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PREFACE 

"To qualify as pure a mathematical topic had to be 

useless; if useless it was not only pure. but beautiful. 
-

If useful--which is to say impure--it was ugly, and the more 

useful. the more ugly,H1 These words echo the ideas of a 

pure mathematician, Godfrey Harold Hardy, referenced to the 

world outside the art of mathematics. To be sure, his 

words reflect my sentiment toward mathematics. For me it is 

sufficient to study mathematics for its own value, not 

seeking an application in the physical world. Hith this 

philosophy I embarked on a study which, as I see it, has no 

relationship with the physical world. 

The realm of my quasi topological spaces was my 

undeveloped imagination, heaVily slanted by my background 

in topology. My tools for this work were my mind and my 

prior work in topological spaces. 

Using these ingredients I constructed a concept that 

for the non-mathematical world seems useless. Thus, by 

Mr. Hardy's standards if it is useless, then it is pure 

and beautifUl. This, of course j does not necessarily justify 

a mathematical work. Accordingly, Mr. Hardy felt that a 

1 
James R. Nev-llnan, "Commentary on G.ff. Hardy", (Vol. IV 

of The Horld of Hathematics, ed. James R. Newman. 4 vols.; 
New-York. Simon and Schuster, 1956), p. 2024. 



meant that a mathematical theorem or work should tie toget­

her significant mathematical ideas. Mathematical ideas 

become significant if they "can be connected, in a natural 

and illuminating way, with a large complex of other mathe­

matical ideas.") 

Naturally, to me the paper appears serious. For 

another the sUbject may appear worthless. That matters not: 

for I found the paper not only a worthwhile endeavor from an 

educational viewpoint but also qUite enjoyable. 

Endeavoring to approach a topological space from my 

more fundamental quasi topological space, I felt an accom­

plishment in relating a topological space more fundamentally 

to the basics of set theory. 

2G•H • Hardy, "A Mathematicians Apology", (Vol. IV of 
The World of Mathematics, ed. James R. Newman. 4 vols. ;
New Yorkl -Simon and Schuster, 1956), p. 2029. 

)G.H. Hardy, "A Mathematicians Apology", (Vol. IV of 
The Horld of Mathematics, 4 vols. j. NeN Yorkl Simon and 
"SCfiuBter.1956), p.-zcJ29. 
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mathematical work must also be "serious". 2 By "serious" he 
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CHAPTER I 

INTRODUCTION 

This chapter ir,troduces a few elementary definitions 

and concepts from set theory. An index of notation immedi­

ately follows the last chapter. 

Throughout this paper collections of "points" are 

studied. These collections of "points" will be referred to 

as "sets". At any point during the paper the discussion 

is restricted to a certain set of points and considers no 

other points. Ensuing discussions are then relative to this 

set, which is the "universe". Naturally, the "universe" 

varies from time to time. Throughout the discussion sets 

will be denoted by capital letters or with the familiar 

bracket notation. For example, the set that contains the 

points x, y, and z may be denoted by [XI y, z] • Another 

common notation to be used is a qualitative description of a 

set. When a set consists only of those integers x, where x 

is greater than J, then it can be denoted by Lx I x E. I and 

x > J} . A point p in a set A is denoted by pEA. NoVI the 

concept of a subset can be made clear. 

Definition 1.1. A set A is a subset of a set B, written 

A C B, if and only if for all pEA, P E.. B. _ 
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Thus, the set that contains no points is a subset of 

every set. This set, denoted by ¢, vacuously sattsfies the 

definition of a sUbset. Since the set contains no points, 

it satisfies the definition for all its points. 

Henceforth, the symbol "V" may be used.. to stand for 

"for all" and the letters "iff" for "if and only if". 

The logic used eliminates the possibility of haVing a 

point in a sUbset of a universe and not in the subset. The 

latter case is denoted by p ¢ A, where p is the point and A 

a subset of the universe. This is the idea of a complement. 

Definition 1.2. Relative to a universe S, p ¢ A where A C S 

iff p is an element of the complement (-A) of A. 

Two other very important concepts from set theory are 

union and intersection. For the purpose of discussion let S 

be the universe, A C S, and BLS. 

'\Definition 1.3. The union of A and B (written A UB) is 

{x I x E A or x E. B} • 

Definition 1.4. The intersection of A and B (written A n B) 

is [x I x E A and x E B} . 

