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CHAPTER I 

INTRODJ8TICN 

The pri~ary purpose of this paper is to prove that the rationals cannot 

be extended by radicals to include the roots of an irreducible fifth degree 

polynomial equation. This paper also shows thet extensions can be obtained 

for other pclynomial equati.ons of lesser degree. Throughout this paper 

rational polynomial equations will be referred to as poly~omial equations. 

In Chapter Two, the extension of the rationals to include roots of first and 

second degree polynomial equations are considered. In Chapter Three, it is 

shown that the rationals can be extended by radicals to include roots of 

third degree polynomial equations. In the fourth chapter it is shown that 

the rationals cannot be extended by radicals to include the roots of an 

irreducible fifth degree polynomial equation. 

Two approaches to the preble'll of extending the rationals (denoted Ra) 

by radicals will be used. The approach used in Chapter Two is to consider 

the set that is obtained by adjoining radicals of the form ~, where i is 

an integer, to the rationals and to prove this set is a field. This is done 

with inteGers because .{1) where b£ Ra can always be expressed as a 4"i" where 

a E:Ra and i ",1. The approach used in Chapter Three is to prove that the 

rationals can be extended oy radicals to include the roots of an irreducible 

third degree polynomial equation. 

It will be pres1.lpposed that the reader has completed a course in 

abstract algebra. Thus, it will be assuned that the reader knows the axioms 

of a group, ring, integral do~ain, and field. Also the reader should know 

the definition and so~e properties of polynomi.al rings. 
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~his paper concerns field extensions so a definition is needed: 

1.1 Definition: A field K is called a field extension of the field F 

if and only if F is a subfield of K. 

Many examples of field extensions can be given. The real number 

system is a field extension of the rational number system. The complex 

number system is a field extension of the real number system. 



CH.~?TER II 

FIRST A1m ;::i~C(";D DS2rhEF KIJY1~C:\HL E<>1H TI(;~,:.s 

Consider the roots of the ~olynomial equations of the form ax + b = 0, 

where a ~ O. The roots of these equations are of the form -b/a, for 

a(-b/a) + b = O. Since the set of rational n~mbers is a field, it follows 

that -b/a e Ha. Therefore, when the roots of ax + b = 0 are adjoined to ita, 

Ra is obtained. Thus Ra is a field that includes all roots of first degree 

polyno~ial equations. 

C6nsider the roots of all second degree polynomial equations over Ha 

2
of the form f(x) = ax + bx + c = O. The roots of f(x) are of the form 

~ 2 2 .-b ~ b - 4BC. Let D = b - 4ac and consider the set Ra (~), where D~Ra. 
2a 

This means thst 1"5 has been adjoined to Ra. Since (Dean be expressed as 

a«, where a ~ lia and i £1, elements of the form ~can be obtained 
2a 

by operating on {i with the rationals. Operating on {iwith the rationals 

meRns th"t the set Ra U{I'(i} is extended so that it is closed under multi

plication and addition. 

Let F be defined to be the set obtained by adjoining the roots of all 

quadr~tics to Ra, and all me~bers obtsined by operating on these roots with 

the rationals and the roots themselves. Intuitively, F can be obtained by 

a different way. Suppose the r&tionals are extended by the~ which is a 

root of a ~uadratic equ?tion and also the square root of an integer, in the 

ordinary way. The field Ra (~) is obtained. Then suppose Ra (~) is 

extended by the square root of another integer in the same way. If this 

process c~uld be repeated until all the roots of quadratics were adjoined in 

such a manner, ? would be obtained. It is clear then, Ra~, b ~I, is a 

subset of ~. 
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The elements of F are of the form ~b.~ where b.eRa. It should 
i E I1. 1. 

be noted th~t this is a finite sum and no infinite series belongs to F. 

The definitions	 of equ2lity, aaoition and ~ultiplication are: 

2.1	 Defini tion: ~ b. if'[ = ,£a.r[j if and onl~r if b. = 8. when i = j
iE-I 1. jE.IJ 1. J 

2.2	 Definition: Vi, j; "i b. IT+ La. G = L(bk + a ) t{kkiE-I1. j~IJ kGI 
2.3	 Definition: 

\J i,j (~bjfi)( 1:. a. (I) { L -b. a.{Tf if i<:O and j<"O}
jE.I ie-I1. = i,je:I1. J . 

L bi aj-nJ if i~O or j~O 
i,jf:I 

Now to prove F is a field. The subscripts will new be omitted. 

Notice that b. refers to the rational number that is the coefficient of 
1. 

