.tor can identify tile source 

deck. The name card must have C punched in tho first column. The name 

may be punched in any of tile remaining columns. The na.me card should 

be placed i!nmediatoly follmdng tile first three control cards. 

Corl1l11ent Cards. The use of comrtent cams helps bot..l-} the writer 

and the reader to understand the program. A comment cam can be pre

pared by simply punching the letter C in tile first column. Any ex

planatory comments can be punched in the columns 2-72. The student is 

urged to make libel~al use of comment cards in the program. 

The COlTJIlont card. can be placed anyuhere in tile program. \>1hen 



22 

the compilor encounters a C in the first colunm, it ignores the 

remainder of the card, but the comment punched on the card will appoar 

in the program listing printed by tho computer. Every progre.m should 

hlave a comment card containing the title of the program and it should 

be placed immediately follom.ng the name card. 

IV. PREPARATION OF SOURCE DECK 

'!here are eighty columns on an IBN card for the FORTRAN IV pro

gra.mmer and they are divided into four groups. 

£2.1umns 1-5.. The first five columns 0.1"0 reserved for a state

ment nu:nbor. This number must be unsigned and five digits or less. The 

numeral 0 may not be used as a statement number and all statement 

numbers must be unique. HOl·rever, they need not be in any sequence. The 

statemont nur:lber 25 can be \'rritton B.ny\IDOI'O in the first five columns, 

provided that 2 appears first. 

Q;>lumn 6. If a statement is too long to write on one card, 

additiona! cards ll'.a.y be used up to nine cards. In this case, all 

addit.i.onal cards must cont.-'lin a character in the column 6r any letter 

of the alphabet or any number bebreen land 9 inclusive. The nlh"11bers 

or the letters need not be arraneed in sequence if more than one 

additional card is used.. The nmneral 0 should not be used. This 

method is often used in a FORl1AT state."'Tlent which prints headings or 

ti.ties. 

polunms Z-l~. The actual FORTRAN statements are written in 

these colu..'!lTls • 

.~.lumns 1:2-80. Those columns are not processed by the compile!" 



23 

and can be used for identification of the card. 

V. LISTING PROGRAH 

The source dock should be processed through the IBl1 407, the 

accounting machine. This machine transfers the information punched on 

cards into a readable document. The student is strongly urged. to check 

for possible key-punc.lt errors. 



ClLl\PTER V 

GENERAL FORTRAN STATEHENT 

'Ihroe types of FORTRAN statements are discussed in this chapter; 

(1) arithmetic statements which instructs a computer to perform an 

aritlunetic coraputation; (2) control statements l-Jhich indicate the 0 rder 

in 'tvhich other statements are perfor.med; and (3) specification state

ments 'uhich provides a computor the necessary information for storing 

and handling of data. 

1. THE ARITBHETIC STATEHENT 

A FORTRAN ari.thmetic smtement closely resembles a conventional 

algebraic forr-Ilula or an equation, except that the eq:u.al sign (=) does 

not stand for equivalence. 'fue general form is; 

a:::b 

where a is a single variable name and b is eifuel' a single variable 

name or an arithmetic expression. The following are examples of 

anthmeti.c statements. 

A:::B 

SUN:: X + Y 

roOT1 ::: -B + SQRT (B**2 - 4.*A*C) 

To a computer::: means, ""find a single numerical value equi

valent to the El:A-pression on the right of the = sign and store it in 

a location to bo roferred to by the varia.ble name on the left side 



25 

of the :: sign. The sample staterl1ent, StJ1'1 =X + Y, causes the computer 

to add the number represented by X and the number represented by Y and 

store the sum "hich is to be referred to by a variable name SUH. 

In an arithmetic statement the variable name on the left of = 
sign determines the typo of the number obtained from the expression on 

the right side of = sign. The expression cannot be of mixed typos. 't.lJ1.en 

an t"'.rithmet1c statement, J = B, is executoo, since J is an integer 

variable and B is a real variable, t.~e fractional part of the number 

represented by B is discarded. ani resulting number, '\'1h1ch 1s an integer, 

is stored and given the na.,7l10 J. 

When an arithmetic statement, A = L + H, is execut£.->d, b:o 

integer constants represented by L and N are added, the single result

ing integer is converted to a real constant, and this number is given 

the name A. If L =4000 and M = .500 in the statement above, then 

.45 x 104 is stored ill A. 

Samnle b.:qg,~. The following program is for finding the sum. of 

two nU!'l1bers and illustrates tho use of real variables and an arithmetic 

statement. 

'!he numbers \,rhose sum is to be found will be on a data card. The 

computer is instructed to read the numbers, label the first number X 

and. the second Y and store them. '!be sum of X and Y is found, labele::l 

Sill-f, and stored. Then, finally, the computer is instructed to print 

Xt Yt and the SUH. This program is wl"itten to process -only one data 

card. 



26 

FORTRAN RUN 

$NO HULTIPLY DIVIDE 

$NO DICTIONARY 

READ (1,10) X, Y 

10 FORHAT (2.F8.2) 

SUN =X + Y 

WRITE (3,11) x, Y, stm 

11 FOR11AT (JF8.2) 

END 

LOADER RUN 

$EXECUTION 

Input datal 

r.OO 4,00 

Ouputt 

4.00 7.00I3.00 

Every source program must contain three control cards at the 

beginning of the program am two control cards at the end of the progrmn 

as shown in the sample program above. Furt."ler information concerning 

these cards can be found on page 88. 

The first nu.-.nber inside the parentheses of the READ statement 

is a symbolic name of the input unit associated "Tit.h reading of calus 

am this number is always 1. The second number is a statement number 

of the FaRHAT statement that tells the machine where and in what form 



Z1 

the numbers al'O to be stored in the memory. The bro numbers 011 tho 

da.ta Ca,lU are rea.d in according to the FORHAT st-3.tement Hhose number is 

10. All numbers must be rea.d into the computer according to some FORHAT 

spocification. Further inforllUltion concerning FORHAT statGIllents can be 

found on page 54. 

The statement, SUH ::: X + Y, is an arithmetic statement "mose 

function is to perform computation. An anthmotic state!nent ahmys con

tains an ::: sign. 

'!he WRI'rE statement instruct.,:: the computer to ,·rri te the result 

of computation and any other information the programmer may uish to 

have. The first munbor inside the parentheses in the ,·tRITE statement 

is a symbolic name of an output unit associated with the printing of 

date'l and this nu..lilber is always 3 for the printer. The second number 

is a statement number of a FORHAT statement. The three numbers are 

printed aocording to the FOR:vlAT statement "mose number is 11. All 

output numbers must be printed according to some FOfG\IAT specification. 

Every program must end with an END statement. This stat€l111ent 

instructs t.1.€l compiler to stop translating. 

II. THE CONTROL STATEr·rENT 

'!here are, in general, three types of control statements; 

(1) GO TO statement; (2) IF statement; and (3) DO statement. 

The Uncondit;i~>nal GO TO Smtement 

In a program, sometimes it becomes necessary to direct the 

flOl..r of a program to a statement other than the one im.'Il1ediately 



28 

fol101ung. The GO TO stat.ement InD.kes it possible to go back to a 

st.o1.temont which ha.s already boon executed or sldp onG or more stato

ments. The general form is; 

GO TO n 

"mere n is a. statement number of an executable statement. 

Sanro1!'l PrOf;rarJ1. This program is 'Hritten for finding tho 

reciprocal of a. number and it illustrates tho use of t.1-J.o unconditional 

GO TO statoment. 

The computer is instructed to read a nU1:1ber, label it R, store 

it, and check it to soo if t.he number is zero. If the nn..'71bel' is zero, 

the computer is instl'Uctod. to skip the process of finding the reciprocal. 

Even the computer ca.nnot divide by zero. The number zero is labeled 

Yand the computer is instructed to "lrite R and Y. If the number is 

not zero, the reciprocal is found. and the computer writes the numbers 

Rand Y which is the reciprocal of the number. 

FORTRAN RUN 

$1:0 HUl,TIPLY DIVIDE 

$NO DICTIONARY 

READ (I,ll) R 

11 FOrn·fAT (F6. 2) 

IF (X - 0.) 2, 4, 2 

4 y =o. 

GO TO 7 

2 Y = l./R 



29 

7 VTRITE (3,12) R, Y
 

12 FOBr1ll.T (F6.2, FlO. 2)
 

END 

LOADER RUN 

$EXECUTION 

Input datal 

(4.00 
Outputz 

4.00 0.25 

~. Tho unconditional GO TO statement should not be used at 

the end of a program for the purpose of repeating the COn1put.-'ltional 

process when more than one data cards are used. The folloldng program 

is fine if it is processed through the computer by itself. This 

program will continue processing the data cards until there are no 1110re 

cards left in the input card hopper. Honever, the computer operator at 

the Data Processing Center processes several programs at a time. After 

the lll.st card of this particular program is processed, the computer 

will read the cards of the next progra."ll as data cards. If a repetition 

is desired, the student should use a DO statement. 

'lhe folloldng is a sample progr3Ill which contains an unconditional 

GO ro statement at the end of the program. 



30 

FURTRAN mm 

$NO l1ULTIPLY DIVIDE 

$NO DICTIONARY 

5 READ (1,21) S, T 

21 FURl'fAT (2F6. 2) 

QUOT = SiT 

WRITE (3,22) S, T, QUOI 

22 FORMAT ( 2F6.2, F10.2) 

GO TO 5 

END 

LOADER RUN 

$EXECUTION 

T!le Computed GO 'IO..Sytp.p1eE! 

This statement causes tbe computer to be transferred bacb1a,'d. 

or forevraro to the statement D n • • • , ~l' depending on the value1, 2, 

of i. The general form is; 

GO TO (n1, n2' ••• , ~), i 

where i is a nonsubscriptod. integer variable and it c-.a''l represent a 

number between 1 and 9 inclusive, and n is a statement number. 

Since the limit of i is 9, m cannot be larger than 9. In other 

words, the parentheses cannot contain more than nine statement munbers. 

Illustration. In the statement below, if :the value of K is 1, 

the statement 4 will be executed. If the value of K is 2, the state

ment 13 is executed, and if the value of K is 3, the statement 28 is 



31 

executed. Thus K is used as a code nUi11bor. 

GO TO (4, 13, 28), K 

Samnle ProgrtJJ;1. The follo....n.ng program. is for finding the square 

root of a n1.ullber or the squnl'e of the nmnber. The computer is instructed 

to rend hro numbers, label the first number X and the second K and store 

them. If K is 1, the square of the nu,..,ber is found and given the name 

Y. If the value of K is 2, the square root of the mmlber is fm.md and 

given t.'rl.e name Y. The computer then is instructed to write X, K, and Y. 

FORTRAN RUN 

$NO HULTIPLY DIVIDE 

$NO DI CTIONARY 

READ (1,31) X, K 

31 FORHAT (F6.2, 14) 

GO TO (42, 41), K 

41 Y = SQRT (X) 

GO ro 61 

42 Y = X**2 

61 WRITE (3,32) X, K, Y 

32 FOm·rAT (F6.2, 14, F8.2) 

END 

LOADER RUN 

$EXECUTION 

Input data. 

~1
 



32 

Output; 

li2.00 1 144.00 
I 

I 

Tho Logical IF Statemollt: 

The purpose of the logical IF statement is to make a decision. 

Depending upon t.."le value of a logical .ucpression, (a), choice is maa.0, 

deciding ,·rhich one of hro statements to execute next. The genoral 

form is; 

IF (a) s 

If the logical expr0ssion, (a.), is false, the computer executes 

the next sequential statement. If (a.) is true, t.'le computer executes 

the s, where s is a statement, not a statement number. GO TO state

ment is often used along with the logical IF statement. In the partial 

program below, if I = :3 and L =4, then (LGT.L) is false and the state

mont immediately follOldng the IF statement is executed. But, if I = 4 

and L =3, then (LGT.L) is true ani the s+.atel710nt 24 is executed next. 

Thus, the second statement is bypassed. 

• 
• 
•
 

IF (LGT.L) GO TO 24
 

X=A-B
 

24Y=A+B
 
•
 
• 
• 



33 

S8.E~rle P~.,gr..:~TI!.' 'ibis program finds t..lle avorage of three 

numbers and illustrates the use of a logical IF statement. 

