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PREFACE
"To qualify as pure a mathematlical topic had to be
useless; iIf useless it was not only pure, but beautiful.
If useful-=-which is to say impure--it was ugiy, and the more

nl These words echo the ideas of a

useful, the more ugly,
pure mathematician, Godfréy Harold Hardy, referenced to the
world outside the art of mathematics, To be sure, his
words reflect my sentiment toward mathematics, For me it is
sufficlent to study mathematics for its own value, not
seeking an application in the physical world, With this
philosophy I embarked on a study which, as I see it, has no
relationship with the physical world.

The realm of my quasil topological spaces was my
undeveloped Imagination, heavily slanted by my background
in topology. My tools for this work were my mind and my
prior work in topological spaces.

Using these ingredients I constructed a concept that
for the non-mathematical world seems useless. Thus, by
Mr, Hardy's standards if it 1s useless, then it is pure
and beautiful, This, of course, does not necessarily justify

a mathematical work. Accordingly, Mr, Hardy felt that a

1

James R, Newman, "Commentary on G.H, Hardy", (Vol., IV
of The World of Mathematics, ed, James R. Newman., 4 vols,;
New York: Simon and Schuster, 1956), b. 2024,




V.
mathematical work must also be "serious".2 By "serious" he
meant that a mathematlical theorem or work should tie toget-
her significant mathematical ideas., Mathematical ideas
become significant 1f they "can be connected, in a natural
and illuminating way, with a large complex of other mathe-
matical ideas,">

Naturally, to me the paper appears serious., For
another the subject may appear worthless., That matters not;
for I found the paper not only a worthwhile endeavor from an
educational viewpoint but also quite enjoyable,

Endeavoring to approach a topological space from my
more fundamental quasi topological space, I felt an accom~
plishment in relating a topological space more fundamentally

to the basics of set theory.

G .H. Hardy, "A Mathematicians Apology", (Vol, IV of
The World of Mathematics, ed. James R. Newman., 4 vols.;
New York: Simon and Schuster, 1956), p. 2029,

3G.H. Hardy, "A Mathematicians Apology", (Vol. IV of
The World of Mathematics, 4 vols,;. New York: Simon and
Schuster, 195067, D, 2029.
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CHAPTER I
INTRODUCTION

This chapter irntroduces a few elementary definitions
and concepts from set theory. An index of notation immedi-
ately follows the last chépter.

Throughout this paper collections of "polnts" are
studied. These oolleétions of "polnts" willl be referred to
as "sets", At any point during the paper the discussion
1s restricted to a certaln set of polnts and consliders no
other points, Ensulng discusslions are then relative to this
set, which is the "universe", Naturally, the "universe"
varles from time to time. Throughout the discussion sets
willl be denoted by capital letters or with the famillar
bracket notation. For example, the set that contailns the
points x, y, and z may be denoted by {x, Vs é} . Another
common notation to be used 1s a qualitative description of a
set. When a set consists only of those integers x, where x
1s greater than 3, then it can be denoted by (3 l x €I and
Xx>3}. A point p in a set A is denoted by p € A, Now the

concept of a subset can be made clear.

Definition 1,1, A set A is a subset of z set B, written

A C B, if and only if for all p€ A, p € B, .



Thus, the set that contains no points 1s a subset of
every set, This set, denoted by @, vacuously satisfies the
definition of a subset. 8Since the set contains no points,
it satisfies the definition for all its points,

Henceforth, the symbol "V" may be used. to stand for
*for all” and the letters "iff" for "if and only if".

The logic used eliminates the possibility of having a
point in a subset of a universe and not in the subset, The
latter case is denoted by p € A, where p is the point and A

a subset of the universe. This 1s the idea of a complement,

Definition 1,2, Relative to a universe S, p & A where A C S

iff p is an element of the complement (-A) of A,

Two other very lmportant concepts from set theory are
union and intersection. For the purpose of discussion let S

be the universe, A C S, and BC S,

Definition 1.3. The union of A and B (written A UB) is
{_x' xéAorxéB].

Definition 1,4, The intersection of A and B (written A /N B)
is {x|x€Aandx€B}.

Another way to obtain a set by operating on two sets
is known as the Cartesian product of sets. Let A and B be

sets,
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Definition 1.5. The Cartesian product of A and B is [(a,b)
| 2 € A and b € B} where (a,b) denotes the ordered pair of

g and b,

If A= @ or B= ¢, then by definition the Cartesian
product (written A x B) of A and B is the empty set., The
Cartesian product 1is 1mpoftant for defining function, quasi
topological product, and topological product,

It should be emphasized that these basic ldeas and
many other underlying concepts in the field of set theory
and the topology of real numbers are assumed to be prior
knowledge. However, the deflinitions presented in this chap-
ter are designed to orient the reader and the "underlying"
concepts in later chapters will be mentioned to keep the
reader on the right path,

The path 1s to define a quasi topological space, dis-
cuss some of 1its more general characteristics, and examine
the Immedlate outgrowths of the definitions and the single
axlom of the space, Later, a definitlion for a topological
space ls presented in comparison to a quasil topological space,
a quasl topolecgical space is extended to a topological space,
and consequences of this extension are discussed. Then,
invariant properties under this extension are discussed and
finally, consequences of this work, relative solely to a

topological space, are explored.



CHAPTER II
A QUASI TOPOLOGICAL SPACE

"One way to establish a theorem is to‘prove it, and
that means to show how it follows from previous theorems,
l.e., theorems we already regard as established. If now we
demand that these theorems be proved, we have to go back to
still earlier theorems, and so on, It becomes clear that
if we are golng to prove anything, there must also be propo-
sltions that we regard as true but for which we demand no
proof, In order to go forward, we must stop going backward,
When certain propositions are laid down as the starting
point of a deductive theory, and no proofs are required for

these propositions,; then these propositions are called

'axioms'."1

"Just as it 1s with propositions, so it is wlith defi-
nitions. To define an object or term is to give its meaning
in terms of other objects and terms, and to define these
would mean to relate them to still other object and terms,

and so on., Again 1t is clear that if anything is to be

1A. Seldenberg, Lectures in Projective Geometry
(D. Van Nostrand Company, 1nc.,, Princeton, 1955), p. 42.
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defined, there must also be undefined terms."2 For a quasi
topological space, point and subset are undefined, Subset
is undefined in the sense that one must know of what it is
a subset,

The propositional origin of a quasil topological space

is the following axiom.

Axiom 1, For all points p, J (there exists) at least one
subset U 2 (such that) p € U,

Axjom 1 1is needed to define a quasl topological space,

which depends on the axiom for its meaning.

Definition 2.1. A set S, with a collection T of subsets of
S, i1s & quasli topological space iff 7" satisfies Axiom 1 for
all points of S.

Speaking of a quasi topological space in terms of a
set and a collection of its subsets needs notation. Thus, a
quasi topological space with S as the set and 7 the collection

of subsets that satisfies Definition 2,1 is denoted by (S,?).

Definition 2.2. The collection of subsets 7 is called the

guasi topology of the quasi topological space,

2., Seidenberg, Lectures in Projective Geometry
(D. Van Nostrand Company, Inc,, Princeton, 1955), p. 42.




Definition 2,3, A set V 1s a neighborhood of a point p,
p€E 8, Iff p&€ Vand VET,

A neighborhood of a point p will be denoted by Np.
Then, {Np | p & S} represents the collection of all neighbor-

hoods in (8,7).

Theorem 2.4, Let (S,7) be a quasi topological space, Then,
T- {ﬁ} ={v, | pe€ s},

Proof., Let V€& 7- {;35} where 7 - {ﬁ} = 2’(] - {Q’} . Then,

VET but V£ @, Thus, 1 p€ S Dp € V. This satisfies Defi-
nition 2.3. Thus,7- {#JC {¥ | p€ 8. Let V€

{Np | p € S} . Then, V is a neighborhood of some point

p € S. By Definition 2.3, VE Z and p € V. Thus, V £ & and
YV ET- (ﬁ‘f} . Thus, {Npl pé& S} c 7 - {ﬁ} . Therefore,

T- {9} = {Np | p€ sl

The collection of all neighborhoods of a point p will
be denoted by {Np} "

Definition 2,5, A subset G of S is open iff Vp € G 3 a

neighborhood Np 2 Np C G,

Theorem 2,6, A set U is opzn iff Vp € U 3 an open set V 2
p € VvCuU,

Proof, (Sufficiency) Let U be olien, Then, A pE&€ U3 an

open set V, namely U itself, 2 p€ V C U,
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(Necessity) Let, Vp € U, J an open set V 2 p £ V<
U. Then, consider any p € U, Then, J an open set V 2 p € V
C U. Since V is open, 3 N_ 2p € N_C V., Since V< U,

p p
Np C U, Thus, U is open by the definition of, open sets.”

Let (S,7) be a quasi topological space. By Definition
2.5, if V € {:Np | p € s} , then V is open.

Before proceeding, the concepts of indexed sets, the
union of a collection of sets, and the intersection of a
collection of sets must be understood. Let S be a universe
end ¢ a collection of subsets of S, Let each set have a name
and consider the set that contains these names as elements,
Then, o 1s indexed by this set of names, For example, let N
(the set of natural numbers) be the index set. To each n € N

associate a set An. Then, {:An} n€ N denotes a collection
of sets indexed by N,

Definition 2.,7. Let S be the universe, A an index set, and

{,Aa} o EA a collection of subsets of S indexed by.ﬂ.

Then, is the union of all elements in {Aa} ce A"

U 4
ael @
Thus, x€ Y, A 1rr Ja€ A 3x €4, If A=, then

U

U.E.A-Aa: .

Definition 2,8, Let S again be the universe, A an index set,

and {AU] ceh a collection of subsets of S indexed by A,



Then, (] A 1s the intersection of all elements in

O&EA Ta

= ’ m A = a
A= 8, then o e it S

a€A o
{Aa}ae_k. Thus, X € ) A 1rr xe Ay YV ae A, 1If

A mathematical theorem is often stated bicondition-
ally, that 1s, in the form "p iff q"., The statement is
interpreted as "if p, then'q and if q, then p". The suf-
ficient part of the statement is "if p, then q", Necessity
is "if q, then p". To avoid confusion in the proof of a
biconditional theorem, the words "sufficiency”" and "necessity"
will be enclosed in parentheses prior to the beginnings of the
proofs of the respective parts of the theorem. This was done
for Theorem 2,6,

An open set in (S,7) is characterized as follows,

Theorem 2,9, A set O is open in (S,7) iff 0 = aEiL Ay where
& £ {Npl pES} V a€A,
Proof. (Sufficiency) Let O be open and suppose 0 # #.