,fT inlbi t{i: 

Property I: Clos~re 

Since 1. b «+ r 8 j G = L.(bi + aj)« when i = j, and the rationals
i 

are closed under addition, it follows that bi + a is a rational andj 

L(bi + a j )4{ican be written i. c £ Therefore, F is closed under addition.i 

Also, since the rationals are closed under multiplication, bia j can be 

expressed as ck and{ij as1k making ~biaj <if=lck £ Therefore, F is 

closed under multiplication. 

Property II: Additive Identity 

2
Since 0 is a root of x = 0, which is a second degree polynomial equation 

OeF. Also, 0 can be written as l.0'ff':'" Therefore, ~bi«+ 2.0« = 

2(b + O){i= 2.. bi «. This follorlS because 0 is the additive identity
i
 

for the rationals.
 

Property III: Multiplicative Identity
 

2

Sin'::e 1 is a rcot of x - 1 = 0 which is a second degree polynomial 

equation, 16. F. Also, 1 can be written as r c
k 

1k""where ck = 1 when k = 1 

anJ ck • 0 when k.::f 1.. Therefore, ("i. b.t{i)( 'i ck,{k) = 1 b.ck1ik.
.1.1. 
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'TIns JneCll1S theL";:' O:l.ch tel'lll of ~b.1"i is multinliec1 bv each t,erm ofc:. 1. ... 4J
Z ck fk: 

But, there is only one term of 2-ckn not equo.l to zero, and this is 

Therefore, the product of eve:r:r tor;'] of 2..b.,yr ,d:th 1 is needed.c1"J1 = 1
l 

(2b.1[i)(111) == 2b..1W := Zb.1i", since b.-1 := b. c.nd i-1 = i. 
~ l l l l 

Property IV: Additiva Inverse 

Consider 2.. b. --ri cud .(-b.1i Hhere -b. refers to the adco.tive inverse 
l ~ ~ ~ 

of b .• Since b.cRa, there exists -b. € P-<.1. such thCJ.t b. + (-b.) := o. 
l ~ ~ l ~ 

Therefore, 2..b.1"1+ f-b.--{i ;: 4(' (b. -I- (-b. )'-1i =: &;o'Yi := O. 
l l ~~ l ~1 ~ 

Propert~r V: I·JiLtiplicativo Inverse 

Induction Hill be used to prove F has inverses. Consider n to be the 

mn\lber of tcTJns in 2.. b.-vi. 1 .~ c V lfhich is ~J1If n = 1, b V' ;rrl hr·
I' I' 

1 bI'1(r - b s yS , i-Thic11 l"" in F.F. If n . C' 

ASS'L1Jr18 that= 2, ----.- := '2-'--' '2 
b "'{r"+ b fS b I' -:- b sr s I' S 

~b.1Ti has en inverse if there are k tenns and consider the k + 1 case, 

that 

~ 

is, k + 1 terms. It, !':ust bo shOlm tho.t f.bk1k + b t{'; has m1 inverse. s 

f b}c1kmecms £b 1k€. i( Hhcrc K is 311 extension of P-a by adjoining r2.dicDls
k

in the Denner descl'ibed e2.rlier until the elements of K have at most k 

radicds •." Under the induction hYIJothesis then, £bk"\fE has an inverse. 

Consider G to be the extens:ton of K by -vs in the usual manner. F..J.ements of 

G are of the for111 t'b 1k + b 1'S = g + bs"fS Hhere g, b € K. 1
k s s = g+bsr'S 

g - b 1'1{; b -1S s g s. = '2 - .• 2 2 • Since the first ten-:l of tILts
2 2 2 

g - b s g - b
[;

5 g - b s s 5 

expression and the coefficient of v-; is in G, the entire expression is in 

G. 'TIlerefore, Zb~~+ bsiS ha.s an inverse, cmd, by inchJction, every 

element of F has an inverse. 



6 

Property VI: Associativo Property of i:ultiplic~tion 

(t:bii"I)(ZUjiJ») ezck-f"k) = (ibi [1j-Vi j )(£ Ck-vkJ =iebiaj)cl~(ij)~~ 
Since the r~,tionals are 2.csociative, this becorllSS: fbi (ajCkY'Vi(jk) = 

(i-biVi)(ZD.{k"l jk) = eibi-{i) (zaj "'(JJe£ck1"k») • 

Property v'll: Associativo Property of Addition 

(Zb.Ji·i·Zaj"G) + ZCl~'Vk= i(bi + uj)"'Vi +L:ck1k = 

£(tbi + a) + cl~"fi. Since the ration:c.ls are D.ssociative, t>is becol,loS: 

