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CHAPTER I
INTRODUCTION

In the study of algebraic disciplines, one encounters
a number of properties whleh clasaify and compare various math-
ematical structures. The appearance of many systems would tend
to set them apart from others, however, upon careful examina-
tlon, we find that the baslic systems in reference are indeed
quite similar. The property which will be discussed in this
thesis 1s the characteristic of a field, and in particular, the
infinite flelds of non-zero characteristic.

In order to define "charactefistic", as it 1is to be
used in this thesis, requires a review of a number of concepts
from the theory of rings. However, the reesder 1s assumed to
have knowledge of the baslc concepts of the theory of groups,
rings, and flelds,

Rings. Example l1.1l. The set of integers, I, 1= a

ring, The verification of thls fact can be demonstrated by
verifying that the ring properties hold in I. This verifica-
tion is not essential to the development of this thesis, The
importance of this example is to point out that under certain
conditions, a subset of a ring I1s again a ring. Consider the
subset of I which are integral multiples of two. This set also
by definition 1s a ring. Thls gives an 1llustration of the
subring which 1s the basic reason for the example. With thils
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idea of subring in mind, conslder the example of ell Integral
multiples of two as a subring of I. DNot only are the integral
multiples of two closed with respect to multiplication, but
the product of any a €1 and any integral multiple of two, gives
an integral multiple of two.

That is: Y a€l and & b € {integral multiples of two =
2B, 3613 (28)a = a(2B) = 2(aB),
When this condltlon exists, the subring 1ls an 1ideal,

Definition 1.2, If N is a subring of a ring R such

that both ra and ar are elements iIn N for all elements a of
N and all ring elements r in R, then N is an ideal, (sometimes
called a two-sided idesl). -

Conslder two rings <R, +, '> and <R', @, x> e« If 2
mapping ¢ exists so that d) (a + b) = ¢(a) @ gb {(b) and qﬁ
(a » B) = d)(a d)(b), for all a and b in R then Cf)isa
homomorphisri, Suppose further that q) 1s a one to one mapping
of R onto R'. Thon d) is an lsomorphilsm, written R 2= RTY,

Theorem l.l. Let q) be a homomorphism mapping the
ring R onto R's. Then the set of elements N of the preimages
of the addltlve 1dentity O!' of R' forms an ideal in R,

| 07, p. 7

Returning now to the example of an ldeal, namely the
set of integral multiples of two In the ring of Integers I,
a set of elements of the form (a + n} can be obtained where
"a¥ 1s a fixed element of I and n ranges throughout the set

of even integers. Then a + n for any specific "a" is a
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remainder class or residue c¢lass. This set of remainder class-
es are referred to as R/ﬁ where N is the ldeal of even integers
in R.

Theorem 1.2, Let d) be a homomorphism mapping R onto
R!'. Let N be the set of elements in R which map onto the iden-
ity O' in R', Then N 1s an ideal in R and the remalnder class-
es R/N 1s a ring isomorphic to R', [?, P. 7&]

Definition 1.3. Let R be a ring and let M be an arbi-

trary suvbset of R. The intersectlon of all ideals containing

this set M is called the ideal generated by M and is written (),
If M consists of a single element "a", then the ideal

is written (a). An 1deal such as (a) generated by a single ele-

ment 1s called s principal ideal. [7, Pe 78]

Definition 1.4 Let R be & ring and N an 1ldeal in R.

If N has the property that whenever a * b€ N then elther a or
b is in N; then N is called a prime ideal. [7, p. 79

For exemple, the principal ideel (7) is prime in the
ring of integers I, since if a * b is in (7), a or b must be
a multiple of 7. On the other hand (6) is not a prime idsal
as 12 = 3 * L} &s in (6) but neither 3 nor 4 1s in (6).

Flelds. Consider the remainder classes I/(7). This
partitlons the set I Into classes, 0 + Tn, 1 + Tn, 2 + Tn,
3+ M, 4+ ™M, 5+ M, 6 + Tnwheren € I, Let 0, 1, 2, 3,
4y, 5, 6, represent each of these classes respectively. It can
be shown that thls set forms a field.