'Ihe computer is instructed to read throe numbers on a data. card, 

label the first A, the second D, and the third C, and store them. Then, 

the three nUJ1lbers are added and the SlUll is divid0d by t.~ree to find the 

average. The resulting nu..11lber is labeled AVFfJ and stored. Tho computer 

is instructed to print three nu.'11bers and the average, AVID. The value 

of INT is initially zero and each time a data. card is processed, one is 

added to the value of TNT, thus at t..lle end of processing the fifth 

card, the numerical value of INT is 5 and the program comes to an end. 

As long as the value of INT is not 5. the loop is repeated. Naturally, 

this program must be fOTIOHed by five data cards. 

FORTR.4.U RUN 

$NO HtlLTIPLY DIVIDE 

$NO DICTIONARY 

12 INT =: 0 

13 READ (1,5) A, B, C 

5 FOfd·~T (3F6.2) 

AVEG =: (A+B+C)/3.0 

WRITE (3,6) A, B, C, AVFf3 

FOPJ1AT (3F6.2, FlO.2) 

TNT =: TNT + 1 

IF (I~~.~E.5) GO TO 13 

END 

LOADER RUN 

$Ei.."ECOTI011 

6 



34

Ir.put data; 

/~ 

2.0 3.0 7.0 

/ 
1.5 2.5 4.4 

20.0 30.0 

-

30.1 40(5 

/ 
100. 300. 50°. 

Output; 

r 
2.00 3.00 7.00 4.00 

1.50 2.500 4.40 2.80 

10.00 20.00 30.00 20.00 

20.30 30.10 40.50 30.30 

100.00 300.00 500.00 300.00 

The Arithrnej?c IF Sta;t,ement 

The arithlnetic IF statement is very similar to the logical IF 

statement. The only difference is that the aritlunetic IF statement 

contains an ar-l thmetic OA-pression inside the parentheses and the 

logical IF statement contains a logical expression inside the 

parentheses. The general form is; 

IF (a) n1, n2' n3 



35 

lmere (a.) is an aritlulletic expression of either type integer or type 

real, and n is t.lte s-wtement number of a.n executable statement. 

The ?Ul-POSe of an arithrnetic IF statement is to instruct the 

computer to execute one of three specified statements, depending on 

the value of (8.). If the expression (a) is negative, the computer 

executes the statement n1' If (a) is equal to zero, the computer 

executes the s'U\tement nZ' If (a) is f')si tive, the computer executes 

the statement n3' 

n;t-q,s:,:-£ili<m.. In the partial program below, if' A =3 and B = 5, 

the statement 2 is executed. If A :: B, the statement 4 is executed, 

and. if A = 2 and B = 1, the expression (A - B) is positive and the 

statement 6i5 executed. 

IF (A - B) 2, 4, 6 

2 Y = (A - B)**Z 

4 Y =o. 

6 Y= SQRT (A - B) 

SamPle Progrmll. '!his program finds the square root of a 

number and it illustrates the use of an arithmetio IF state-!'lent. The 

computer is instructed to read a number, label it X. and store it. 

If the number is negative, the additive inverse of the number is 

found and the square root is ccrnputed. If' the number is positive, 

the square root of' the number is coro.puted immediately. The computer 



36 

is then instructed. to ..rrlte the number and the Dquare root. Check

ing of the number is done by the IF statement. If (0. - X) is negative, 

the number is posilive and the statement 3 is executed next. If 

(0.	 - X) is zoro, the number is zero and t.1-}e statement number 4 is 

executed next. If (0. - X) is positive, the number is negative and 

the statement 5 is executed next. 

FORTRAN RU1J 

$NO l1ULTIPLY DIVIDE
 

$NO DICTIONARY
 

READ (1,11) X
 

" 11	 FOHHAT (F6.2)
 

IF (0. - X) 3, 4, 5
 

5 X = -x
 

Y = SQRT (x)
 

GO 'IO ?
 

4Y=X
 

GO TO ?
 

3 Y =SQRT (x) 

? imTi (3, 12) X, Y
 

12 FOR·1AT (F6.2, FtO.4)
 

END
 

LOADER RUN 

$EXECUTION 

Input data; 

f'OO
 



J7 

Output; 

2.00 1.4142 

The	 DO Stateme"D1 

In computer progranmting I the "lOrd loop means a sequence of 

statements l-mich is used. more than once in a particular program. The 

use of loop is an important aspect of programming and most programs 

usually cont.1.in at least one loop. One of several ways of perforl1'J.ng 

a loop is accomplished by the DO statement. The DO statement is an 

instruction to execute repeatedly a certain set of statements that 

follow. One DO statement performs four operations. 

1.	 It designates the sequence of statements lmich is to be 

iterated. 

2.	 It defines a variable imtially to have some specific value. 

J.	 It increases the variable by a given amount after each 

execution of tbe sequence of statements. 

4.	 It tests that value to determine if the required number of 

instructions has been perfo:rrned. 

'!he	 general form is; 

00	 n i = mil r.121 lllJ 

where n designates the number of the last of the sequence of state

ments to be executed. '!he i is any nonsubscripted integer variable. 

The m is 8ithe::- an integer or i..'lteger variable. Initially I the state



38 

ments following the DO statement and up to and including the statement 

nU1l1bercd n are executed with the value of i equal to the value of rn:L. 

'!he loop is repeat!~ with t.~e value of i increased by the value of Ill3 

each time. The looping process is terminated when the value of i 

exceeds the value of m2' At this time the computer executes the next 

executable statement follo'l-dng the statement numbered n. If the value 

of Ill3 is not specified, the co:nputor 'W.:.1l assume it to be 1. 

'Ihe range of the DO statement is that sot of statements that 

ldll be executed repeatedly follm·r.ing t.lJ.e DO statement. In tho partial 

program belo't'T, the value of I is initially 1. The value of I then in

creasos by one each time the loop is eX0cutod. and lmen the loop ha.s 

been performed ten times, the progrolll comes to an end. 

• 
• 
• 

7 DO 5 I :: 1, 10, 1 

READ (1, 51) P, S 

51 FOHHAT (2F8. 2) 
Loop 

RATE:: pIs I Range

5 WRITE (3,52) P, S, RATE 

52 FORiAT (zre.2, FlO.3) 

ID.'D 

The two progra.ms following illustrate the use of a DO state-mente 

'!he first program does not make use of any DO statement, but the second 

one does. Each program reads in fifteen numbers an:! finds the SUlll of 

all fifteen numbers. 



39 

In the first program the looping proCGSS is accomplished by an 

arlthmetic IF statement and an unconditional GO TO statement. The 

value of INT is 1 during the first execution of the loop and increased 

by	 one before each additional repitition. After the last data card is 

processed, the value of INT is 16 :md (INT - 15) is positive. Thus the 

computer executes the statement 8. 

FORTRll.N RUN FORTRAn RUN 

$NO 11ULTIPLY DIVIDE $1'10 11ULTIPLY DIVIDE 

$NO DICTIONARY $1:0 DICTIONARY 

SUH =O. SUM =O. 

INT = 0 DO 4 I =1, 15 

5 INT =INT + 1	 READ (1,1) X 

IF (INT-15) 9,9,8 4 Sill'! =SUH + X
 

9 RE.AD (1,1) X WRITE (3,1) SD11
 

1 FOm·1AT (F'6. 2) 1 FORMAT (F6.2)
 

SUH =SUH + X END
 

GO TO 5 LOADER RUN
 

8	 WRITE (3,1) Stn1 $EXECUTION
 

END
 

LOADER RUN
 

$EXECUTION
 

. .l'l.w NQ,sted DO ~ooE 

A 00 statement can be contained lTithin another DO statement. The 

index of each DO statement in a nest lnust have a different variable. 

The	 max:l.m'lL"!l depth of nesting is t'tie1ve. That is, a DO statement can 



• • • • • • • • • • 

lJ{) 

contain ll. second DO statement, the second can con't<1.in a third, the 

thi~ can contain a fourth, and so on up to ttvelve statements. 

The nOli of the program may be transferred from a statement 

within a 00 loop to a statement outside of a 00 loop but the now of 

the program cannot be transferred into the range of a DO loop from 

outside its range. 

Pe:rmissible Not 'Dennis.s:i;.bl.e 

DO S I = 1, 10, 1 DO 8 M=1, 30, 1 
• • • • • • • • • • 

l 
IX) 6 J = 1, 
t • • • • 

6 • • • • • 

20, 1 

I I • • • • 

.. . . . . 00 9 N = 1, lJ{), 

8. 

1 

S •• • • • 9 •	 • • • • 

Any statement that redefines the index is not permitted in the 

range of a DO loop. The range of a 00 loop ca.nnot end w:i.th a GO TO 

type statement or another 00 statement. But the range of a IX) can 

end with a. logical IF. In this ca.se the control is transferred as 

follows I 

1.	 If t.h.e value of the expression is false, the control returns 

to the 00 statement. 

2.	 If the value of the expression is true, s is executed, and 

the control returns to the 00 statement. 

The first and the last statement in the range of a 00 statement 

must be executable. It is recoIJ1.'llendcd that only executable statements 

be written in a DO loop. 



41 

SalnD;t~ Prog..ri':r!l. The folloHing progrmu adds tiro threo-by-three 

matrices and it illustrates the uso of a nested DO loop. This program 

is follmved b:)T six data cards. Tho first data. caro contains the three 

numbers of the first re'{, of A matrix. The second data card contains 

tho three numbors of the second. 1'0'" and the third data card contains 

the three numbers of tho third ro..r of A matrix. 

The fourth data card contains the throe numbers of the first 

rolf of B ma.trix, the fifth data card contains the throe numbers of the 

second rm'1. and. t.l-].o sixth dat:l card contains tho three hUI1lbers of the 

t.'I1ird 1'0\" of B 11latrix. 

The ~lrst 00 statement reads in the A matrix. When the computer 

roads in the first data card, the first numbor is labeled A(l,l), the 

second number A(l, 2), and tlle third number A(1,3), :md stores the.'11. 

When the second data card is l'ead, the computer la.bels tho first 

number on this cal'Cl A(2,1), the socond munber A(2, 2), and the third 

number A(2,3). When the third data card is read, the computer la.bels 

the first number on this card. A(3,1), the second number A(3, 2), and the 

third number A(3, 3), and storss them. 

The second. DO statemont reads in the B rna.trix and the procedure 

is t.'I1e same as the one described for reading in the A matrix. 

The last ttro IX) statements are associated l-r.1.th the addition of 

the matrices. During the first part of computation J and I are both 

assigned the value 1. A(l,l) is added to B(l,l), the SlL'll 1s labeled 

C(l,l), and the number represented by C(l,l) is printed along vIi th. 

the subscripts I and J. J is now assigned the value 2 and A(1,2) is 

added to B(1,2), the sum is labeled e(l. 2), and it is printed along 



42 

"lith its subscripts. It should be reca~led that the valuo of I is 

still 1. J is now assigned the value 3 and. A(1,3) is addod to B(1,3), 

the surn is labeled C( 1, 3) and printf.,>d along with its subscripts. 

The socond 00 loop is satisfied and the index of the first 00 

statement I is assigned the value 2 and the second. DO loop is repeated. 

A(2,1) is added to B(2,1) and the sum is labeledC(2,1) and pl·inted. 

A(2,2) is added to B(2,2) and the sum is labeled C(2,2) and printed. 

A(2,3) is added to B(2,3) and the stUn is labeled C(2,3) and p14inted. 

I is now assigned the value 3. and the second 00 loop is repeated 

for the third ti.me; A(3,1) is added to B(3, 1), and so on. 

FORTRAN RUN 

$NO MULTIPLY DIVIDE 

$NO DICTIONARY 

nD·1ENSION A(3,3), B(3,3), C(3,3) 

00 5 I = 1, 3 

5 ~~ (1,1) A(I,1). A(I,2), A(I,3) 

1 FORHAT (3F6.2) 

00 6 I = 1, 3 

6	 ~~ (1,1) B(I,1), B(I,2). B(I,3) 

00 7 I = 1. 3 

00	 7 J ::: 1. 3 

C(I,J) =A(I,J) + B(I,J)
 

7 \{RITE (3,2) C(I,J), I, J
 

2 FOm1AT (FS.2, 2I1})
 

END 



43 

LOADEH RUN
 

$EXECUTION
 

Input datal 
/ 

2.00 14-.00 

6.00 2.00 

5.00 9.00 
-

6.00 8.00 

1.00 3.00 
-

3.00 2.00 1.00 
I 

Ouput: 
J- 

6.00 1 1 

8.00 1 2 

12.00 1 3 

6.00 2 1 

7.00 2 2 

5.00 2 3 

10.00 3 1 

7.00 3 2 

10.00 3 3 



IJ4, 

]1e Implie£...DO. Loop 

The iIlrplied 00 loop is very similar to the regular DO loop in 

that a sequence of statements is g'..{ecuted more than once. However, 

unlike the regular 00 statement, the implied DO loop does not use the 

DO statement. Instead, the repetition is accomplished by the subscript 

method. 

