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CHAPTER I
INTRCDISTICH

The primary purpose of this paper is to prove that the rationals cannot
be extended by radicals to include thke roots of an irreducible fifth degree
pclynomial.equation. This paper also shows that extensicns can be ohtained
for other pclynomial eguations of lesser degree. Throughcut this paper
rationsl polynomial equations will be referred to as polynomial equatiors.
In Chapter Two, the extension of the raticrals to include roots of first and
second degree polyncmial eduations are considered, In Chapter Three, it is
shown that the rationals can be extended by radicals to include roots of
third degree polynomial equations. In the fourth chapter it is shown that
the rationsls cannot be extended by radicals to include the roots of an
irreducible fifth dezree polynomial equstion.

Two approaches to tre preblem of extending the raticnals (denoted Ra)
by radicals will be used. The approach used in Chapter Two is to consider
the set that is obtained by adjoining radicals of the form N1 , where i is
an integer, to the raticnals and to prove this set is a field. Thris is done
with integers because 415—wheré be Ra can always be expressed as a N 1 where
aefRa and i el. The approach us=sd in Chapter Three is to prove that the
rztionals can be extended by radicals to include the roots of an irreducible
third degree polynomial eguation.

It will be presapposed that the reader has completed a course in
abstract algebra. Thus, it will be assumed that the reader knows the axioms
of a group, ring, integral domain, and field. Also the reader should know

the definition and some properties of polynomial rings.



“his paper concerns field extensions so a delinition is needed:

1.1 Definition: A field K is called a field extension of the field F

if and only if F is & subfield of X.
Many examples of field extensions can be given. The real number
system is a field extension of the rational nuuber system. The complex

number system is a field extension of the real number systen.



CHAPTER 1T
FIRST AND SHCCMD DEGHEY PILYNCMILL EJJATIONS

Consider the roots of the oolynomizl eyuations of the form ax + b = O,
where 2 F 0. The rcots of these equations are of the form -b/a, for
a(-b/a) + b‘= 0. Since the set of retional numbers is a field, it fo.llows
that -b/aeRa. Therefore, when the roots of ax + b = 0 are adjoined to Ra,
Ra is obtained. Thus Ra is a field that includes all roots of first degree
pelynonial equations.

Consider the roots of all second degree polynomial egustions over Ra
of the form f(x) = ax2 + bx + ¢ = 0, The roots of f(x) are of the form
-b :'\Jb - ljac . let D = b2 - Lac and consider the set Ra (N'T)), where DeRa.

2a
This means that A D has been adjoined to Ra. Since AJ’D,can be expressed as

aNi , where a € a and 11, elements of the form -b +dD can be obtained
2a

by operating on'('i-wit-h the rationzls. OCperating on /(i_with the rationals

means thet the set Re |/ {NT }is extended so that it is closed under multi-

plication and addition,

Let F be defined to be the set obtzined by adjoining the roots of all
quadrztics to Ra, and 2ll members obtained by operating on these roots with
the retionals and the roots themselves. Intuitively, T can be obtained by
a different way. Suppose the rztionals are extended by the’fé_, which is a
root of a yuadratic eguztion and alsc the sguare root of an integer, in the
ordinary way. The field Ra (N 2) is obta‘med. Then suppose Ra (N2) is
extended by the square root of another integer in the same way. If this

process could be repeated until 211 the roots of quadratics were adjocined in

such a manner, ¥ would be obtained. It is clear then, Ha ﬁ, bel, is a

subset of T,
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The elements of F are of the form T b AN i, where b e_ﬁa. It should
iell
be noted that this is & finite sum and no infinite series belonzs to F.