Then, for p € 0 3 Vp € {jNé} > p € V, € 0 by Definition 2.5,

p
Thus, 0 = plg’ovptf;r if x € 0, then x € V, by the way v, is
Y e c U e U
defined and x 5 6_0Vp. Thus, O 5 & OVP' If x b & OVp,
then x € 0 since V_C 0 YV p € 0. Thus, U v ¢ 0.
PL) p&eE 0P
Conseguently, 0O = a.éJLAa tjere_ﬁ.: 0 and Aa E {V?} p € 0O
Vo€EAL, If 0 = = -
o If © g, thenae./LAa @ where | = &.

Necessity) Let 0 = U 4 wn e{ }
(Necessity) e aéij_qa where A Np | pE S
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VaecA. If x € 0, then x € A, for some a €A, For some p,
Aa - Np. However, Np € {Nx} since x € Np. Since AaC 0
and Ao'; as described is a nelighborhood of x, then O is open
by Definition 2.5. If A= g, then U A =@ and § 1s open

a &N
vacuously, H

Another characterization of an open set in a quasi

topological space (S,Z2) is the following.

_ U
Theorem 2,10, A set O is open iff 0 = @ EA A, where Aaé T
Vo €A,
Proof. (Sufficiency) Let O be open and 0 # #. Then, by
_ U [ }
Theo?‘em 2.90_(16A_A(1 where Aaé Np‘ p € stVa€Ah,
By Definition 2.3, A € 7 Va€A, 1If0 =g, then
0= U A where A= @,
a €A a U

(Necessity) Let O = a € AR vhere Aaé TV a€At,
If 0# ¢, § p € 0 and hence p € A, for some a € A, Thus,
3 5 Z @ for some o € A, Since A, £ @ and p & Ays A€
{Np | p€s}. Thus, by Definition 2.5 O is open, If
A= @, then aLeJJLAa = @ and @ is open as before. If

A U 3 .
B = ¢ VY a, then aej\_Aa = @ and g is open, [

Theorem 2,11. The union of any collection of open sets in a
quesi topological space is open,
Proof., Let {Oa | o éﬂ} be a collection of open sets, If

A= B, then CLLEJJ'LOQ = @ and P is vacuously open, Now, let
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PE Y, 0y Then, p € 0, for some a €A, Since 0, is open,

dn,3p€ N, C 0y Since Np& oJ oy, ' 0 1is open by

Definition 2.5. If Oy =& Va€d, then Oy = g and @

9
a EAN
is open vacuously.”

Corollary 2.12, If (S,7) is a quasi topological space, then
S 1s open,

Proof, By Axiom 1, V p € SdVE T 35p € VC S and V is open
since by Definition 2.3, VE {Np | pe s} . Thus, ¥V p d Np

2 pé€ Np C€ S. Therefore, S is open.l|

As stated in Theorem 2,11, @ vacuously satisfies the

definition of an open set,

Definition 2,13. A subset C of S in a quasi topological space

(s,%) is closed iff S-C is open.

Theorem 2,14, If (S,7) is = quasi topological space, then S
and ¢ are closed.
Proof., The set ¢ is open and S-¢ = S, Thus, S is closed,

Since S is open and S-8 = ¢, & is closed.”
The following is DeMorgan's Theorem,

Theorem 2,15, If A is an index set, S the universe, and

{Aé} cer 2 collection of subsets indexed by-4, then

1.) S—m A, =

S=A
GCEA La

o EA
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- U A
2.) 8 a&./LAa - aE/LnS Aa
Proof. For part 1, let x € S-y'c A Bye Then x € S and

x & N A Thus, x & Aa for some o € A, Thus, x € S-A,

a €A
for this a and x € U S-A Therefore, S- n A C
aEA T ' o EA Pg
L o U s - EN
i S-A,. Let x € o Y o S-Ay. Then, x € s A, for some a .

Then, x € S but x € A, for this same a € A, Thus, x & a ety

and x is then an element of S-—OL E.A.Aa' Therefore, weA S"Aa

Cs_n A andS—n A = U s

a €A Ty a €A a €A -Aa'
For part 2, let x & S'_ag]\_ Aa' Then, x € S but
U . i
xg Y, A Thus,x¢AaV « €L, Thus, x € S-A_Va€EA

N s U N .
andxéaeASAa. Therefore,SaEAAaCan_S Aa' Let x

€ N S-A , Then, x€ Sbut x&€ A V a €A, Thus, x& U A
a a ;

@ €A U ﬂ U acA a’
Therefore, x € S-, el q A S-A, & S=q e A Bgr 204 S=o ¢ 4 A,
= e EN S—Aa- “

Theorem 2,16, The intersection of any collection of closed

sets in (S,7) is closed,

Proof, Let [Ca l o Eﬂ.} be a collection of closed sets.

N N . .U o .
Consider €A Ca' Then, S aéJLCa = ae./ts Ca by DeMorgan's

TheoremA. Since Ca is closed, by the definition of closed
sets, S-C_ 1is open for all « € A. By Theoren 2,11, o e 5Co

is open. Thus, a@ﬂ Ca is closed, H

Another characterization of an open set comes from the

definition of a closed s=t, -
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Theorem 2.17. A set O is open iff S-0 is closed,
Proof. (Sufficiency) Let O be open. Consider S-Ol Then,
5-(5-0) = 8 1 ~(sN-0) and sA-(sN-0) = s N(-s U0) vy
DeMorgan's Theorem, Then, S r‘(-S Jo) = (sN-s)U (sNo)
=% U0 =0, Since O is open, S-0 is closed,

(Necessity) Let S-0 be closed, Since S-0 is closed,
its complemént is open. The complement of S-0 is 0, Thus,

;D«is open.l'

;bfinition 2,18, A point p is a limit point of a set A iff

every open set containing p contains e point q € A, q # p.

It 1s feasible to have a notation to express an open
set containing p. This is Op. If A is a set in (S,7), then
the set of limit points of A is denoted by A'. Using Defini-

tion 2,18 a characterization for a closed set can be presented.

Theorem 2.19, In (S,2) a set A is closed iff A'C &,

Proof, (Sufficiency) Let A be closed and let p be a limit
point of A, Suppose (§) p € S-A, i,e., A not a subset of A,
p € 8-A, then 3 Np 3 NpC S~A, since S-A is open, This
contradicts the fact that p is a limit point of A, since N
is open. Thus, A' C A, g
(Necessity) Let A contain all its limit points., Let

€ S-A, Then, J 0,30 C 8-A, since p is not a limit point.

b
ince 0p is open, Npc: Op. Thus, S-A is open by the defini-
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- tion of an open set, Therefore, A 1s closed, Il

Another characterization of a closed set in a quasi

- topology 1s an outgrowth of the closure of a set,

Definition 2,20, Let (S,7) be a quasi topological space.

The closure of a set A is A JA'. This set is denoted by A,

Theorem 2,21, The closure of a set A is closed.

Proof, It must be shown that X contains all its limit
points, .Suppose A doesn't contain all its limit points,
l.e., §Jpgalar 9‘v’op3 Q€ O where q € AUA" but
P # a. Consider any op and the point q& A U A', Since
f:é.A UA', g€ Aor q EA', If qg& A, then q € A', Since
‘g!é.A', q 1s a 1limit point of A, Thus, Op contains a point
f'E'Op where x € A but x # q. Thus, Op is an open set con-
taining ¥ € A where x £ p, since p &€ A,

If g € A, then Op contains a point q € A, q £ p.
Thus, in either case 0p contains a point x € A, X £ p.
Therefore, p 1s a 1limit point of A. This contradicts that
p & A UA', Thus, the assumption was wrong and p& A U A"

:‘};s A contains all its limit points and hence is closed.”

Theorem 2,22, Let B be any closed set in (S,7) that contains

It must be shovm that A*'C B, If x& A', thenV 0,
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307:6 {Ox} . {Ox} denoting the collection of open sets
about x, Jy € O, yE A, but y £ x, Since ¥V y, y € 4,
¥y € B and thus x € B', Since B is closed, by Theorem 2,19
x € B, Thus, A C B, |

Theorem 2.23. Let AC S in (S;T). then A =aQ Ao. where

A
[A } is the collection of closed sets DAC A Yac A,
ol ac A a
Proof. Since A 1s a closed set that contains A, A & {Aa} R
A, By

Thus, if x € (Y A, then x € A. So, N 4 c

aEA T’ aé‘__/L/%
Theorem 2,16, aQ_,LAa is olos(e-c]i. Thus, A C aeJLAa by(%‘heorem
] h . A = .
2,22 and the fact that AC (1 A . Therefore, A= (1 4 [

Theorem 2,24, In (S,7) where A C S, A 1s closed iff A = A,
Proof, (Sufficiency) Let A be closed, then A' C A by Theoren
2,19, Thus, A UA' = A, Since AUA' = A, A = A,

(Necessity) If A = Z&, A' C A and by Theorem 2,19, A
is closed.ll

As a prelude to Chapter 3 two elementary theorems

regarding a quasi topological space are now presented.

Theorenm 2.25, In (5,7) V p € S 3 at least one open set coﬁ-
taining p.

Proof, Let p€ S. By Axiom 1 I VET 2p &€ VL S, By Theoren
2.4, ve {n | p€s}. s,V x€ v AN, namely v itself,
2x € Nx C V. Therefore, V is open, Hi ~
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Theoren 2,26, Every non-empty open set in (S,7) is a set of
points.
Proof, Let U be an open set, Let x € U, Then, J N, C U,

Since N € T, N_C S. Thus, x € S, H

Before proceeding to Chapter 3 it would be well to
review the concept of a fﬁnction and ldeas dependent on this

concept.,

Definition 2,27. A rule f that assigns to each point p in
a set S one and only one point g in a set T is a function
from S to T, £1S —> T. The image of X under f is denoted by
f(x),

Definition 2,28, 1In Definition 2.27, S is the domain of f,
The range of f, denoted by f(S), is {x | x €ETeand Jy €58
31(y) =x}.

Definition 2,29, A function f:S —® T is one-to-one iff VY x

and y in S, if f(x) = f(y), then x = y,
Definition 2,30, A function f1S —>T is onto T iff f(S) = T,

Definition 2,31, Two sets S and T are in one-to-one corres-

pondence iff J f:S—>T D f is one-to-one and onto T.

The word "mapping" will be used synonimously with

"function".



CHAPTER III
EXTENSION OF A QUASI TOPOLOGICAL SPACE TO A TOPOLOGICAL SPACE

In the framework of a topological spaée the undefined
terms are "point" and "open set"., A sufflcient set of axioms
for a topological space are the following.

1. Every non-empty open set is a set of points,

2., The empty set @ 1s an open set,

3., For all p, J an open set D p is in this open set.

4, The union of any collection of open sets is open,

5. The intersection of any finite collection of open

sets 1s open,

Definition 3.1, A set S, together with a collection of subsets
called open sets, 1s a tqpological space Iff the collection

of open sets satisfies the above five axioms,

A deflinition 1s in order for the intuitive concept of

finiteness,

Definition 3.2, A set is infinite i1ff I a one-to-one function

f1S — S > f(S) 1is a proper subset of S,

Definition 3.3. A set is finite iff it is not infinite.

Considering the collection of open ééts in a quasi
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topological space (S,Z)}, the set S, Theorem 2,26, the remark
following Corollary 2.12, Theorem 2,25, and Theorem 2,11, it
is seen that the first four axioms stated above are satisfied

for the collection of open sets and the set of points S,

Bxample 3.4, Let S = {a,b,c,a} and 7= {{a v}, {b,c}, fo,d],

khon { IpES} {a b}, bc} {c d}}and{o pES}
{ﬁ, ab} {b.c}, {cg} {a,5,0}, {vi0,d}, } The get

{Op | p € s} represents the collection of open sets in (S,7").
Clearly, {a b}ﬂ {b c} {b} and {b} é{ l p E S}

Thus, Axiom 5 of a topological space is the sole

]

axiom that is unsatisfied by a quasi topological space,

_The question naturally arose as to extending a quasi
topological space to a topological space, Since this naturally
hinged on the collection of open sets, 1t was desired to
extend the existing collection of open sets in the quasi
topological space and yet stay within the framework of the
definition of open sets, 1.e., use neighborhoods to obtain
additional open sets., It will now be shown that, by con-~
structing a new collection of neighborhoods from the existing
collection of neighborhoods, a quasi topological space was
extended to a topological space; by taking all possible
finite collections of neighborhoods, taking the intersection

of all sets in each collection, letting the collection of
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these intersections form the new collection of neighborhoods,
and extending the collection of open sets using this new
collection of neighborhoods and the definition of open sets
in a quasi topological space, a topological épace was obtained
where the extended collection of open sets satisfles the
axioms for a topological épace.

To state and prove the theorem that describes this
extension, some extensive discussion related to finite and

infinite sets 1s necessary.

Definition 3.5. Consider ftA —> B and g:B—> C. The compo-
sition of f and g, written gf, is a function from A to C,
gf1A—>C, Then gf(x) = g(f(x)), The domain of gf is A and
the range is {z | z€cC, wnere 3 y € B 3y = f(x) for some

x € A, and g(y) = z}.

Definition 3.6, Consider f1A—> B, Let C € A, Then, f | C
is a function g 2 gi1C—>B and g(x) = f(x) V x €C., The

function g is called the restriction of f to C, C < A,

Definition 3.7. Let ftA —>B and y € B. Then, £~1(y)
= [x | x€ A and f(x) = i}. Tt can be shown that f~1 is s

function on B iff f is onto and one-to-one,

Theorem 3,8, Let A and B be sets where fi1A —> B is an onto

function, If A is finite, then B 1s finite,
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Proof. The proof consists of two parts: (1) f is one-to=-one
and (i1) f 1s not one-to-one.

- Suppose B is infinite., Then, J g:B—>B 2 g(B) is a
proper subset of B and g 1s one-~to-one, The composition of
onto functions 1s onto and the composition of one-to-one
functions 1s one-to-one,

(1) Since f is one-to-one and onto, r~1 15 a function
on B, éonsider ~lzf(A)., However, £~! has to be one~to-one,
otherwlse f would violate the definition of a function, If
B C B, then f‘llD is a one-to~one function 2 (f"1|D):D-—+>A.
Since f, f’l, and g are one-to-one, f'lgf(A) 1s one-to-one

on A, Since f(&) = B, £~ lgr(a) = r~1g(B). Thus r~1g(B)

"

= f"l(E) where E is a proper subset of B by the definition
of g. Suppose f"l(E) = A, Since f is onto B, YV y € B A x€a
J f(x) = y. Since E is a proper subset of B, d s € B but
s¢€ E, Since s € B, 3t € A 2f(t) = s, Since t € 4,
d s8] € E P1(t) = sy, Since s ¢ E, s; # s. Thus, f is not
a function, Therefore, f'l(E) is a proper subset of A and
A is infinite. This contradicts the fact that A is finite.
Thus, B is infinite.

(11) If f is not one-to-onc,'V'y € B consider one
end only one x € A Dy = f(x), Then, the set E of these
points is a proper subset of A, Denote f | E by h, Clearly,

h is one-to-one and onto. Thus, n~1 is one~to-one, Therefore,
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h"lgh i1s one~to-one on E, The rest of the proof for this
part duplicates that above, except that E is substituted
for A .and h for f, |

Definition 3.9, A sequence 1s a set A indexed by the set N
of 211 natural numbers, Thus, it 1s a mapping f}N-—%>A, 2 F
is an onto mapping., The sequence is denoted by {ég} where
2, 1ls the element of A Indexed by n, i.e., the image of n

under f.

To continue the development of the prerequisites for

the extenslion, the Axiom of Choice has been assumed.

Axiom of Choice, Let S be a set and B a non-empty collection
of non-empty subsets of S, Then, Jfig —=>S Df(A) € A V
A € B,

Theorem 3,10, If S is an infinite set and N the set of
natural nunbers, then 3 f1N—>S 2 f is one-to-one.
Proof, Let S be infinite and B the collection of all non-
enpty subsets of S, Then, by the Axiom of Choice, d h:p-—>3S8
2h(A)€ AV A €8, Define f1N——>S as follcus.

£(1) = h(s)

£(n+1) = h(s- 0 £(5)).

However, S £ @ and S«}E&f(j) A @, for if S—}Q&f(j) = g,

n
then S = }:&f(j) and there could not exist a_onco to-one
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mapping of jE&f(J) onto a proper subset of ;Eaf(j). Thus,
J= =
the mapping is well defined, If f(m) = f(n), where m £ n,

then without loss of generality, assume m < n, Sinece m < n,

tin) = h(S-TQif(i)—zgiiii)- {f(m}} )« Thus, if f(n) = f(m),

then f(m) € S-?Eéf(i)-?gé+£(i)- {%(mi} but clearly it is not,

Thus, f(m) £ f(n), if m # n, Therefore, f is one-to-one."

Theorem 3,11, If 3 a sequence {Pg} of distinct points of

a set K, then K is infinite.

Proof. By the definition of a sequence, J fi1N—FK D f is
one-~-to-one, since the points are distinct. Since f is one-
to-one, f~1 is a function on f(N), Suppose K is finite,
Define htK —>N D h(k) = 1 1f k € £(N) and h(k) = £ 7(x) if

k € £(N), However, K # &, since - a sequence {pA} of distinct
points of X. The function h is onto N, since f'l(f(N)) = N,
Thus, by Theorem 3.8, N ié finite., However, I a one-to-one
function g 2 g(x) = 2x ¥ x € N from N onto a proper subset of
N which makes N infinite, Therefore, the assumption that X

is finite is wrong and thus K is infinite, !l

Theorem 3,12, Let K # #., The set K is finite iff J a finite
subget L of N and f:L—>K 3 f is onto.
Proof. (Necessity) Let 7 a finite subset L of N and fi1L—K

9f is onto, Then, K is finite by Theorem 3.8,
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(sufficiency) To prove sufficiency, the contraposi-
tive will be proved, i.e.,, if ¥ finite subset L of N_# (there
does not exist) f1L—>K 2 f is onto, then K is infinite, Sup-
pose V’L_ﬂ f+L —>K 2 f is onto. A sequence {PA} of distinct
points of K will be constructed which will imply K is infinite
by Theorem 3,11, Let B be the collection of all non-empty
subsets of K, By the Axiom of Choice J g:8 —%K 3 g(A) € A
YA €8, Let p, be defined as follows,
p; = &(K)
b, = S(K-Pl)
Pyyr = 8(K= U ps).
The function g is well defined since K £ @ and if

i)

Kpjglpj'= g then, K = 6 pJ and 3 f1 {}.2,....Q} >K D
(1) = pl
(k) = p, and f is onto,

If K = jghpj' f contradicts the non-existence of an
onto function I f1L—>K where L is a finite subset of N,
Thus, the function g is well defined and, as in Theoren 3.10,
is one-~to-one,

Therefore, the sequence consists of distinct points

and X is infinite by Theorem 3.11. ||

Let In denote the set of 211 natural numbers less than

or equal to n,
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Definition 3.13., A set K, KC N, 1s bounded iff 3noé N 2

X 51%)V x € X.

Theorem 3.14, Let K £ #. Then, K is finite iff 4 a natural

0
Proof. (Necessity) Let d a natural number n

number n,. and a one-to-one function from Ino onto K,
0 and a one-to-
one function from Ino onto K, By Theoren 3;12, K is finite
since Ino 1s finite,
(Sufficiency) Let K be finite, By Theorem 3,12, B

a finite set of natural numbers L and fl}L"‘?K E9f1 1s onto.
It must be shown that if L 1s finite, L 1s bounded. Suppose
L is not bounded. Then, given any natural number n, 4 x & L
Dx> n. If L 1is not bounded, define f1N-—>L 3 f 1s onto
as follows,

(1) = the least natural number in L

f(n+l) = the least natural number in L—j;ﬁf(j).

Since V subset K of N d x € K2x< nVné€K, the

fact that L # @ since f 1s onto, and the fact that

n
L—Julf(j) £ ¢, the function f 1is well defined., For if
n

. i
L~ E?f%j) = @, then J an n_2 L~ngf(j) = . Thus, if x€ L

£ 0
X < f(no) and L would be bounded. The function f 1s one-to-
one as in Theorem 3,10, The set {f(j%‘ 1s a sequence of
distinct points of L, Thus, by Theorem 3.11 L 1s infinite,

This 1s a contradiction, thus L is bounded, Therefore, 7 n,
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B x < no Y x€ L. Ino = {1,2,...,no} . By definition,
e C InO' Define 8’In0_—>L 2
g(i) =1 1f 1 € L where L = {11,12....,11%
g(1) = 1, if 1 € L. .

This function i1s well defined, since Ino A @ and
L #8. Clearly, flgalno——*?K is an onto mapping.

Deflne S = [1; 2 1iff f‘lg(Z) £ flg(l); 3 iff flg(j) £
f,8(2) and £ g(3) # £18(1);...3 ny AT £ og(ng) # £ig(ng-1),
veey and f‘lg(no) # flg(l)} . Now (f1g|s) is a function
(f,8]8)15 —>K and (f,g]S) is onto. Let 1€ K. If 1€ K,
then 4 n € Ino 3 fig(n) = 1, However, n € S Iff A ny <n >
f,8(ng) =1, If 3ny <n 3fglng) =1, then if £,g(1) =1,
1 €s; 1f f8(1) #1 but f.e(2) =1, 2€ S;...5 A £y8(1) £ 1,
flg(z) £ Ll;enni flg(nl-z) # 1 but flg(nl—l) =1, ny-1 € 85
if flg(l) Z 1,uees flg(nl-l) £ 1, n, € 8. Thus, Fx € Ing >
fig(x) =1, ¥ €8, and (f;gl8) (k) = 1. Denote (flgls) by h.
Let m € S and n € 8, If h{(m) = h{n) but m # n, then without
loss of generality assume m < n, Then, flg(m) = flg(n).
But by definition of S, n & S, Thus, h is one-to-one.
Since S C Ino, the number of elements in S 1s less than or
equal to ngy. Let k denote this number. Then,
s - {kl. By 4 kk} , where ky = kj Aff 1 = j, Then,
ky <n, Y1€ I,. Define t1I,—>S by

£(1) = Ky -
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t(2)

Il
x‘

(k) = kk'
This function is well defined since 1 € S, The

function t is one-to-one since t(1i) = t(3j) iff k, = k, which

1 J
is true iff 1 = j. Since t(Ik) = S, t is onto., Consider
ht:Ik —>K, Since h and t are both one-to-one and onto
ht 1s one-to-one and onto.ll

The notation (S,7) has been used to denote a quasi
topological space where 7' 1s the quasi topology and.{Npl
p € é} the collection of neighborhoods in (S,7). Henceforth,
when speaking in reference to the extension of (8,7) to a
topological space, thz collection of open sets in the topo-
logical‘space will be denoted by o and {N'p [ p € é} will
represent the ccllection qf extended neighborhoods. Thus,

6 is the topology for the topologiczl space which is denoted

by [8,0] where [S,0] is the extension of (S,7).

Theorem 3.15, Let (S,?2) be a quasi topological space,{?p lp é'é}
the collection of neighborhoods in (S,?7), end {bp | p € é}

the collection of open sets in (5,7). Consider all possible
non-empty finite collections of sets from {Np | » e.é}. 1e€a,

by Theorem 3,14 consider 2ll pcssible sets of the form

{Ui}i €1 Ui€ {Np |pes}Vie I, where k € N, For all

sets of the form {Ui}i £ T consider i(;\I U;, i,e,, consider
k



26
all possible intersections of non-empty finite collections
fron {#P ' p € S}. The collection of these intersections is
[N'p l'p € é}. Then, the open sets, using Definition 2.5
relative to {N'p | p € é} as neighborhoods, satisfy the
axioms for a topological space with S as the set of points
and where o is used to denote this collection of open sets.
Proof, For Axiom 1, (Every non-empty open set is a set of
points, i.e.,, & subset of S,) let V€ g, V£ @, Let p €V,
then I N'(p) € {N'p | p € é} I p €N'(p) « V., The notation
N'(p) 1s used rather than N'p to avoid confusion with the set

of limit points of Np. For some k € N, N'(p) = 1 é-IkUi'

Since p € N'(p), p € U; Vié€1,. Forallic€ Lis U, € 7,

Since U; € 7 V 1 €Ik, u, ¢ s Yi € I,. For all 1 €I,

i

o) €Ui and U, C s Vi€ I,. Thus, p € S. Therefore, V< 3

i
and every non-empty open set is a set of points,

For Axiom 2, (The empty set @ is an open set,) consider
#. The definition (Definition 2.5) of an open set is vacuously
satisfied.

For Axiom 3, (For 211 p, 3 an open set 2 p is in this
open set.) let p € S, Since p € 3, by Axiom 1 for = quasi
topological space, 3 VET P p € V<3, Since V€ Z and
p EV, VE {Np | p € s}. In the definition of {N'p | » € s}
let I, = {i}. Then, V = ic;.{;}Ui where U1 = V., Even though

{Ui}i ¢ {j} contains only one set, » {i}Ui is consistent



27
with Definition 2,8, Thus, V¢ { ' | p es} and ¥ p € 8,
Jan open set 2 p is in this open set,
~For Axiom &, (The union of any collection of open
sets 1s open,) consider U U, where U, is open Ya€ A, 1,e.,

a €A Q

B, € o Ya€A, Ifd =g, then aLgJLUa=¢and or.LeJJLUO- is

open since @ was shown to be open by a previous part of this
proof, Suppose A £ #, Let p € o eJLUﬁ‘ Then p € U for
some a € A, Since p € U, IN'(p) 2 p € N'(p) €U,, Since

c U Pt 2 c U
Ua o} EALUG and N'(p) Ud' N'(p) - edLUa' Therefore,

aLe{LUa is open, If U, = # Y a €4, then aLe)Aua =% and ¢
is open from above,

For Axiom 5, (The intersection of any finite collec-
tion of open sets 1s open.) consider the empty collection,
By Definition 2,8 the intersection of the empty collection
is S; as in Corollary 2.12; S 1s open., Now consider all other

finite collections given by {VB‘i e'Ik = Vi € aVice Ik'

vhere k¥ € N, It must be shown that j_CJ:I V, 1s open where
k

k € N, Thus, a proof by induetion will be used, 1i.e.,, it
will be shown that it 1is true for 1 and if it is true for
n € N, then it is true for n+l, i.e.. the intersection of

n+l open sets is open. When considering any {V‘} the

51 € 13

case where vy = # for some i é’Ik i1s eliminated since then
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1€ Ikvl = ¢ and ¢ is open by previous remarks in this proof.

Now let k¥ = 1 and consider all possible sets V-} ’
ilie I

However, {) V., = V., and

1 € 1,1 1 1€ IlV1 is-open since V

1

is open where Vi is variable over o. Now let k = 2 and

. _ N v
consider all possible sets {V;}i € 1, However, 1e 1, 1

-_-vlnv2. LethVanZ. Then, p € V, and p € V_. Since

1 2
p €V, I Ni(p) 2 Ni(p) & Vi since Vl is open, Since p €.V2
] ] \ F o
E N2(p).9 Nz(p) V2 since V, is open, Again V1 and V2 are

variables over o, However, Ni(p) = Ui' where Ui =

1 € Ty

N e?v € 1! - N 9 ]
{plp s 1 € 1 and Ny(p) 1exnwiw‘erewi€

b%lpéé}Vié%f %w,ﬂﬁﬂﬂN%N::%@I;ﬂ[]

( W, ) and N'(p)f\ N‘(p) £ @ since p € Ni(p) and p € Né(P)-

L& 1,"1

h n. N _ N
Thus, (i U ) r\(i €1, 1€ Im+nsi where Si

=Ui\/131_<_1jmandsi:wi_m\/iamljifmm.
Thus, Ni(p) N Né(p) E.{N'p \ p € é} and in particular
Ni(p)f} Né(p) E-{N'ﬁ} which 1s used to denote the collection
of extended neighborhoods of a particular point p. Therefore,
Nj (p) M wy(p) = Ny(p).

If x € N{(p) N N3(p), then x € Nj(p) and x € Ny(p),

Thus, X €.V1 and x € V2 since Ni(p) c V, and Né(p) c Vv

1 2°
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Thus, x € V1(7 V2 and Né(p) C vy F]vg. Therefore, Vlfw V2
is open.

~ Now assune (\ Vi is open for all possible sets of
i €1,

the form {Y;}i '3 N for n € N,

N ..

N
c

Consider r\ Vi« Then,

Vi)
1 € Inp !

i€ I

{] Vn+l' By the induction hypothesis, Vy 1s open., Thus,

1€ Iy

let (f] Ve, = Sl' Let Vn Then, Si is open by

+1 = 92 1€ 1,

the case above for n = 2, Therefore, the intersection of

any finite collection of open sets is open."

Definition 3,16, The collection of open sets in (Sl,Qi) is

the same as the collection of open sets in (Sz,zé) iff
(Sl’/rl) = (82'2’2)'

Definition 3,17. Let S be a set and o a collection of sub-
sets of S, Then ¢ 1s a basis for a collection Z of subsets

/Z ) = U ) A
of S iff K € T iff X ae.zLUa where U € o YV ae .

Theorenm 3,18, If (S,7) is a quasi topological space where

{Np ) p € é} and {bp ] p & ;} are the collections of neigh-
borhoods and open sets respectively, then {#p \ P éﬁé} is a
basis for {bp | »p € é} ;

Proof, LetKé{Oplpé s}. IfK=¢, thenk= U 1

ach
h JbL = . f K ’ h cO— .
where L =g, If XK #¢, thenVY pe kx 3 Np_) Np é,{Np ‘ p E é}
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< L) .
and Np K. Consider the union of these Nb, B Krp If

U e
x & 5 € KNp' then x € Np for some p. Since Np<: K, X K

U
and T~ Mp € Ko If x € K, then J N, ?x € N, €K and

. C U . h y = U N_.
N_E {Np}p ¢ g Thus, K€ N, Therefore, K = 2 N

Let K = U, where Uae{_Np | pé% Vaed. Let x € K,

then x € U, for some « €A, Thus, UaC: U_ and Uati K.

a €A CQ

Thus, K is open. Therefore, K é.{op l p € é}. Thus,
{Nb | p € é} is a basis for {bp | pe€ é}.ll

By the same token the collection of "extended" nelgh-
borhoods obtained from an extension of a quasi topolozical
space is a baslis for the topology in the topological space

obtained under the extension,

Corollary 3,19, If (S,7) is a quasi topological space where
{Np I p € é} and.{bp , p E é} are the collections of neighbor-
hoods and open sets respectively and [S,o] is the extension

of (8,7), then { 'p , p E S} is a basis for ag.

Proof, The proof follows that for Theorem 3.18.”

Quite obviously, since?ﬁ-{ﬁ} = {Np [ p € é} in (S,2),
T is also a basis for the open sets in (S,%). The addition

of g, if that is the case, makes no difference as far as
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having a basis,
A collection of sets o can be shown to be a basis for

Zirf YU €T 1t can be shown that Vp€ U JVE€ o I p € VU,

Lemma 3,20, Let S be a set, Two collections 'ol and o, of
subsets of S generate the same collection 2, i.e., they are
both a basis ferZ, iff:
1) U€ oy and p€E U inply J VE g, D p€ VC U and
2) VEo,and p€ V inply I UE o) I pE U V,
Proof. (Sufficiency) Let g, and o, generate .

l) If U € o,, then U€ 72, Thus, U = U Vo. where

1’ 0 EA
Ve € OZV aeA., If p€ U, then p € Voc for some
a €A and VOL c U,

2) The proof for this part is the same as above
except for obvious substitutions,

(Necessity) ULet 1) and 2) hold. Let g, generate?Z

o - U 3
and ¢, generate 2’2. If W EZL, then W = aeJi—Ua wnere

Uaé oy V o« €A, TFor any ¢ € A, let p € Ua' Then, 3 v._ 2

b
p€V _cU and ¥Yp, V_E o, Just as in Theorem 3.18, for
any o €A, b E Uan = Ua' Then, 5 & va = W, Thus, W 62’2.

Therefore, ’[l c ’2’2. Likewise, ’Z’Z @ 2’1 and thus, 2’1 = 2’2. |}

Definition 3,16 was stated in terms of S, and S,

However, the definition forces S1 B 82. -
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Theorem 3,21, If (81.21) = (82,12), then 5, = S5,.
Proof. Let p € S,. Since p € S, Juée 7,2 p €U. Since
U efc'l. U € {Np | pE sl} in (sl,’Z’I). Since U € {Np | p
€ Si% y U ls open. Since U is open in (81.217 and
(Sl'?i) = (82.2%), U is open in (82.22). By Theorem 2,26,
¥ C Sz. Thus, p € 82 and SI.C Sz. The symmetry of the

argument dlictates that if p € 82' then p € S, and S, C S_,

1 2 "L
Therefore, S, = S,, The case where (S, {ﬁ} ) = (82.{95} )

i)
forces 8, = 8, = ¢.l’
Theorem 3,22, Let B denote the collection of neighborhoods
in (Sl,Zi) and y the collection of neighborhoods in (52,25).

2
collection of open sets,

Then, (Sl,?i) = (S ,?é) iff B and Y generate the same

Proof, (Sufficiency) If (Sl.zi) = (82.2%), then the

collection of open sets 1n'(81,?i) 1s the same as that in

(82,2%) by Definition 3.16, Since B and y generate this

collection, they generate the same collection of open sets,
(Necessity) If B and y do generate the same

collection of open sets, then the definitlion of equality for

quasl topological spaces 1s satisfied.ll

Corollary 3.23. For quasi topologlcal spaces (Sl,Zi) and
z - g 4 )
(SZ’ 2), (81,21) (SZ' 2) 1ff?51 and‘Zé generate the same

collection of open sets.
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Proof, The proof holds by Theorem 3.22 and the remark fol-

lowing Corollary 3.19.“

A question that needs consideration 1s the uniqueness
of an extension of a quasi topologlcal space.” Tt will be
shown in the following proof that given a quasi topological
space (S,7), then (8,7) extends to a unique topological

space [S.G].

Definition 3,24, For topological spaces [81'01] and [52,023,

[Sl,al] = [82,02] Iff 8, = S, and q; = G,

Theorem 3,25, Given (S,?), then (S,%Z) extends to a unique
topological space [S,o].

Proof. Suppose the contrary. Suppose (S,2) extends to [S,ol]
and to [S,czj vhere @, £ a,. Thus, Jve ay 2V é‘oz or

v 6,02 2V ¢’Gl. Let V € o, but v & 0, The symmetry of
the argument handles the other case, For all p € v 3 N*'(p) >
p € N*(p) € V wnhere N*'(p) € {N‘ | pe é} Clearly,

V = L,J N'(p) By the definition of extending (S,2) to

[s,a ] L) N'(p) & I, Thus, V € ., Therefore, the

2

assumption was wrong and 0, = G Thus, [S,qu = [S,azj by

1 2°
Definition 3.24, Il

Since a topologicnl space is 2lso a quasi topological

space, a quasil topological space may be a topological space,
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Theorem 3,26, Let (S,2) be a quasi topological space and let
g denote the collection of open sets in (S;X). Then, (S8,2)
is also a topologiczl space with ¢ the topology, [S,c], iff
VUG{N ‘péS} and V € {N péS} aﬁd‘v‘peunv
Jwe {N | p e s} S pewcunv.
Proof. (Sufficiency) Since U and V are open Ul V is open,
Thus, Vp €UNV Ju € {ij p € s} D pewcunyv,

(Necessity) It must be shown that (S,?") satisfiles the
axioms for a topological space, By Theorem 2,26, the remark
following Corollary 2,12, Theorem 2,25, and Theorem 2.11 a
quasi topological space satisfies the first four axioms for
a topological space, To prove that axiom 5 holds, consider

A,B € g and AN B, Since A € g, A =QUAAQ where A =
{N p € s} Y «e A, Likeuwise, B = U By. Consider

ae/LA)n(YLe)B ). Letxé(LE)JLAa)ﬂ( uB) Then,

X € LJ A and x € L) B . Thus, x € A for some ¢ and
a €A vy E€BY «

x € By for some y» Therefore, x € Aa f)BY for these a and vy,

Thus, x € e.AﬁA‘ f\B ). Consequently,
U Yéﬁu U U
(aéJLa ﬂ(YeBBY)C 2o (ay nB) Letxéaéﬂk(AaﬂBY).
YéB Y € B

Then, x & A N BY for some & and y, Thus, x € A, for this a

and x € By for this y. Therefore, x & U Aa and

o EA
e U p, Then, U_A_(A (]B)C(U A)ﬂ(UB)
yéB

and(U A)ﬂ(UB

= aLe)JL(AaﬂB ). Since, given a
Yy € B Y
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and y, by the hypothesis Aafq BY = /?ggzc vhere Qq E

{Np | p ¢ é}‘VAy € £, A NN B is the union of a collection of
sets from {Np ] p € é}. By induction, as in the proof for
Theorem 3,15, the intersection of any finite collection of

open sets is open. Thus, (S,7) is a topological space.“

The gquestlion now to be discussed is that of what
topological spaces can be considered as extensions of quasi
topological spaces., It will be shown that any topological
space can be considered as the extension of at least one
gquasli topologilcal space. The uniqueness of the question
will also be considered, i.,e., can more than one quasi topo-
logical space be extended to the same topological space,

Of course, every topological space can be considered
as the extension of at least one guasi topological space

since a topological space'is also a quasl topological space.

Theorem 3.27., Every topological space can be obtained by

the extension of at least one quasi topological space,

Using e trivial example it can be seen that given a
topological space there can exist more than one gquasi topo-

logical space that extends to thls topological space.

Example 3,28, Let 21 = {{9}, {a,é}, gé,é}, gg,b,;g}‘and
2} = {{é.ﬁ}, {é,;}, {a,b,é{} where S = a,b,é}. Thus,

(s'Z’l) # (s,z’z) but (s,2'2) and (s.2’1) both extend to [S,c]



where o ={¢, {=}, {a,t}, {a,c:}, {a,b,c}}.

The guestion then is under what conditions, 1if any,
does more than one quasl topologlical space extend to a given

topological space,

Lemma 3,29, If [S,c] is a topological space where ¢ is a
basls for o, let A dernote the set of all non~empty finite

intersections of sets from?, 1.e., X € A iff K = 12;:[IH
n

where U; € T ¥V 1 € I,» for some n € N, Let B c A, then
7UB is a basis for a,
Proof, By definition T generates o. LetZ U B gencrate .

It must be shoun that £ =g, If VE o, then V= U U
aoEeA C

where U € TV 2« €A, sinceZc T UB, U, € TUB Yacu.

Thus, () U € ¥. Therefore, c €%, Let V € %, Then,

o EA
v=aU Uy, Nnc‘roUQTUBvaeif If U, €27 Vae A,
then a%{L U € 6 and V € o, Were this always the case, % C o.
Suppose for V = aEgJLUa 5 Ua > Ua € B, For these ¢, UCL
= 4 ¢ Imwi where W.€ 7T Y i € I,s» for some m € N, Since
W, € o V1icgr N g n =

i c € Ins then 1€ IXI € o Thus, i€ Imwi Ytg BVY

where Vy€ T Yy €8. Therefore, V these g 20, = i@ Imwi
for socme m € N, U, = V. where V .

me ’CLYLQJSY‘FLYQTVYGB Then

V € g since V = L) s where 8 € T Vyc @ M
/(6@4{ <
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Theorem 3,30, If [S,c] is a topological space where 7 is a
basis for o, let P = {Ap | V p € s pick one and only one
Ap(ii’j9 o} é.Aﬁ}. Let A denote the set of all non-empty

finite intersections of sets from P, i.e., K é A Iff ¥ =

1l &

InAp'l where Ap

16 PViEIn, for some n € N, Let B C A,

Then, P U (T~B) is a quasi topology £ on S and (S,r) extends
to 8,07

Proof, Since Pc £ and Yp € 8 dV ¢ g, namely A,y 3 PE
VCS, ¥ is a quasi topology on S,

If it can be shown that the extension of ¥, 1.e., the
extended neighborhoods (21) is a set ZUD where D is a
subset of the collection of all finite intersections of sets
from ', then by Lemma 3.29 £; 1s a basis for o and thus
{(S,z) will be shoim to extend to [S,0] by the definition of
an exXtension of a quasl topological space to a topological
space,

Let E € £, then E = iQ Invi where V4 € » U (-B) ¥V
1 € I, for some n € N, Since v, € P U (T-R), Vy € P or

vy € 7-B, If vV, € P, then V,; € 7 since Pc ., If vy € T-B,

- N i .
then Vv, € 7, Thus, E = e InVi where V, € T Vi€r,.
Now it must be showm that 7 cC ;. Let EE€ T, then E € P or

E€7-P, If E €P, then EC Z1» since PC g Czl. If
E€7-P, E€EBor E€ -B, If Eg€ -B, then EE€ 727-B and

E € 2y sincez’-Bczczl, If E € B, then E = iQI Ui
m
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where Uié PY1 éIm and m € N, since B ¢ A, Thus, E € I

by the definition of Z;. Thus, Z <% Therefore, 2 < Zlc

1'

{E fE:in Vi where V, € T V 1 eIn andné‘N}. Thus,

€ I, 1
T & £, € T U F where F C{E | E = " Invi where V, € T
Yic€ I, and n € N}. Precisely, F = {E | E = i€ Invi where

vie T Vic¢ In and n £ N-Il}. Obviously, 21 = 77 U D where
pcr. il

An immediate question is whether or not this theorem
considered all possible quasi topological spaces that extend

to a given topologlical space. The answer is yes,

Lemma 3,31, Given (S,7) D& € 7, then (S,f—[ﬁ}) = (5,7).
Proof. Let the collection of neighborhoods for (S,Z) be
denoted here by a. By the definition of neighborhoods

g =f—{¢}. Since (f—{Q? )-{éf} :’2’—{%} = g, the collection of
neighborhoods in (S.Z"-{ﬁ}) is the same as that in (S8,?).
Thus, the collection of open sets in (S,Z’-—{{Z_}) is the same

as that in (S,’Z).”

Theorem 3,32, Given that (S,7) extends to [S,0], where a
and B denote the set of neighborhoods in (S,7) and the set
of extended neighborhoods respectively, then (8,%7) =

(s, U (B~ (B-a))). =



39

Proof., If & g‘Z} then‘f—{?} =7 =c and o U (g=(B=-a))
=aU@BN-N=-a)) =aUBN(-slUa))=al BN -8)
UteNeN =aU@UNB)) =aUNp) = (aUa)(al8)
=allB =0, since a ¢ 8, Thus, (S,Z) = (S,a_L)(B—(B—a))),
since a UJ(B=(8-a)) = a and 7 = a.

If § €, then a =2’-{¢} and (S,7) = (S,a) by Lemma 3.31.
Thus, (5,7) = (S, U(B-(8-a))), since ¢ = a U (B-(B-a)). Il

Since B is a basis for g, a UJ (B~(B-a)) is of the form
expressed in Theorem 3,30 for a quasi topology. Thus, given
a topological space all quasi topological spaces that extend
to it can be expressed by Theorem 3,30,

Since every quasi topological space extends to a
topological space, all quasi topological spaces can be exXpressed
by Theorem 3.30.

Now a topological space is related directly to a struc-
ture, a quasi topological space, more fundamental to the
foundation of topology, set theory. The quasi topological
space, which rests solely on a single axiom, through two
definitions and an extension was extended to a topological
space, The relationship between the two structures having
been established, a further study of the properties of a quasi
topological space and simultaneously a study of invariant
properties under the extension frci: the guasi topologlcal

space to the topological space will be undertaken,



CHAPTER IV
CLASSIFICATION OF SPACES

By classification of spaces i1s meant that the spaces
are classified as a certaln type iff they satisfly certain

conditions.

Definition 4,1, A quasi topological space (S,7?) is Hausdorff
1ff ¥V p €S and ¢ € S 3 p £ q 7 disjoint open sets in (S,7),
Uand VIOp € Uand q € V., A topological space [S,0] 1s
Hausdorff 1ff Vp €S and q € S D p £ q - disjoint open sets
in [S,6], U, and V2 p € U and q € V,

Then, any space that satisfies this condition is Hausdorff,

By invariant under the extension of (8,7) to [S,aq]]
is meant that the property under consideration in (S,?) also
holds in [S,a7].

Since an open set in (5,7) 1s also an open set in [S,0],

Havsdorff is invariant,

Theorem 4,2, Hausdorff is invariant under an extension fronm

a quasl topological space to a topological space.

Henceforth the definition for a type of quasi topologi-

cal space will be used for the corresponding type of topologi-
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cal space with the obvious substitution of [S,a] for (S,7).

Definition 4,3, A space (S5,7) is discrete iff every subset

of S 1s open,

Since a discrete space is by definition a topological

space, "discreteness" is invariant,

Theorem 4,4, "“Discreteness" is invariant under an extension

from a guasi topological space to a topological space,

Definition 4,5, A space (S,7) is regular iff Y closed set
C and all points p, p &€ C, d disjoint open sets U and V 2
C<cUandp €V,

Theorem 4,6, A regular quasi topological space (S,Z) extends
to a regular topological space [S,a].

Proof, It must be shown that if (S,7) is regular, then its
extension [S,0] is regular, Let A be closed in [S,o]., Then
S-A 1is open, by definition., Thus, S-A = aegﬁ,Ua where Ua'é
{Np' | p€s¢Voel, If A =g, then S-A = S and ¥ p € s 7
disjoint open sets S and g 2 % ¢ @ and p € S, If A = S, then
S~-A = ¢ and the definition, Definition 4.,5,, is vacuously
satisfied, Thus, § A £ ¢ and S-A £ . If p &€ S-A, then

p € Ua for some a €L, Since p & Ua' p &€ 1(;)Invi where

Vié {Np l p € S}Vi € I,, for some n € N, Thus, V, is open

i

in (5,7) V1 € I,. Thus S-V; = By 1s closed Vi & I,, Since
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p€v; Vi €I, pgB Yi€I,s Ths, By is closed in
(s,7) V1 € 1., since V, € the open sets in (5,7) V 1 € I,..
Thus, Bj is closed and p € B,. Then I disjoint open sets C,

and Dy 2 By € C; and p € Dy Yic€ I,» since (§,’I.’) is regular,

Consider i gInci and N @InDi' Since p € Di Y1 Iy
€

M Sk 5
peieInDi' Is A C.? Let x € A but §A By

1 €1,

x € By. Thus, VBixﬁBi. Then, X evi\/ié I, and x €

— U
1'e Invi' Thus, X GUQ for some a €A and x € ae_zLUa' It

x € " Ua’ x € A since g UOL = S-A, This contradicts

that x € A, Thus, 3 By 3 x €B;. Since B; € C,, x €C; and

1’

Di)n(U C.,) #¢&. Then,

A C LJ C. S ()
uppose (i ’ 12 1,%

In

dx € 0 D; and x € U C Then for some k € In’

x € Dy and x € Cy. This contradicts the fact that Cy (1D

P S ot o
@g. Thus, i€ InDl and i € Inci are disjoint, Since C; and

D; are open in (s,?) V i € I,» Cy end D; are open 1n [8,0]

i
Vi € I, Thus, by axiom 4 for a topological space . U C,
n i € I, 1
is open in [S,0]. By axionm 5, ﬂ D, is open in [S,o].
i€ 1,1
Therefore, the conditions of Definition 4.5 are satisfied

for the extension of (8,7), [S,o]. f

non-Hausdorff, and non-regular quasi topological spaces can
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extend to discrete, Hausdorff, and regular topological spaces.

Examplg 4,7, Let 8 = {é,b,é} and 7= {{é}, {?,é}, {?.9}, {p,é}}.

Definition 4,8, A space (S5,7) is TO iff given any two points
pand q, p#aq, ¥ 3M is open and pE M, g € M or q € N,

p & M,

It is clear from the definition alone that a Tg quasi

topological space does extend to a TO topological space.

Theorem 4,9, If (S,7) 1s T,, then [S,0] is T

s A 0°*
In contrast to discrete, Hausdorff, and regular spaces

the following holds for T, spaces.

0

Theorem 4,10, Given any T, topological space [s.,0], then

0
any quasl topological space (S,7) that extends to [S,0] is
also a TO space.

Proof. Given sny two points p and q, p # q, J A open in
[S,0] 2 p €A, g& Aor g EA, P& A, Suppose without loss

of generality p € A and g € A, Consider any qguasl topological
space (8,7) that extends to [S,0], If A€ 7, the proof is
essentially done. Suppose A E€7. Then A = GEJA Ua where

U, € {p- | pé&‘?}v «a€A., If pEAR, then p €U, for some

ol . Ifp é'Ua’ then p € i€ InNi where U, = i & InN1 for

N and v i - A
some n € nd Ny € l\plpES}V1EIn préiéInNi'



Ly

thenpéNi\/i:l,....n. Now, if n = 1 then U, = N., and

1,
the proof would be finished, For n £ 1 if 3 Nk where
1<kx < n3gq ¢ Np, then the proof would be finished. Thus

§ that ¢ € Ny Vk =1,...,n, Then q € , g1l ond e €T, A

and this contradicts the fact that q &€ A, Thus, J N, where

15x<n2q&nN tutp €Nl

Definition 4,11, A space (S, 1) 1is T, 1ff every point is a

closed. set.

The following theorem is a direct consegquence of

Definition 4,11,

Theorem 4,12, A Ty quasi topological space extends to a Tl

topological space.

Example 4,7 illustrates a quasi topological space
that 1is not Tl' however one which does extend to a Tl topolo-

glcal space.

Definition 4,13, A set K is countable iff K = @ or I a

mapping of N onto K,

Definition 4,14, A space (S,7) is second countable iff H a

countable basis for the open sets in (S,7).

If, for a second countable space (S,7) with a count-~

able basis B for the open sets, it can be shown that
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{Aa l A, = 1QInUi where U3 € B V1 € I, VnéN} is

countable, then second countability 1is invariant under an
extension from (8,7) to [S,0] for the following reason., The

set {Aa [ Aa = 1@ IrlU1 vhere Uy € VY1 E In;V n E_N} is

the set of extended neighborhoods and is thus a basis for o,

To do this the mapping required by Definition 4,13
must be exhibited or a previously proved lemma must be used,.
A lemma will be used and the lemma states that the union of
e. countable collection of open sets 1s open. To prove this
lemma, however, N x N must be shown to be countable and a

subset of a countable set must be shown to be countable,
Lemma 4,15, A subset of a countable set 1s countable,

Proof, Let K be countable and S € K, If S = @&, then S 1is
countable by definition, If S # @, let p € S, 8Since K is
countable o fiN On to.? K.

Define giK 5 8 2

g(x) x if x€ 8

g(x) p if x & S but x € K,

Clearly, g:K 280y S, Thus, since g and f are onto gfiN ontoy g

and 8§ is countable,

Lemma 4,16, The set N x N is countable,

Proof, Let K = {ép 349 [ psq € {}. The set K is countable,



L6
since N is countable by Definition 4.15 and K € N (Lemna
4,15). Define f1K—> N x N 2 £(2P3%) = (p,q). This map-
ping 1s onto for given (p,q) € N x N dx Dx = 2P39 ang
thus = € K. Since K is countable, Jg:N 22805 ¥, as in
Lemma 4,15, since g and f are onto, fg:N onto, y x N ana
N x N is countable.”

Lemma 4,17, Union of a countable collection of countable
sets 1s countable,
Proof, If the collection is empty, the union is countable
by definition., If the collection is not empty index it by N,
{Ai}i c N leed, BRI ——?{Ai}i €N 2 f(n) = A Y n € N,
By Lemma 4.15, the subcollection consisting of the non-empty
sets from {Ai}i €N is countable, If this subcollectlon is
eTjty. then iLE’NAi = @ since 4; = ¢ Vi€ N and thus

A. 1is countable. Suppose this subcollection 1s non-

1 €N 1
empty. Then, it can be indexed by N since 1t 1is countable,

Thus, denote 1t by {B.‘;}i e N” i.e.g Bg!N %’{Bi}i e N

Jeg(n) = BnV n € N, Note that By = U A., silnce

i1 €N 1 €N 1

{B{}i € y conslsts of just the non-empty sets from {#i}l € N
Since each B, is countable, ] a function h 1N onto,, B, > h,(m)
= p(n,m)’ 1:€44 p(n,m) is the image of nn(m). Since N x N

is countable 3 1N 93&9> N x N, Define, k:N x N'——%atg N Bi

:9 k(n,m) = p(n m)" This function is onto for a given
b
p € 1%? NBi' jo) €.Bn for some n € N, Since B, is countable
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th and m € N 3‘nn(m) = p. Thus p = Pin,m) and k{n,m) =
p(n m)' Therefore, k¥ is onto, 8Since k is onto and 1 1is
 §

onto k1l:N 2% g Léjn B, and thus 1% y By 1s countable.

Therefore, P E N A; 1s countable since 1 €N Ai =y e N B1

and , /By 1s countable. |

Theorem 4,18, Let {Ui}i €N be a countable collection of
sets, Then, {Aa \ Aa =~ ngan where Vj é{U;}i & N

Y e I,» ¥V n&€ N}is countable,
Proof. This theorem is proved using Lemma 4,17, For each

n €N lEt{} @Invj \ Vj € {Ui}i e N\/j € I, for one and

only one n € N{ = {j@ Ian . Then {jglnvj} will be shown

to be countable, Then, the lemma 1s applied to conclude the

proof, Induction is used to show that {j QI Vj is countable
n
Yn € N,

Let n = 1, Then, {j c Ilvj} = {VJ} and since vy is a

1 . . ‘ 1 m = = .
varlable over {Ul}l € N* then {j € Ilvj} {Vl; B {Uizié N

and {Ui}i € N is countable

bﬁthe definition of {Ui?i c N
Let n = 2, Tt Vit =9V \Y Y
hen, {j €1, j} { 7 N 2} and consider

the "2" intersections which conform to the -following form.

{vlr] \.72? —_-{UlﬂUl, Up M Up weny Up UL, wees U, (T U,
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Up NUpreees Uy, MU 4ever wuns Uy U, v N Useeen Uy (0
- Umﬂ Uk,...; ...}. All "two" intersections are thus
obtained. For if U, N U_ 1s under consideration Uy ﬂ v 3
{ ﬂU l 1_12.....m,...} and since{ ﬂU 1=12,
...m,...} & V N Vz all "two" intersections are under ccnsid-
eration,

Now let Ay be defined Y1 € N as follows.

A ={U1ﬂU1 B Y2 s B gt
A, ={U2(\U1 b o220 080 L.t

Ay Z{Unﬂui li

1}

1.2' seeg Il -c-}

Clearly, by the way the A's are defined there 1s a

countable collection of them, i.e., {Ak}k € N 1s a countable

set. Thus, 3 ran-——>fad, ¢y 3 r(n) = A

For all A, define fyi1N —=>4A, by fy(n) = U, U .
Clearly, this 1s a function onto Ay, for given Uiﬂ Uk’ fi
maps k to U1 ﬂ Uk' Thus, A; is countable Vi€ W and thus

by Lemma 4,17 i LEJ it A, 1s countable,

i

Now assuue {)QI Vj} for a given n € N 1is countable,
; n

Thus, { m for a given n can be indexed by N, Let

{Jé I } {Bk}lfé Ne
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Define C, Y 1 € ¥ as follows.
Cl = {Bln Ui ‘ 1 = l.zjncn}
cz =2 {Bz n Ui l 1 = 1. 2' LI

1,2,...}

c, = {Bn Nu, | 1

j E T Uj are obtained in {C]’ % E N* For J e I . j
v, ' o 4w R Yor dbme k € N, Clearly,

M _
c Ian € {j anvj}. Thus, (. nI v,y N Uy = By ﬂUk for

J J €I, )

some h € N, However, B, N Uy € Cy, and [ci}i £ N is countable
since jgzN %{Ci}i €N 2 g(n) = C, and g is onto since
glven Cp, g(k) = C,» Each C; is countable as are the A,.

Thus, by Lemmas 4,17 3 LQJ NC.1 is countable, Therefore,

[ ﬂ Vj} is countable.

j € Inga

Thus, given any n € Nﬁ QT V4 is counteble, Since
n

N is countable 3 a coun‘bable collection of {j QI Vj . Thus
n

by Lemma 4,17 their union is countable. Then, [Aa \ Aa =

N

e
j € Invj vhere VJ € {Ui}i €N Vi€ I Vne N} s counte
able, ]l
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As a result of Theorem 4,18 the following is true.
Theoren 4,19, Any second countable space (S,7) extends to a
second countable topological space [S,0].
Proof, If S # @, let (8,7) have a countable basis for the
open sets, Denote this countable basis by'Zé. Then, (8,7) =
(5,7,). Also by Lemma 3.31, (8,7) = (8,Z,-{#). 8o let
Zé-{ﬁ} = ?1. Since # & ., ?1 is a set of neighborhoods for
the open sets in (S,7). By extension the collection of
extended neighborhoods 1is {Aa ' A, = j@ Int where Ujé Tl
Yie€ In,ﬁfn € N}. By Theorem 4,18 and the fact that 21 is
countable, {Aa | A = jQ Int where Uj € Tl Yic€ I Y ne
N}'is countable and thus [S,o] is second countable, If S = ¢,

then (S,{é}) extends to [S,{g}] and both are second countable.l\

Using Lemma 4,15 any quasi topological space that
extends to a second countable topological space can be shown
to be gecond countable since the set of neighborhoods in the
quasi topological space is a subset of the set of neighborhoods
in the topological space,

A concept similar to that of second countability is
that of first countability where instead of referring to a
basis for the entire collection of open sets the concept

rests on a basis of a point,

Definition 4,20, A collection B of neighborhoods of a

point p in a space (S,T) is a basis at p iff ¥ open sect
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USpeU, I VERDIV CU.

Definition 4,21, A space (S,7) is first countable iff

Vp € 8, da countable basis at p.

Theorem 4.22, A first countable guasi topologlcal space
(S,7) extends to a first countable topological space [S,0]]
Proof, Let p € S and y a countable basis at p. By Theorem
4,18, the extension of y, denoted here by y', is countable,
It must now be argued that given any open set U in the topo-
logy ¢ 9 p€ U, I VEY' D2 VU, Of course, VVE Y pE V
since p € W Y W ¢ y. Thus, consider U&€ ¢ 3 p € U, Thus,

U = UAAaBAaé{p' l pés}\/ . € A. Since p € U,

o€
p€ A for some a € A. SinoeAC{N"péS}VaeJ\_,
an (61 1Y
- | i
AOL =, InBi where Bié I\p J p € S} YVice I,. Since p € Aa

p € B, Vicg I,+ Since By is open in (s, 7) V1 € T, 1 for

2all 1 €I, a Cy 2 C; €y and p € C; < By, Consider

1 1 €1,

Thus, C.léy' andpé.ﬂ C- sincepéci\/iéln.

1 n . m fakats] o 1 1+
However, i€ InCi - InB-1 end hence e subset of Aa and of

o, .- () |
For leéi éInci' t}..QXECiVié I,» If x €Cy4

ne then x €B, ¥V 1 € I since C, € B, Vi€ I_. Thus,

4
x & iQ InB1 and hence x € Ay and x € U, Tl?erefore, p E

m C g (= n ﬂ - r
i e Inci U and since i € InCi € Y'cC {Np' l p € S(, [S,G]
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ls first countable.“

As an example of a non-first countable space (s,7)
that extends te a first countable space [S,0] consider the

followlng example,

Example 4.,23. Let S = R where R denotes the set of real
numbers, Let T’:_{{a,é} ‘ a, b € R and a # ﬁ}.

Consideration shows that this 1s a non-first countable
guasi (topological) space that extends to a discrete topo-
logical space which is first countable,

Since first countability and Tl have been shovm to be
invariant properties their combinaticn called an I space is
invariant.

From here on guasi space and quasi topological space

are uged interohangeably.'



CHAPTER V
SUBSPACES AND CARTESIAN QUASI PRODUCT

With a mathematical structure in hand é way was
sought to generate the same type structure from that on

hand., Such is the case with a subspace of a quasi space,

Definition 5.1, If 7 is a collection of subsets of a set
S and K € 8 thenKﬂ’C={KﬂA lAe'L’}.

Theorem 5.2, If (8,7) is a2 quasi space and X < S then

K N7 is a quasi topology on K.

Proof, Let p € K, Then, p € S since X €8, If p € S, then
dp€7 Zpen, Thus, peXKlAaand KNA€EKNT, If

K =g, then XN 7T = {Q} and the definition of a quasi topo-

logy 1s vacuously satisfied, ”

Definition 5.3. If (S,7) is a quasl space and X € S, then

(K, KNT) is a sub quasi space.

Theorem 5.4, If (5,77) = (8,7,), then (X, XN 27) = (X, KNT,),

Proof, Let A be open in (X, X ﬂ’t’l), then Vpe o 3 Bpé,’fl

D is open in

where C € 7T
q 2

Ssne
2K rpr C A where p € Bp' ince Bp £ 21, B

T £ S o &
(s,%,). Thus, Vg Bpﬂcqjqccqcsp

€
VqéBp. For p Bp3Cp€2’29p€Cp6BP. Thus,

(-
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P
thenxéBp, thus xeanp. Thus,VpéABKﬂCp

Kﬂcpc Kan forifxéxﬂcp, x € K and x € ¢, If

xécp,

9p6KnCPCAandKﬂCpéKﬂ’l’. Thus, A is open in
(x, K1 ’Zz). Likewise, if A is open in (X, K A ’52), then A
is open in (K, K N ’Zfl). Therefore, (K, K (l’Z’z) = (K, K /1’2’1),”

Lemma 5.5. If (8,7T) extends to [S,a], then considering the
extension of (K, KN 7 ) where K € 8, A € the extended neighbor-

hoods of (K, KN Z') iff A = ( n N,) Ml K where N: & the set
16 11 i

of neighborhoods of (S,%) V i € I, and n € N,

Proof, VWhat must be proved here is that g Q (K N, )
n

P E U e
K ﬂ(i EIan)' Let a € eIn(I’ﬂNl), then a € X /1 N,

Vi€rn., 1fa€xnVi€l, thena €Kandae€ N,

Then, a € X and a € N N;. Thus, a € X

| 1€ 1y,
| N . N :
ﬂ(ieani) andin (XN N3) <X N g g Ny). Let a€ K

N:). Then, a C K and a 6(1Q Ni) and if
n

aéigINi,thcla€N1Vi€I Thus,aeKandaGNi
n
Vi €1I,. Therefore, a € 1QI (KnNi). Finally,
n
kK N N n =
(iEIﬂN) 1eI(Kﬂl\r)andKﬂ( €IN)
(k. NN )
1€ 1, 1)
LeLr)ma 5.6, Given A and [Bp}pé_/\,’ then A N ( Le)JLBp) =
GE A (A ﬂBp), y Y
Proof. Let x € A (1 ( e_ABp)’ then x € A and x € é,LBp

i € U sorc p€ A, Then x € A and
Since X péJLBp XéBp for sco o) e
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& , ; ¢ e U .
b'e Bp for sone pBA_ Thus,Ux AN By and x peJL(A N Bp)
Therefore, A [ ( B_.) < pé._/L(A ﬂBp).

pOéA—P
S
Let x € e (A N'By), then x A!’\Bp for some

p€ L, Since x € AﬂB X € A and x eBp for this pei ,

If x € B_, then x € UB ThusxéAandxéUB.

b pe A P’ U peA I;J
Then,xéAﬂ(pQJLBp) Thus,pe_lb (Aan)CAn(pGABp).
% e = ”
Therefore, A ﬂ(pu_ Bp) e A (a N Bp).

Following Lemmas 5.5 and 5.6 the following theorem

can now be stated and proved.

Theorem 5.7. If (S,T) extends to [S,0], then (S,K/N17)
extends to [S,K N,

Proof, It must be shoun that the extended neighborhoods of
(s,K N7T) do form a basis for the topology K No, Let

A€ X No, i.e., A is open in [S,K Ng]., Then, 3B €0 2 4

= x N B, IfBélj,thenB oWl P e{N' p€S}.
Thus, A = K [ (a(:.A,Ua)' By Lemma 5,6 X ( (a L Ua) =

alg_L(K(\Ua). If p € A, thenpéKﬂU for some a €A ,

If p € X (11U, thenpéKandeU S‘lnceUé

{N' Ipés} U ziéImN' wnereN G{N Ipé}ViéI
and m € N, Thus, peKn( QIIZ‘L)' By Lemma 5,5

K ﬂ( ﬂ 3‘-1.1) is an element of the set of extended neighbor-
Tr

t
hoods of (K, KN T)., Thus, A = 8L€)Y VB where VB £€ the set of
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extended neighborhoods of (K, K NT) V’VB.||

The method now to be discussed in relation to generat-
ing quasi spaces from others involves the concept of the

Cartesian product of a collection of sets.

Definition 5,8, Let gy and g, be collections of sets, The

Cartesian product Gy X 02 of oy and a, is a collection of

sets, oy X 6, = {% f F = U x V where U €.01 and V € c;}.

Definition 5.,9. Let (Sl,Zi) and (82,72) be quasi spaces.
Then (S x 82, 2& x Zé) is the quasi topological product of

(Sl' 211) and (82'/&:2)'

A cautionary note is in order, The notation for a
topological space, [S,G], describes the space with ¢ as the
topology. However, in spesking with reference to the
topological product of two topological spaces [Sl,olj and
[52,02], bases for each topology must be used, for 01 X dyp
1s not necessarily a topology on Sy x S,., Thus, 1f 7, is a
basis for gy and 2& for Toy describe the topological product

of [S1,0,7 and [S,,0,] &s <§1 X Sy, 71 5% ?g> where Zi % ?é

1s thouvght of as a basis and not necessarily a topology.

"<‘ >" is vsed here because the usual notation for a topolo=-

glcal space uses the topeology not just any basis, The

following examples illustrates this.
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Example 5,10, Let S = {a,b} and o = {fé, {a}, {a,b}}. Then

[s,0] 1s 2 topological space and ¢ X 0 = {ﬁ, {(a,a)},

{a,0), taalfs ftase), (oiad}s {(ai2), (0,00 (ai0); (0,00,

However, {(a,b), (a,a)j U{(a,a); (b,a)} Eaxo.

Theoren 5,11, If (S-,;[i) and (82,2'2) are quasl spaces, then
(Sl X Sp, Zi X Z?.) is a quasi spzce,

Proof., Let (p,q) € S, x S,, Then, p € S; and q € S Then,

' 2"
JU €7 anda VE T, 3p € Ueand q €V, Thus, (p,q) €U x V
and U x VE Ty x 2‘2 by the definition of 2’1 X 2’2. If either
S, or S2 is empty, then 8, X 8, = g by definition, b ’2’2

= {Qf}, and (g, {ﬁ}) is a quasi space. ||

77
1

L?ima 5.12, Given {Aa} weA and {Bc}ae_)L y then GQJL A, x
B, = .
A€ & T aeAd (Ao x By)

A ek AT N e D
Proof, Let (p,q) QQ_/LA‘OL % aG,JLBOL' Then, p € ae B

and g € wc.a By+ Since p € AaVa(:_/L and qéBaVae.A_,

(p,qa) € Ay X By YacAd and (p,q) € QQ,/L (A, x By). There-

fore, ' Ay x aQ_A_BaC a@_,L (2, X By). Let (p,q)e

a@_/i_ (Aa x By). Then (p,q) € AL X BaVaéfl—. Then, p € A

a
Ha na (—\1
and q € Ba Y ae A, Thus, p¢€ QQ_A_AQ end q € . €.JLB0,'
Then, (p,q) &€ m A x ﬂ B and ﬂ (AL x B)c
(\ maéJa_ a aer © naé_/‘h ﬁ a
- Therefol =
o0 €A Aa X A Ba. Therefore, o CoA Au X wed Ba = )

0C A (Aa X Ba)° “
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It is henceforth assumed that the topological product

gives a topological space,

Theoren 5.13, Let (8,7) be a quasi space and let (S x S,

7'x ) be the quasi topological product of (S,7) with itself,

Extend (8,7) to <s,y> where <s,y> = [8,¢] and v the set

of extended neighborhoods., Extend (S x S, ZﬁcZﬁ to <? X 8,
where g is the set of extended neighborhoods. Then,

<<S X S, gi) = <<? %8, vy X Y;>-

Proof, It must be shown that g and Y X vy are bases for the

same collection of sets or that g = vy x v, The latter course

will be taken. Let W € 8. Then, W = V wnere

1 €1, 1

Vi € Zx7 Vi €T, Since V= m Ve, W= () (Us x T.)

i €141 1€, 1 1

and W = ﬂ U, x m T; by Lemma 5,12 where Uj €7 and
1¢1,1 1 e1, 1

Vv, ET V1€T1.. since Uié’l’vielnand LETVET,

(\ T, and C} U. are both elements of y and thus

1€ I,1 1 I, 1
1€ InTl X i€ InUi € vy xy, Thus, p<c vy x vy, Let W& vy xv.
Then it is true that, W = (] N, x (\ M. where N €T VY

1e1, 17§ €1,

i €71, and Mj e7r V’j S § Ifm#Zn, then § n < m, Is

n.

jQInMj:jQIHLXjIIC(YJ "‘M VJ—l...s,n andY TJ-M-H

Yis= Nt+lyeeeym? The answer is yes, Thus, W = i€ ImNi X



N vy

1 €1, 1

YZY &4

and W = (\ (N

1ep (B xY0.

m

Therefore, B = v x Y.ll

Thus, W &€ g and
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CHAPTER VI
CONCLUSION

This paper has shown that an elementary structure, a
gquasi topological space, extends to a mathematical structure
less elementary in nature, a topological space, It has shouwn
that most of the rudimentary concepts of a topological space
also hold in a quasi topological space. Absent from these
concepts was an axiom for a topological space, that the
intersection of any finite collection of open sets 1s open.
Using this as an objective, a topological space was reached
by extending the collection of neighborhoods of a quasi topo-
logical space, where this extension is unique. It was shown
under what conditions a quasli topological space is a topolo-
gical space and how all péssible gquasl topological spaces
that extend to a glven topological space can be obtained,

The chapter on classification of spaces showed that
T

Hausdorff, discrete, regular, T 19 second countable, first

09
countable, and I quasl topological spaces do extend to Haus-

dorff, discrete, regular, T i second countable, first = .

0’ 1!
countable, and I topological spaces respectively. Also evi-
dent in Chapter IV was that any quasi topological space that
extends to a second countable topological space is second

countable, Also any quasi topological space that extends to'
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a TO topological space was shown to be To.

Chapter V introduced the concebt of a subspace and
reveaied the relationship between a subspace of a guasi
topological space and the subspace of the topdblogical space
reached by the extension of the gquasi topological space;
where the same subset is used in defining both subspaces.

The relationship isg, of course, that the subspace of the
guasl topological space extends to the subspace of the topo-
logical space, The Cartesian product of the two spaces was
Introduced in the fifth chapter and the extension of the
Carteslan product of a guasi topological space with itself
was shown to be the same topological space as the Cartesian
topological product of the extension of the original quasi
topological space with itself.

Thus, properties, inherent in a topological space
were related to the corresponding property in a quasi topolo-
gical space. .

The discussion was halted at this point to leave the

reader with some points to consider and possibly verify.

Definition 6.1 A space (S,7) is normal iff given any two
disjJoint closed sets C1 and C2 :}disjoint open sgets U1 and

and C, < U_,

U, 2¢ €Uy 2 <Y

The reader might wish to show that a normal quasi
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topological space extends to a normal topological space, He
might also wish to verify that subspaces of Hausdorff, dis-
T

crete, regular, T second countable, first countable, I,

1) o!
and normal quasl topological spaces are respectively Hausdorff,
discrete, regular, Tl, TO' second countable, first countable,
I, and normal or that the Cartesian product of Hausdorff,

discrete, Tl, T second countable, first countable, and I

Ol
quasl topological spaces are Hausdorff, discrete, Ty, To,
second countable, first countable, and I respectively, How-
ever, this is not true for regular spaces as the followling

example illustrates,

Example 6,2, Let S = {a,b,c} and 7= {{a}, {a,b}, {c}, S}.

As yet a type of space has not been found thaf is
not invariant under the extension from a quasil topological
space to a topological space, Also it has not been shown,
nor a counter example exhlibited to the contrary, that the
quasl topolozlcal product of normal spaces is normal., These
problems along with the further development of properties
of a topological space originating from a quasi topologidal

space will be investigated by this author, for one,
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NOTATION

(x.7.2}

a g€ A

a >b

I
{g[x €1 and x > j}

A CB

AUB
A NGB
(a,b)

A x B

INDEX OF NOTATION

MEANING
Set that contains x, Y,.and z
a 1s an element of A
a ls greater than b
Set of integers
Set of all integers such that
they are greater than 3
A 1s a subset of B
The empty set
For all
If and only if
Not an element of
Comp;ement of A
A union B
A intersection B
The ordered pair of a and b
Carteslan product of A and B
There exists

Such that

Notation for a quasi topological

space
Neilghborhood of p in a-quasi

topological space
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NOTATION

{Np' p € s}

S-A
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MEANING PAGE

Collection of neighborhoods 6
for all p € 8 in a quasi

topological space

s -a 6
End of proof 6
Collection of neighborhoods of a é

particular point p in a quasi

topological space

Set of natural numbers 7
Collection of sets indexed by 8 7
Union of J)B

© {Y}Yéﬁ /
Intersection of {P-} 8

Yy € B

Opzn set about p 9
Set of 1limit pecints of A 12
Suppose 12
Closure of set A 13
Collection of open sets about x 14
Function from S to T 15
Inage of x under function £ 15
Range of S under f 15

Collection of all open sets in (S,2)17

Composition of g and f 18



NOTATION
f|a

f-l

fo.}
JéaAi

a<b

(gfls)is— L

(gf18) (k)

[5!0]

{N'plp ¢ s}

N*(p)

a>b

MEANING
Function f restricted to A

Inverse of T

Sequence whose general term is a

The union of {}{}1 €1, where In
denotes the first n natural

numbers

The union of {{f(i)}}i €1
n

a is less than b

There does not exist

Set of all naturzl numbers less
than or equal to n

a 1s less than or equal to b
Function gfls from S to L

Image of k under gflS
Topological space wlith S as the
set of points and o the topology
(open sets)

Collection of extended neighbor-~
hoods, extended from a quasi
topological space

"Extended" neighborhood of p

a is greater than or equal to b
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NOTATION
fwo
)

U & ns
aei( aﬂ Y)
y € B
vl pes)
{m 1 p
£,4 O0to 3

&

MEANING
Extended neighborhoods of a
particular point p
The union of 211 sets of the form
Aalq BY wnere a €4 and.y € B
Szme as {N'p | p ¢ S}
f is an onto mapping from A to B
A topological space where T is a

baslis for the topology
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