The folloHing partial progl"arn illustrates the use of tho implied 

DO loop in a READ statement. It is desired. that an array of numbers 

consisting of four reus and five colu.'ID1s be read into the computer. 

M represents the number of rom~ and N represents the number of columns. 

llie follovdng four statements accomplish this. 

READ (1,1) H, N 

1 FORHAT (2.11.,,) 

READ (1,2) «A(I,K), kl,N), K=l,N) 

2 FORHAT (FB.2) 

The first data card contains bia integers, }j and N, four and 

five repectively. At first, the subscript I is assigned. the value 1 

and the Ie is assigned 1 also. With tho value of K fixed, I varies from 

one to five. The first number is labeled A(l, 1), the second A(l, 2), and 

so on. \'Then the numbers of the first 1'OI,r are read in, the K is assigned 

the valu.e 2 and I varies from 1 to 5. The sixth number is labeled 

A(2, 1), the seventh number A(2, 2), and so on. ~fuen the v.uue of K is 4, 

the last ro1-l is read in and all numbers are stored in the core storage. 

The disadvantage of this statement is that each number must be punched. 

on a card indiv:Ldually. 



45 

The cOln:J}~lL~t-'J. top;,en.t 

The CONTINUE is a dummy state:nent that does not produce any 

executable instructions. Honever, if it is desirod to return to t.lJ.e 

DO statGli1ent in such a Hay that the index "'Till be incremented., but the 

last intended statement in the IX) range is one t..~at is not permissible, 

such as a GO TO statement, then a eX)NTINUE is used as the last st.3.te

ment of the 00 range. 

'!he partial program below' contains the statement 12 uhich is 

not to be executed 't>rith each repetition of the loop but only 'tmen the 

value of K is 1. '!he value of K is li:mitoo to 1 and 2. The sUttement 

12 is the last intended stx..1.tel1lent in the DO range but it is to be 

executed only when the value of K is 1. Since it is not to be executed 

\rl.tJl each perfOl'"ffial1Ce of the loop, it cannot be the last statement in 

the range. \-/hen the GO TO statement is executed, if the value of K is 

2, the control is transferred to the statement 8 and from there to the 

00 stAtement causing the value of I to increment. The CONTINUE state

ment servos as a very convenient last step of a DO range. 

5 DO 8 I =1, 100, 1 

READ (1,1) P, K 

1 FORI·rAT (FB.2, Il.") 

GO TO (12, 8), K 

12 TOT = TOT + P 

8 CONTINUE 

'IheSTOP ~ ta.~me.nj:..
 

This stt,tement also halts t.lJ.e computer but the student in the
 



••• 

46 

progra1.l11nin(; cou.rse is asked not to use this statoment sinco several 

programs are processed at tho same time and pressing the START key 

will not st3.rt the computer to process the next program. 

The END Statemel1~ 

'lliis statement must be the last sto'ltement in every FORTR~N 

program and it defines the end of a program. This statement infoms 

t..l:te compiler fuatit is the end of the program. The END statement is 

not executable and a program may contain only one END statement. The 

general form is; 

END 

The DUlENSlON Statement 

This statement provides the compiler vrl.th the infoI'I1L'l.tion 

necessary to assign and locate storage spaces for arrays of nlunbers. 

When the compiler encounters a non-subscripted variable, it assigns a 

single storage location to that variable and the variable is referred 

to by its address. T,-lhen a subscripted variable is used in a program, 

the size of the array must be designated to the compiler sinco many 

numbers are represented by a single variable. The compiler sets aside 

the right amount of storage space for each subscripted variable. The 

general form is; 

DIHEl!SION VJ. (l~), vZ(kZ)' 

where v is the variable name and k is composed of one, uro, or three 

integers separated by commas. This number specifies the size of the Rr:ray. 

A single DHlENSION sta.tement can specify the dimension of any 



47 

munber of arrays. The DIHENSION statornol1t must precede the first 

appearance of each subscripted variable. The Program B in the Appendix 

illustrates tho use of this stato~ent. 

'!he COBJ.lON S't:'l.tomen.:t 

'!here are at least tvlO occasions in which sharing of the storage 

may be necessary; (1) the information used in the main program is used 

again in a sub-program; and (2) the main program uses a certain amount 

of storage space for a tem;?orary vlOrk and a subprogram uses a storage 

space for a tarnporary vmrk. \Vit.lt a COl-1l-10N statement, both the mcin 

program and the subprogr<:'J1l can use the sarae storage location. Some

times a program lmich is too long for a smaJJ.er computer to handle 

can be vrr:i.tton shorter with a proper use of COHHON statements. The 

general form is; 

COl,JHON a, b, c, ••• 

where a, b, c, ••• , are the nal'i10S of var-lables assigned to a common 

storage. Usually they are array names which can be dimensioned. 

If one part of a program has tho statement COBBON A and a sec

ond part of the program or a subroutine has the statement CONHON B, 

the variables A and B will share the same storage location. If the 

main program contains the statement COHHON A, B, C, and a subprogram 

contains the statement C011HON X, I, Z, t.lten A and X will occupy the 

same location, Band Y will occupy the same location, and C and Z 

w:lll occup:,r t.~e same location. 

A CONrl!ON statement may contain a d'l.ln1Il1Y name. That is, if the 

main program cont..uns the stG.te:nent, 



48 

cm1HON A. B, C 

and it is desired that the array R in the subprogram share the srone 

location as the array B. This can be accomplished by writing in the 

subprogram, 

CONHON S, R 

where S is a du.11IDty array name. The nrrays B nnd R ..'1.ll occupy the 

same location. 

The storage area referred by the COHHON statement must be dimen

sioned and tho dimension statemont must precede tile COlll;10N statement. 

However, it is possible to use OOI1HON statement with dimensions. The 

first two statements below can be replnced by the third statement. 

lDlIlENSION A(100). C(JO)
 

CONliON A, c
 

COr,mON A(100), C(30) 

It is important to realize that the variables used in the 

COl-1MON statement in the main program and the variables used with the 

COHMON statement in the subprogram must correspond in type and in order. 

'!he first statement below belongs to the main program and the second 

statement belongs to the subprogram. It should be noted that A and C 

share the COnlIllOn location and they are both of the same type, that is, 

they aro both real variables. J and I share the same location and 

they are bolli integer variables. 

CO}fr~ON A, J, K, R, S 



••• 

49 

COHHON C, I, ~1, X, Y 

The mUIVALENCE St.-'ltement 

The EQUIVALENCE statement, a non-executable statement, is very 

similar to the CON!"rON statement in that both are used to conserV'e 

storage space. The COHr,rON statement provides a facility of having a 

main pl'Ogram and its sUbprogram reference the same location. The 

mUIVALENCE stateulent provides a means whereby the same loca.tion vrithin 

a single progl'am may be used for the stora.ge of mOl'e than one variable 

or array. Tne general form is; 

EQUIVALENCE (a, b, c, It.), (s, t, u, It.), 

In the sample statement below, variables A, D, and F share the 

same location and P(I) and Q(J) share the same location. 

EQUIVALENCE (A, D, F), (P(I), Q(J» 

The mmVALENCE statement can be placed anylomere in the program. 

Once the memory allocation has been made, it cannot be changed. It is 

improper to write another EQUIVALENCE statement which contradicts the 

prevIous allocation. The variables that are made equivalent must be 

of the same t~'Pe and none of the dummy arguments may appear in an 

~UIVALENCE state."J1ent. 

'Ihe Ty...r2G_St.9.temant 

'!he pUrpO;30 of a type statement is to specify the type of numbers 



••• 

50 

to be associated to a variable name. 'The type statement 1112.kes it 

possible to use real variables as intec;er variables and integer variables 

as real variables. 'The general forms are; 

INTlDJER a, b, c, •••
 

REAL a, b, c. • ••
 

EXTERNAL p, q, 1",
 

mere a, b, c, ••• are variable names appearing within tile program and 

p, q, r, ••• are function or subroutine names appearing as actual 

arglunents within the program. 

The appearance of a name in the list of a type statement nullifies 

the predefined type indicated by the first lette:r of the name. The 

appearance of a name in the list of type statement designates the type 

pennanently in t.he program and it may not be changed. A llame can 

appeal" in only one type statement and the statement must be placed in 

the program such that it precedes the fi:rst use of it. 

'lh.e first statement below specifies that all the names listed. 

are of integer type and the names OJST and BETA l:l.sSUI!le integer values. 

In the second statement nanies K and Hax assume real values. The names 

CAT and BEE are names of a FUNCTION or SUBroUTINE subprograI!1 and they 

are passed as an argument from one program to another. 

INTEGER OO'lT, BETA
 

REAL K, MAX
 

EXTERNAL CAT, BEE
 

Sa.l')T"2.l0 PJ'£>...~"$'n'!" 'Ihe folloi'n.l1g program finds the area of a 

circle "-mosa radius is N which is an integer variable but the type 



51 

statement ma.de it a real variable and it can be multiplied to a real 

number. 

FORTRAN RUN 

$NO HULTIPLY DIVIDE
 

$NO DICTIONARY
 

REAL N
 

READ (1,5) N
 

5	 FORHAT (1<'6.2)
 

A = 3.14*1-:**2
 

VlRITE (3,5) A
 

END
 

LOADER RUN 

$EXECUTIOH 

'!he	 DATA StatE;,m!l.l1~ 

This is a non-executable statement. and its purpose is to assign 

initial values to ordinary and subscripted variables. The general 

form is; 

DATA list!dl' d2, ••• , dn!, list!dl' dZ r ••• , dn!, ••• 

where list contains ordinary or subscripted variables separated by 

commas and d's are the 1nitial values to be assigned to eac.'t of the names 

in the associated list separated. by commas. 

illust.ratio~s•• 

Statement DATA R/~.5! 

Stored. value R = .~5 x 102 



52 

Statement DATA A, B, K/ 32.7, 0.05, 54/ 

Stored values A = .327 x 102 

B = .5 x 10-1 

K =54 

There must be a correspondence between t.~e initial values and 

the names in the list. The value of d1 is assigned to the first name in 

the list and d2 is assigned to the second name and so on. It should be 

noted that the variable names appearing in a DATA statement cannot 

appear in a COHHON statement. 



CHAPTER VI 

INPUT/OUTPUT STA'rEHENTS 

The input statements handles the tra.nsmission of data bet,-reen 

t.'le computer and input devices such as the ca.rd reader and the output 

statements handles the transmission of data bet"reen the computer and 

the output devices such as the card punch or printer. The I/O state

ments fall into one of the following general categories; (1) FOR·rAT 

statements; (2) General I/O statements; (3) Hanipulative I/O state

ments; and (4) I/O specification statements. 

llii §pecificlltion.~. An I/O list is a series of. items that 

are separated by commas. A single list item can be a subscripted or 

non-subscripted variable. An I/O list is read from left to rieb-t. 

The data card for the following partial program should have three 

numbers and the first number on the data card will be labeled as X, 

the second number as Y, and the third. m.unber as P. 

• 
• 

READ (1,.5) X, Y, P 

.5 FO~1AT (3F'8.2) 
• 
• 
• 

An I/O list is ordered. The order must be the same as the order 

in which the numbers appear on the data card. The order must also be 

maintained when numbers are printed. 

ilia READ or URITE statement can contain one or more implied 

00' s. '!he I/O statemont containing parenthese is executed in a manner 



54 

similar '00 the execution of a 00 statement. The left parentheses 

(except subscripting parentheses) are treated as though they were a. 

00 SMtement. The ti..~ statements on the left are equivalent to the 

three statements on the right, 

READ DO 8 I (1,3) (X(I), I =1,10) = 1, 10 

3 FORHAT (FS. 2) 8 READ· (1,3) XCI) 

3 FOR'lAT (FB.2) 

The FORHAT St~..t;:emont 

The FOm·fAT statemont tells 'Where and in "That form the data 

appears on the card if the statement is used wit.l), a READ statement. 