The definitions of eguzlity, saditicn and multiplication are:

2.1 Definition: $. b N1 = s_a Nj if and only if b = a_, when i = j
iel i JeI J

2.2 Definition: Vi,j; S_b Ni+ 3Ta Nj= Z(b + a )l“
ieIt 3613 kel
2.3 Definition:

Vi, (S_b r)(za i) S Z-b; a dij if 1<0 and j<O

JeI iel* - JeI J
T by aj-\Sij if i30 or j=20
i,jeI

i)

Mow to prove F is a field. The subscripts will ncw be cmitted.
Notice that bi refers to the raticnzl number that is the coefficient of
NT intb; N1 |
Property I: Closure
Since ibif-f+ 'Zaj {3 = i(bi + aj)"ri—when i = j, and the rationals
are closed under addition, it follows that by + aj is a rational and
z_(b-l + aj)ﬁcan be written E_cii\fi—. Therefore, F is closed under addition.
Alsoc, since the raticnals are closed under multiplication, biaj can be
expressed as Cy andA ij as ¥k making S—biaj (G_=chm Therefore, I is
closed under multiplication,
Property II: Additive Identity
Since O is a rcot of x2 = 0, which is a second degree polyncmial equation
OeF. Also, O can be written as ¥ 0N1. Therefore, f_bi/(i’+ JoNi =
i(b_1 + O)'{T= zbi'\rﬁ This follows because O is the additive identity
for the rztionals.
Property IIT: HMultiplicative Identity
Since 1 is a rcot of x2 -1 = 0 which is a second degree polyromial
equation, 1&F. Also, 1 can be written as ¥ ck'ﬁc—where ¢, =1 when k =1

and ¢y = O when k ¥ 1. Therefore, (3 biﬁ)( s ck/ﬁ) = 'zbick’q ik.



5
This means that each term of ibiﬁ is multiplied by each term of 5 ckﬂ;
But, there is only one term of ﬁ_ck'\)—l-c not equal to zero, and this is
4 1 = 1. Therefore, the product of every term of i_bi’\/-:f 1ith 1 is needed.
(ibi']}"i')mﬁ) = ibiﬂm = fbi’ﬁ‘, since b;=1 = b, end i-1 = i,
Property IV: Additive Inverse
Consider Zbi'\f; snd Z-—bi’&q vhere -bi refers to the additive inverse

of bi' Since bié Ra, there exists ~—bié Ra such that by * (-—bi) = 0,

Therefore, Zb AV + Z-bi'\)?f= Z(bi * (-bi))ﬁ= 7071 = o.

-

Preperty V: Iltiplicative Inverse
Induction will be uscd to prove F has inverses. Consider n to be the

Ar T

: T P 1 Ar
nuaber of terms in ibi i, Ifn =1, W f T which is in

T
] b ¥t - b Vs
b AT+ b AT brzr b g

S

¥, Ifn=2, s Which is in F. Assumc that
ibiﬁ has an inverse if there are k terms and consider the k + 1 case,
that is, k + 1 terms. It rust be shown that 2 b Y& + b Vs has an inverse.
Zbc’\’_k—means ibk'{_k:éK vhere K is an extension of Ra by adjoining radicals
in the menner described earlier until the elements of K have at most k
radiczls.. Under the induction hypothesis then, £bk’\f_l_:- has an inverse.

Consider G to be the extension of K by ¥ s in the usval manner. lements of

G are of the form Zbl,'i k+b ¥s=g+b~Ns vhere g, b_€ K, 1 -
< s s s ———— =
+ bSV's"
g = bS‘V s bs"(s
= £ = - o« oSince the first term of this
2 2 2 2 2 2
g - bS 5 g =-Db_'s g = bs 5

expressicn and the coefficient of V s is in G, the entire expression is in
= 1 - » 3 e
G. Therefore, ibk’\}’l?+ os(s has an inverse, =nd, by induction, every

elenent of I' has an inverse.



Property VI: Associative Property of ialtinlication

(<£biﬂ><zajﬁ)) (Ze, V%) = (£, Vij)(£e k) =£(biaj)clﬁi3.‘)§.
Since the rotionals are asgsociative, this becones: f bi(a.jck)‘\} i(jk) =
(£o,VT) (Z oo NT0) = (£0,90) ((£a,V3Z0 VD) ©
Property VII: Associative Property of Addition