The familiar number systems of analysis, the rational
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a field containing a finite number of elements. 1f p is a
prime number, then I/(p) {the ring of integers mod p) is a
field. [3, p. 91

Conslider then, an arbitrary field F, It may be that
F contains a subset p which is also a field. If 1t does, p is
referred to as & subfleld of #., It 1s possible that the sub-
field p also contains a subfield p! and p'> p", p" also a sub-
field. As the Intersection of eny number of subflelds is again
a subfield, the field which is obtained by this intersection
of subfields is called the prime field of F,

Definittion 1.5. The field obtained by the intersec-

tion of all sublields of a field ¥, 1s sald to be the prime
field of F. The symbol 1} will be used to designate the prime
field of F.

Definition 1.5 gives rise to two important faects: (1)
every field has a prime field and (2) this prime field 1is un-
fque.

Theorem 1.3. A fleld F conteins one and only one prime
fieldY .

Proof. Buppese F contains no proper subfields. The
field F 1s then the prime field of F, If F contalns subflelds
Uy, U, U3, e ¢« + Uy, then each of the Ui‘s mast contain the

zero elemernt of F. As each Uy 1s a field, each Uiy must contailn
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an ldentity e, such that ey - Ujy = Uj. Bowever, if ey 1s the
identity element of F, ep * ey = ej. As ey ls the identity
of U3, e » e; = e3. Therefore, ep * ey = &5 * ey and by the

cancelation law, ep = e,

ie This demonstrates that each Ui must

contain "O" and "1" of the field P, If "a" is a non-zero ele-
ment of each Ui then a~l and -a must also be in each Ui‘ Thereo-
fore, the Intersection of all subflelds of F is a field. Thus
the existance of 1] is established. Suppose that some fleld

F contains two distinet prime fieldsjﬁ‘l, and T} ». This woulad
imply that there exists an element "a" in7] , such that "a"

is not an element of 7] ;. However, "a", an element of 77 ,,
implies that "a" is an element of every subfield of F, If

"a" 12 an element of every subfield of F, "a" is an element

of J7, by definition of "prime field". Therefore,TY =TT,
and the prime field IV of F is unique.

The investigation of a prime fileld ylelds the remark-
able result that every prims field is either isomorphic to the
field of ratlonal numbsers or else Is isomorphic to the ring
of residue classes I/(p) where p is a prime number.

Lemma. Let V] be a prime field and e the unity ele-
ment of Y¥ . Then the integral multiples of e form a commuta=-
tive ring T with unity element.

Proof. By the meaning of "unity element", n « ¢ =n
and m « e = m, Therefore, n « ¢ +m * e =n +m which is equal
to (n + m}) e. Also, {n < e) * (m-ce)=n-°*m=(n - m e,

Hence, P 1s closed with respect to addition and multiplication.
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0O *e=0andl * e = e are e¢lements of P and if n - ¢ € P,
-n * e is also an clement of P and n * e + (-n + e) = 0.
Cormutativity and associativity of both operstions and ths
distributive law follow these properties in I.

Theorem l.li. Let VT be a prime field. Let I be the
ring of integers and K the field of rational numbers. Then
7Y 1s a field which is eithor isomorphic to K or isomorphic
to the ring of remainder classes I/(p) where p 1s 8 prime
number,

Proof. Let p be the ring of integral multiples of e
defined 1in the lemma. Define a mapping f of I onto p by,

f:@ m — me,
By definition of addition and multiplication of elements in
ps, £ 18 a honomorphism., Let N be the ideal In I which maps
onto the zero element of p under this homomorphism. By
theorem 1.2, I/N is isomorphic to p. Since p is a subset of
a fleld, it ean have no divisors of zero. Since I/N is com-
mutative ring with unity elsment, it is an integral domain and
N is a prime ideal. [7, P. 82]
That is:

N = {p) where p is a prime number or zero. Threse

cases arise,

Case 1. P is & prime number and {p) is a non-
trivial prime ideal. That is, (p) is
unequal to the null ideal or the unit
idesl.