'Z. (bi + (aj .;. ck))1i= ,ibtfi + Z(a + ck )1j' = ;[btfi + Cz..aj"'{j +j 

ic1;Vk)· 
Property VIII: Comr:mtative Prop8rty of Adell..t:ion 

~ b. fi + io..1j = Z(b. + a. rvi.. Since t'1o ra.tiorw.1s are cor:Fmtative,L: 1 J 2 J 

this becomes: Zea. + b.)~ = Za.1j + ~ b.1i:
J 1 J ~ 1 

Property IX: Coumutative Prope::'ty of Et,l tip1ic2.tion 

('Zb.4"iH.[a.1j) =~b.a."1ij. Since the ratiol'Jo.ls 0.1'0 coru-:1utativc,
1 J 1 J 

this becomes: [a.b.iji = (Za.ij"H2..t.1i).
J 1 J 1 

PropervJ X: Dlstributive Propel'tics 

z.b{fi(zaj-fJ + ZCk~) = ZbiV (z:- (aj + ck )'f3j :-. 
:z. bi (a

j
+ ck)i" i:;. Since tIle ro.tionals ar2 distributive, this becomes: 

Z(b.a.. + b;Ck)"\fij = 2.b.a.1ij + Z'b.c,."(jJ"; = (Z-b.'{iHZ-a.-(j) + 
1 J - . 1 J 1 ". 2 J 

(Zb.1'i)e2.c i"k). The riGht distributive prapc)r'ty can be sho'..nk1 .\. 

s:L'Tlil2.rly. 

F is a field and since ~ c.", it follm-rs that F is a field extension 

of the rationcQs. 'This means that the ration2~s h'~'.'ie been c:denclcd by 

radicds to the field ?, 'I7hich conte-.ins aJ.l the roots of 2.11 secsnc1. degree 

polyno};:ial equations. 



CHA PTS ft	 TEn.E~ 

TElitD D~::JIiE8 ~lLY"G!1H,L K<~J.~TIC::S 

Extending the retionals to contain roots of third degree polyn2mials 

can be done in at least two ways. One way would be to extend the rationals 

by adjoining all roots of third dezree polynomial equFtions, finding the 

general for~ of an element of this set, and proving this set a field as 

was done with quadratics in the second chapter. Another way would be to 

prove that the rationals can be extended by radicals to include roots to 

third degree polynomial equations. 

The roots of the cubic equation ax3 + bx2 
+ cx + d = 0 are: 

Xl ~ zl	 - p/3z - b/31 
2 

x2 :: W	 zl - UJ p/Jzl - b/3
 
2
 

x =W zl -Wp/3z - b/33 
where W:: -1/2 + 1/2 6 and <-.A} :: -1/2 + 1/2 {3f and zl is a root of one 

of the follo\-Jing: z3 = -q/2 + rfR: z3 = q/2 - (If when R = 1/27 p3 + 1/4 q2 

and p = c - b2/3, q = d - bc/3 + 2b3/27. ~, pp 244-24i] 

In order to prove that the rationals can be extended by radicals to 

include the roots of an irreducible third degree polynomial e~uation (cubic), 

Abel's theorem is needed. 

3.1 Theorem: "If F is of characteristic zero, then f(x) is solvable 

by radicals if and only if the Galois group Go of f(x) is solvable, that is, 

there exists a finite ct"1ain of subgroups Go .2 Gl ::> 2 • • • .~ G = E such m 

that 31 is normal in G. 1 and G. l/G. is Abelian, i = 1, 2, •••• , m. 1I 

~- ~- ~ 

~, p 186J 
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2If f(x) = ax3 + bx + cx + d = 0 is solvable by radicals, then the 

rationals can be extended by these radicals as was done for second degree 

polynomial equations. To prove f(x) is solvable by radicals, each con

dition of 3.1 will have to be satisfied. Each condition will be taken in 

order with the necessar~ definitions given preceding the proof of the con

dition. 

3.2 Definition: "In an arbitrary ring H, if there exists a positive 

integer n such that nx = 0 for every x in R, then the least such positive 

integer n is called the characteristic of Rand R is said to have (positive) 

characteristic E. If no such integer exists, that is, if nx = 0 for all x 

in R only if n = 0, then R is said to have char&cteristic ~". G, p 13~ 
3.3 Theorem: The rationals have characteristic zero. 

Proof: It needs to be understood thGt nx = 0 means X + X + •••• + x = 0 

with n terms. Suppose that the r2tionals do not have characteristic zero. 

This impli es that there exists an n, such that, for every x £ Ra, nx = O. 