Another way to obtain a set by operating on two sets 

is known as the Cartesian product of sets. Let A and B be 

sets. 
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Definition 1.5. The Cartesian product of A and B is [(a,b) 

a E A and b E B] where (a,b) denotes the ordered pair of 

a and'b. 

If A = ¢ or B = ¢, then by definition the Cartesian 

product (written A x B) of A and B is the empty set. The 

Cartesian product is important for defining function, quasi 

topological product, and topological product. 

It shou~d be emphasized that these basic ideas and 

many other underlying concepts in the field of set theory 

and the topology of real numbers are assumed to be prior 

knowledge. However, the definitions presented in this chap­

ter are designed to orient the reader and the "underlying" 

concepts in later chapters will be mentioned to keep the 

reader on the right path. 

The path is to define a quasi topological space, dis­

cuss some of its more general characteristics, and examine 

the immediate outgrowths of the definitions and the single 

aXiom of the space. Later, a definition for a topological 

space is presented in comparison to a quasi topological space, 

a quasi topological space is extended to a topological space, 

and consequences of this extension are discussed. Then, 

invariant properties under this extension are discussed and 

finally, consequences of this work, relative solely to a 

topological space, are explored. 



CRAFTER II 

A QUASI TOPOLOGICAL SPACE 

"One way to establish a theorem is to prove it, and 

that means to show how it follows from previous theorems, 

i.e., theorems we already regard as established. If now we 

demand that these theorems be proved, we have to go back to 

still earlier theorems, and so on. It becomes clear that 

if we are going to prove anything, there must also be propo­

sitions that we regard as true but for which we demand no 

proof. In order to go forward, we must stop going backward. 

When certain propositions are laid down as the starting 

point of a deductive theory, and no proofs are required for 

these propositions. then these propositions are called 

'axioms,."l 

IIJust as it is with propositions, so it is with defi­

nitions. To define an object or term is to give its meaning 

in terms of other objects and terms, and to define these 

would mean to relate them to still other object and terms, 

and so on. Again it is clear that if anything is to be 

_.~._---------

lA. Seidenberg, Lectures in Projective 'Geometr* 
(D. Van Nostrand Company, Inc., Princeton, 1955), p. 2. 
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2def'ined, there must also be undefined terms." For a quasi 

topological space, point and subset are undefined. Subset 

is undefined in the sense that one must know of what it is 

a subset. 

The propositional origin of a quasi topological space 

is the following aXiom. 

Axiom 1. For all points p, 3 (there eXists) at least one 

subset U .3 (such that) p E u. 

AXiom 1 is needed to define a quasi topological space, 

which depends on the aXiom for its meaning. 

Definition 2.1. A set S, with a collection ~ of subsets of 

S, is a quasi topological space iff r satisfies AXiom 1 for 

all points of S. 

Speaking of a quasi topological space in terms of a 

set and a collection of its sUbsets needs notation. Thus, a 

quasi topological space with S as the set and rthe collection 

of subsets that satisfies Definition 2.1 is denoted by (S,'). 

Definition 2.2. The collection of sUbsets ris called the 

quasi topology of the quasi topological space. 

2A• Seidenberg, Lectures in Projective Geometrl 
(D. Van Nostrand Company, Inc., Princeton, 1955). P. 42. 
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Definition 2.3. A set V is a neighborhood of a point p, 

p t. S, iff p E V and V E. T. 

A neighborhood of a point p will be denoted by Np • 

Then, [N I pES} represents the collection of all neighbor­p 

hoods in (S. 't) . 

Theorem 2.4. Let (S,T) be a quasi topological space. Then, 

t- (¢} = (Np I pES]. 
ProoL Let V t. 1:- {¢] where T- {¢} = t' n- [95}. Then, 

V E 1: but V 1= 0. Thus, "3 p E. S 3 p E V. This satisfies Defi­

nition 2.3. Thus. 1: - {¢J C [N I p E sJ. Let V E.p 

[Np 1 p f S]. Then. V is a neighborhood of some point 

P t S. By Defini tion 2.3. V 6 ?: and p f V. Thus. V -fi ¢ and 

V ~ r - [¢]. 
7:. - [J6} = [Np 

Thus. [Np I 
I pEsJ. II 

p f S} C L - [95]. Therefore I 

The collection of all neighborhoods of a point p will 

be denoted by [Np} . 