(Zbﬁﬁ-fajﬁ) + ch’\ﬁz_= Z(bi + aj)ﬁ+chﬁ =

f_((bi + a_.') + ¢, ﬁ. Since the rationals are associative, tois becones:

z (bi + (a‘j v o) ¥i= Zbiﬁ + é(aj + ck)ﬁ = Zbi"r{ + (2ajﬁ+
ch.ﬁ)'
Property VIIT: Commtative Property of Addition

f bi‘\r:_f + Zajﬂ = Z(bi + aj)ﬁ. ' Since the retionals arc comrmtative,
this becomes: Z(aj + bi)'\r:—f = faJ'V-J_ -I-Zbi’\lz:
Property IX{: Corrmtative Property of Fultinlication

(ibiﬂ)(Zaj’\G-) =% biaj ij. Since the rationals are cosmtative,
this becomes: Zajbi'v_j_:i = (zajﬁ)(ibi"r-i).
Property X: Distributive Provertics

EoVE(Ee VT « Zo¥E) = 204 (£ (e + 0 VF) =
2’bi(aj + ck)'\ri_,";'. Since the rotionals are distributive, this becemes:
Z(oza, + e )Vij = 20,2, Vi) + Zoie, Yik = (Z0,VI)(Za VD) +
(ibiﬁ)(ickﬂ). The right distributive property can ve shom
similarly,

F is a field and since Ra 7, it follows that F is a field extension
of the rationels. This means thot the rationals hzve besn extended by
radiccls to the field ¥, which conteins 211 the roots of 211 seccnd degree

polynorial ecuations.



CHAPTER THREW

THIRD Du3EE PCLY OHIAL EQUATICHS

Extending the restionals to contain roots of third degree polynomials
can be done in at least two ways. One way would be to extend the rationals
by adjoining all roots of third dezree polynomial equeticns, finding the
general form of an element of this set, and proving this set a field as
was done with Quadraztics in the second chapter. Another way would be to
prove that the rasticnals can be extended by radicels to include rooits to
third degree polyncmial equaticns.,

The roots of the cubic equation ax> + bx2 +cx +d =0 are:

X =2 - p/321 - b/3

Xp =2y - w? p/3z, - b/3

x, = (W’ ~wp/3 - b/3
where w = =1/2 + 1/2 {31 and ¢ = =1/2 + 1/2 31 and 2z, is a root of one
of the following: 23 = -q/2 +yR, z3 = q/2 - ¥R when R = 1/27 p3 +1/L q2
and p = c - b2/3, q = d - bo/3 + 26°/27, [%, pp 2&&-2hi]

In order to prove that the raticnz2ls can be extended by radicals to
include the roots of an irreducible third degree polynomisl ejyuation (cubic),
Abel's theorem is needed.

3.1 Theorem: "If P is of characteristic zero, then f(x) is solvable
by radicals if and only if the Galois group Go of f(x) is solvable, that is,

there exists a finite chain of subgroups Go = G, 2

—

W

.« o . .QGm=Esuch'

that 3 is normal in G, , and G, l/bi is Abelian, i =1, 2, . . . . , m."

.
1o 186]



3

If f(x) = ax” + bx2 + cx +d = 0 is solvable by radicals, then the
rationals can be extended by these radicals as was done for second degree
polynomial eguations. To prove f(x) is solvable by rsdicals, each con-
dition of 3.1 will have to be satisfied. Each condition will be taken in
order with the necessary definitions given preceding the proof of the con-
dition,

3.2 Definition: "In an arbitrary ring R, if there exists a positive

integer n such that nx = 0 for every x in R, then the least such positive

integer n is called the characteristic of R and R is said to have (positive)

characteristic n. If no such integer exists, that is, if nx = O for all x

in R only if n = O, then R is said to have characteristic zero". [}, p 13%]
3.3 Theorem: The rationals have characteristic zero.
Proof: It needs to be understood thst nx = Omeans x + x + . . . .+ x =20
with n terms. OSuppose thzt the rztionals do not have characteristic zero.
This implies that there exists an n, such that, for every x€eRa, nx = O,
Suppose x = 1, Thismeans 1L +1 +1 + ., , . +1 =0, Sincel +1 =2,
2+1=3,,.. ,(n=1)+1=0, This implies that the natural numbers
are finite. But this is a contradiction because the naturzls are not finite,
Therefore, the raticnals have characteristic zero.
In order to obtain the Galois group of f(x), it is necessary to define
this and other terms.
3.4 Definition: "Let X and X' be fields and A ={Qi s 1€ I} be a set
of isomorphisms of XK into K'. An element k in K is called fixed for A if
Ked 5 = kagj for all i and j in I", '[1, p 179]
3.5 Definition: "If H is é'subgroup of a8 group G, then a right coset
of H is a subset 5 of G such that there exists x &€ G for which S = Hx. Left