It also tells where and in what fonn the data is to be printed if 

the statement is used "'lith a WRITE statement. The FORNAT statement 

is non-executable statement which must always be used ..d th a READ 

or WRITE statement, The general form is; 

n FOm'rAT (s1. 52' •••• 5n) 

where n is the statement number and s is a series of specifications 

separated by commas. Each FORHAT statement must always be given a 

statement number and. the specificat.i.ons must be ordered and consistent 

with the data on the input or output record. There are three types of 

specifications. In the follovdng list, I. F, and E indicate the type 

of numbers, w irrlicates the width of a number or the number of digits 

in a number. and d indicates the number of digits to the right of the 

decimal point. 



55
 

Specifica.tiP.ll Tvoe of Number 
~ .. §canmle 

ltv Integer FOR-·lAT (14) 

F\·T.d Rea.l without exponent FORHA'f (F6. 2) 

Ew'.d Real with exponent FOro·rAT (E10.4) 

The data. card. for the partin]. program below must contain three 

numbers. The first number, which will be labeled K, must be an integer 

with the widt.h of four digits. The second number on the data card, 

which will be labeled S, must be a real number without an o:A'Ponent with 

the width of six, of which tvl0 are to the right of the decimal point. 

The t..1.ird. nmnber on the data card, l-Thich "rill be labeled. T, must be a 

real number with an exponent with the vn.dth of ten, of l-1hich four are 

to the right of the decimal point• 

• 

READ (i,h) K, s, T 

4 FO~~T (14, F6.2, EiO.4) 

The w or the width of a number can be greater than that required 

for the actual digits. This is often done to provide s!,acing of the 

numbers. For example, the statement, FORt-fAT (13, Ei2.l~, FiO.4) causes 

the following line to print. 

Number in storage Z1 -64.8923 -0.007634
 

Specificalion 13 Ei2.4 FI0.4
 

Printed line b27b-0.6489Eb02bbb-o.0076 (b indicates a blank) 

In detemining the width 1'T for E-specification seven spaces 



.56 

must be roserved in additi.on to the number of digits to the right of 

the decimal point. The following accounts for the seven spaces; one 

for the sign, one for the decimal point, one for a possible zero that 

precedes the decimal point if the absolute value of the number is less 

than one, one for E, one for the exponent sign, and two for the ex

ponEmt. Thus w~ d + 7. 

In determining the 1Hidth for F-specificaion, three spa.ces must 

be reserved. in addition to the number of digits to the right of the 

decir.1al point. The sign, the decimal point, and a possible zero that 

precedes the decimal, each take up a space. 

For I-specification only one additional spa.ce is necessary for 

the sign. Caution must be taken in punching integer numbers when I

specification is used. In I-specification the nUlllbers must be right 

justified. Blanks cannot be used to the right of the number. If a 

number is read with FOU1AT (15), and the number is 25, 2 must be 

punched in column four and 5 in colu.1'lll1 five. If 2 is punc..'I1ed in 

column three and 5 in column four, the number is read in as 250. 

The following are examples regard..:inc the type od' output various 

specification will produce. The mllnber stored in t..lJ.e memory is -345.6. 

~uecification Output 

F5.0 -345. 

14'6.1 -345.6 

F7.1 b-345.6 

E10.2 -)4.5E+01 

The specification F5.2 is not acceptable since the width of 5 is 



57 

not large enough to accomodate the number. If tv10 digits are to be 

used to the right of the decimal point, the Hidth must be at least 7. 

'!he specifiCo"ttion E9.4 is also incorrect for '\:P.is number. The width 

must be at least 11. The follmdng are examples regarding the type 

of output various specifications rrill produce. The number stored in 

the memory is +22.F'+5. 

~pecification Output 

EE.O b22.E+05 

ElO.O b22000.E+02 

E15.6 bbb2.200000F,...o6 

The specification E15.7 ldll not accomodate the number since 

the width is not large enough if seven digits are to be allolved to 

the right of the decimnl point. The number in t.h.e memory is 1'5 for 

the follol·ring illustrations. 

Specifica.tipn Ouwut 

13 blS 

16 bbb}l5 

The specifications nand 12 are incorrect for this number. 

&phameric Fi~ds 

'!he alphameric characters consist of nuwbers 0 through 9, 

letters A through Z, and other characters such a.s $, =, blank, I, -, 
(,), C.), +, and *. Alphameric values rather than numeric values may bo 

substituted for variables. For eY..ample, the variable COST may be 

replaced by the letter P just as in the case vThere X may be replaced 



.58 

by 45.3. 

A-Conv0rsi.CUl 

In oroer to read in or write out the alphameric da.ta, A-specifi

cation must be used. The general form is, 

FORHAT (MU) 

where n indicates the number of repetition and W' indicates the width 

of the field or the number of characters. 

If an input record contains one character B and it is desired 

that a five character variable, DELTA, to be defined as the value B. 

The necessary statements are as folloW's; 

READ (1,3) DELTA 

3 FO~IAT (Ai) 

'!he following sample program illustrates the use of alphameric 

data. It reads in the letters A through Z and stores A in XA, B in 

XB, C in XC, and so on. Then, the computer prints two words, YJillSAS 

and OOLLmE. 

FORTRAN RUN 

$00 l-IDLTIPLY DIVIDE 

$NO DICTIONARY 

READ (1,3) XA, XB, XC, XD, IE, XF, XG, XlI, XI 

READ (1,3) XJ, XK, XL, XM, XN, XO, XI', XQ, XR 

READ (1,3) XS, XT, XU, XV, »1, XY, XX, XZ, X

3 FOro-rAT (9A1) 



Input datal 

Output I 

59 
WRITE (3,4) XK, XA, IN, XS, XA, XS t 

WRITE (3,5) XC, XO, XL, XL, XE, XG, XE 

4 FORHAT (6Al) 

5 FOFJ1AT (7Ai) 

'" END 

LOADER RON 

$EXECUTION 

ABCDEFGHI 
, 
JKLMNOPQR 
, 

STUV\'lYXZ-

KANSAS 

COLLEGE 

Since the FORMAT specification of the input is Ai, the letters 

on each input card must be punched without any space between letters and 

tho first letter must be punched in column one. 

H-Conversion 

The H-specification is used chiefly to print messages and head

ings in the output. The general :rom is; 

nH 

where n rapresents the number of characters following the H.
 

Sa,rgple Program. This program reads in tiro numbers. finds the
 



60 

sum and the difference of the two nu.111bel's, and prints the headings and 

the 1'Osults. 

FDRTRAN RUN 

$NO l1ULTIPLY DIVIDE 

$NO DICTIONARY 

INTEGER SUH, DIFF 

READ (1,6) 11, N 

6 FOm'lAT (2IS) 

SUH =M + N 

DIFF = 101 - N 

WRITE (:3,21) 

\<TRITE (3,22) 

WRITE (3, 23) SUl1, DIFF 

21 FO.ffi'1AT (14H ASSIGNNENT #3) 

22 FaRHAT (1.5H JOHN PATtERSON) 

23 FOro-fAT (7H SUH = , IS, 14H DIF1''ERENCE = , IS) 

END 

LOADER RUN 

$EXECUTION 

Input datal 

(7 4
 
Output. 

ASSIGNI1ENT #3 

JOHN PATTEP.sON 

StJ1'! = 11 DIFFERENCE = 3 



61 

It is recommended that the space followinG the H is left blame, 

unless the studcmt wishes double spacing in the printing of output 

records. In t..'I-}at case the muneral 0 is punched in the space immediately 

follol·ring tho H. Tho student must be careful not to punch the letter 0 

instead of the numeral O. The letter 0 follolring the H will cause the 

printer to dispense many feet of printing paper uselessly. 

Blank .Fields {~-.Conve.rsi~12) 

The general form is; 

nX 

Used in an input F01l~!AT statement, this causes the next n 

characters in the input record to be stipped or ignored regardless of 

what they are. Used in an output FORi1AT statement, this causes n blank 

characters to be inserted in t..l).e out-put record. This is useful in 

providing a space betr'1oon successive output fields. 

Sanmle P~g~~. '!his program simply prints the t,'!;ro words, 

PRODUCT and QUOTIENT, and two numbers represented by Hand N. 11 = 123 

and N = 321. 

FORTRAN RUN 

$NO JlfULTIPLY DIVIDE 

$NO DICTIONARY' 

\'TRITE (3,6) 

WFO:TE (3,7) N, N 

6 FOffi1AT (8H PRODUCT, 5X, 9H QUO'rIENT) 

7FOm{AT (I?, SI, 18) 



62 
END 

LOADBR RUH 

$EXECUTION 

Output: 

PRODUCTbbbbbQUOTIENT (line 1) 

bbbb123bbbbbbbbbb321 (line 2) 

~petitio..!l..2f. I?-.e;L~. FOPJtA~ 

v1henever input or output fields have identical rom'lAT specifi-

CAtions, it is not necessary to repeat t..~e FORl-iAT specification vrl..t.~in 

one FORl:IAT statement. This is accomplished by placing an intoger in 

front of the E, F, I, or A. The second FORHAT statoment is equivalent 

to the first one. 

3 FOilllA'£ (F6.2, F6.2, F6.2) 

3 FOI,HAT (3F6.2) 

Repeti t2'0l:l 2!.. 9"rou,22.. It is also possible to repeat a group 

of specifications by placing an integer in front of the left parenthesis 

which contains the group of specifications. The following tv10 state

ments are equivalent. 

4 FOR'~T (IS, F6.2, El4.2, IS, F6.2, E14.2) 

4 FOItHAT (2(15, F6.2, E14.2» 

It is not penl1issible to have a repetitive group ~Tithin 

-another repetitive group. The statement belon is not pennissible. 

5 FOm-fAT (2(13, F6.2, 3(El4.2, IS») 



63 

All three statements below are equivalent. 

6 FOR1AT (I3, F6.2, El4.2, El4.2, F6.2, E14.2, El4.2, IS) 

6 FORHAT (I3, F6.2, 2EJ.L~.2, F6.2, 2:m..4.2, 15) 

6 FORHAT (13, 2(F6.2, 2El4. 2), IS) 

§..cale Factors (P-Conversion) 

The purpose of P-specification is to relocate the docimal point 

in a real number during the process of input or output. A scale factor 

is an integer constant which indicates the number of places the decimal 

point is to be moved. to the left or right of its original location. The 

general fonn is; 

nPs 

where n is the scale factor and s is the roE-rAT specification. A 

positive integer moves the decimal point to the left while a negative 

integer moves it to the right. For input, a. scale factor may only be 

used with F specification. 

If it is desired tha. t the decimal point in )42.67 is moved blO 

places to the left, the specifieation required for this is 2PF7. 2 and 

the new number is 3.4267. If the real number )42.67 is to be changed 

to 3426.7, the appropriate specification is -lPF7. 2. 

For output a scale factor may only be used with F and E 

specifications. The explanation given for the input is also appropriate 

for the output. (See Program D in the Appendix) 

A positive scale factor used for output with E-specification 

increases the base and decroases the exponent. A negative scale factor 

decreases the base and increases the exponent. 



64 

In the illustration belo,.,. the origianl number is O.J2457E+OJ. 

FORt1AT. ~tpu~ 

lPE12.5 bJ.24570E+02 

-1PE12.5 bO.OJ245E+04 

!!2.:t&.. Once the scale factor is given in aFORl'·1AT specification, 

it applies to all E and F specifications following the scale factor 

within the same FORI'rAT statement. The following tt-ro statements are 

equivalent. 

6 FORMAT (lPE12.5. E14.7r F6.2) 

6 FO~~T (lPE12.5, lPE14.7, lPF6.2) 

If it is desired that only the first item in a statement be 

affected by a scale factor, the statement should be written in the 

following manner. 

FORHAT (lPE12.5, OPE14.7, F6.2)",.. 