Definition 2.5. A subset G of S is open iff V p 6 G 3 a 

neighborhood N 3 N C G. p p 

Theorem 2,6. A set U is 0Ti·::::n iff V p E. U 3 an open set V "3
 

p£ VCU.
 

Proof. (Sufficiency) Let U be o".ieH. Then, V p £.. U 3 an
 

open set V, namely U itself, 3 p ~ V C U.
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(Necessity) Let, Vp E u, J an open set V 3 P ~ V C 

U. Then, consider any p € U. Then, 3 an open set V 3 p € V 

CU. ·Since V is open, 3 N 3p ENe V. Since V C u,
p P 

N C U. Thus. U is open by the definition of. open sets.lI p 

Let (S,T) be a quasi topological space. By Definition 

2.5. if V E (N I p f sJ ' then V is open.p 

Before proceeding, the concepts of indexed sets, the 

union of a collection of sets, and the intersection of a 

collection of sets must be understood. Let S be a universe 

and a a collection of subsets of S. Let each set have a name 

and consider the set that contains these names as elements. 

Then,. 0 is indexed by this set of names. For example, let N 

(the set of natural numbers) be the index set. To each n E N 

associate a set An' Then, [~} n E N denotes a collection 

of sets indexed by N. 

Definition 2.7. Let S be the universe,Jl an index set, and 

l Aa.} a LA. a collec tion of subsets of S indexed by.A. 

Then, a. ~J.. Ao. is the union of all elements in [Au} 0. EA' 

Thus, x E U Ao. iff 3 0. E A 3 x E Au. If.A = ¢, then
U a EA 

0: €..A. Ao. == ¢. 

Definition 2.8, Let S again be the universe.JL an index set, 

and a collection of subsets of S indexed by~.[AaJ a EA 
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Then, ClQ-A- Ao. is the intersection of all elements in 

{Aa.1o.E..A..' Thus, x E- 0.Q.A.. An iff x E An V 0. EA., If 

)... = ¢,' then n A = S. 
Cl~...J..- Cl 

. 
A mathematical theorem is often stated biconditi6n­

ally, that is, in the form "p iff q", The statement is 

interpreted as "if p, then q and if q, then p". The suf­

ficient part of the statement is "if p, then q", Necessity 

is "if q, then p", To avoid confusion in the proof of a 

biconditional theorem, the words "sufficiency" and "necessity" 

will be enclosed in parentheses prior to the beginnings of the 

proofs of the respective parts of the theorem. This was done 

for Theorem 2.6. 

An open set in (S.~) is characterized as follows. 

Theorem 2.9. A set 0 is open in (S.~) iff 0 = a~JL A wherea 

Aa. t. [N I p f. s} V a £ .A.. •p 

Proof. (Sufficiency) Let 0 be open end suppose 0 ~ 0. 

Then, for p E 0 3 Vp E. [Np} ~ p t= Vp c 0 by Defini tion 2.5. 

Thus, 0 = for if x'£ 0, then x t. V by the way V isp Lj OVp x x 

defined and x t: ld OV ' Thus. 0 c U V. If x £.. U V,ppc- pEOP pEOP 
then x E. 0 since V c 0 'Ip E O. ThUS, l} V c O.p p c.. 0 p 

Consequently, 0 = aliA Aa Uere -A- = 0 and A E [Vpl pE 0 a 

V (Y, E.A.. If 0 = ¢, then a ElLA = 0 lIJhere l- = 0. a 

(Necessity) Let 0 = U A i-ihere A E. (N I p E ;;C
nE-A.. 0. aLP ~ 
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Va~A. IfxE: 0, thenxEA for some cr.E..A. Forsomep,cr. 
A == N. However, N ( f N } since x t::. N. Since A C 0 cr. p p "Lx p a 

and A - as described is a neighborhood of x, then 0 is open
a 

by Definition 2.5. If A == ¢, then a ~J\- A = ¢ and ¢ is opena 
vacuously. II 

Another characterization of an open set in a quasi 

topological space (8.21 is the following. 

Theorem 2.10. A set 0 is open iff 0 = U€ A lIIhere A E.- L­A a JL a cr. 
Va EA. 