Case 2.
Case 3.

Case 1.

Caze 2.

?
P

= 0 and (p) is the null ideal.
= 1 and (p) 1s the unlt 1deal.
Suppose p 1s a prime number. Then
ey == ».
Since I/(p) 1s a fleld and p is a
subset of W, p =7) . This follous
from the fact that 1t 1s a prime
field and does not contain a field
as a proper subset. . . I/(p) =N
Suppose p = 0, Then the homomorphism
fr+ I —>» p
becomes an isomorphism,
~~ p
since 1/(p) = I/(o) = I,
Now p 1s not a field as the ring of
integers I is not a field, Since p
is a subset of TV and 7Y is a field,
TY must contain all elements of I and
the multiplicative Inverse of e&ach.
That is,; 7] must contain the quotient
field A of I, As the quotient field
of I is the set of rational numbers
Ra, 11" then must contain Ra. But T
is a prime field and therefore contains
no field as a proper subset and we con-

clude - Ra.
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Case 3. Suppose p = 1, Then (1} is the unit
{dea and I/(l) contalns only the
element zero. Since

I/(l),-’:/" p
this implies p contains only the =le-~
ment 0. This is a contradiction as p
must contain O and 1., This rules out
the case of p = 1. [?, pp. 126, 127]

Characteristic. Definition 1l.6. If "p" from theorem

l.h is a prime number, then I/(p) is a finite field. The
number p is called the characteristic of the prime field 7TV
and of the original field F. If T has an infinite number of
elementslthen'ﬁT or F is a field of characteristic zero.

It is obvious that if a field is of charzcteristic
zero, it must have an infinite number of elements as the
prime field Y of F already would have an infinite number of
elements. However, the converse of thlis statement 1s not
true, That is, a field can have an infinlite number of ele-

ments with characteristic p # 0.



CHAPTER II

DEVALOPMENT O THn INFINITE FISLDS

OF NON-ZERO CHARACT«RISTIC

It has been established in chapter I that a field of
characterlistic zero must contain an infinite nuuber of ele-
ments. The existence of an Infinite set of elements in a
field, however, does not imply that the characteristic of
this field 1Is zero.

Example 2.1, Consider the field F = I/(B)' Let
{b,l,E} represent the remainder classes of I/(3)' Consider
now the polynomials in "x" over F. One element of this ring
1s the polynomial x2 - 2, As en equation in standard form,
this polynomial gives rise to the equation, x2 - 2 =0, This
equation impllies that x = x = 2 or by conventional notation,
x = J2. The fact that the squara root of two 1s not an ele=-
ment of F 1Is established by the following lemma.

Lemma: The solution "x" of x2 = a, "a" being a non-
zero element of I/(p), with p # 2 is an elemant of I/(p) only
if "a" is not a generator of the cyclic multiplicative group
of non-zero elements of I/(p).

Proof, Suppose the solution of x2 = a is an alement
of I/(p) and "a" is a generator of the multiplicative group

of I/(p). If "a" is a generator then a" = x for some n€1I,

n £ p. By assamption, x° = a, and by substitution (aN)2 = a
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which implies a®® = a, However, by the "Theorem of Fermat",

[?, D. 253, I1f P i3 prime and a is not a multiple of p, then
en

H

aP=l = 1 mod p. This implies aP = a. Therefore, aP = a
but p 1s prime which means n must be egqual to p. However,

n = p leads Lo a2

= a whlch implles a = 0 or a = 1 neither of
which can be a generator of the multiplicatlve group of I/(p).
As the element two 1s a generator of the multiplicatlve group