Suppose x =1. This means 1 + 1 + 1 + + 1 = O. Since 1 + 1 = 2, 

2 + 1 = 3, • •• ,(n - 1) + 1 = O. This implies that the natural numbers 

are finite. Bu~ this is a contradiction because the naturals are not finite. 

Therefore, the rationals have characteristic zero. 

In order to obtain the Galois group of f(x), it is necessary to define
 

this and other terms.
 

3.4 Definition: "Let K and ":{' be fields and A =£<i : i ~ I} be a set 

of iso~orphisms of K into K'. An element k in K is called fixed for A if 

k~i =, ko<...j for all i and j in I". [1, p 17~ 
3.5 Definition: "If H is a subgroup of a group G, then a right coset 

of H is a subset S of G such that there exists x E G for which S = Hx. Left 

cosets are defined similarly". [3, p l.il 
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3.6 Definition: itA subgroup E of G is normal in G \-lritten l-i..,d G, if 

and only if x-I HxC~ for all x €. Gil. ~,p l~ 

3.7 Definition: "If H is a normal subgroup of G, then the set of cosets 

of H in G ~orm a zroup under multiplication. 1t This grcup is then called 

the factor group of H in G ~nd is denoted G/H. [}, p 3~ 

3.8 Definition: [?:~ is the notation used to denote the index of 

G/H. This gives the number of elements of the factor group G/E. 

3.9 Definition: An automorphism is a one-to-one mapping of a set 

onto itself, such that the operations are preserved under the mappin~. 

3.10 Definition: Let K be a superfield of F. Let G be the set of 

all automorphisms of K such that F is mapped onto F, i.e., F remains fixed 

under the mappingo(bG. If~:~ is finite, then K is normal over F and 

G is called the Galois 2rouo of Kover F. in this definition means----, ~:1 
that the extension K, of F, 3S a vector space has finite di,rlension over F. 

This dimension is called the degree of Kover F. 

To find the Galois group of fex) = ax3+ bx2 + cx + d = 0, consider 

the set K, where K is obtained by extending the rationzls by adjoining the 

roots of fex), namely kl , k2, k3, in the usual manner. That is, K is 

obtained by operating on kl , k2, k3 by the rationals and kl , k2' and k •3
Also, Ra c: K. Consider the automorphisms of K. 

3.11 Theorem: If a € Ra, and 0< is an auto~orphism of K, the (a)o< = a. 

Proof: Suppose (a )o(fa and a4=- O. A lemma is needed in the proof of 

this theorem. 

3.11.1 Lemma: Under ~ , the integers must be mapped onto the integers. 

Proof: Suppose (d)~ = e where d, e are integers but d:f e. Then one 

can be subtracted from d (or added as the case may be) and e until one is 

obtained on the left. The result would be (l)~= e - k. But (l)~= 1 so 

(d)~ = d and the lemma is proven. 
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Since inte~ers have to be mapped onto inte;ers, under any auto~orphism, 

quotients m~st be mapped onto quotients and the resulting ratioo;l numbers 

must be mapped onto the r;tioDal numbers. Therefore, (a}7(= a. 

Since the rationals must be mapped onto themselves, it suffices to 

map kl , k2, and k) onto some elements of K. For once the rationals are 

mapped onto themselves and k1 , K2, and k) are mapped to sonle elements, the 

rest of the mapping will be determined by the mapping of k1 , k2, and K). 

).12 Theorem: Under the automorphism~, roots must be mapped onto 

thernselves. 

Proof: If one or all of the roots are rational, then by 3.11, they 

must be mapped onto themselves and there would be o'11y one auto"lorphism, 

namely, the identity mapping. Therefore, suppose (kik?<= A(where i = 1, 2, 3) 

~ f Ra and "~{kl' k2, k)}. Consider ax) + bx2 ·+cx + d and the following 

mapping: (a)o(= a, (b)o( = b, (c)o<..= c, and (d)o<...= d. Then 

(aw-.) + bk. 2 + ck. + d)o(= a~3 + b~2 + c ~ + d and since
""1. 1 1 

2aki ) + bki + c\ + d = 0, (0)0< = 0 and (0)0<= a~) + b/l 2 +c,)) + drO. 

This contradicts the hypothesis that~ is an automorphism. Therefore, roots 

must be mapped onto roots. 

Under this definition of ~, where the rationals are mapped onto them

selves and roots are mapped onto themselves, it follows thatP(is an auto

morphism. 

The elements of K are of the form: ~a.. k.. 
i 

k2 
j k~. Again, a finite 

.. lJZ --1 oJ 
l,J,ZE. ro 1 2} 

sum is meant. In order that the next theor~m'can be proven, and in order 

to satisfy a condition of Abells theorem, K must be shown to be a field. 