Proof. (Sufficiency) Let 0 be open and 0 ~ ¢. Then. by 

Theorem 2,9 0 = cr. ~ A A where A E [N I pES) V a E .A • a a p 

By Definition 2.3. A E. 1: Va EA. If 0 = ¢. then 

a li. AA = 

a 

o == where A ¢. a 

(Necessi ty) Let 0 == a ~AAa \'lhere A E 1: V a E 1L. 
a 

If 0 I- ¢ r 3 p E 0 and hence pEA for some a E -"-. Thus t 
a 

3 A ~ ¢ for some a EA. Since A ~ ¢ and p E: An' A Ea a a 

[N II p t s}. Thus, by Definition 2.5 0 is open. If 
p U .

A == ¢. then a f.AAa == ¢ and ¢ 1S open as before. If 

Aa = ¢ Va, then UAA = ¢ and ¢ is open. II 
a f. a 

Theorem 2,11. The union of any collection of open sets in a 

quasl topological space is open. 

Proof. Let [Ocr. I a EA} be a collection of open sets. If 

..IL= ¢, then U J1 0 = ¢ and ¢ is vacuously ~pen. NOl'l t let
aEA a 
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pEa. ~J... OCt· Then, p E OCt for some a. E..~. Since OCt is open, 

'] Np :3 p £ Np C 00.' Since Np c }i..A- OCt' Ct~..A.. OCt is open by 

Definition 2.5. If 00. = ¢ 'if Ct fJ..-, then a.~...A- 0a. = ¢ and ¢ 

is open vacuously. If 

Corollary 2.12. If (s,Z1 is a quasi topological space, then 

S is open. 

Proof. By Axiom 1, \1' pES '3 V 6.. 1: :3 p EVe S and V is open 

since by Definltiem 2.3, V E [Np I p E. s}. Thus, V p "3 Np 

~ P ~ Np c 8. Therefore, 8 is open. II 

As stated in Theorem 2.11, ¢ vacuously satisfies the 

definition of an open set. 

Definition 2.13. A sUbset C of 8 in a quasi topological space
 

(8,t) is closed iff 8-C is open.
 

Theorem 2.14. If (S. 7:) is a quasi topological space, then S
 

and ¢ are closed.
 

Proof. The set 0 is open and 8-¢ ~ 8. Thus, 8 is closed.
 

Since S is open and S-3 = 0, ¢ is closed. 1/
 

The folJ.ot-iing is DeMorgan' s Theorem, 

Theorem 2.15. If ~ is an index set, S the universe, and 

a collection of subsets indexed by.-A.. t then{AO} a. f-A­

1. ) S- n A U S-A= Ja.E.A a. (J. E.JL a 

" 
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2.) S-a~..A.. Aa ::: a~A S-Aa 

Proof. For part 1, let x E. S-a Q.A A • Then x f. Sand 
a 

x f/ a~.A. A • Thus, x ~ A for some a E.A. Thus, x t. S-A 
a a a 

for thi s a and x E a ~A S-A • Therefore, S-o.QA A C-a a
 

Ue S-A. Let x E lJ S-Aa.' Then, x € S-A for some a E.. A.
 
a A a aC. A a 

Then, x [. S but x f/- A for this same a E.A. Thus, x (/. a ~ Aa a 

and x is then an element of S- fJ A A. Therefore, l} A S-An a c:;. J~ a a c. JL. a 

C S-a~ A and S-a t:..A-- A ::: aY..A. S-A •a a a 
For part 2, let x E. S- U A A. Then, x E. S but 

a E..JL a 
x f/- Y../L A. Thus, x (/. A V a E A. Thus, x L S-A Va£. J... a I;. a a a 

and x £. n. S-A. Therefore, S- LJ A C n j S-A. Let xA 
a ~ ~ a	 a E-..IL.- a a E. Jl- a 

E.	 n
j 

S-A. Then, x E. S but x rt.- A V a EA.. Thus, x~ U
A

A • 
a EJL a LJ aU' UE.JL. a 

Thernore, x E S-" LA Aa.' "QA S-A" C S-" £A A". and S-" EJL A" 

::: C A S-A • II a C-JL a 

Theorem 2.16. The intersection of any collection of closed 

sets in (S,r) is closed. 

Proof. Let (Ca l a E.. AJ be a collection of closed sets. 

Consider n C. Then, S- 0.1L C = li A S-C by DeMorgan' s 
a EA. a	 a a a c...JL al:.. 