2 = 2 has no solution in I/(3J-

of */(3)s %
Suppose that 1t is deslred that the field F be extended
so as to contain the solution (J2) of the equation x2 - 2 = 0,
It 1is observed that under the operation of multiplication, the
set F becomes {9,1,2, J??,Z.fgg. Upon inspection of this set,
multiplication is closed; that 1s\r§ e 2d2 = 2J§J§ =2 *« 2 =1
in (F extended), This set of elements, excluding zero, is a
comiuutative group under the operation of multiplication; how-
ever, addition Is not closed as 1'+in 1+ 2 Jii P +-J§-and
2 + 2 J2 are not elements of F extended, The addition of these
elements to the set {p, i, 2, J2, 2 JEB glves {O, l, 2, JEZ
2J—?-_', 1 +J_2—, 1l + 2J_2—, 2 +J_5, 2 + 2-.’_2?3. This set conslats
of all elerents of the form a + bJ 2 where a, t:EI/(B). It
can be shown that this set of nine elements 1is a field.
The notation F( J2) will be used to represeat the
extension field, F esxtended by \IEZ The polynomlal function,
x2 - 2 =0, 1s called the defining equation of the extension.

4 field of nine elements has thus beesn developed which has as

1ts prime field the original field F = I/(3). This would
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indicate that the characteristic of F{ J2) is three. A&s {2
1s algebraic over the ring of polynomlals In x over F, the
extension field F({ {2) 1s sald to be obtained by an algebraic
extension of ¥, 1In particular, a simple algebraic extension
has been made since only onc element has been adjoined to ?(3).

The preceding example of a field extension Indlicates
that If a finite field could be extended to an Infinite field,
this Infinite fleld would have as 1ts prims field the original
finite field and would be an infinlte fleld of non-zero char-
acterlstic,

Example 2.2. Let F(x) represent the set of all ra-
tional functions in "x" of the form:

ag + a; x + ap X2 4+ v e e a,xn

2
by + by X + by XZ + ¢ ¢ e 4 byx™

Where: aj, bjEI/(3) and by + by x + b2x2 + o« o o+ b x" # 0.

The one to one corrsspondence?

By ¥ 8yX Fa,xs + o o +ax  ag + ayxS +oaxt £+ o o+ g x2D
0 1l 2 n e o 1 2 n

by + byx + boxZ + ¢ o+ + bpx™ by + byx? + bpxlt + o+« + b x°F
0 1 2 mX 0 1 2 e

where, :E:anxn — ji:anxzn

is an 1llustration of a one to one correspondence f{rom F(x)

to a proper subset of F(x). This correspondence demonstrates
that F(x) 1is indeed an infinite set. The field properties can
be verified for the operations addition and multiplication.
The subset of F{x) consisting of the elements of the form

ag I - I
g where a_. ranges throughout /(3) and b, = 1, is /(3).

O
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Example 2,2 is an infinite {ield of non-zero characteristic,

Example 2.3, Let F( J2) be the finite field of ex=-

ample 2.1, Consider the field extension, F( J2)(TV), where
TY is transcendental over the extension field, F( 2).

a, + ’TT+&'TT2+-oo+a'Trn
FJET = 0t 2 n

—

bo + by TT + by, TT2 4+ + « « + b TN

Where: ag, by € F(V2).

As in example 2.2 thls extension fleld is an infinlite fleld
and the characterlistic is non-zero. Although this fleld ex-
tenslion appears to be the same as the extension field of ex-
ample 2.2, 1t is to be observed that the coefficlents a4 bj
are elements of an extension field., The significance of this
minor varlatlion will be evident in chapter III.