Multiple-Record FOR)\rAT Statement 

A single FOffi1AT statement can be used to accommodate more than 

one input or output record. Separation by (f) indicates the beginning 

of a new record. For example, 

J FORHA.T (2F6.2. E14.4/4E12.J) 

transfers the first. third, fifth ••••• records with the specification 

2F6.2, E14.4. and the second. fourth, sixth••••• records mth the 

specification 4E12.J. (See the Program D in the Appendix) 



65 

The use of two consecutive slashes, (II), causes an input 

recom to be read but ignored or an output record to be blank. For 

Elxa.l1lple, 

5 FORl1AT (21<'6.21/151/) 

processes the first, sixth, eleventh, ••• , records with the specifi

cation 2F6.2, the second, seventh, tHe:.~.fth, ••• , recoms are blank, the 

third, eighth, thirteenth, •"' records with the specification 15, the 

fourth, nineth, fourteenth, ••• , records are blank, and the fifth, 

tenth, fifteenth, ••• , records are also blank. It should be noted 

that there is no specification follotdng the second (//) • 

In a single multiple-record FOm·~T statement, if it is desired 

that the first two records are unique and all remaining records are 

to be processed. with the same specification, the speoification of the 

remaining records must be defined as repetitive group by enclosing it 

in parontheses. For examp}e, 

4 FOrn'lAT (I5/2F6.2/(8Fl0.2» 

will process the first record \nth the specification 15, the second 

wi th the spocification 2F6.2, and all remaining records with the 

speci:tlcation 8Fl0.2. The four statements on the left are equivalent 

to the two statements on the right. 

3 FORl!lAT (F6.2, 15) 3 FOm·~T (F6.2, I5/F8.2, 14) 

4 FORl-lAT (F8.2, 14) WRITE (3.3) P, K, R, H 

WRITE (3,3) P, K 

WRITE (3,4) R, M 



66 

CarpafSe Co~ 

The carriage control controls the spacing of output records on 

the printor. The carriage control character must appear in tho space 

immediately follo"wing the II in a FORHAT statement. The three 

characters used for spacing are as follows. 

Character	 .E.~.
Blank	 Single space printing. 

o Double space printing. 

1 Sldp to the first of the follovnng page. 

nlus~rat..i..'2!!ii' The first four statements illustrate the single 

space printing and the second four statements illustrates tile double 

space printing. 

Statement Output records 

1 FORi'1AT (iH , F6.2) Line 1 bbb3.24 

"TRITE (3,1) A Line 2 bb23.56 

WRITE (3,1) B Line 3 b 278 •.54 

WRITE (3,1) c 

2	 FOPJ'fAT (tHO, F6.2) Line 1 bbb3.24 

WRITE (3,2) A Line 2 

WRITE (3,2) B Line 3 bb23.56 

WRITE (3,2) C Line 4 

Line 5 b278. 54 



67 

&1i teft Inout D~ 

D:li ted input data must correspond in order, type, and f:l.eld 

width to the field specification in the FORl.1AT statement and must 

conform to the following specifications. 

h Plus signs are indicated. by a blank or + and minus signs 

are indicated by a preceding -. 

~ Numbers for E and F-specification can contain any number of 

digits but only the high-oro.or f digits will be retained. The number 

is truncated to f digits of accuracy. For the IBM 1401, f is 8 unless 

otherwise specified. The absolute value of the number must be between 

the limits 10-100 and (1 - 10-f ) x 1099• Numbers for I-specification 

must be right justified. 

l!.. Numbers for E-specification need not have four columns 

devoted to the exponent field. The start of the exponent field must 

be represented by an E, or if the E is omitted, by a + or -, not a 

blank. The follOidng expresseions are permissible • 

•2)4E+02, .2)4E 02, .• 2)4E+2, .234+2, .2)4-44 

!h Numbers for E and F-specification need not have the decimal 

point punched. The computer will supply the necessary decimal point 

according to the FORMAT specification. 

Data_ Specification Result 

-08765+2 E12.4 -0.8765+2 

05438 E12.3 0.544 



68 

The REll.D Stat€!!1ent 

'!he READ statement is used to transfer input data from an input 

device to the memory unit of the computer. The general forms are; 

READ (i,n) list
 

READ (i)
 

READ (j'a,n) list
 

READ (j' e) list
 

i •••	 is the symbolic unit number of an input device. This number 

indicates from lmich one of several input devices the data 

is to be read. The symbolic name of the card reader at 

the Data Processing Center is 1. This number must always 

be an integer or integer variable. 

n ••• is the statement number of the FORrJAT state...'11ent by which 

the data is read. 

j •• 0 is an unsigned one digit integer or integer variable 

which specifies a specific memory space on a disk unit 
o 

from which the data is to be 1'ead. 

o. 0 is	 a 4-8 punch, equivalent to the @ symbol. 

e •••	 is an unsigned integer, integor variable, or integer ex

pression that refers to a specific recoro within the 

memory space on a disk. 

list, is an ordered series of variable names separated by commas. 

The READ ~i.ll) list. This statement tells the computer to read 

data according to the FOW.lAT statement n and store the data in the core 

s'Wl'2ge until :the list is satisfied. 



69 

~ READ (i) lis!-. This statement is used to transfer tho dat.a 

from a tapa or disk unit to the core storage. Tho data processed is 

unedited. This moans that the data is processed without any FORHAT 

specificat:ton. Therefore, the data will be stored in tho core storage 

in the same fo:rro. as it is storoo in the disk or tape • 

..!hi!. READ (j' e.n) list. This statement is used to transfer the 

edited data from a tape or disk unit. Each record is read in order and 

in accorda.nce '\on. th the FOr~·IAT statement n until all the data in the 

input list have been read and stored. 

~ READ Ci' e) list. This statement is used to transfer data 

from a tape or disk unit without any FORHAT specification. With this 

statement, the programmer can specify the record to be read by sub

stituting e with the number which corresponds to the position of the data. 

Every number read in as an input data must be represented by a 

variable. If an integer 274, punched in columns 3, 4, and 5 on a card, 

is to be read in as an input data, the two statamons below' will 

accomplish this. 

READ (1,5) H 

5 rom·tAT (IS) 

If two numbers, 35 and 46, are to be read in as input data. and 

they are both punched on a single card as four digit numbers, each 

number must be represented by a variable. The necessary statements 

to accomplish this are as fo11oHS. 

READ (1,22) K, L 

22 FOR/IAT (2I4) 



70 

If tv.TO numbers are punched on separate cards in the first four columns, 

the follo>vll;g st.1.tements are needed. 

READ (1,10) 1'1 

READ (1,10) N 

10 FORMAT (I4) 

The first nurilber is represented by leI and the second number is represented 

by N. If' many nU11lbers are to be' road in it is better to ropresent the 

numbers by a subscripted variable. 

For the information concerning the READ statement associated 

with the disk, the student should read Chapter VII. 

SanlPle Pro~ram. This program adds K numbers and illustrates 

the use of READ statement. The computer is instructed to read K which 

is the numbol' of numbers to be added. Then the computer is instructed 

to read the first number, label it AHES and add to TOT which is 0 at 

this time. The second number is read, labeled AHES, added to TOT, and 

the sum is labeled TOT. Third nurnber is r~ad, labeled .AHES, added to 

t.'I1e previous sum TOT and the new sum is labeled TOT. This process 

continues until K nu.l'l1ber of cards are read. The variable IN counts 

the number of data cards processed. 

FORTRAN RUN 

$NO HULTIPLY DIVIDE 

$00 DIC'ITONARY 

READ (1,18) K 

18 FOm'IAT (I12) 

TOT = O. 



71 

IN	 :: 1
 

21 READ (1,16) AllES 

16 FORI'tAT (FB.2) 

TOT :: '1'OT + MtES 

IF (IN.m.K) GO TO 40 

IN :: IN + 1 

GO TO 21 

40 ~OOT8 (3,16) TOT 

END 

LOADER RUN 

$EXECU'crON 

'!he WRrTE Statement 

The WRITE statement is used to transfer data from the core 

storage to output devices. '!he general forms are; 

WRITE (i,n) list 

l'lFUTE (i) list 

WRITE (j'e,n) list 

WRITE ( j'e) list 

i •••	 is the sJ11nbolic name of an output device. This symbol 

indicatas from which one of several output units the data 

are to be processed. It must be one digit integer or an 

inteGer variable. The symbolic name of the printer at 

the Data Processing Center is 3, and the symbolic name of 

the card puncher is 2. 

n ••• is the statement number of a FORHAT statement by which 



••• 

72 

the data is written. 

j •••	 is an unsigned one digit integer or an integer variable 

v1hich specifies a special memory space on a tape or disk 

where the data is stored. 

is a 4-8 punch equivalent to the @ symbol, 

e •••	 is an unsigned integer, integer variable, or integer ex

pression that refers to a specific record ~iLthin the memo~ 

space on a tape Ol~ disk. 

list	 is an ordered series of variable names to be ~Tritten 

separated by COlmnas. 

11:.£ vlRITE (i.1]12. ;List. The purpose of this statement is to tell 

the computer to \inte the data through the output device indicated by i 

and according to the FORHAT statement n. 

1h.El V1RITE~_(i) lis.1. This statement is used to transfer the un

edited data from the core storage to a tape or disk unit. The data will 

be \iritten in the same form as it is stored in the core storage. 

~ ~l]IT~ Cit e,n) l?-.sJ~. This statement transfers the data from 

the core storage to the memory spa.ce \mose symbolic name is designated 

by j. The data is transferred according to the FORHAT statsment n. 

~ Y!NTE ~.i' e) li~.t:.. This statement transfers the data. from 

the core storage to a tape or disk unit in the same form as it is 

stored in the core stora.ge. The programmer can specify the record to 

be 10mtten to be placed at a certain position in the memory space by 

substituting the position number for e. 

Whenever a number stored in the core storage is to be printEd in 



73 

an output t..l-}e numbor must be represented by a variable in tho list of 

a "flUTE statelnent. Every nU11lbel:' stored in tho coro storage must have 

a. variable n:une. The follm·ring program reads in tt-ro numbers, finds the 

SuIll, and stores the result in a location called sm'1 and the sum is 35. 

Then SOU is the val1.able \oThich represents the number 35. The V1RIQ'E 

statement must ha.ve SUH in ilia list. This is illustrated by the 

foJ~ol1ing partial progrron. 

READ (I,ll) A, B 

11	 FOHi'lAT (2.F8.2)
 

SUH:: A + B
 

WRITE (3,12) SUN
 

12	 FOR'fAT (flO. 2) 

The iTlform.n.tion concerning the v[RITE statement associated with 

the disk can be found in Chapter VII. 

]1e	 E?-nd St<''l.t~p1ent 

This statoment is used. to save computing title when a tape or 

disk is used. This causes the access ann of a disk unit to move to 

the next record to be processed vlhile computing is going on. Thorofare, 

the greater the distance is beuveen the last record and the next record, 

the more time this statement '-rill save. The goneral form is; 

FIND (jle) 

where j is an unsigned one digit integer or a.n integer variable which 

refers to t.1.e memory space on the disk. This j corresponds to tile j 

in READ or l..lP..ITE sUttements. The letter e is an unsigned integer, 



74 

integer variablo, or, integer oxpl'cssion which refers to the position 

of the record vJhcro the access arM. is to be placed. This e corresponds 

vdth the e in t..1'w READ or HHITE statament. This statement is used in 

the Program C in the Appendix. 



CHAPTER VII 

STORING IN DISK 

Information can be transferred from the core storage to 

the disk storage or from tho disk storage to the core storage. v,lhen a 

program processes a large amount of data, the progral1l!ller may be forced 

to store the data. in the disk storage in order to conserve the core 

storage for storing and processing instructions. 

In order to store information in the disk storage Jc..lJ.e progrmruner 

must inform the compiler; (1) 1-mat part of the disk is to be used and 

what name is to bo assigned to this part; and (2) how' many numbers 

are to bo stored in the reserved area and how long each number is. 

'Ihe ASGN card accomplishes (1) and the DEFI~'E FILE statement 

accomplisho3 (2). 

ASGN Card. 

'lhis card instructs the computer to reserve a certain area on 

the disk for storing information and assigns a name to this area. The 

name assigned to t-lJ.e reserved area on tJle disk must be one of 'tile 

following three names; i'lORK4, HORK5, or HORK6. The programmer may 

reserve three distinct areas on the disk for storing information. The 

storage areas, named VlORIG., WORK2, and ~oJ'OPJ(3, are used by the compiler 

and they are not available to the student. '!he following is an example 

of an ASGN ca.n"\. 

WORK6 ASGN 1311 UNIT 2, START 001.500, END 002000 



76 

The HORK6 is punched beginning at the column 6 and ASGN and the 

rel11c'lining HOrdS and numbers are punched beginning at the column 16 with 

a single space bet1ieen the words and. the numbers. The address number 

must have six digits. 