Theorem. Since C is closed, by the definition of closed a
 

sets, S-C is open for all a fA. By Theorem 2.11, a~JL S-C
 a a
 

is open. Thus, 0 C is closed. II
 
a c.JL a 

Another characterization of an open set comes from the 

definition of a closed set. 
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Theorem 2.17. A set 0 is open iff S-O is closed.
 

Proof. (Sufficiency) Let 0 be open. Consider S-O. Then,
 

S-(S-O) = S n -(SlI-O) and Sr;)-(Sn-O) = S n (-S LJ 0) by
 

DeNorgan's Theorem. Then, S () (-S LJ 0) = (SA-S) LJ (S n 0)
 

= ¢ U 0 = O. Since 0 is open, s-o is closed.
 

(Necessity) Let s-o be closed. Since s-o is closed, 

its complement is open. The complement of s-o is O. Thus, 

o is open, JI 

Definition 2.18. A point p is a limit point of a set A iff 

every open set containing p contains a point q E A, q ~ p. 

It is feasible to have a notation to express an open 

set containing p. This is O. If A is a set in (S,71, then 
p 

the set of limit points of A is denoted by A'. Using Defini­

tion 2.l8 a characterization for a closed set can be presented.
 

Theorem 2.19. In (S,'l1 a set A is closed iff AI C A.
 

Proof. (Sufficiency) Let A be closed and let p be a limit
 

point of A. Suppose (~) pES-A, i.e., ~ not a subset of A.
 

If p E. S-A I then "3 N .3> N C S-A~ since S-A is open. This
 
p p 

contradicts the fact that p is a limit point of A, since N 
p 

is open. Thus, AleA. 

(Necessity) Let A contain all its limit points. Let 

pES-A. Then, 3 0 3 0 C S-A, since p is not a limit point.
p p 

Since 0 is open, 3 NCO. Thus, S-A is open by the defini­p p p 
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tion of an open set. Therefore, A is clos-ed. II 

Another characterization of a closed set in a quasi 

topology is an outgror~h of the closure of a set. 

Definition 2.20. Let (S,ll be a quasi topological space. 

The closure of a set A is A UA'. This set is denoted by A. 

Theorem 2.21. The closure of a set A is closed. 

Proof. It must be shorm that ~ contains all its limit 

points. Suppose A doesn't contain all its limit points, 

L e., ~ 3 p ¢ A U A' "3 V 0p "3 q E. 0p where q f:. A U A' but 

P -I q. Consider any ° and the point q E A U A' • Since 
p 

q f... A U AI, q [. A or q E. A' • If q ¢. A, then q E A' • Since 

qf.A', q is a limit point of A. Thus t o contains a point
p 

x 6 0p where x E A but x -I q. Thus, o p is an open set con­

taining x ~ A where x -I p, since p f1. A. 

If q E A, then ° contains a point q E A, q -I p.
P 

Thus, in either case 0 contains a point x E A, x -I p.
p 

Therefore, p is a limit point of A. This contradicts that 

p ~ A UA'. Thus, the assumption was wrong and p£ A U AI 

and Acontains all its limit points and hence is closed.11 

Theorem 2.22. Let B be any closed set in (St7J that contains 

A, then A C B. 

Proof. It must be shmm that A' C. B. If x c. A', then V 0 x 
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.3 Ox E. [Ox] , [Ox} denoting the collection of open sets 

about x. 3 y E: Ox' y 6. At but y I: x. Since V y, y E At 

Y E B <and thus x E BI. Since B is closed, by Theorem 2.19 

x f B. Thus, A C B. II 

Theorem 2.23. Let A C S in (S~T)I then A= fl A where a. E..A.. a. 

[ A} is the collection of closed sets 3 A c.. A V a. f. Jl. 
a a. E...A. a. 

Proof. Since Ais a closed set that contains At A~ {Aa.1 a.~JL' 
n - nThus t if xE a.E..AAa.' then x E A. So, a.£A..Aa. C A. By 

Theorem 2.16, {{JA is closed. Thus, AC () A by Theorem a. C../l- a. a. £.A.. (l 

2.22 and the fact that A C. n A. Therefore, A == n A./I
a €..A- a a E../L a. 

Theorem 2.24. In (S,~) where A CS, A is closed iff A = A. 