Consider the set of 2 x 2 matrices of

Examols 2.4.

the form,

-b a
where, a, b € I/(3)' This set of matrices consists of the

elements;:

o 0 o 1 o 2
o of , > of , 1 0
1 0 1 2 1 1\
o 1/ , 1 1) 2 1/
> 0 > 1 2 2\
o 2| , > 2| , 1 2/
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With the usual definition of multiplication asnd eddition of
matrices, the above set of matrlices forms a field., The pro-
ducts and sums of the entriles 8y bj are understood to bs as
defined in I/(3). This set of matrices conteins the subfield,

0 0 1 0 2 0

0 0 0 1 0 2
The field of nine matrices is of characteristic three. If
F represents this field of nine matrices, let F(x) represent
the set of ratlonal functions in the indeterminate x of the

form:

1 2

ap + a) X + as X + * ¢+ 4+ g x

g tbpxtAbp x4 b pan
where a;, bj € F and ijxj # 0,

n
Ir EE a4 xl = 0, Ei b xi = 0.

and a ranges throughout F, then the set of nine matrices which
make up the field F are obtained. The field F being of char-
acteristic three. Thus F(x) is an infinite field of non-zero
characteristic. |

Examole 2.5, Consider the rational functions in x
with coefficients in 1/(3)., Call this field F(x). Develop
: the set of matrices of the form:

(ab

\-b a




1y

where, 8, b € F(x)}.

Let M(F(x)) represent this set of matrices.

M(F(x)) =
ag * ajx + ¢ o o+ oapxD eop t ogx + ¢ o o+ oxP
bg + byx + « ¢ o + bx™ dg + dyx + ¢ o . 4+ dqxq
g * eyx + * v ¢+ cpxP Bg * ajx + v * ¢+ apx"
. do + dyx + » o o 4 dqxq by + byx + » o . 4 bmxm
where,

2ot >axt £ o
Thls set of 2 x 2 matrices is an infinite fleld. The prime
field of M(F(x)) is the set of three matrices:
0 0 1 0 2 0
0 0 0 1 0 e N
Therefore, M(F(x)) is an infinite field of characteristic
three.

Example 2,6, The infinite fleld of non-zero charac-
teristic of example 2.2 1s a transcendental extension of a
finlte field. Consider a transcendental extension of the
extended field of example 2.2. Let F(x) represent the ra-
tional function in x with coefficients in 1/(3). Let -G be
an element which is transcendental over F(x). Let F(x)(©)

represent all rational functions in -~ with coefficlents in

Zai Xi

Sby %)

P(x). That is:

Fix) =
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where
ij xj ;\‘-’ 0, By by & I/(3)
and
ZE aixi n
Fx)(e®) = ijXJ n
ziarxr m
E:bsxs InE
83 8pny bJs bs = I/(B)
where,

r
bjxj # 0 and 2: r* _EE}jl £ o0,

As the coefficlents of --18 an infinite set and FP(x) (€ is
a field., F(x)(-©&) is an infinite field. To develop the prime
field of F(x)(4), let my n, 1, J, r;, s, equal 0. F(x)(-e")

then becomes:
2%
PARS
2 °r
2 s

Let &, = by =1 and b; =1

r J
and let aj range throughout I/(3).
The above set is 0, 1, 2 = 1/.5y. F(x)(©) is an
(3)

infinite fileld of charscteristic three,
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The characteristic of the field iIn each of the pre-
cedlng examples is three., The generalization of the forms
of infinite fields of non-zero characteristic 1s not destroyed
by this fact. It is obvicus that the coefficlents of the ra-
tional function in (x) as well as the coefficients of the
povers of -& in example 2.3 could have been taken from any
finite fleld or any algebralc extension of a finlte field.

The exemples of this cheapter 1Indicate that similar-
l1ties occur in comparing the verious infinite fields of cher=-
acterlistic three, However, upcon exemination of these examples,
many differences become evident., These similarlties and dif-
Terences will be exanmined from a more genersl point of view

in chapter II1I,



CHAPTER IIX

COMPARISONS OF THE VARIQUS FORIMS OF INFINITE

FIELD3 OF HON-ZERO CHARACTZRISTIC

When comparing algebrale structurea, the exlstance
or absence of isororphisms 1s one of the most Important and
Informative relations which can be established. DMany conjec-
tures involving isomorphisms are suggested by the sxamples
presented 1n chapter II. It Is these conjectures which will
be Investigated in this chapter.