cosets are defined similarly". [3, P 19J
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3.6 Definition: "i subgroup E of G is normal in G written K4 G, if
and only if x-l HxcH for all xe G". [3, P 19_]
3.7 Definition: "If H is a normal subgroup of G, then the set of cosets
of H in G form a zroup under multiplication." This grcup is then called
the factor group of H in G and is denoted G/H. [}, p 3%]
3.8 Definition: E;:%] is the notation used to dencte the index of
G/H. This gives the number of elements of the factor group G/H.

3.9 Definition: An gutomorphism is a one-to-one mapping of a set

onto itself, such that the operations are preserved under the mappins.
3.10 Definition: Let X be a superfield of ¥, Let G be the sst of
all automorphisms of K such that F is mapped onte ¥, i.e., F remains fixed

under the mappingeleG. If[%:%] is finite, tken K is normal over F and

G is celled the Galois group of X over ¥, [?:%] in this definition means
that the extensicn K, of I as a vector space has finite dimeusion over T,
This dimension is called the degree of K over F,

To find the 3alois group of f£(x) = ax3+ bx?

+ cx + d = 0, consider
the set X, where XK is obtained by extending the raticnels by adjoining the
roots of f(x), namely k, ky, kK3, in the usual manner. That is, K is
obtained by operating on kl, Ko, k3 by the rationals and kl, ko, and k3.
Also, Ra ¢ K. Consider the automorphisms of K.
3.11 Theorem: If a € Ra, and o< is an automorphism of K, the (a)e< = a.
Proof: Suppose (a)X#a and a#0. A lemma is needed in the proof of
this theorem.
3.11.1 Lemma: Under o¢ , the integers must be mapped onto the integers.
Prcof: Suppose (d)od = e where 4, e are intégers but d#e. Then one
can be subtracted from d (or added as the case may be) and e until one is
obtained on the left. The result would be (L)<= e - k., But (1)%= 1 so

(d)o< = d and the lemma is proven.
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Since intezers have to be mapped onto intevers, under any automorphism,
quotients must be mapped onto quotients and the resulting rationsl numbers
must be mapped onto the rztional numbers, Therefore, (a)X= a.

Since the rationals must be mapped onto themselves, it suffices to
map kl, k2, and k3 onto some elements of K. For once the rationals are
mapped onto themselves and kl, k2, and k3 are mapped to some elements, the
rest of the mapping will be determined by the mapping of kl, k2, and k3.

3.12 Theorem: Under the automorphisme<, roots must be mapped onto
themselves.,

Proof: 1If one or all of the roots are raticnal, then by 3.11, they
must be mapped onto themselves and there would be only one auto-worphism,
namely, the identity mapping. Therefore, suppose (k;kX= A (where i = 1, 2, 3)
‘h¢ Ra and Ae{kl, k2, k3} . Consider ax3 + bx2 +cx + d and the following
‘mappin?: (a)y(= a, (b)eX = b, (c)eX=rc, and (d)e<= d. Then

(ak;” + bk, ® + ck; + d)et= a3 + bA% + ¢ A+ d and since

aki3 + bki2 + ck_1 +d =0, (0)eX=0 and (0)X= add o+ bhz +cA+ d$0,
This contradicts the hypothesis thate< is an automorphism. Therefore, roots
must be mapped onto roots.

Under this definition of o<, where the rationals are mapped onto them-
selves and roots are mapped onto themselves, it follows thate< is an auto-
morphism,

The elements of K are of the form: i:a kl k2 k3 « Again, a finite
sum is meant. In order that the nexiaéﬁzoré% gan be proven, and in order
to satisfy a condition of Abel's theoren, Kimust'be shown to be a field.