Each functional component of the computer has a name. For 

instance, the card reader is given the name INPUT and the printer is 

given the name LIST. For the sake of s:i.mp1icity each of these com

ponents is also given a. munerica1 name. These numerical names can be 

considered as the address of tile component. 

When the programmer reserves an area on the disk and gives it 

the name vlORK6, the corresponding numerical na..'i1e for this is 9. The 

number 8 is 'associated t-rl. th the WORK.5 and 7 is associated with the 

vl0RK4, as 1 is a numerical name given to the card roader and 2 is the 

numerical name given to the card punch. 

The DEFINE FILE Statement 

This statement inforI1ts the computer the maximum number of 

records which are to be stored in the area ~eserved with t...~e ASGN 

card and how many characters each record may contain. The general 

form is; 

DEFINE FILE jl(m1, 11, f 1, v1), j2(m2, 1 2, f 2, v2), ••• 

The J is an integer which is the numerical name of the area. 

reserved on the disk. The reader vrl.11 recall t.'lat 9 is assigned to 

the WORK6, 8 to the WORK.5, and 7 to the \voPJ\4. This number appears 

first inside the parentheses ot' RElill or ~'ffiITE statements. For e:x.a.mp1e, 

when the computer encounters READ (9'I) it goes ~ the area on the disk 



77 

whose name is 9. 

Tho 1!l is an integer which indicates the m..mmu.lTl number of 

records which are to be storod in t.'l1.e area. on the disk. 

'!he 1. is an integer. If the numbers transferred from the core 

storage to the disk according to a FOR'fAT specification, the 1 

represents the rnax:i.nrum number of cha.racters in each record. If the 

numbers are transferred to the disk wit1lout any FOR/1AT specifica.tion, 

that is, the numbers are transferred to the disk as they appear in the 

core storage, the!. represents the mrodmum number of numbers each 

record contains. 

'!he ! is either E or U. If the numbers are stored according to 

a FOI-l}1AT sp~cification E is used. If the numbers are stored without 

any FORBAT specification U is used. 

The !. is an integer variable name. The student may use any 

integer variable. 'lhe DEFINE FILE statement inforl'llS the computer t~:.l.t 

this variable is used as the posilion counter in the READ or HRITE 

statement. 'ilie number of posi.tion from which the nu..-nber is to be read 

or in which the number is to be 10mtten is substituted for this variable 

before the appearance each READ or WRITE statement. Taerofore, this 

variable must appear inside the parentheses of each READ or \'ffiITE state

ment. If 1 is assigned to this variable before the RE.4,D statement is 

executed, the record in the first position is read. If the numerical 

value of this variable is 7, the seventh record is read. 

Writing the data on the disk is accomplished. with one of the 

following two WRITE statements. 



78 

WRITE (j' €I, n) list
 

WRITE (j' e) list
 

. where j is the same as the j and e is the same as the v in the DEFINE 

FILE st.-3.tement. The n is the FORMAT statement numbel·. 

Reading the data from the disk and storing it in the core;) storage 

is accomplished with one of the foUoHing bro READ statel11ents. 

READ (j' e, n) list
 

READ (j' e) list
 

whero j is the same as the j and e is the same as the v in the DEFINE
 

FILE statement. The n is the FORHAT statement number.
 

§ample Program, The folloidng program reads in five numbers, one 

at a time, stores it in the core storage, and transfers it on to the 

disk. The ASGN card indicates to the col11p'1lter that the memory space to 

be reserved on the disk is to be called ioJ'ORJ."'\6 and. it begins at the 

address 1500 and ends at 1510 on the disk unit 2. The DEFINE FiLE 

statement indicates to the computer that the maximum number of records to 

be stored in the momory space lihose name is WORlC6 and the numerical 

name is 9 is 10, each record. is 20 characters long at most, the nwnbers 

are stored according to a FORI-fAT specification, and finally, the 

position of the records stored in the memory spaco is to designated by 

the value of TNT. The first nUIi1ber is stored in the first position in 

the memory space lI.mch has been reserved since the value of INT is 1, 

1=1. '!he second number is stored in the second position since the 

value of INT is 2, and so on. 

After all five nUIIlbers :tro stored on the disk, the third number 



79 

is transferred back into the core and printed and the fifth number is 

also transferred from tho disk to t.h.e core and printed. Ten 20-dlgit 

records ",r.i.ll be stored in ten spaces starting from 1500 and ending 

at 1510. 

WORK6 ASGN 1311 UNIT 2, START 001500, El\1J) 001510 

FORTRAN RUN 

$NO r-rUL'l'IPLY DIVIDE 

$NO DICTIONARY 

DEFIr~ FILE 9(10,20,E,INT) 

00 5 I =1,5 

READ (1,1) R
 

1 FOm'1AT (F6.2)
 

INT = I
 

5 WRITE (9' INT, 2)
 

2 FORHAT (F8.2)
 

INT = 3
 

READ (9'INT, 3) S
 

WRITE (3,3) S
 

3 FOfHAT (F8.2) 

INT = 5
 

READ (9'INT, 3) P
 

\VRITE (3,3) P
 

&'ID
 

LOADER RUN 

$EXECUTION 



09 

00"9 

oo"l 

00"t[ 



CHAPTER VIII 

SUBPThJGRAHS 

A pr<1grammer may wish to use the same sequence of instructions at 

various points in a program. It would be a waste of time and computer 

storage space if the set of instructions were written whenever they are 

needed. It is, h01vover, possible to l'1ri te the sequence of instructions 

only once and refer back to it "menever neCGssary. This sequence of 

instructions is called a subprogram. The program which utilizes a 

subprogrmn is called a calling program. 

Three types of subprograms will be discussed in this chapterJ 

(1) library functions; (2) FUNC1ION subprograms; and (3) SUBROUTINE 

subprograms. 

In writing a subprogram the student must be aware of the following; 

(1) the main program. must contain the name of the subprogram; (2) some 

provision must be made for passing data to the subprogram; (3) some 

provision IllUst be made for receiving values returnEd from the subprogram 

back to the calling program, and (4) some provision must be made for 

returning from the subprogram to the calling program. 

The Library Function 

If a progra:nuner wishes to find the square root of a number, it is 

not necessary for him to "rr!te a sequence of instructions which computes 

the square root. A program necessary to compute the square root has 

been written by another programmer and permanently stored in the 

computer. The computation of a square root is only one of several 

functions which are available ""ith IBl-1 1401. The collection of these 



82 

functions is called "Library Functions" and the list of these functions 

is on page 29 of tho IBH 1401 manual. 

If a programmer wishes to compute the square root of a nu.mber 

which is represented by a variable X, he would use the first expression 

below. 

SQRT (X)
 

ALOG (2.0)
 

The second expression vr.i.ll compute the natural logarithm of 2.0. Note 

that some of t.he functions listed on page 29 will accept only certain 

t~e of data. For example, if the square root of 2 is to be computed, 

it must be written as 2.0. In other words, the function SQRT will not 

compute the square root of integer constants or integer variables. 

The FUNCTION Statement-

The purpose of a function subprogram is to receive data from 

the main program (or calling program), per~orm operations, obtain a 

single value equivalent to the value of the function, and return that 

value to the main program. The function s·.:..bprogra.m is n separate and 

complete program in itself, but it is used by other pl'Ograms. The 

general forms are; 

FtnJCTION name (ai' a2, ••• , an)
 

REAL FUNCTION name (ai' a ••• , a.n )

2

, 

INTEXlER FUNCTION name (ai' a2, ••• , an) 

where name is the name of the function which is written just like the 

ordinary variable na.mo. It consists of one or more letters and nUJ.i1bers 



e3 

up to six characters. The first character must be D. letter and it must 

be chosen carefully since it determines the type of values to be processed. 

The a represents one or more variables names, array names, or simply 

dummy names. 

'!he REAL FUNC'l'ION statement means that all the variables inside 

the parentheses are treated as real variables regardless of l'1hat they 

are and the INTEGER FUNCTION statement :.neans that all the vil.riablcs are 

treated as integer variables regardless of what they are. 

The FlJNC'l'ION statement must be the first statement in a FUNCTION 

subprogram. FollovTing the FUNCTION statement there must be at least one 

statement which defines the function name, at least one RETURN state

mant, and one END statement. The RETURN statement is necessary since 

the value obtained for the function is passed back to the main program 

when this statement is executed. The END statement is neceSsal''Y since 

this statement notifies the compiler that the final statement in the 

subprogram has been translated. 

It is very important to remember that the dummy variables used 

in the FUNCTION statement must correspond it' types to the dummy 

variables used in the function in the main program. Therefore, the 

dummy variables must be placed in proper order. As an example, tHO 

statements are shown below. The first is the calling statement in the 

main program and the second is the FUNCTION statement in the subprogram. 

The arroVls indicate the correspondence. 

SUM = CALC (K, A, B, I, X, Y, L) 
\~\\\I\\ 

FUNCTION CALC (J, P, R, N, C, D, H) 



8/+ 

A FUNCTION subprogram cannot contain another FUNCTION subprogram 

'Hithin the program. Also it ma.y not contain a SUBROUTINE statement. 

Since a FUNCrrrON subprogram is a separate and complete program 

in itself. it is necessary that each FUNCTION subprogram contains the 

three beginning control ca:rds and the tw'O ending control cal'ds as' 

Shovffi below. 

J3eginnj.ng" cO:l)..trol car9-s Endin& control card~ 

FORTRAN RUN LOADER RUN 

$NO HUL'l'IPLY DIVIDE $EXECUTION 

$NO DICTIONARY 

Sample Prograpt. The program beloW' computes the sum of the 

squares of a set of numbers using a FUNCTIOn subprogram. It should be 

noted that the statement number 7 appears twice in this program. once 

in the main program and once in the subprogram. This is permissible 

since the subprogram is a separate and complete program in i tsolf. 

FORTRAN RUN 

$t:o HOLTIPLY DIVIDE 

$1U DICTIONARY 

DD-iENSION A(lOO) 

READ (1. 3) K 

:3 FOR'!AT (I4) 

00 7 I = 1. K 

7 READ (1.2) A(I) 

2 FOR·fAT (El.4.2) 

TOTSU11 =PAI~UH (N.A) 



• • • • 

85 

WRITE (3.2) TOrSUH
 

END
 

LOADER RUN
 

$NO EXECU'rrON
 

C • • • • BEGINNING OF THE SUBPOOGR4H 

FORTRAN RUl-! 

$110 HULTIPLY DIVIDE
 

$NO DICTIONARY
 

FUNCTION PARSUM (H,C)
 

DIUEl,JSION C(100)
 

DO 7 I =1, m
 

7 PAFSUH = PAfSUH + C(I)**2
 

RETURN
 

END 

LOADER RUN
 

$EXECUTION
 

The Sur.i3ROUTINE Statement 

This statement accomplishes what the FUNCTION statement does in 

the previous section but the difference between these two statements 

is tha.t the FUHCTION subprogram must receive data from the main prograIll 

but the SUBROUTINE subprogram mayor may not receive data from the main 

program. The SUBroUTINE subprogram can contain its own data. 

A SUBroUTINE subprogram is caJ.1ed only by a CALL statement. ~Vhen 

the subprogra.m is completed, t..'1e next executable statement following the 



86 

CALL statement is executed. Like the F'Ul'lCTION subprogram, the SUBROUTINE 

subprogram is a. separate and complete program in itself. It may be 

translated separately, but ordinarily it is translated. folloi-ring the 

main program. The general fom of the first statement in the Stf.dROUTINE 

subprogrron is; 

SUBROUTIW,X name (aI' aZ' ••• , an) 

where name is an ordinary var-lable name "1hich is substitutecl by the 

programmer. It may consist of one or more letters and numbers up to 

six characters, but the first c..~arocter must be a letter. The first 

letter c~n be any letter since the type of tho name has no significance 

in a StJ13F«JOTINE state.'11ent. The a represents variablos separated by 

commas. 

A SUBRDUTIJ\TE subprogram may not contain a F'"l.JNCTION statement or 

another SUBROUTINE statement within the subprogram. It must conte'tin 

a.t least one RETURN st.:'ltel11ent and one END statement. 

Since a SUBOOUTINE subprogram is a separate and complete program 

in itself, it is necessary that each subpr:>grml1 contain the three 

begin.'1ing control cards and the two ending control cards. Mch program 

must also conte'tin the $NO EXECUTIO}! card since the execution of the 

program is not desired. until the complete program is loaded. The 

$EXECUTION carel, however, must be placed. a.t the end of the last program. 