Develop the fleld of rational functions In the inde-
terminate x as in example 2.2 with coeflficients from the flsld
I/(;). Remembering that en isomorphism must be a one to one
correspondence which preserves operations, 1t becomes obvious
that no isomorphlism exlists between example 2.2 and the field

deseribed above.

That is: I/(B)-(x)_ M
1*x & 1-x
2 ' x &—3y 2°x
A +x)+(2.x) = 0-+x = 0in I/(B)(x)

does not correspond to
(L« x)+(2-x) = 3+ x1in I/(5)(x).

This 1llustration gives rise to a theorem.

Theoyem 3.1. An infinlte field F of non-zero
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characteristic 1s isomorphic to a field F!' of non-zero char-
acteristic only 1f the characteristic p of F 1s equal to the
characteristic p' of F!.

Proof. Let (b represent an isomorphism from F to F1,
Let tho prime field T of F = §0, 1, 2, * + » pf. Let the
prime field TJV! of P' = 5.0, 1, 2, * = « D » « & p'}. Sup-
pose that p # p'. The generality of the proof will not be
lost by further assuming p'> p. ¥Wlth thls assumption and the
fact that ¢’is an isomorphism, set up the followling corres-

poudeince,

s 2 ¢ N = O
Fal

Pl
e o s NV +H O

P
P+1lfFpl+l
But p' + 1 = 0,

p
0

g

p+l-~=

This contradicts the fact that Cb Is an isomorphlsm. The
supposition that p # p' led to this contradiction and there=-
fore p = p'.

Theorem 3.1 can be used in two ways. It assures that
if two fields of non-zero characteristlc are lsomorphic then
they must be of the same charactsristic p. Theorem 3.1 also

nolnts out that & prerequlslte for an lsomorphlsm to exist
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from one field of non-zero characteristlc to another 1s that
they be of the same characterlstic.

It may seem that equallty of characteristics is suf-
ficient to conclude that two fields of non-zero characteristic
are lsomorphlic, Conslder, however, examples 2,2 and 2.3.
Here are two fields of characteristic three which obviously
are not lsomorphic.

In order to Investligete the existance of isomorphisms
relating the algebraic systems in question, 1t is helpful to
congider generalizations involving only simple extenslons of
a Tinite field.

Theorem 3,2. Let F ve a field and -©-an arbitrary
transcendental element in a fleld contalning F. Let x be an
indeterminate. Then F(-€) is a field which is isomorphic to
F(x) where F{x) is the set of rational functions in the inde-
terminate x with coefflcients In .,

Proof, Since F and -©-are elements of a field, then
F(-©&) 1s a fleld obtained by the adjunction of & to F. This
field must contaln F‘EG—] which 1s the set of polynowmials in
-©-over F. Let F[X] be the ring of polynomials in the inde-
terminate x over F. F[-6]1s all elements of the form Zan-e-n
vhere a, € F, Define a mapping (t) ’

(:D : 2 apx! — 5> ane?
of F[x] onto F[©] where f(x) = Z o x"e F[x] and r{©) =
Zan-e.ne *fe-].
With the usual definltion of rultiplication and addition of



20
polynomials, qb is a homomorphism. The mapplng (b can also
be shown to be an isomorpnism. Suppose that (b 1s not an
isomorphism., Let N be the kernel of ¢ . If £(x) # 0 in F[x]
is in N, then f(x)-jiio. However, by definition of d),
f(xJ-J£9I449). This implies that £(-©) = O which is a con=-
tradiction of the assumption that -©- is transcendental over
F. This establishes d)to he an 1somorphisn:

F[x] < FFo
now F[-©7] is not & field since F[x] is not & field. However,
if tvwo integral domains are isomorphlc then thelr quotient
fields are isomorphiec. Therefore, F(x) 1s isomorphlc to
F(-©),

Theorem 3.2 has a very lmportant implicatlion, It
assures that the Investigation of rational functlons in an
Indeterminate x over a field P wlll yleld results epplicable
to all simple transcendental extensions of F,

It becomss apperent that the finite field F from
which the coefficients of xl are taken in F(x), determines
the existance or absence of an isomorphic mapping from one
infinite field of non-zero characteristic to another. A
sultable vehlcle to obtain eertaln properties of  ls the
vector space,

Example 3.1. OConslder the field F(J2), P = I/(3}.
The prime field TT of F(J2) is the fleld of remainder class-
es I/(B). as F(J2) contains 77, it may be considered as a

vector spasce over)) . The two independent vectors (1, O)
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and (0,‘r§) form a basis of this vector space as every ele-
ment 1s of the form a + b 2, 8, b€TV « The dimension of
this vector space is two and 1s written (F(J2);77) = 2,
Notice that F(J 2) consists of nine eclements. The character-
istic of the field is three and the dimension of P(J 2) over
TV Ls two, The relation 9 = 32 leads to the following theorem.

Theorem 3.3, Let F be a finite field and Y its prime
field, Then the number of elements q in the field F is equal
to p® where n is the dimension of F over T and p 1s the char-
acterlistic of F.

Proof. Since n = (F :T) is finite, the field F con-
sidered as a vector space over 11 has a finite basis say,

Vis Vs V35 ¢ 7 0 Vp o
Every element U of F can be expressed as a lineapr comblination
of the vi's with coefficlents in”V7 :
U = a9v) +apvpy + ¢ ¢« +agv, 5 a3 €TV,
Now in any expression,
byvy + bovy + b3v3 + e v ¢+ bpvy bj € 7Y = I/(p),

thers are p distinct values which the bj's may assume, slince
there are p distinct elements in 771 = I/(p). Hence, there
are at most pn elements in F. 7

Suppose two of these p?! elements are equal,

clvl + 02V2 + ¢ s s+ CnVn

where by # ¢4 for some by, cj.
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Subtracting c¢;v; from both members of the preceding equation

ylelds;
(by-ey) vy + (bp-cp) v, + ¢ 0+ 4 (by-c ) v, = 0O
where not all bj-cy = 0. Thig implies that the vn's are

linearly dependent which contradicts the assumption that they
form a basis., Therefore, there are exactly p?! elements in F,
[7, p. 159

Using theorem 3.3 and the fundamental theorem of
arithmetic, (the fundamental theorem of arithmetic establishes
the uniqueness of p? for if p? = ¢, p and g both prime, then
the number 4 = p? = ¢™ would have two distinct prime factori-
zations), the characteristic of a finite field of n elements
Is unique.

These properties of the finite field from which ths
coefficients of x are taken in F(x) leads to the basic and
most powerful theorem with regard to the isomorphisms of the
structures under consideration.

Theorem 3.4. Two fields F(x) and F'(x) of non-zero
charascteristic are isomorphic 1f and only if the fields F
and ' are lisomorphle,

Proof. Let F(x) be isomorphic to F'(x). F is a sub-
set of F(x) and F! is o subset of Ff(x}). If f is the isomor-
phism from F(x) to F'(x), the same mapping f, will relate F
and F' as an isomorphism,

Let ¥ be mapped to F' by g where,

g F €« P' is an Isomorphisn,
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That is:
g (ag) = &y
& (9-2) = 9-2‘
£ (an) = a_nl

Now F(x) contains F[x]and F'{x) contains F'[x]. Let F[x]
be mapped to F!'[x} by g.
g : Zaixi___g Zai'xi
where,
ay € Fand ay' ¢ F',
By definition of addition and multiplication c¢f polynomiels,
g i1s e homomorphism., Suppose g i3 not an isomorphism, Thils
would imply that;
s (Z_aixi) = Zai'xi
and
g (Zaij) = Zai'xi
for some 1 and J.
However, by definition of g, 8 would then equal aj, and g
i1s an isomorphism, If F[X] is isomorphic to F'[x] then

F{x) 18 isomorphic to F'(x),
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Theorem 3.h. placed no conditions on F and F', However,
previous theorems require that F and ¥' be of the same charac-~
terlstic. The fields P and P' may be finite or infinite,

Theorem 3.y may appear to be the same as theorem 3.3.
The difference can best be shown by an example. Theorem 3.3
Impllies that any simple transcendentsl extension of a field
F, 1s isomorphic to the rational functions In the indetermin-
ate x with coefficilents in the same fleld P, Theorem 3.4
implies that any two filelds which are obtained by a transcen-
dental extension of two flelds F and F' are isomorphic if F
is isomorphic to F'. Theorem 3.l also implies that if two
flelds F and F'!' are extended by a sihgle transcendental ele-
ment respectively so that F(5) is isomorphic to F' (&),
then P must be isomorphic to F!',

Consider the fleld F(€-) where F is I/(B)( J2), This
set P consists of the nine elements of the forma + b Jﬂi;
where a, b € I/(3). Also consider the field M{x) where M is

the set of 2 x 2 matrices of the form:

and

ay b €1/ (4.
The determinants of thls set M are equal to the sums, a° + b2
where a, b € I/(3).
Define f so that:

£ a2 + b2-——+ a+ b J 2
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The mapping f establishes that M is isomorphic to F and by

theorem 3.5, M(x) is isomorphic to F(-&). Example 2.5 could
be consldered as the field T(€©-) where T = FP(x). Thus 3.4
would imply that in order for a field G(-©') to be isomorphiec
to T(-&). G must be isomorphic to P(x). Where P(x) is under-

stood to be I/(p) extended by the indeterminate "x".



CHAPTE=R IV

CONCLUSION AND SUGGZSTIONS

FOR PURTHZR STUDY

The Investigation of an saxiomatie structure of an un-
usual type, amplifies the 1mportance of structure in the study
of ordinary algebra. The structures which have been consid-
ered In this thesis are fields having the basle properties of
the rational, real, and complex number flelds., These fields
of non-zero characteristic have many differences., The pro=-
perty of being algebralczally qlosed is not one of the pro-
perties of flelds of non-zero characterlstic.

The development of infinite fields of non-zero char-
acterlstic Involves both the slgebralc extenslons and the
transcendental extensions of finite fields. Thls glves s
better understanding of the Importance of the completeness
property enjoyed by the ccmplex field.

Certein properties of the structures under investi-
gatlion in this thesls seem contradlctory in nature. However,
these properties polint out the value of the corresponding
propertles In the flelds of analyslis. For example, In a field
of characteristic p, (x + y}P = xP + yP, The verification
of this property follows from the algﬁrithm of the binomial
expansion.

(x + y)P = xP + pxP~ly + Eig%;)xn-EyE + + o ¢ + yP
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It will be observed that the numerator of each numericel
coefficient except xP and yP contains & factor of p. But
p =0 in a field of characteristic p and the result is veri-
fied.

For further study, an examination of more matrix ex-
amples could be carried out to determine the cardinality of
the set of elements in san n x n matrlx representation of a
field with entries in I/(p). That 1s, the 2 x 2 matrices of
example 2.l with entries in I/(3) form a field of nine ele-
ments. Does the dimension of the matrix determine the number
of elements in the field if the entries By bj are taken from
I/(p)?

Another suggestion for additional study in the area
of extensions is to be found in an article in the "Proceed-
ings of the American Mathematical Society", volume 19, number
3, June, 1968, pages 701-706. This article by Edgar Enochs
entitled "Totally Intepgrally Closed Rings", examines the con-
cept of ring extensions which parallels the algebralc exten-
slon of a fleld. In lact, integral extensions in flelds are
the algebralc extensions, Using the definition that the char-
acteristic of a ring is the smallest element "a" having the
property that ax = 0 for all x in the ring and if ex = 0
implies a = 0 then the ring is of zero characteristlc, Iinte-
gral extensions of rings of non-zero characteristic could

provide an interesting study of extensions of finite rings.
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