Proof. (Sufficiency) Let A be closed, then AI ~ A by Theorem 

2.19. Thus, A UA' = A. Since A U AI = A, A = A. 
(Necessity) If A = A, AI C A and by Theorem 2.19, A 

is closed. II 

As a prelude to Chapter 3 two elementary theorems 

regarding a. quasi topologica.l space are n01'l presented. 

Theorem 2.25. In (S,T) VpEs 3 at least one open set con­


taining p.
 

Proof. Let p E. S. By AXiom 1 3 V e. ?: 3 p 6.. V c S. By Theorem
 

2.4 t V E.. [N I p ~ S}. Thus, V x £. V 3 Nxt namely V itself,
p 

~ x £ N C V. Therefore, V is open. IIx 
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Theorem 2.26. Every non-empty open set in (S.~) is a set of 

points. 

Proof. Let U be an open set. Let x E U. Then, 3 N C x U. 

Since Nx E ?:, Nx C. S. Thus, xES. II 

Before proceeding to Chapter 3 it would be well to 

review the concept of a function and ideas dependent on this 

concept. 

Definition 2.27. A rule f that assigns to each point p in 

a set S one and only one point q in a set T is a function 

from S to T, frS --? T. The image of x under f is denoted by 

f (x). 

Definition 2.28. In Definition 2.27, 8 is the domain of f. 

The range of f, denoted by f(8), is [x I x E T and 3 yES 

.?Jf(y) ~ x]. 

Definition 2.29. A function f,S ~T is one-to-one iff V x 

and y in S, if f(x) = f(y}, then x = y. 

Definition 2.30. A function f,S ~T is onto Tiff f(S) = T. 

Definition 2.31. Two sets Sand T are in one-to-one corres­

pondenc e iff .3 f: S ---7 T ~ f is one- to-one and onto T. 

The "lord "mapping" will be used synonimously wi th 

"function". 



CHAPTER III 

EXTENSION OF A QUASI TOPOLOGICAL SPACE TO A TOPOLOGICAL SPACE 

In the framework of a topological space the undefined 

terms are "point" and "open set". A sufficient set of axioms 

for a topological space are the following. 

1.	 Every non-empty open set is a set of points. 

2.	 The empty set ¢ is an open set. 

J.	 For all p, 3 an open set 3 p is in this open set. 

4.	 The union of any collection of open sets is open. 

5.	 The intersection of any finite collection of open 

sets is open. 

Definition 3.1. A set S, together with a collection of sUbsets 

called open sets, is a topological space irf the collection 

of open sets satisfies the above five axioms. 

A definition is in order for the intuitive concept of 

finiteness. 

Definition 3.2. A set is infinite iff 3 a one-to-one function 

flS -7 S "3 f(S} is a proper subset or s. 

D~flnition 3.3. A set is finite iff it is not infinite. 

Considering the collection of open sets in a quasi 
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topological space (S,Z1, the set S, Theorem 2.26, the remark 

following Corollary 2.12, Theorem 2.25, and Theorem 2.11, it 

is seen that the first four axioms stated above are satisfied 

for the collection of open sets and the set of points S. 

Example 3.4. Let S = [a'b,ctd} and t:= [[a'b}' {b,c}, [C,d}}, 

then [Np I p E ~ = [[a, b} , [b,c} , [c,cg] and Lop I p£ SJ 
={¢, [a.b] , [b,C}' [C,d}' [a,"b,c}, [b.c,d}, S}. The set 

fOp I p f s} represents the collection of open sets in (S,t). 

Clearly, [a. b] n [b.C] = [b} and [b] fl;. fop I p t s]. 
Thus, Axiom 5 of a topological space is the sole 

aXiom that is unsatisfied by a quasi topological space. 

The question naturally arose as to extending a quasi 

topological space to a topological space. Since this naturally 

hinged on the collection of open sets, it was desired to 

extend the existing collection of open sets in the quasi 

topological space and yet stay within the framework of the 

definition of open sets, i,e., use neighborhoods to obtain 

additional open sets. It will now be shown that, by con­

structing a new collection of neighborhoods from the existing 

collection of neighborhoods, a quasi topological space was 

extended to a topological space; by taking all possible 

finite collections of neighborhoods, taking the intersection 

of all sets in each collection, letting the- collection of 
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these intersections form the new collection of neighborhoods, 

and extending the collection of open sets using this new 

collection of neighborhoods and the deftnition of open sets 

in a quasi topological space, a topological space was obtained 

where the extended collection of open sets satisfies the 

aXioms for a topological space. 

To state and prove the theorem that describes this 

extension, some extensive discussion related to finite and 

infinite sets is necessary. 

Definition 3.5. Consider flA ~ Band glB -----7 C. The compo­

sition of f and g, written gf, is a function from A to C, 

gfIA---7C. Then gf(x) = g(f(x)). The domain of gf is A and 

the range is [z I z E C, where 3 y ~ B 3y = f(x) for some 

x £ A, and g(y) = z}. 

Definition 3.6. Consider flA ~ B. Let C cA. Then, f I C 

is a function g =:; glC ------7 Band g(x) = f(x) V x E. C. The 

function g is called the restriction of f to C, C C A. 

Definition 3.7. Let flA --~B and y E B. Then, f-l(y) 

= ex I x ~ A and f(x) = y]. It can be shown that f- l is a 

function on B iff f is onto and one-to-one. 

Theorem J. 8. Let A and B be sets \'rhere f I A -7 B is an onto 

function. If A is finite, then B is finite. 
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Proof. The proof consists of two partsl (i) f is one-to-one 

and (ii) f is not one-to-one. 

- Suppose B is infinite. Then, 3 gtB~B -:;} g(B) is a 

proper subset of Band g is one-to-one. The ~omposition of 

onto functions is onto and the composition of one-to-one 

functions is one-to-one. 

(i) Since f is one-to-one and onto, f- l is a function 

on B. Consider r-lgf(A). However, f-l has to be one-to-one, 

otherwise f would violate the definition of 8. function. If 

D C. B, then f-ll D is a one-to-one function :3 (f- l , D) I D -~ A. 

Since f, f- l , and g are one-to-one, f-lgf(A) 1s one-to-one 

on A. Since f(A) = B, f-lgf(A) = f-lg(B). Thus f~lg(B) 

= f-l(E) where E is a proper subset of B by the definition 

of g. Suppose f- l (E) = A. Since f is onto B, V y t. B 3 x E A 

) f(x) = y. Since E is a proper sUbset of B, 3 s £ B but 

seE. Since s ~ B, 3 t ~ A -:; f (t) = s. Since tEA, 

3 S1 f: E "3 f(t) = sl' Since s rt E, sl t s. Thus, f is not 

a function. Therefore, f-l(E) is a proper subset of A and 

A is infinite. This contradicts the fact that A is finite. 

Thus, B is infinite. 

(ii) If f is not one-to-one, V y E B consider one 

B.nd only one x E A 3> y = f (x). Then, the set E of these 

points is a proper subset of A. Denote fIE by h. Clearly, 

h 1s one-to-one and onto. Thus, h- l is one-~o-one. Therefore, 
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h-lgh is one-to-one on E. The rest of the proof for this 

part duplicates that above, except that E is substituted 

for A ·and h for f. II 

Definition 3.9. A se~lence is a set A indexea by the set N 

of all natural numbers. Thus, it is a mapping ftN--7A, ~ f 

is an onto mapping. The sequence is denoted by {an} where 

an is the element of A indexed by n. i.e., the image of n 

under f. 

To continue the development of the prerequisites for 

the extension. the P~iom of Choice has been assumed. 

Axiom of Choice. Let S be a set and ~ a non-empty collection 

of non-empty subsets of S. Then, "3 ftf3~S ~f(A) ~ A \;J 

A (: a. 

Theorem 3.10. If S is an infinite set and N the set of 

natural numbers, then 3 ftN---~S 3 f is one-to-one. 

Proof. Let S be infinite and ~ the collection of all non-

empty SUbsets of S. Then, by the Axiom of Choice, "3 h: S--7"S 

'9 h(A) E A V A 6~. Define fIN--~S as folle'.:"8. 

f(l) == h(S) 

f(n+l) == h(S- .CJ.lf(j)).
J= 

H01-Iever, S -t ¢ 9.nd S-.fJ. f(j) -t ¢, for if S- ()If( j) = 0. 
J=l J= 

then S = .eY. f (j) and there could not exist a one· ,to-one
J=l 
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mapping of .In, f( j) onto a proper subset of jt1 f (j ). ThUs, 
~ =1 

the mapping is well defined. If f(m) == f(n). where m ~ n, 

then without loss of generality, assume m < n. Since m < n, 

f(n) = h(S-~lf(i)-Vf{i)- {f(m)} ). Thus, if f(n) = f(m),
i=l l=m+l 

then f(m) E S-~~f(i)-~+f(i)- fr(m~ but clearly it is not. 