It should be noted 1:.h.at if the variables are listed in the CALL 

statement and the SUBROUTINE statement, they must correspond in order 

and in type. Also each statement lTlUst contain exactly.tho same number 

of variables. The arrows in the follo~dng boTO expressions indicate the 



87 

correspondence	 between variables. 

CALL CALC (K, A, TOT, J, C) 

\ \ \ \ '\I
 
SUBROUTINE CALC	 (M, S, SU1I, N, X) 

A complete sample program illustrating t.lJ.e use of a SUBROUTINE 

subprogram is included in the Appendix. 

The R;ETURN Statemen.t 

This statement is primarily used in a subprogram. At this point 

the program returns 1:0 the main program. This statement also returns 

the data obtained in the subprogram back 1:0 the main program. The 

general form is; 

RETURN 

The CALL Statem~nt 

'!his statement is used only in conjunction loTi th the SUBROUTINE 

statement. It links the main program with the SUBroUTINE subprogram. 

The general form is; 

CALL name (at,	 a2' ••• , an) 

where name is the name of the SUBroUTINE subprogram and a represents 

the variable names or array names which are passed on 1:0 the SUBroUTINE 

subprogra.m. Each of these names must have been assigned values before 

th!Jy are passed on 1:0 the subprogram. 



CHAPTEH IX 

CONTroL CARDS 

The control cards are used to give instructions to the computer. 

'lhese instructions must be punched in the columns designated and must 

be placed correctly in the program. The student "Till normally place 

at the front of any program the following three control cards. 

FORTRAN HUN
 

$00 l·fu'L'l'IPLY DIVIDE
 

$00 DICTIONARY
 

Each program must also contain the follo1fr.i.ng two control cards 

at the end of the program. These cards must be placed between the 

progra.'11 and the data cards. 

LOADER RUN
 

$EXECUTION
 

FORTRAN RUN 

'!his card is a required control card. This card activates the 

FORTRAN compiler and the computer starts translating the source state

ments into the machine language. The card must be punched as follows. 

'!he number above the word indicates the column nu.'11ber Where the first 

letter of the word must be punched. 

Columns 6 16 

.Contents FORTRAN RUN 



89 

LOADER RUN 

The FORTRAN RUN card causes the compiler to translate the source 

program, and the LOADER RUN card causes the translation to be stored 

in the core storage. 

Columns 6 16
 

Contents LOADER RUN
 

.$EXECUTION 

The execution of the program begins with this card. 

Columns 1
 

Contents $EXECUTION
 

!NO E'XECU1'ION 

If the execution of the program is not desired, this card must 

be placed following the program. This occurs when a FUNCTION sub

program or a SUBROUTINE subprogram is used in the program. This card 

must be present follo\oTing each program except the last program. 

Columns 1 5 

Contents $00 EXECUTION 

"REAL SIZE and $INTEGER SIZE 

These cards are used to designate to the computer the maximum 

number of digits the data will have. 

Columns 1 6 

Contents $REAL SIZE = nn 

Columns 1 10 

Contents $INTEGER SIZE = nn 



90 

iNC HULTIPLY DIVIDE 

The computer at the Data Processing Center does not have a 

unit which performs multiplication and division. A subprogram which 

perforlns these operations is contained in the FORTRA.N compiler and 

this control card is necessary to automatically utilize the subprogram. 

Columns 1 5 14 

Contents $00 MULTIPLY DIVIDE 

~1U DICTIONARY 

Without this card, the computer will print the Name Dictionary 

and the Sequence Number Dictionary. The Name Dictionary contains the 

addresses or all the variables used in a program and the Sequence 

Number Dictionary contains the address of every roachine language 

statement. The student is required to insert this card in every 

program. 

Columns 1 5 

Contents $NO DICTIONARY 

§NO LIST 

Unless this card is included in the program, the computer 

will print a list of the source program. This ca.rd is normally not 

included in the program. 

Columns 1 5 

Contents $NO LIST 



CHAPTER X 

CHECKING l'HE SOURCE PROGRAH 

Follmdng are some of the common mistakes made by a beginning 

program.'11er. 

Spol;ting. Correct spelling is mandatory in writing the FORTRAN 

statement such as SUBroUTINE, FUNCTION, FOHHAT, etc. Variable names 

can be spelled any Hay the programmer "ashes but the spelling must be 

consistent through out the program. 

Parentheses. The number of left parentheses must coincide with 

the number of right parentheses. A mistake is often made when one 

or more parentheses are used. ldthin another pair. For example, the 

statement below is incorrect; it needs another left parenthesis. 

A= ««c+B)*c+D)*D+E)*E+F)*F+G) 

Commas. The student must place the comma whenever necessary. If 

more than one variable are used, they must be separated by a comma. In a 

FORr'iAT statement each specification must be separated by a conuua. 

Arithmetic e292ressiollE,. The student must not mix real numbers 

and integer numbers. Often the student writes a real number without 

the decim..1.l point. 

Contro~..qarcls. The words and symbols on control cards such as 

FORTRAN RUN. LOADER RUN. $1'0 HULTIPLY DIVIDE. and others !!lust be 

punched in the designated column. 

Statement Numbers. If a statement is referred to by another 

statement, it must have a statement number. Two different statemof,lt 



92 

cannot have the same statement number. 

One of the best ways to check the validit.y of the source 

program. is to "play computer." Using the data to be processed the 

student goes through each state.'r!lent step by step, perfonuing all 

computations by hand. This process should be repeated with the data 

loJhich are the extremes • 

.,
 



CHAPTER XI 

CONCLUSION 

The purpose of this paper as stated in the introduction was to 

discuss the topics in FOR'fRAN programming "rlrlch are essential to the 

student in t..lle Yi.ll. them..'ltical Programming course at the Kansas State 

Teachers College. As old Il1'lchines are constantly replaced by neH 

machines, the student should find out exactly what kind of machines 

are available at the Data Processing Center lom.en he enrolls in t.~e 

course. 

A complete sample program and a detailed eJ..'})lanation of each 

statelllent of the program is provided in one of the introductory 

chapters of this paper so that the reader may have a better under

standing of the otl16l:' sample programs that follovT. Hany of the sample 

prograllls are complete with the necessary control statements and they 

are roo.dy to be processed if the roo-del" so desires. Hany of the 

sample progl'anlS also contain some sample data and the corresponding 

output to make the illustration complete. 

Even though computer programming is a relatively nO\<1 field, 

many books have been \orritten in this field and they are readily 

available. It is hoped that this paper lor.ill help to fill some gaps 

and make a small contribution to the field of computer programming. 



lHcIVlIDOI1E!IS: 



BIBLIOGRAPHY 

Anderson, Decima M. Comoutor Pro~ramming FORTRltN IV. New York; 
Appleton-Century-cro'fts~"1966. 

Golden, James T. FORT.f1A..N IV r.r?gra~~:ting !.!E Computing. Englewood 
Cliffs. Prentice-Hall, Inc., 1905. 

IBH	 Corporation. FORTRA.N IV f.9...D.e;E;,a.ge Specifica.tio~, Prog.ralll 
ppoc?-.fi,9lt;tions, ~ Oporatin..,& ~ed~. IBl'! 1401, 1LJ40, and 
1460. Systems Reference Library, File No. GENL-25, Form C24
3322-), 1966. 

McCracken, Daniel D. A Guide to It"'O.RTRltN Programming. New York. 
John Wiley & Sons, Inc., 19b1. 



XlmI~ddV 



PROGRAH A 

This program solves a. quadratic equation. It also illustrates 

the use of the FUNCTION and SUBROUTINE subprograms and the Library 

Function. 



98
 

F[)RTKM~ RU1\J 
FOR TRfir ~ C(W P I LA TI 0 N VER 2 ~10 D 2 
$ ~Hl r~ ULTI PLY [) I VI f) E 
$NO DICTIONAP.Y 

C 
C •••••••••• SOLVI~G QUADRATIC EQUATIONS 
C FUNCTION AND SUBROUTINE SUR PROGRAMS 
C 

001 RFI\D 11 ,5?l NUhRlt 
002 52 FORMAT ( 14) 
003 IN=l 
004 9 READ [1,53) AQ, BQ, CO 
005 53 FOKMAT (3F12.5) 
006 CALL QUADl (flQ, BO, CO, RQl, RC2, KMPXI)
007 WR I TE (3,63) 
008 63 FORMAT 13X, 33H QU~ORATIC EQUATION VALUES 

3 , 14X, 25H ••••• ROOTS 
009 rlR I TE ( 3 ,65 ) 
010 65 FORMAT ( ax , 2H A,BX,2H B,8X,2H C, 8X, 8H COMPLEX, 

~8X, 3H R1, lOX, 3H R2) 
011 IF ( Kr~ Px I • EQ • 0 ) GO TO 75 
012 RADZ=GQ**2-4.*AQ*CQ 
013 OENOZ=(2.*t\Q) 
014 WRITE 13,66) AQ, BQ, CD, RQl, RADZ, DE:'\lOZ 
015 66 FnKMAT (lHO, 3FIO.3,10X, 4H YES, 5X, FIO.3, 3X,

718H + AND - SQ ROOT ( , F8.2,3H 1/, F6.2l 
016 GO TO 70 
017 75 WRITE 13 ,6n AC, 00, CO, RQ 1, RQ2 
018 67 FOfH'\AT (lHO, 3F1l.3, 12X, 2HNO, 7X, Fl1.3, 3X, Fll.3)
019 70 C(l NTUJ UE 
020 IF ( IN. EQ • NUrt B4 ) GO TO 77 
021 IN=IN+l 
022 GO TO 9 
023 77 CONTINUE 
02 lt END 

~ 

••• $NO EXECUTION 



99 
FORTRAN RUN 

FORTRAN COMPILATION VER 2 MOD 2 
$NO MULTIPLY OIVIDE 
$NO DICTIONARY 
001" SUBROUTINE OUADl (AO, BQ, CO, RQl, R02, KMPXl) 
002 RQl=RUUTl (AO, BO, CQ, KMPXZ) 
003 IF (KMPXZ.EQ.l) GO TO 90 
004 RQ2=RUUT2 (AO, BQ, CO) 
005 90 RETURN 
006 END 

*** INO EXECUTION 

FORTRAN RUN 
FORTRAN COMPILATION VER 2 MOO 2
 
$NO MUTIPLY DIVIDE
 
$NO DICTIONARY
 
001 FUNCTION RUUTl (AO, BO, CO, KMPXZ) 
002 RAOl=BQ**2-4.*AQ*CQ 
003 IF (RAOl.LT.O.O) GO TO 25 
004 RUUTl=(-BO+SQRT(RADl»/(2.*AQ)
COS KMPXZ=O 
006 RETURN 
007 25 RUUTl=-BO/(2.*AQ) 
008 KMPXl=l 
009 RETURN 
010 END 

*** $NO EXECUTION 

FORTRAN RUN 
FORTRAN COMPILATION VER 2 MOD 2 
SNO MULTIPLY DIVIDE 
SNO DICTIONARY 
001 FUNCTION RUUT2 (AO, BO, CQ) 
002 RUUT2=(-BQ-SQRT(BQ**2-4.*AQ*CQ»/(2.*AO) 
003 RETURN 
004 END 

SEXECUTI ON 



Q
U

A
D

R
A

TI
C

 
A

 

1
.0

0
0

 
Q

U
A

D
R

A
TI

C
 

A
 

1
.0

0
0

 
Q

U
A

D
R

A
TI

C
 

A
 

1
.0

0
0

 
Q

U
A

D
R

A
TI

C
 

.tJ.
. 

1
.0

0
0

 

E
Q

U
A

T
IO

N
 

B
 

V
A

LU
ES

 C
 

C
O

M
PL

EX
 

•
•
•
•
•

R
O

O
T 

S 
R

l 
R

2 

-7
.0

0
0

 
1

2
.0

0
0

 
E
Q
U
~
T
I
O
N

 
V

A
LU

ES
 

B
 

C
 

NO
 

C
O

M
PL

EX
 

4
.0

0
0

 
•
•
•
•
•
 R

O
O

TS
 

R
l 

R
2 

3
.0

0
0

 

-6
.0

0
0

 
5

.0
0

0
 

E
Q

U
A

T
IO

N
 

V
A

LU
ES

 
H

 
C

 

NO
 

C
O

M
PL

EX
 

5
.0

0
0

 
•
•
•
•
•
 R

O
O

TS
 

R
l 

R
2 

1
.0

0
0

 

-2
.0

0
0

 
-8

.0
0

0
 

E
Q

U
A

T
IO

N
 

V
A

LU
ES

 
8 

C
 

NO
 

C
O

M
PL

EX
 

4
.0

0
0

 
•
•
•
•
•
 R

O
O

TS
 

R
l 

R
2 

-2
.0

0
0

 

-2
.0

0
0

 
1

0
.0

0
0

 
Y

ES
 

1
.0

0
0

 
+

 
A

N
D

 
-

SQ
 

R
O

O
T 

( 
-3

6
.0

0
 

)/
 

2
.0

0
 

.... o o 



POOGRAl1 B 

This program reads in a set of test scores, finds the average 

and the st.."l.:r.dard. doviation, and sorts the scores. It illustrates the 

use of tile nDfENSION statement, the implied. DO loop, and the IF 

statement. 