Since the roots of f(x)vare necessarily complex numbers, it. suffices to
show that X has inverses. To do this, it is only necessafy’to show that
ki ie{b,l,?} has an inverse in K, because a similar proof can be given

for other elements in K. Since f(x) and 51 are relatively prime polynonials,



11

it follows that 1 = r(ki) k; +h (ks) f(k.l). Since i‘(ki) =0,1= r(k.l)k.l
which means k.l has an inverse in K,
. . . i.3 2 -
3.13 Theorem: If & is defined by (5 23 55 ky k2 k3)°(
i J Z . e
Z 25 32 (kp(l)) (kp(Z)) (kp(B)) where p(1), p(2), p(3) is a permutation
of 1, 2, and 3, theneX is an automorphism of k on to K.

Proof: Addition will be defined as fcllows:

i J .,z r. s .t _ 1.3 .2 .
S 2 52 k) Ky K5+ T by kK ks k3 Z(aijk *bo )k kd 5
2_ (aijz + bijz) ki kg kg . In other words, the ccefficients of like terms

are added together making aijz + brst = aijz + bijz . This operation is

a . . i) .2 r s .t -

preserved under the mapping oC since (S 3; iz kl E{Z Ky + s L ky ko ({3)0(
i,j 2 - » i J 2

(Z(aijz P o) KK “3)0( 2 (a3gn * Prgy) K1y Kp(2) Ko(3)

i J A . T s t - i 5 z
> %1 jz kp('.L) kp(2) kp(3) p3 Drst kp(l) kp(2) kp(3) (% 8ijz ky k% k3 )X+
(g brgy &y Ky k) oL
Multiplication is defined as follows:
13,2 ros o by i+r j+s 2+t
(S g kg b K Sbgy by k)= FTaggb g7 ko ko

In other words, each term of zaijz k% kg kg is multiplied by each term of

Z b kT k% k¥ and the sum of the products is taxken. This operation is
rst 1 2 3

, i . ' 1.,.j 2 r .S  t -
preserved under the mapping X since, E 5 aijz kl 1(2 kj)( S brst kl k2 kB]oc

i+r  j+s 2+t - i+r  j*s zHt
(22 bt G2 Rt Sy @) 0)
1
(22352 (1) %p(2) “o(3)’ o (2 b ko(1) ¥p(2) ¥p(3)

i j 2 r S t
« = k . ‘. .
(2 855, K K 3)o< (25 K <3)°<
From the definition of X , when i, j, k, = 0, (a) =X = a and when

a = 1 =k thereby satisfying the two previous theorems that

the rationals must be mapped onto themselves and roots must be mapped onto

roots.

It is clear that o is an oato mapping. For everys a k; kg K%

. . . i 3 o2 ™
of K, there exists an image in K, namnely ¥ aijz kp(l) kp(2) kp(3)' Tor

ijz
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i J z . . .
th o 7 s

every zaijz kp(l) kp(2) kp(3) ere exists a preimage in K, namely

1.3 2
> % i K k3 k3 .

To proves{ is a one-to-one mapping, suppose (= 3 5z ki kg k;) -~ =

i J 2 R r s bty <, i J 2

2 250 ) Kp(2) Kp(3) 208 (30, K K k)= Tagg, ) Ky2) Kp(3)-
i 3 .z r st -

It follows that (iaijz kl k2 k3 +£brst kl ks kj)c><

i J Z _ i J 2 i} ) .
zaijz kp(l) Ko(2) ¥p(3) 3 35 jz kp(l) k5(2) kp(3) 0. SincecX.is

an automorphisa, (0) = 0 :naking;g.ljz K.]I-. kg kg + i-brst k{ k; kg = 0.

i, 2 r.s .. t .
i §z kl k2 k3 Zbrst kl k2 k3. Thereforeo4is

Since K is a field, Sa
one-to-one and o< is an sutcnorphism.
Since o maps roots onto roots, and there are three roots, there are

at most six such automorphisms. Consider the following set S of automor-

phisms, {o(l, .9(2, 0(3, 0()_‘, 0(5; 046} wherea{i is defined as follows:

! <2 3 < s %
k—> k& >k =k >k, k—>ke k>
ks—)':(B kj——é k2 k3-—")k3 k3——->kl kﬁkl k3——}k2

TaBLE I
GROJP TABLE TQOR S

&

A L | G | K | X 6
LKl e | K | Ly < | %
Ly | Ll K | HLs < | <5 | ¥
ALy | A K | K4 Ly | Ky | Ko
Ly | K| s | K | L | e |
A | oA | K, [y | <3 |4 |4
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From the way the elements of S are defined, S is the symmetric group of
order six. In fact, S is the Jalois group for f(x).

3.1L Theorem: S is the Galois group for f(x) = ax3 + bx2 +cx +d = 0.
1. K is the superfield of Ka as proven earlier.
2. S is the set of all zutomorphisms of X and Ra € K by the definition of
K and because Ra has to be mapped onto itself (3.11), Ra is the fixed field
for X (3.L). '
3. To prove the following a theorem will be used from a reference and no

proof will be given,

L.1h.1 Lemma: "Let KA be the fixed field of the field X for the group

A =[41 = g, d?’ 0(3’ e e ,"Ln} of automorphisms of K. Then EK:KJ:n“.
[1, p 18?] . In this case E{:R{I = L‘{:KA = 6., Therefore, by 3.10, S is
the Galois zroup of f(x) and X is normsl over Ra. To show that f(x) is
solvable by radicals, it must be shown that there exists a finite chain of
subgroups Go§2 GIQZ. =2 Sy, =fe}such that G1 is normal in G;_, and
c‘i_l/ci is Ab=lian.

Consider the following finite chain of subgroups:

My =g, o, Ky e s g o

M1 =={941’ X g A 6}

1, ~{ex, |
From the definition of a normal subgroup Mo <] Ml <7 M2. Since E%IHWJ =3
and[%onl = 2, and any groap of order 1, 2, or 3 is Abelian, MI/MO and
Mo/, are Abelian.

Therefore, S is the Galois group for f{x) and is solvable, and by

Abel's theorem, f(x) is solvable by radicals.



Since f(x) is solvable
radicsls to include all the
done in a manner similar to
the roots of all quadratics

radicals, sums and products

1L

by rzdicals, Ra can be extended by these
roots of all cubic equations. This can be
the way the rationals were extended by all
in Chapter Two. This extension contains

of these radicals with themselves and the

rational numbers, and the retionals., It can be shown that this exten-

sion is a subfield of the complex number field,



FCJIRTA AND FIFTH DEZRIs PCLYNGAIAL E JATICNS

In Chapter Three, it was proven that the Galois group for a cubic
is a subgroup of the symmetric group of order six (denoted 53). For a
quartic, the Galois group is a subgroup of the symmetric group Sh. The
next polynohial equaticn to be considered is the one of fifth degree.

To prove that an irreducible fifth degree polyncmial equation cannot
be solved by rndicals, it suffices to show thest the Galois group, SS’ does
not satisfy Abel's theorem. One of the conditions of Abel's theorem mezkes
it necessary to find a finite chain of normal subgrcups of 85 such that the
factor groups are not Abelian. It will be proven that no such chain of
subgroaps exists, that ig it will be proven that the alternating subgroup,
AS’ is the only non-trivial normal subgroup of SS and every non-trivial
normal subgroup of AS is AS. Thus, the only finite chain possible is
{é§<ﬂA5<JSS . Then it will be proven that the factor group, SS/AS is not
Abelian,

L.11 Theorem: If Te AS’ then 7 can ove written as a product of the
3-cycles (123), (124), and (125).

Proof: Any pair of 2-cycles czn be written as a 3-cycle, or as @
product of 3-cycles. To show this, two cases need to be considered. The
first case is when 7 = (ab)(cd) or the two 2-cycles are disjoint. Then 77
can be written, 7 = (ab)(cd) = (acd)(acb). The second case is when the

two 2-cycles are not disjoint. Then 777 can be written, 7r = (ab)(ad) = (abd).
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To show that this product of 3-cycles can be written as a product of
the 3-cycles (123), (12L4), and (125), consider the case where one belongs
to the 3-cycle., This 3-cycle can be rewritten with the one first. For
example, (21L) = (142). If this 3-cycle has a two adjacent to the one,
the 3-cycle has been rewritten as desired. Suppose then the two does not
follow the one. To rearrange the letters of a 3-cycle, all that is necessary
is to multiply the 3-cycle 5; itself and its inverse. For example,

(132) = (132)(132)(123) = (123)(123). This puts the 3-cycle in the form
desired. Suppouse there isn't a two in the 3-cycle, such as (13L4). Since
(13L) = (213)(2L41), by using the previoas procedure, (13L4) = (213)(2L1) =
(132)(124) = (123)(123)(12L). In general, suppcse (lcd) needs to be re-
written where c,d ¥ 2. Then (lcd) = (21c)(2dl) and follow the previous
procedure. Supgose that the 3-cycle contains ro one or two. Then, in
general, (cde) = (lcd)(lec) and since no two appears here apply the above
procedure. For example, (3L5) = (134)(153) = (213)(2L1)(215)(231) =
(132)(12h)(152)(123) = (132)(132)(123)(12L)(152)(152)(125)(123) =
(123)(123)(12Lh)(125)(125)(123). Thus, any element of A5 can be written as
a product of the 3-cycles (123)(12L) and (125).

L.12 Theorem. If K Ag, K {ey, and & contains a 3-cycle, then
K= AS.

Proof: Tirst it needs to be shown that K containing a 3-cycle implies
that (123) € K. Letb(abc) be the three cycle. If a, b, and ¢, are the
digits 1, 2, 3, then K contains the necessary 3-cycle. Suppose (abc) = (12¢)
‘where c # 3. Then [(-12)(30‘ "1 (12¢) K12)(3cﬂ = (132)€ X which means
(132)™} = (123) €K. Suppose (abc) = (lbc), where byc $2. Then ((1b)(2¢)]
(1bc) Elb)(%j} = (12b)eK., But (12b) can be transformed by using the

method above into the desired element. Suppose (abc)e X but a, b, c, ¥1l.
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Then [éla)(bci] - (2bc) [kla)(b?j] = (lcb)e K. 3By using the above
procedures (1cb) can be transformed to the desired element. Therefore,
(123) eX.

Since (123)¢ K, (213)e K, because X is a group. Since K4 g, for
every element-ﬂ’e_AS, ff_l (213)me K. Let M= (12)(3k) where k > 3. Then
-1 (213)m= (12k)e K. But by (}.11), (123) and (12k) generate Ag meking
K = AS.

4.13 Theorem: If K¢1AS and K#{é}-, then K contains a 3-cycle. (There-
by making K = AS by L.12)

Proof: Suppose there exists z nonidentity element 4reaK, such that
4 leaves fixed as many digits as possible. 4 Leaving a digit fixed means
that under the permutation 4T, this digit is mapped onto itself. It suffices
to prove this by considering cases.

Case I: Suppose that 41" leaves exactly all of the digzits fixed. This, of
course, is the identity element., Since it wss assumed that 1T #e, A cannot
leave all the digits fixed.

Case II: Suppose that 47 leaves exactly one digit fixed. The result.would
be a L-cycle or an element of the form, (ab)(cd). Suppose 4T is a L-cycle
(abcd), then (abed) = (ab)(ac)(ad) 1is an odd permutation makinglﬂQ#K.

If q = (ab)(cd), then for everyA e A5,04-11T'a§6K. Letol = (cde).
(cde)™} fr(cde) = (ab)(de). ML = (ab)(cd) so (ab)(de) T+ & K. But,
(ab)(de)ﬂ"-1 = (dec) which means arleaves two elements fixed. This is
contrary to the definition of 4. Therefore, A cannot leave exactly one
digit fixed.

Case III: Suppose 17 leaves exactly two digits fixed. But this is what is

being proven. It will be proven that this c'n be the only case.
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Case IV: Suppose qr leaves exactly three digits fixed. The result would
be a 2-cycle. But a 2-cycle is an odd permutation making T € XK. Therefore,
@ cannot leave exactly three digits fixed.
Case V: Suppose 1 leaves exactly four digits fixed. This is impossible
because this would leave the remaining digit fixed thereby makins 7= e.
Therefore, 4r cannot leave exactly four digits fixed.
Case VI: OSuppose 4 leaves none of the digits fixed. ~4r could be of the
form (abcde) or (abc)(de). But (abc)(de) is an odd permatation so 7 = {abecde).
Since 7L (edcba) and (cde) e AS’ (cde)ml 1 (cde) « K. But (cde)“.‘L
1 (cde) = (abdec) and (edcba)(abdec) = (acd) meaning 4 leaves two elements
fixed'contrary to the definition of 4" . Therefore, 47 must leave at least

one digit fixed. Therefore, K contains a 3-cycle making X = A

5

4.13 Theorem: If K .A4 55’ then X = Ac.
Proof: Suppose X4 sS but K+ {e}, AS or 55. Let K/)A5 = H{
H¥ gf, Hd SS’ and Hc.AS. Since H .~ 55’ for every < & SS’ < " he gH.

This means that ¥ e 4, Y h T d uhich mesns Haa A_. But by

g
the previous theorems, H = AS' Similarly, HAa A,

Since Ay = H, KAAS = Ag, moking AS e K, and A54=K (by tae hypothesis).
It follows that there exists a M € K such that 47 is an odd permutation
and 17’#; e. Now to show that K = SS' It is obvious that KCSS' Suppose
0 e SS. If g-1is an even permutation, then g-e X, so let g— be an odd per-
matation. Pick any§ ghg, then 5-10—5 = keK. But this makesg- = Sk st
and because §, k, 5-1 € X, it follows that g~ ¢ £. Therefore, SSC’ X. This
makes X = SS'

Since there are only two normal subgroups of Sg, namely e}, and Ag,
to prove that 55 is not solvable it is necessary to show that the factor

group AS/{e} is not Abelian.
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.1y Theorem: AS {e} is not Abelian.

Proof: This follows easily by considering an example. (abc)(cde) F
(cde)(abc). Therefore, AS/{e}is not &Lbelian,

Therefore, there dces not exist for SS a finite chain of subgroups for
which tne factor groups are Abelian, Therefore, an irreducible guintic is
not solvable bv radicals makiné it impossible to extend the rationals by
redicels to include the roots of an irreducible quintic.

This procedure can be followed to prove Sn’ n ;}5, is not solvable,

"In fact, a general proof can be ziven,



COMCL ISICN

The problem of determining the solvability of a polynomial equation
by radicals by considering the solvability of its Galois group seems to be
unrelated. Bub, as stated in Abel's theorem, this is the key as to whether
or not a polynomial equation is solvable hy radicals.

In Chapter Two, the set that is obtained by adjoining the square roots
of integers was proven a field. This approach of extending the raticnals
by radicals may have been used for extending the rationals with roots from
polynomial eguations of degree greater than two. The problem with using
this approach is making sure the roots of 211 the polynomials being considersd
are included in the set,

In Chapter Three, a different approach was used. Proving that the
rationals could be extended by radicals to include the roots of a cubic
involved the use of Abel's theorem. This theorem was not proven because
the proof is beyond the scope of this paper., Showing what the theorem means
and how it can be used is more in line as to the purpose of tnhis paper.

In Chapter Four, it was proven that the rationals could not be extended
by radicals to include tne roots of fifth degree polynomial eguations. Tois
involved doing guite a bit of formularizaticn of the elements of SS and AS
which could be of use to someone studying permutation groups.

Althouzh this paper only considered roots of polynomial equations of
degree five or less, the conclusion arrived at in Chapter Four can be gene- -
ralizgd. That is, it can be proven that the Galois group of an nth degree

polynomial eguation (n = 5), is not solvable.
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