Since the roots of f(x) are necessarily complex num.bers, it· suffices to 

show that K has inverses. To do this, it is only necessary to show that 

ki , i~{J,1,2} has an inverse in K, because a similar proof can be given 

for other elements in K. Since f(x) and kl are relatively prime polyno~ials, 
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it folloHS that 1 = r(k ) k. + h (k1,) f(k.). Since f(k , ) = 0, 1 = r(k, )k,
i 1 1 1 1 1
 

which means k. has an inverse in K.
 
1 

3.13 Theorem: If 0<. is defined by (L aijz ki k~ k~)o(= 

~ B ijz (kp(l»i (kp(2»j (k (3»Z where p(l), p(2), p(3) is a permutationp


of 1, 2, and 3, thene>( is an autom0r~hism of k on to K.
 

Proof: Addition will be defined as follows:
 

j r s t c"
~ a ki k kZ + + b ) ~ 
i

k J
.

kZ = 
~ ijz 2 ~brst ki k2 k3 = ~(aijk rst 21 3 -1. 3 

. , z 
~ (aijZ + bijz ) k1 k~ k3 In other wordR, the coefficients of like terms 

are added together making a., + b t = a. J'z + b.. • This operation is
1JZ rs 1 1JZ 

preserved under the mapping 0(. since (2:. a ijz k~ k~ k~ + "£ brst kf k~ k~)o<.. = 

i j z) <'( . i j z(~(aijZ + brst
) kl k2 k) 0<. = L aijz + brst ) kp(l) kp(2) kp (3) I: 

+ <'b r s t _ i . z
2. a ijz k~(l) k~( 2) k~( 3) L. r s t kp(1) kp ( 2) kP(3) - ( 2 a i j Z kl k~ k3 )0< + 

( i b ~ k2 k ) 0<:..rst 3
 

Nultiplication is defined as follows:
 

i j Z r s t _ <" i+r j+s z+t
 
( ~ a ijz kl k2 k )( 2.. brst k k2 k ) - L- aijz brst kl k2 k3 •3 l 3


In other \olords, each term of ~ a ki k~ k~ is multiplied by each ter:o of
ijz
 

~ b t kr kS kt and the sum of the products :.s taken. This operation is
 
rs 1 2 3 

preserved under the mapping c::>< since, Ez aijz ki k~ k3)( ~ brst k~ k~ k~Jc:::o<. = 
-< i +r j+s z+t i +r j+s z+t 

( ~ a ijz brst kl k2 k3 )~= L aijz L) r kp( 1) kp( 2) kp(3) = 
i j z . rst 

s t
( 2 a ijZ kp(l) kp(2) kp(3» • (f-brst kp(l) kp (2) kp(3) ) = 

~ i j z)_/ (C r SIt)( L. a., k k k ex..... Z. b t k k2 K <><.
1JZ l 2 3 rs 1 )
 

From the definition ofo(, when i, j, k, = 0, (a)d...= a and when
 

a & 1, (~)o(= k ( ) thereby satis~ying the two previous theorems that
ijk -1. P 1
 

the rationals must be mapped onto the:nselves and roots :oust be mapped onto
 

roots. 

It is clear that 0<. is an O.1to mapping. For every r.... ai.jz k~ k~ k) 

of K, there exists an image i.n K, nanely ~ aijz k~(l) k~( 2) k~(3). ?or 
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every La . ki(l) k~(2) k;(3) there exists a preimage in K, namely
tJz p

< ~ j z 
~ ai j z kl k2 k3 • 

. . z
JTo prove 0( is a one-to-one mapping, suppose (z a.. k~ k k) 0<. = 

~Jz 1 2
 
...:" i j z!) rst _. i j z
 
,? aijZ kp(l) kp(2) kp(3) ",nd ( 'i- b k k2 k3 )oZ - 2.a ijZ kp(l) kp (2) kp(3) •

rst l 
. j z r s t

It follows that (~a.. k~ k k + ~ b k k2 k)e-<. = 
~Jz 1 2 3 rst 1 

2:. a ijz k~(l) k~(2) k~(3) +'i-a ijZ k~(l) kg(2) k~O) .. O. Sinceo<..is 

an auto~orphism, (0) = 0 ~akingj§ijZ ~ k~ k) + ~-brst k~ k~ k~ = O. 

Since K is a field, i.aijz kt k~ k) = 2. b ~ k~ kj. Therefore 0<. isrst 

one-to-one and 0<.. is an automorphism. 

Since 0( maps roots onto roots, and there are three roots, there are 

at most six such automorphisms. Consider the following set S of automor

Phisms,{o<...l' 0(2,0(3' 0<..4' ~; o(.6} whereO<i is defined as follows: 

~l 0(2 0<) ~4 P(s ~6
 

kl~~ ~~k2 kl ~ k) kl----T k2 ~~ k)
~~~ 

k2~k2 k2--7k3 k2~~ k2-7k2 k2--7 k3 k2--) kl 

k~k) k~k2 k 3--4'k) k~\ k~kl k)-7'k2 

TABLE I 

GROUP TA5LE FOR S 

,(1 

, 

J:.2 0<) ~ 0(5 c( 
6 

0(1 oZl oS oZ.) A 
4 ..<s 0<:'6 

e4 ~2 ~l ~s ,(6 o() ~4 

~ ~ ~6 eLl ~5 P(4 P(2 

4 "c-I... ~4 ~ ~6 ~l ~ 0<::) 

~5 oLS ~4 ~2 0<") ~6 P(l 

0<6 ~6 OS ~L. 0<:2 . 0<::1 o<~ 
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From the way the elements of S are defined, S is the symmetric group of 

order six. In fact, S is the }alois Group for f(x). 

3 2
3.14 TheoreM.: S is the Galois groJp for f(x) = ax + bx + cx + d = O. 

1. K is the superfield of Ra as proven earlier. 

2. S is the set of all &uto'1lorphisms of K and Ha c: K by the definition of 

K and because Ra has to be mapped onto itself (3.11), Ra is the fixed field 

for K (3.4). 

3. To prove the following a theorem will be used from a reference and no 

proof .nll be given. 

4.14.1 Lemma: "Let K be the fixed field of the field K for the group
A 

A c[cX.. = e, o!. 2' 0(3' ••• , c::J(.n 1 of automorphisffis of K. Then G:KJ:n ll 

l • 

~, p 18~ In this case [K :R~ = [1\: K~ = 6. Therefore, by 3.10, S is 

the Galois group of f(x) and K is normal over ha. To show that f(x) is 

solvable by radicals, it must be sho;,n that there exists a finite chain of 

:::>,...subgroups Go 2 Gl~' • - ",l =[e]such that G is normal in G1_1 and• m l 

Gi_l/Gi is Ab~lian. 

Consider the following finite chain of subgroups: 

CMo [0(1' eX- 2' 0<...3'0<.. 4,0<...5' 0<. 6} 
HI ={0<...1' 0<.... 5' ~ 6 t 
M2 c[o<.l ~ 

From the definition of a normal subgroup H <J £1 <\ H2• Since Gl :M~ = 3o 1 

andEo:Ml] = 2, and any gro,lp of order 1, 2, or 3 is Abelian, 1\/1.1 and
0 

M2~11 are Abelian. 

Therefore, S is the Galois group for f(x) and is solvable, and by 

Abel's theorem, f(x) is solvable by radicals. 
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Since f(x) is solvable by radicals, Ra can be extended by these 

radicals to include all the roots of all cubic equations. This can be 

done in a manner si~ilar to the way the rationals were extended by all 

the roots of all quadratics in Chapter Two. This extension contaiDs 

radicals, sums and products of these radicals with the~selves and the 

rational nu~bers, and the r2tionals. It can be shown that this exten

sion is a subfield of the complex nu~ber field. 



CHAPrER IV 

FOJRTl-I AND FI?I'H D~}RS;; FCLYNG:HP,L E"JA TIC~\JS 

In Chapter Three, it was proven that the Galois group for a cubic 

is a subgroup of the sym~etric group of order six (denoted 53). For a 

quartic, the Galois group is a subgroup of the sym~etric group 54. The 

next polynomial equati~n to be considered is the one of fifth degree. 

To prove that an irreducible fifth degree polyncmial equation cannot 

be solved hy rndicals, it suffices to show that the Galois group, 5S' does 

not satisfy Abel's theorem. One of the conditions of Abel's theorem makes 

it necessary to find a finite chain of normal subgroups of 5S such that the 

r~ctor groups are not Abelian. It will be proven that no such chain of 

subgroups exists, that i~ it will be proven that the alternating subgroup, 

AS' is the only non-trivial normal subgroup of 55 and every non-trivial 

normal subgroup of AS is AS. Thus, the only finite chain possible is ' 

'1 eJ <l AS4 5S • Then it will be proven that the factor group, 5S/AS is not 

Abelian. 

4.11 Theorem: If 1TE AS' then 1r can OR written as a product of the 

3-cycles (123), (124), and (12S). 

Proof: Any pair of 2-cycles can be written as a 3-cycle, or as a 

product of 3-cycles. To show this, two cases need to be considered. The 

first case is when ~ = (ab)(cd) or the two 2-cycles are disjoint. Then 7.f 

can be written, rr = (ab)(cd) = (acd)(acb). The second case is when the 

two 2-cycles are not disjoint. Then /I' can be written, 7r = (ab)(ad) = (abd). 
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To show that this prod~ct of 3-cycles can be written as a product of 

the 3-cycles (123), (124), and (12S), consider the case where one belongs 

to the 3-cycle. This 3-cycle can be rewritten with the one first. For 

example, (214) = (142). If this 3-cycle has a two adjacent to the one, 

the 3-cycle has been rewritten as desired. Suppose then the two does not 

follow the one. To rearrange the letters of a 3-cycle, all that is necessary 
~ 

'I is to multiply the 3-cyc1e be itself and its inverse. For example, 

(132) = (132)(132)(123) = (123)(123). This puts th~ 3-cycle in the for~ 

desired. Suppose there isn't a two in the 3-cyc1e, such as (134). Since 

(134) = (213)(241), by using the previous procedure, (134) = (213)(241) = 

(132)(124) = (123)(123)(124). In general, suppose (lcd) needs to be re

written where c,d ~ 2. Then (lcd) = (21c)(2dl) and follow the previous 

procedure. Sup,:;ose tha t the 3-cycle contains r.o one or two. Then, in 

general, (cde) = (lcd)(lec) and since no two appears here apply the above 

procedure. For example, (34S) = (134)(lS3) = (213)(241)(21S)(231) = 

(132)(124)(lS2)(123) = (132)(132)(123)(124)(lS2)(lS2)(12S)(123) = 

(123)(123)(124)(12S)(12S)(123). Thus, any element of AS can be written as 

a product of the 3-cycles (123)(124) and (12S). 

4.12 Theorem. If K~ AS' K*{e}, and K contains a 3-cycle, then 

K = AS. 

Proof: ?irst it needs to be shown that K containing a 3-cycle im~lies 

that (123) E K. Let (abc) be the three cycle. If a, b, and c, are the 

digits 1, 2, 3, then K contains the necessary 3-cycle. Suppose (abc) = (12c) 

where c -4=3. Then ~12)(3c]-1 (12c) [12)(3c]] = (132)~K which means 

(132)-1", (123)eK. Suppose (abc)· (lbc), where b,c f2. Then (Jlb)(2c2-1 

(lbc) [lb)(2cj] = (12b)~K. But (12b) can be transformed by using the 

method above into the desired element. Suppose (abc)€ K but a, b, c, t 1. 
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Then [ila)(bc2] -1 (abc) [(la)( bc17 = (lcb)~ K. By usin~ the above 

procedures (leb) can be trBnsfor~ed to the desired element. Therefore, 
t 

(123)e. K• 

Since (123)~K, (213)e.K, because K is a group. Since KA A" for 

every elemet1t f( e. A" '«-1 
(213) 'f(e K. Let 17'= (12)(3k) where k > 3. Then 

",-1 (213)1(= (12k)€ K. But by (4.11), (123) and (12k) generate A, making 

K = A,. 

4.13 Theorem: If KAA, and K~{e}, then K contains a 3-cycle. (There

by makingK = A, by 4.12) 

Proof: Suppose there exists a nonidenti ty element 11e K, such that 

-rr'leaves fixed as many digits as possible. 11' Leaving a digit fixed means 

that under the per~utation 11, this digit is mapped onto itself. It suffices 

to prove this by considering cases. 

Case I: Suppose that 11 leaves exact1~T all of the digi ts fixed. This, of 

course, is the identity element. Since it was assumed that 11 t e, 1T'"cannot 

leave all the digits fixed. 

Case II: Suppose that 1t leaves exactly one digit fixed. The result,would 

be a 4-cycle or an element of the form, (ab)(cd). Suppose 1'f is a 4-cycle 

(abcd), then (abcd) = (ab)(ac)(ad) is an odd permutation making 1T'tK. 

If if= (ab)(cd), then for everyt:7Z£ A"oZ-lllo<..e:.K. Leto(.= (cde). 

-1 .-rl 1(cde) 1f'(cde) = (ab)(de). 'II = (ab)(cd) so (ab)(de)1T 6 K. nut, 

(ab)(de)t(-l = (dec) which means 1t1p.3ves two elements fixed. This is 

contrary to the definition of If(. Therefore, 1T"cannot leave exactly one
 

digit fixed.
 

Case III: Suppose 1fleaves exactly two digits fixed. But this is what is
 

being proven. It will be proven that this c'n be the only case.
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Case IV: Suppose -1t leaves exactlJ' three digits fixed. The result waul d 

be a 2-cycle. But a 2-cycle is an odd f-Jer'11utation making 1T' € K. Therefore, 

~ cannot leave exactly three digits fixed. 

Case V: Suppose 11 leaves exactly four digits fixed. This is impossible 

because this would leave tbe rpmainin,s diGit fixed thereby ma kin~ '](= e. 

Therefore, 11 cannot leave exactly four digits fixed. 

Case VI: Suppose 'f( leaves none of the di:si ts fixed. '1f' could be of the 

form (abcde) or (abc)(de). But (abc)(de) is an odd permutation so 11= (abcde). 

J~ ~ 4
Since 11 = (edcba) and (cde) 6. AS' (cde) 1T' (cde) eo K. But (cde) 

11' (cde) = (abdec) and (edcba)(abdec) = (acd) meaning -r( leaves tHO elements 

fixed contrary to the definition of ~. Therefore, 11 must leave at least 

one digit fixed. Therefore, K contains a 3-cycle making K = AS' 

4.13 Theorem: If K A 55' then K = AS'
 

Proof: Suppose K~ 55 but Kt{e} , AS or S5' Let KflA = H.

S 

11t,l, HL1 55' and H~AS' Since HAS
S

' for everyet..e.. 5
5
,0< -1 ho<.E;11. 

l
This means that V1r € AS' 1r- h "fre, H which 'l1eans H~ AS' But by 

the previous theorems, H = AS' Similarly, HA K. 

Since AS = H, KAA 
5 

= A making AS tE.. K, and A
5 

f K (by the hypothesis)"
5

, 

It follows that there exists a ~ 6 K such that 11 is an odd permutation 

and 11*' e. Now to Shov-l that K = 55" It is obvious that KesS" Suppose 

(J€ S5' If cr is an even permutation, then <JE,. K, so let a- be an odd per

mutation. Pick anY-De-AS' then 0-1 0- 6 = kE.K. But this makesq- = 6k 6-1 

and because b, k, S-l £ K, it follows that CJ Eo K. Therefore, SSe.:<. 'I'his 

makes K = SS' 

Since there are only trtlO normal subgroups of 55' namely i e 1, and AS' 

to prove that S5 is not solvable it is necessary to show that the factor 

group AS/ £e} is not Abelian. 
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4.14 Theore~: AS {eJ is not Abelian. 

Proof: This folloHs easily by considering an example. (abc)(cde):f=. 

(cde)(abc). Therefore, AS/{e}is not Abelian. 

Therefore, there does not exist for 55 a finite chain of subgroups for 

which the factor groups are Abelian. Therefore, an irreducible quintic is 

not solvable by radicals making it impossible to extend the rationals by 

radicals to include the roots of an irreducible q~intic. 

This orocedure can be followed to prove S , n ~5, is not solvable. n 

'In fact, a ~eneral proof can be given. 



1 

1 

I
:l 

I 
.~ 

,1 

It 

CH~PrER V 

COHClJJSIOH 

The problem of determining the solvability of a polynomial equation 

by radicals by considering the solvability of its Galois group seems to be 

unrelated. But, as stated in Abel's theorem, this is the key as to whether 

or not a polynomial equation is solvable hy radicals. 

In Chapter Two, the set that is obtained by adjoining the square roots 

of integers was proven a field. This approach of extending the rationals 

by radicals may have been used for extending the rationals with roots from 

polynomial equations of degree greater than two. The prOblem with using 

this approach ~s making sure the roots of all the polynomials being considered 

are included in the set. 

In Chapter Three, a different approach was used. Proving that the 

rationals c01lld be extended by radicals to include the roots of a cl.lbi~ 

involved the use of Abel's theorem. This theorem was not proven because 

the proof is beyond the scope of this paper. Showing what the theorem means 

and how it can be used is more in line as to the purpose of this paper. 

In Chapter ?our, it was proven that the rationals could not be extended 

oy radicals to include the roots of fifth degree polynomial equations. This 

involved doing q'Jite a bit of formularization of the elements of S) and AS 

which could be of use to someone studying permutation groups. 

Althou~h this paper only considered roots of polynomial equations of 

degree five or less, the conclusion arrived at in Chapter ?our can be gene

ralized. That is, it can be proven that the Galois group of an nth decree 

polynomial e1uation (n ~ ), is not solvable. 
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