102 

FORTRAN RUN 
FORTRAN COMPILATION VER 2 MOD 2 
$NO MULTIPLY DIVIDE 
$NO DICTIONARY 

C 
C ••••••••••••• MOK TOKKO 
C 
C•••••••••••••••• STORING EDITED DATA IN THE DISK 
C 

001 DIMENSION A(20), 0(20) 
002 DEFINE FILE 9150,20,E,INDEX7) 
003 READ 11,11) M 
004 11 FORMAT (14) 
005 READ (1,12) (A(I), l=l,M)
006 12 FORMAT (F10.3) 
007 WRITE (3,53) 
008 53 FORMAT (lOX, 13H THE INPUT IS) 

C•••••• PRINT THE INPUT DATA 
009 WRITE (3,55) IAII), l=l,M) 
010 55 FORMAT IF10.2) 

C•••••• STORE THE EDITED DATA INTO THE DISK 
011 WRITE (9'1,22) CAII),I=l,M) 
012 22 FORMAT (E12.4) 
013 DO· 14 l=l,M 
014 14 A(I)=O. 
015 READ (9'1,22) IAII),I=l,M) 
016 CONST=M 
017 SUM=O. 
018 DO 31 I=l,M 
019 SUM=SUM+AII) 
020 31 CONTINUE 

C••••••• COMPUTATION OF MEAN AND THE STANDARD DEVIATION 
021 AVER=SUM/CONST 
022 TOT=O. 
023 DO 32 I=l,M 
024 32 DII)=(AII)-AVER)**2 
025 00 33 I=l,M 
026 33 TOT=TOT+DII) 
027 STDEV=SQRTITOT/CONST) 
028 WRITE (3,51) AVER, STDEV 
029 51 FORMAT I1SH THE MEAN IS •• , F8.2, lOX, 

829H THE STANDARD DEVIATION IS ••• , F8.2)
 
C•••••••• SORTING PROCESS
 

030 lIMIT=M-1 
031 5 INT=l 
032 00 88 I=l,LIMIT 
033 IF (A(I+l).LE.Atl» GO TO 88 
034 TEMP=A(I+1) 
035 AII+l)=AII) 
036 A(I)=TEMP 
037 INT=I 
038 88 CONTINUE 



103 

039 IF (INT.EO.l) GO TO 77 
040 LIMIT=INT-l 
041 GO TO 5 
042 77 CONTINUE
 
043 WRITE (3,37)
 
044 37 FORMAT (3X, l7H THE SORTED SCORE)
 
045 00 78 I=1,M 
046 78 WRITE (3,79) A( I ) 
047 79 FORMAT (F10.2) 
048 END 

# 

LOADER RUN 

$EXECUTIO\l 



104 
THE INPUT IS 

98.00 
93.00 
95.00 
78.00 
80.00 
82.00 
85.00 
88.00 
92.00 
90.00 
72.00 
69.00 
49 .. 00 
52.00 
57.00 
75.00 
62.00 
41.00 
43.00 
75.00 

,THE MEAN IS.. 73.80 
THE SORTED SCORE 

THE STANDARD DEVIATION IS ••• 17.34 

<:/8.00 
95.00 
93.00 
92.00 
90.00 
88.00 
85.00 
82.00 
80.00 
78.00 
75.00 
75.00 
72.00 
69.00 
62.00 
57.00 
52.00 
49.00 
43.00 
41~00 



PIDGRAH C 

Hhenever a large number of data is to be processed, the data can 

be stored in the disk storage. In order to storo the data in the disk, 

the data must be stored in the core storage first. If all tho data is 

road into the core before transferring to the disk, a large amount of 

core storage is used. If a number is r-ead into the core mrl stored in 

the disk one at a time or, in caSe of a matrix, one rov; at a time, a 

considerable amount of core storage space is saved. 

This program is designed to read in two :N by Nand N by K 

xnatrices one n14"llber at a time, store it in the disk, and find the product 

of the two matrices. 'lb.e u.rdqueness of this program is that the 

elements of the tvlO matrices and the elements of the product matrix are 

stored linea.rly. That is, after the first ron of the first matrix is 

stored, the second row is stored immediately following the first roH, 

and the third roH immediately follm·rl.ng the second row, and so on. 

After the first matrix is stored, the first row of the second matrix 

is stored irnnediately follCl-ring the last rovT of the first matrix. 

Then the second row is st..ol'OO following the first rolo1, and so on. 

The foliot-ring diagram i..Uustrates the way the numbers are stored 

in the disk. The elements of the first matrix are represented by a.mn 

and that of the second rnatrix by bnk and that of the product Inatrix 

by Crok. 



P
O

S
I T

IO
N

 
N

O
. 

1 
2

3 
I...

. 
n. 

n
+

l.
 
n
~
2

 
n

"'
3

 
...

. 
n 

(1
'Y

l-
l)

 
n

(r
tf

-l
}+

t 
,,

(1
1

1
-1

)+
2

 
...

 

S
TO

R
E

-D
 

N
tlM

B
ER

 
a'

l 
a,2

, 
a'

3 
.. 
. 

.. 
a'

n 
a 2

1 
a 2

L
 

a.:
3 

...
. 

a
m

i 
a"

'L
 

ti"
"3

 
...

 
I 

-
 m
'n

 
, 

/?
?.

rJ
+

 
K

 +
2

 
l
1
'
)
,
n
"
f
I
<
~
3

nu
t -

r 1
 

lJ
1·

Y
1+

2 
m

·Y
1

+
3

 
...

. 
l11

·n 
"t

K
 

M
·n

-t
K

+
l 

...
 .

 
Jr

1d
7 

r:
lK

 
.. 

a
m

I]
 

hi
, 

b,
;l. 

b'
3 

-..
 ~ 

b
ll
(
 

b1
./ 

b
J
.2

. 
b 2

3
 

. .
. .

 
b

:Z
k 

~
.
'

 

-


m
·n

..,
. K

{n
-I

) 
+

1 
m

·n
-t-

I<
{'

f-
I 

)-1
"2


/11

. r
'f·

tI
(C

II
-1

 )+
3

...
. 

17
7·1

1-
10

 K
'n

 
m

·n
 +

I{
·n

t 
1 

" ' 
m

.n
+

K
·n

-f
" 

2
h
1
o
l
1
~
K
n

 
H

,t
'/

.K
 

b
l1

1 
hw

2.
 

b
l1

.3
 

-.
" 

" 
b

n
k
 

C;
, 

en
 

Cn
K 

FI
G

U
RE

 1

 

D
IA

G
lW

1 
IL

LU
ST

R
A

TI
N

G
 :

rr
~.
; 

TH
E 

EL
D

-1
EN

TS
 

O
F


 
~

TH
RE

E 
H

A
TR

IC
B

S 
A

RE
 S

TO
RE

D
 I

N
 T

H
E 

D
IS

K
 

U
N

IT
 

o 0
\.

 



107 

FORTRAN RUN
 
FORTR~N COMPILATION VER 2 MOD 2
 
$NO MULTIPLY DIVIDE
 
$NO DICTIONARY
 

C ••••••••••• MOK TOKKO 
C 
C •••••••••••••••• MULTIPLICATION OF TWO MATRICES 
C THE ELEMENTS OF THE MATRICES ARE READ IN ONE 
C AT A TIME AND STORED ON THE DISK IN ONE ROW 
C 

001 DEFINE FILE 9(1000, 20, U, INDEX9)
 
002 11 FORMAT (314)
 
003 26 FORMAT (214, F10.2)
 
004 12 FORMAT ( F10.2)
 
005 READ (I,ll) M, N, K
 
006 WRITE (3,41)
 
007 41 FORMAT (16HOTHE MATRIX A IS)
 
008 00 100 l=l,M
 
009 DO 100 J=l,N
 
010 READ (1,12) X
 

C •••••••••••••••• STORING OF A MATRIX ON THE DISK 
011 IND=(I-1)*N+J 
012 FIND (9'IND) 
013 WRITE (9 1 IND) X 
014 .100 WRITE (3,26) I, J, X 
015 WRITE (3,38) 
016 38 FORMAT (16HOTHE MATRIX B IS) 
017 DO 101 l=l,N 
018 DO 101 J=l,K 
019 READ (1,12) Y 

C •••••••••••••••• STORING OF B MATRIX ON THE DISK 
020 INO =M*N+(I-1'*K+J 
021 FIND (9'INO) 
022 WRITE (9'IND) Y 
023 101 WRITE (3,26) I, J, Y 
024 WRITE (3,24) 
025 24 FORMAT (35HOTHE PRODUCT OF A AND B MATRICES IS)
026 J08=0 
027 KET=O 

C •••••••••••••••• MULTIPLICATION OF A AND B MATRICES 
028 DO 102 1=I,M 
029 DO 102 l=l,K 
O?-O v=o. 
031 00 102 J=l,N 
032 IND=(I-1'*N+J
033 F I NO (9' I NO ) 
034 REA D (9' I NO) X 



035 
036 
037 
038 
039 
040 
041 
042 c 
043 
044 
045 
046 
047 102 
048 

$EXECUTION 

108 

IND=M*N+(J-1)*K+l 
F I NO (9' I NO ) 
READ (9' IND) Y 
V=V+X*Y 
KET=KET+l 
IF lKET.NE.N) GO TO 102 
KET=O 
JOB=JOB+1 

STORING OF PRODUCT MATRIX ON THE DISK 
IND=M*N+N*K+ JOB 
FIND (9 I IND) 
WRITE (9 I INO) V 
WRITE (3,26) It l, V 
CONTINUE 
END 

LOADER RUN 





110 

PIDGRAH D 

This program illustrates the use of the P-spccification and 

slashes in a FOlli·rAT statelllent. This program contains two data cards. 

Each da t,.'\ card contains four numbers, each of which h3.s two digits to 

the left of the decimal point. The first specification in the FORHAT 

statemont 11 moves the decimal point in the first number one place to 

the left and the second specification moves the decimal point in the 

second number one place to the right. The third and fourth numbers 

are read in as they appear on the data. card. T'ne sum of the first t,ro 

numbers is labeled X and the SUll1 of' the last t,ro munbers is labeled Y. 

The list of the WRITE statement contains six items, A, B, X. C. 

D, and Y. Ordinarily these items are printed on a single line but, 

due to the sla.shes bebveen ilia specifications in the FORi-tAT statement, 

each item is printed on a separate line. The blank lines betm)en 

numbers on ilie output are ca.used by the double slash. The double 

slash at the end of the FOR,tAT statement causes the double blank lines 

between the first and the second sets of numbers. 

InputJ 

22.215 31. 217 12.321 12.J25
 

14,321 41. 214 13.214 54.102
 



111
FORTRAN RUN 

FQRTRA~ COMPILATION VER 2 ~OD 2 
SNO MULTIPLY DIVInE 
SNO DICTImJARY 

c •••.••..•.. P-CONVE~~SImJ A1\1O SLASHES 
C 

001 00 21 1=1,2 
002 READ 11,11> A, R, C, D 
003 11 FORMAT I1PF10.2, -lPF10.2, OPF10.2, F10.2) 
004 X=A+B 
C05 Y=C+D 
006 21 WRITE 13,12) A,R,X,C,D,Y 
007 12 FORMAT IF10.3/F10.3//F10.3//F10.3/F10.3//F10.3//) 
008 STOP 
009 END 

LOADER RUN 

$ EXECUT I m,1 

2.222 
312.170 

314.392 

12.321 
12.325 

24.646 

. 1.432 
412.140 

413.572 

13.214 
54.102 

67.316 

http:���.��..�

