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CHAPTER I 

INTRODUCTION 

In the study of algebraic disciplines, one encounters 

a number of properties which classify and compare various math

ematical structures. The appearance of many systems would tend 

to set them apart from others, however, upon careful examina-· 

tion, we find that the basic systems in reference are indeed 

quite similar. The property which will be discussed in this 

thesis is the characteristic of a field, and in particular, the 

infinite fields of non-zero characteristic. 

In order to define "characteristic", as it is to be 

used in this thesis, requires a review of a number of concepts 

from the theory of rings. However, the reader is assumed to 

have knowledge of the basic concepts of the theory of groups, 

rings, and fields. 

Rings. Example 1.1. The set of integers, I, is a 

ring. The verification of this fact can be demonstrated by 

verifying that the ring properties hold in I. This verifica

tion is not essential to the development of this thesis. The 

importance of this exa~ple is to point out that under certain 

conditions, a subset of a ring is again a ring. Consider the 

subset of I which are integral multiples of two. This set also 

by definition is a ring. This gives an illustration of the 

subring which is the basic reason for the example. With this 
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idea of subring in mind, consider the example of all integral 

multiples of two as a subring of I. Not only are the integral 

multiples of two closed with respect to multiplication, but 

the produc t of any n E. I and any integral mul tiple of two, giveil 

an integral multiple of two. 

That is: V aE I and V b E (integral multiples of two = 

28, BE I] (28)a = 0.(28) = 2(aB). 

When tbis condition exists, the subring is an ideaL 

Definition 1.2. If N is a sUbring of a ring R such 

tbat both ra and ar are elements in N for all elements a of 

N and all ring elements r in R, then N is an ideal, (sometimes 

called a two-sided ideal). 

Consider two rings <H, +,'! and <HI, (E), x). If a 

mapping ~ exists so that ep (a + b) = cP (a) @ 1J (b) and ¢ 
(a • b) = cP(a) x ¢ (b), for all a and b in R thon <p is a 

homomorphism. Suppose further that cP is a one to one mapping 

of R onto RI. Thon ep is an isomorphism, written R;::::;::: RI. 

Tpeorem 1.1. Let ep be a homomorphism mapping the 

ring R onto R'. Then the set of elements N of the preimages 

of the additive identity 0' of H' forms an ideal in R. 

[7, p. 74J 
Returning now to the example of an ideal, namely the 

set of integral multiples of two in the ring of integers I, 

a set of elements of the form (a + nl can bo obtained where 

"a" is a fixed element of I and n ranges throughol.lt the set 

of even integers. Then a + n for any specific "a" is a 
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remainder class or residue class. This set of remainder class

es are referred to as RI" Iolhere N 1s the ideal of even integers 

in R. 

Theorem 1.2. Let qp be a homomorphism mapping R onto 

R'. Let N be the set of elements in R which map onto the iden

ity 0' in R'. Then N is an ideal in R and the remainder class

es R/N is a ring isomorphic to RI. [j, p. 7~ 

Definition 1.3. Let R be a ring and let M be an arbi

trary subset of R. The intersection of all ideals containing 

this set M is called the ideal generated by M and is written (M). 

If M consists of a single element "a", then the ideal 

is written (a). An ideal such as (a) generated by a single ele

ment is called a principal ideal. [7, p. 78J 

Definition 1.4. Let R be a ring and N an ideal in R. 

If N has the property that whenever a • bEN then either a or 

b is in N; then N is called a prime ideal. [7, p. 7~ 

For example, the principal ideal (7) is prime in the 

ring of integers I, since if a • b is in (7), a or b must be 

a mUltiple of 7. On the other hand (6) is not a prime ideal 

as 12 = 3 • 4 is in (6) but neither 3 nor 4 is in (6). 

Fi~. Consider the remainder classes 1/(7)' This 

partitions the set I into classes, ° + 7n, 1 + 7n, 2 + 7n, 

3 + 7n, 4 + 7n, 5 + 7n, 6 + 7n where n E I. Let 0, 1, 2, 3, 

4, 5, 6, represent each of these classes respectively. It can 

be shown that this set forms a field. 

The familiar nlITJber systems of analysis, the rational 
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a field containing a finite numoer of elements. If p is a 

prime number, tben l/(p) (the ring of integers rood p) is a 

field. [3, p. 9!l 
Consider then, an arbitrary field F. It may be that 

F contains a subset p which is also a field. If it does, p is 

referred to as a subfield of F. It is possible that the sub

field p also contains a subfield p' and pl~ p", p't also a sub

field. As the intersection of any number of subfields is again 

a subfield, the field which is obtained by this intersection 

of subfields is called the prime field of F. 

Definition 1.5. The field obtained by the intersec

tion of all subfields of a field P, is said to be the prime 

field of F. The symbol lIf will be used to designate the prime 

field of F. 

Definition 1.5 gives rise to two important facts: (1) 

every field has a prime field and (2) this prime field is un

ique. 

Theorem 1.3. A field F contains one and only one prime 

fieldlT • 

Proof. Suppose F contains no proper subfields. The 

field F is then the prime field of F. If F contains subfields 

's
Ul. U2, U3' • • • Un, then each of the Ui must contain the 

zero clement of F. As each Ui is a field, each Ui must contain 
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an identity e i such that ei • Ui = Ui. However, if ef is the 

identity element of P, ef • e i = ei' As ei is the identity 

of Ui' ei • ei = ei' Therefore, ef • ei = ei • 8i and by the 

cancelation law, ef = e i • This demonstrates that each Ui must 

contain "0" and "1" of the field F. If "a" is a non-zero ele

ment of each Ui then a-I and -a must also be in each Ui. rhere

fore, the intersection of all subfields of P is a field. Thus 

the existance of/ll is established. Suppose that some field 

F contains two distinct prime fieldslTl' andTf2. This ~Iould 

imply that there exists an element "a" in1) 2 such that "a" 

is not an element oflT 1. HO~lever, "a", an element oflT 2 , 

im?lies that "a" is an element of every subfield of F. If 

"a" is an element of every subfield of F, "a" is an element 

ofiT l by definition of "prime field". Therefore, IT 1 =1T2 
and the prime field 1l' of F is unique. 

The investigation of a prime field yields the remark

able result that every prime field is either isomorphic to the 

field of rational numbers or else is iso::Jorphic to the rinG 

of residue classes If(p) where p is a prime number. 

Lemma. Let'\! be a prime field and e the unity ele

ment of)). Then the integral multiples of e form a commuta

tive ring P with unity element. 

Proof. ny the meaninG of "uni ty element", n • e = n 

and m e = m. Therefore, n e + m • e = n + m which is equal 

to (n + m) e. Also, (n • e) • (m • e) = n m = (n • m) e. 

Hence, P is closed with respect to addition and multiplication. 
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o • e = 0 and 1 • e = 0 are e lemen ts of P and if n • e E: P, 

- n • e is also an element of P and n • e + (-n • e) = O. 

Commutativity and associativity of both operations and the 

distributive law follow these properties in I. 

Theorem 1.4. Let IT be a prime field. Let I be the 

rine of integers and K the field of rational numbers. Then 

1Iis a field which is either isomorphic to K or isomorphic 

to the ring of remainder classes l/(p) where p is a prime 

number. 

Proof. Let p be the rinG of inteGral multiples of e 

defined in the len~a. Define a mapping f of I onto p by, 

f: m --? me. 

By definition of addition and multiplication of elements in 

p, f is a homomorphism. Let N be the ideal in I ~lhich maps 

onto the zero element of p under this homomorphism. By 

theorem 1.2, liN is isomorphic to p. Since p is a subset of 

a field, it can have no divisors of zero. Since liN is com

mutative ring with unity element, it is an integral domain and 

N is a prime ideal. [7, p. 82J 

That is: 

N = (p) where p is a prime number or zero. Three 

cases arise. 

Case 1. P is a prime number and (p) is a non

trivial prime ideal. That is, (p) is 

unequal to the null ideal or the unit 

ideal. 
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Case 2. P = 0 and (p) is the null ideal. 

Case 3. P = 1 and (p) is the unit ideal. 

Case 1 Suppose p is a prime number. Then 

II ~(p)""--""/ p. 

Since I/{p) is a field and p is a 

subset ofll , p =1T. This folloVls 

from the fs.ct that IT 1s a prime 

field and does not contain a field 

as a proper subset •. , I/{p):::::; IT 
Case 2. Suppose p = O. Thcm the homomorphism 

f: I -? P 

becomes an isomorphism, 

I::::::::p 

since I/{p) = I/{o) = I. 

Now P 1s not a field as the ring of 

integers I is not a field. Since p 

is a subset of"1T and IT is a field, 

11 must contain all elements of I and 

the mul tiplica tive inveI'se of eG.ch. 

That is, IT must contain the quotient 

field A of I. As the quotient field 

of I is the set of rational numbers 

Ra,lI then must contain Ra. But 1T 

is a prime field and therefore contains 

no field as a proper subset and we con

clude IT ~ Ra. 
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Case 3. Suppose p = 1. Then (1) is the unit 

idea and 1/(1) contains only the 

element zero. Since 

II (1) ~ 
r---./ p 

this implies p contains only the ele

ment O. This is a contradiction as p 

must contain 0 and 1. This rules out 

the case of p = 1. Cr, pp. 126, 127J 

C!Jarac teris tic. Defini tion 1. 6. If "p" from theorem 

1.4 is a prime number, then I/(p) is a finite field. The 

number p is called the characteristic of the prime field -rr 
and of the original field F. If Tf has an infini te number of 

elements then IT or F is a field of characteristic zero. 

It is obvious that if a field is of characteristic 

zero, it must have an infinite number of elements as the 

prime field IT of F already would have an infinite number of 

elements. However, the converse of this statement is not 

true. That is, a field can have an infinite number of ele

ments with characteristic p I o. 
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OF NOH-ZERO CHARACcrc~RISTIC
 

It has been established in chapter I that a field of 

charaa toris tic zero mus t conta in an infin1 te mnnber of ele

ments. The existance of an infinite set of elements in a 

field, however, does not imply that the characteristic of 

this field is zero. 

Example 2.1. Consider the field F =1/(3). Let 

[0,1,2) represent the remainder classes of 1/(3). Consider 

now the polynomials in !Ix" over F. One element of this rine 

2is the polynomial x - 2. As an equation in standard form, 

2this polynomial gives rise to the equation, x - 2 = O. '1'his 

equation implies that x • x = 2 or by conventional notation, 

x = J2. The fact that the square root of tlW is not an ele

ment of F is established by the follo\olin8 lemma. 

Lem!11a: The solution "x" of x2 = a, "a" being a non

zero element of I/(p)' with p ~ 2 is an element of I/(p) only 

if "a" is not a generator of the cyclic multiplicative group 
I 

of non-zero elements of /(p). 
2Proof. Suppose the solution of x = a is an element 

of I/(p) and "a" is a generator of the multiplicative group 

of I/(p). If "a" is a generator then an = x for some nEI, 

2n ~ p. By assumption, x = a, and by substitution (an )2 = a 
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which implies a 2!1 = a. HOHevel', by the "Theorem of Fermat", 

[?, p. 28, if P is prime and a is not a multiple of p, then 

l aP 2naP- = 1 mod p. This implies aP = a. Therefore, = a , 

but P is prime which means n must be equal to p. However, 

2n = p leads to a = a \oIhich implies a = 0 or a = 1 neither' of 

which can be a generator of the multiplicative group of I/(p)' 

As the element two is a generator of the multiplicative group 

2of 1/(3)' x = 2 has no solution in 1/(3)' 

Suppose that it is desired that the field F be extended 

so as to contain the solution (j;f) of the equation x2 - 2 = 0. 

It is observed that under the operation of multiplication, the 

set F becomes {O,1,2, J2,2.J2j. Upon inspection of this set, 

multiplication is closedj that is J2 . 2./2 = 2J2J2 = 2 • 2 = 1 

in (F extended). This set of elements, excluding zero, is a 

conunutative group under the operation of multiplication; how

ever, addition is not closed as 1 + J2", 1 + 2.[2, 2 + [2 and 

2 + 2 J2 are not elements of F extended. The addition of these 

elements to the set [0, 1, 2, [2, 2 J23 gives to, 1, 2, [2, 

2.[2, 1 +.[2, 1 + 2 [2, 2 + [2, 2 + 2.I2J. This set consists 

of all elements of the form a + bJ2 where a, bE.I/(J). It 

can be shown that this set of nine elements is a field. 

The notation F( [2) will be used to represent the 

extension field, F extended by IT. The polynomial function, 

2x - 2 = 0, is called the defining equation of the extension. 

A field of nine elements has thus been developed which has as 

its prime field the original field F = 1/(3)' This would 
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indicate that the characteristic of F( .[2) is three. As [2 

is algebraic over the ring of polynomials in x over F, the 

extensio:1 field F(.["2) is said to be obtained by an algebraic 

extension of F. In particular, a simple algebraic extension 

has been made since only one element has been adjoined to 7'(3). 

The preceding example of a field extension indicates 

that if a finite field could be extended to an infinite field, 

this infinite field would have as its prime field the original 

finite field and would be an infinite field of non-zero char

acteristic. 

Example 2.2. Let F(x) represent the set of all ra

tional functions in "x" of the form: 

2ao + al x + a2 x + • • • + a n x
n 

b O + b l x + b2 x 2 + • • • + bmxln
 

Where: ai' b j E. I/U) and bO + bl x + b2X2 + • •• + broXID F O.
 

The one to one correspondence: 

xna O + alx + a 2x2 + • • • + a aO + alx2 + a2x4 + • • • + a x2n 
n n 
~ 2bO + blx + b2x2 + • • • + bmXm bO + bl x + b2X4 + • • • + bnr:2m 

where. ~anxn ---7 L:anx 
2n
 

is an illustration of a one to one correspondence from F(x)
 

to a proper subset of F(x). This correspondence demonstrates
 

that F(x) is indeed an infinite set. The field properties can
 

be verified for the operations addition and multiplication.
 

The subset of F(x) consisting of the elements of the form
 
aO 

where a O ranges throughout 1/(3) and bO = 1, is 1/(3).
'fi(j' 
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Example 2.2 is an infinite field of non-zero characteristic. 

Example 2.3. Let F( 4:2) be the finite field of ex

ample 2.1. Consider the field extension, F( [2)(11), where 

IT is transcendental over the extension field, F( '{"2). 

+ an1inF( .]2)('\1) = a O + al'IT + a2 '1/2 + ••• 

bO + bl\l + b2 1T 2 + ••• + bmlT m 

Hhere: ai' bj E F( .[2). 

As in exalr;ple 2.2 this extension field is an infinite field 

and the characteristic is non-zero. Althou8h this field ex

tension appears to be tho same as the extension field of ex

ample 2.2, it is to be observed that the coefficients ai' b j 

are elements of an extension field. The significance of this 

minor variation will be evident in chapter III. 

Example 2.4. Consider the set of 2 x 2 matrices of 

the form, 

(-: :) 
Where, a, b E I/()). This set of matrices consists of the 

elements: 

(: :) , (: :) , (: :) 

(: :) , (: :) , (: :) 
(: :) , (: :) • (: :) • 
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With the usual definition of mUltiplication and addition of 

matrices, the above set of matrices forms a field. The pro

ducts and sums of the entries ai' b are understood to be as
j 

d,f'n,d 'n I/~3)':)Th" "(~Of :)t",o, (:nt':)' th, ,ubf',ld,
 

The field of nine matrices is of characteristic three. If 

F represents this field of nine matrices, let F(x) represent 

the set of rat1.onsl functions in the indeterminate x of the 

form: 

1 2 naO + al x + a2 x + • • • + anx 

2bO + bl xl + b2 x + • • • + b xm 
m ' 

where ai' b j E F and L bjx j I o. 
n m 

If L ai xi = O. 2:.bjx i =O. 
i=l j=l 

bO = (~ :) 
and aO ranges throushout F. then the set of nine matrices which 

make up the field F are obtained. The field F being of char

acteristic three. Thus F(x) is an infinite field of non-zero 

characteristic. 

Example 2.5. Consider the rational functions in x 

with coefficients in I/(3)' Call this field F(x). Dovelop 

the set of matrices of the form: 

(-: :)
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where, a, b € F(x).
 

Let M(F(x)) represent this set of matrices.
 

M(F(x)) =
 

where, 

ao + alx + • • • + anxn Co + cIx + • • • + cpxP 
-

b O + bIx + • • • + b xm dO + dIx + • • • + dqxq
m 

nCo + clx + • • • + cpxP aO + alx + • • • + anx

mdO + dlx + • • • + dqxq bO + blx + • • • + braX

~bjXi 'Ldjxi t O. 

This set of 2 x 2 matrices is an infinite field. The prime 

field of M(F(x)) is the set of three matrices: 

(: :) (~ :) (: :1
 • 

Therefore, M(F[x)) is an infinite field of characteristic 

three. 

Example 2.6. The infinite field of non-zero charac

teristic of example 2.2 is a transcendental extension of a 

finite field. Consider a transcendental extension of the 

extended field of example 2.2. Let F(x) represent the ra

tional function in x with coefficients in 1/(3)' Let~ be 

an element which is transcendental over F(x). Let F[x)(~) 

represen tall rational func tions in -e- .li th coefficients in 

F(x). That is: 

L. ai xi 
1"(x) = 

2::.bj ij 
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where 

~ bj x j ~ 0, ai' bi E 1/ (3) 

and 

xiI( P~ 'i ) n 

:L.bjxJF{x) (-e-) = 

I( ~'rxr) m 
Lbsxs :e

ap ar , b j , bs E 1/(3) 

where, 

b jX j ~ 0 and I(L:. a
r

x
r 

) B In 
~ o. 

L bsxs 
In 

As the coefficients of -&- is an infinite set and F(x) (--0-) is 

a field. F(x){-Er) is an infinite field. To develop the prime 

field of F(x) (-9-), let In, n, i, j, r, s, equal O. F(x) (-&) 

L--

then becomes: 

L a i 

L b j 

L
L. ar
 

L. b s 

Let a = bs = 1 and b j = 1r 

and let ai range throughout 1 / (3)' 

The above set ts to,1,25 = 1/(3)' F(x)(-€l-) is an 

infinite field of characteristic three. 
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The characteristic of the field in each of the pre

ceding exmr;ples is three. The generalization of the forms 

of infinite fields of non-zero characteristic is not destroyed 

by this fact. It is obvious that the coefficients of the ra

tional function i.n (x) as Hell as the coefficients of the 

pOVlers of -e- in exa:nple 2.3 could have been taken from any 

finite field or any algebraic extension of a finite field. 

The examples of this chapter indicate that similar

ities occur in comparing the various infinite fields of char

acteristic three. However, upon examination of these examples, 

many differences become evident. These similarities and dif

ferences will be examined from a more generfil point of view 

in chapter III. 
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COHPARISOllS OF I'HE VA,UOUS FORm, DB' Illl?INITE 

FIELDS OF Hon-ZERO CHA£lACTERIS'l'IC 

"'lhen comparing algebraic structures, the existance 

or absence of isonorphisms is one of the most important and 

informative relations which can be established. Many conjec

tures involving isomorphisms are suggested by the examples 

presented in chapter II. It is these conjectures which will 

be investigated in this chapter. 

Develop the field of rational functions in the inde

terminate x as in example 2.2 with coefficients from the field 

1/(5)' Remembering that an isomorphism must be a one to one 

correspondence which preserves operations, it becomes obvious 

that no isomorphism exists between example 2.2 and the field 

described above. 

I 1(J )(x) 1/(5) (x) 
That is: 

l'x (;: ~ 1 x 

2 • x ~ ~ 2 • x 

(1 • x) + (2 • x) = O· x = 0 in I/(3)(x) 

does not correspond to 

0.. x) + (2· x) = 3' x in I 1(5){x). 

This illustration gives rise to a theorem. 

Theorem 3.1. An infinite field F of non-zero 
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characteristic is isomorphic to a field F' of non-zero char

acteristic only if the characteristic p of F is equal to the 

characteristic p' of F'. 

Proo:£.. Let cP represent an isomorphism from F to F'. 

Let the prime field IT of F == L0, 1, 2, ••• pJ. Let the 

prime field TI' of FI == [0, 1, 2, ... p ••• pI]. Sup

pose that p I pl. The generality of the proof will not be 

lost by further assuming pI> p. With this assumption and the 

fact that ep is an isomorphism, set up the follo11ing corres

pondence. 

0 <~ 0 

1 ~ 1 

2 " d> , 2 

p <<P) p 

p + 1 == o ( ¢ ) p + 1 I pi + 1 

But p' + 1 == O. 

This contradicts the fact that 4> is an isomorphism. The 

supposition that pIp' led to this contradiction and there

fore p == pl. 

Theorem 3.1 can be used in two ways. It assures that 

if two fields of non-zero characteristic are isomorphic then 

they must be of the same characteristic p. Theorem 3.1 also 

points out that a prerequisite for an isomorphism to exist 
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from one field of non-zero characteristic to another is that 

they be of the same characteristic. 

It may seom that equality of characteristics is suf

ficient to conclude that two fields of non-zero characteristic 

are isomorphic. Consider, however, examples 2.2 a~d 2.3. 

Here are two fields of characteristic three which obviously 

are not isomorphic. 

In order to investigate the existence of isomorphisms 

relating the alGebraic systems in question, it is helpful to 

consider generalizations involving only simple extensions of 

a finite field. 

Theorem 3.2. Let F be a field and -9-an arbitrary 

transcendental element in a field containing F. Let x be an 

indeterminate. Then F(~) is a field which is isomorphic to 

F(x) where F(x) is the set of rational functions in the inde

terminate x with coefficients in F. 

Proof. Since F and ~are elements of a field, then 

F(-€H is a field obtained by the adjunction of -e- to F. This 

field must contain F Ee-J which is the set of polynomials in 

-e- over F. Le t F [x] be the ring of polynomials in the inde

terminate x over F. F[-e:! is all elements of the form L ~-e-n 

where an E F. Define a mapping 4>, 
n n<p : L anx ----7 L an-e

of F[x] onto F [-&] where fix) = L anxnE: F[x] and f(-€>-) = 

LanB-nE. FEe-J. 

\..J1 th the usual defini tion of multiplication andaddi tion of 
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polynomials, <p is a homomorphism. The mapping ¢ can also 

be sho,m to be an isomorphism. Suppose that ¢ is not an 

isomorphism. Let N be the kernel of ep. If f(x) I- 0 in F[x] 

is in II, then f(x) ~ O. However, by definition of ¢ , 
f(x) ~ t(-e-). 'fhis implies that f(-9-) = 0 which is a con

tradiction of the assumption that -e- is transcendental over 

F. This establishes <p to be an isomorphism: 

F [x] ~ P[-e-J 

now F[-e-J is not a field since F[x] is not a field. HOHever, 

if tl'10 inte;;ral domains are isomorphic then their quotient 

fielas are isoMorphic. Therefore, p(x) is isomorphic to 

F (-0-) • 

Theorem 3.2 has a very important implication. It 

assures that the investigation of rational functions in an 

indeterminate x over a field F will yield results applicable 

to all simple transcendental extensions of F. 

It becomes apparent that the finite field F from 

which the coefficients of xi are taken in F(x), determines 

the existance or absence of an isomorphic mapping from one 

infinite field of non-zero characteristic to another. A 

suitable vehicle to obtain certain properties of F is the 

vector space. 

Example 3.1. Consider the field F( [2). F = 1/(3). 

The prime field iT of F( J:2) is the field of remainder class

es 1/(J). As F (,[2) contains IT, it may be considered as a 

vector space over n. The tHO independent vectors (1, 0) 
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and (0, J;2) form a basis of this vector space as every ele

ment is of the form a + b.[2, a, b e.1I. The dimension of 

this vector space is two and is written (F(J;2);l1) = 2. 

Notice that F( J:2) consists of nine elements. The character

istic of the field is three and the dimension of F(j;2) over 

1Tis two. The relation 9 = 32 leads to the following theorem. 

Theorem 3.3. Let F be a finite field and IT its prime 

field. Then the number of elements q in the field F is equal 

to pn where n is the dimension of F over 11 and p is the char

acteristic of F. 

Proof. Since n = (F :IT) is finite, the field F con

sidered as a vector space over 11 has a finite basis say, 

. .vI' v2, v3' • vn • 

Every element U of F can be expressed as a linear combination 
1 s

of the vi with coefficients inll: 

U = alvl + a2v2 + ••• + anvn ; ai E IT. 
Now in any expression, 

blvl + b2V2 + b3V3 + ••• + bnvn b j E 1T = I/(p). 

there are p distinct values which the b j 
's may assume. since 

there are p distinct elements in lnr = I/(p). Hence, there 

are at most pn elements in F. 

Suppose two of these pn elements are equal • 

blvl + b2v2 + • • + bnvn = 

clvl + c2v2 + ••• + cnvn 

where b i 1 ci for some bit ci' 
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Subtracting civi from both membGrs of the preceding equation 

yields; 

(bl",cl) + (b2-c2 ) v2 + • • • + (b -c ) v = 0vl n n n 

where not all bi-ci = O. This implies that the Vnl S are 

linearly dependent which contradicts the assumption that they 

form a basis. Therefore, there are exactly pn elements in F. 

U, p. lSi} 

Using theorem 3.3 and the fundamental thGorem of 

arithmetic, (the fundamental theorem of arithmetic establishes 

the uniqueness of pn for l.f pn = qm, p and q both prill1G, then 

the number A = pn = qm wou.ld havG two distinct prime factori

zations), the characteristic of a finite field of n elements 

is unique. 

These properties of the finite field from which the 

coefficients of x are taken in F(x) leads to the basic and 

most powerful theorem with regard to the isomorphisms of the 

structures under consideration. 

Thporem 3.4. Two fields F(x) and F'(x) of non-zero 

characteristic are isomorphic if and only if the fields F 

and FI are isomorphic. 

Proof. Let F(x) be isomorphic to FI(X). F is a sub

set of F(x) and FI is u subset of F'(x). If f is the isomor

phism from F(x) to F'(x), the same mapping f, will relate F 

and F' as an isomorphism. 

Let F be mapped to FI by g Where, 

g : F ~ P' is an isomor;:>hism. 



• • 

• • 

• • 

• • 

• • 
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That is: 

g (a ) = aI'l 

g (a2 ) = 112 ' 

• 

g (an) = ant 

Now F(x) contains F[x] and F' (x) contains F' [x]. Let F[xJ 

be mapped to F' [x] by g. 

g : ~aixi~ Lai'xi 

where, 

a i E F and ai I E. Fl. 

By definition of addition a"1d multiplication of polynomials, 

g is e homomorphism. Suppose g is not an isomorphism. This 

would imply that; 

g (L. aix i ) = L ai 'xi 

and 

g (2: ajx j ) = 2:: a i'x
i 

for some i and j. 

However, by definition of g, a j would then equal ai' and g 

is an isomorphism. If F[xJ is isomorphic to FI[X] then 

F'(x) is isomorphic to 1'" (x). 
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Theorem 3.4 placed no conditions on F and F'. However, 

previous theorems require that F and F' be of the same charac

teristic. The fields F and F' may be finite or infinite. 

Theorem 3.4 may appear to be the same as theorem 3.3. 

The difference can bost be shown by an example. Theorem 3.3 

implies that any simple transcendental extension of a field 

F, is isoffiorphic to the rational functions in the indetermin

ate x with coefficients in the same field F. Theorem 3.4 

implies that any two fields which are obtained by a transcen

dental extension of two fields F and F' are isomorphic ifF 

is isomorphic to F'. Theorem 3.4 also implies that if two 

fie19s F and F' are extended by a sinGle transcendental ele

ment respectively so that F(1Sr) is isomorphic to F'(~I), 

then F must be isomorphic to Fl. 

Consider the field F(-e-) ~lhere F is I 1(3) ( .{2). This 

set F consists of the nine elements of the form a + b J;2, 

where a, b € 1/(3). Also consider the field M(x) where M is 

the set of 2 x 2 matrices of the form: 

(-: :) 
and 

a,bEI/O)· 
2 b2The determinants of this set M are equal to the sums, a +
 

where a, b E 1/(3).
 

Define f so that:
 

f: a 2 + b2 -7 a + b ~ 
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The mapping f establishes that M is isomorphic to F and by 

theorem 3.4. M(x) is isomorphic to F(~). Example 2.5 could 

be considered as the field T(~) where T = F(x). Thus 3.4 

would imply that in order for a field G(~') to be isomorphic 

to T(~). G must be isomorphic to F(x). Where F(x) is under

stood to be I/(p) extended by the indeterminate "'Xli. 



CHAPnR IV 

CONCLUSIOll AND SlJGGSSTIONS 

FOR FURTHSH S'l'UDY 

The lnvestigation of an axiomatic structure of an un

usual type, amplifies the importance of structure ln the study 

of ordinary algebra. The structures which have been consld

ered in this thesis are fields having the basic properties of 

the rational, real, and complex number fields. These fields 

of non-zero characterIstic have many differences. The pro

perty of being algebraically closed is not one of the pro

perties of fields of non-zero characteristic. 

The development of infinite fields of non-zero char

acteristic involves both the algebraic extensions and the 

transcendental extensions of finite fields. This gives a 

better understanding of the importance of the completeness 

property enjoyed by the complex field. 

Certain propertIes of the structures under investi

gation in this thesis seem contradictory in nature. However, 

these properties point out the value of the corresponding 

properties in the fields of analysis. For example, in a field 

of characteristic p, (x + y)p = xp + yp. The verification 

of this property follows from the algorlthm of the binomial 

expansion. 

(x + y)p = xp + pxp-ly + p(p-l)xn- 2y2 + ••• + yP 
21 
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It will be observed that the numerator of each numerical 

coefficient except xP and yP contains a factor of p. But 

p = 0 in a field of characteristic p Bnd the result is veri

fied. 

For further study, an examination of more matrix ex

amples could be carried out to determine the cardinality of 

the set of elements in an n x n matrix representation of a 

field with entries in I/(p)' That is, the 2 x 2 matrices of 

example 2.4 Witll entries in 1/(3) form a field of nine ele

ments. Does the dimension of the matrix determine the number 

of elements in the field if the entries ai' b are taken fromj 

I/(p)? 

Another suggestion for additional study in the area 

of extensions is to be found in an article in the "Proeeed

ings of the American l'sthematical SOCiety", volume 19, nlli~ber 

3, June, 1968, pages 701-706. This article by Edgar Enochs 

entitled "Totally Integrally Closed Rings", examines the con

cept of ring extensions which parallels the algebraic exten

sion of a field. In fact, integral extensions in fields are 

the algebraic extensions. Using the definition that the char

acteristic of a ring is the smallest element "a" having the 

property that ax = 0 for all x in the ring and if ax = 0 

implies a = 0 then the ring is of zero characteristic, inte

gral extensions of rings of non-zero characteristic could 

provide an interesting study of extensions of finite rings. 



XI-Id 'ifliDO I'Ilng: 



L 

BIBLIOGHAPIlY 

Cral-lford, Albert L., "Lie Rings." Unpublished Master's 
thesis, Kansas State Teachers College, E:'lporia, 1966. 

2.	 IInochs, Edgar, To tally !E..tef\rally Cl~_q Rings, Providence, 
Rhode Island, American l'1athematical Society, vol. 19, no. 
3, June, 1968. 

3.	 Herstein, I. N., Topics in Algebra, Nel-l York, Blaisdell 
Publishing Company, 1961~. 

4.	 Jacobson, Nathan, Lectures in Abstract Alsebra, vol. III, 
Princeton, New Jersey, D. Van NOs-trand,-Ync. ,-196)+. 

5.	 Jacobson, Nathan, Structure of RinL~' Providence, Rhode 
Island, American }Iathematical SocietJ', 1964. 

6.	 MacDuffee, Cyrus Colton, An Introduction to Abstract Al
i'jeb~, New York, Dover PUblications, In"c.19!iO-.--

7.	 Miller, Kenneth S., Elements of f·loder·n Abstract Algebra., 
New York, Harper and HOI-I, r'ublishers, 1~8. 