Thus, f(m) -j, f(n), if m 1= n. Therefore, f 1s one-to-one.1l 

Theorem 3.11. If 3 a sequence t?n} of distinct points of
 

a set K, then K is infinite.
 

Proof. By the definition of a sequence, 3 fIN ---7 K ~ f is
 

one-to-one, since the points are distinct. Since f is one­


to-one, f-l is a function on f(N). Suppose K is finite.
 

Define hIK~N ~ h(k) = 1 if k ¢ f(N) and h(k) == f-l(k) if
 

k E f(N). However, K 1= ¢. since 3a sequence [p;} of distinct
 

points of K. The function h is onto N, since f-l(f(N» = N.
 

Thus~ by Theorem 3.8~ N is finite. However, 3 a one-to-one
 

function g 3 g(x) = 2x V x ~ N from N onto a proper subset of
 

N which makes N infinite. Therefore, the assumption that K
 

is finite is vITong and thus K is infinite. II
 

Theorem 3.12. Let K ~ ¢. The set K is finite iff 3 a finite
 

subset L of Nand f:L-----7-'K .3 f is onto.
 

Proof. (Necessity) Let 3 a finite subset L of Nand fJL--7K
 

3f is onto. Then, K is finite by Theorem 3.8.
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(Sufficiency) To prove sufficiency, the contraposi­

tive will be proved, i.e.i if Vfinite subset L of N~ (there 

does not exist) fIL~K ~ f is onto, then K is infinite. Sup­

pose V L ~ f cL ~~ K ~ f is onto. A sequence [Pn} of distinct 

points of K ~Till be constructed which will imply K is infinite 

by Theorem 3.11. Let ~ be the collection of all non-empty 

subsets of K. By the AXiom of Choice "3 g f~ -----7>K "3 g (A) (;. A 

YA E~. Let Pi be defined as follows. 

PI = g(K)
 

P2 = g(K-Pl)
 
k
 

Pk+l == g(K-j~lPj). 

The function g is well defined since K ~ ¢ and if 

K-j~lP. = ¢ then, K = .6 PJ' and "3 ff [1,2, ••• ,k}--7K .3 
.- J. J=l
 

f(l) = Pl
 

f(2) == P2
•
 
•
 

f(k) = Pk and f is onto. 
k 

If K == .U p., f contradicts the non-existence of an
J==l J 

onto function ?) ffL~K ~....here L is a finite subset of N. 

Thus, the function g is well defined and, as in Theorem 3.10, 

is one-to-one. 

Therefore, the sequence consists of distinct points 

and K is tnfini t e by Theorem 3.11. 1/ 

Let In denote the set of all natural numbers less than 

or equal to n. 
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Definition 3.13. A set K, KC N, is bounded iff 3nO E N '3 

x ~ nO V x E K. 

Theorem 3.14. Let K ~ ¢. Then. K is finite iff 3 a natural 

number nO and a one-to-one function from I onto K. 
no 

Proof. (Necessity) Let 3 a natural number nO and a one-to­

one function from In onto K. By Theorem 3.12, K is finite 
o 

since In is finite. 
o 
(Sufficiency) Let K be finite. By Theorem 3.12, 3 

a finite set of natural numbers L and fI,L ~K ~ f is onto.l 

It must be shown that if L is finite, L is bounded. Suppose 

L is not bounded. Then, given any natural number n, 3 x ~ L 

:3 x > n. If L is not bounded, define fIN ---7 L :3 f is onto 

as follows. 

f(l) = the least natural number in L 
n 

f(n+l) = the least natural number in L-·Jl1f(j). 

Since V sUbset K of N "3 x E K ~ x < n V n E K, the 

fact that L ~ ¢ since f is onto, and the fact that 
n 

L- () f(j) ~ ¢, the function f is well defined. For if 
j=l 

n 
n 

L-j\!lf(j) = ¢, then J an nO ~ L~ UOf(j) = ¢. Thus, if x E L 
j=l 

x < f(n ) and L would be bounded. The function f is one-to-
O

one as in Theorem 3.10. The set Lf(j~ is a sequence of 

distinct points of L. Thus, by Theorem 3.11 L is infinite. 

This is a contradiction, thus L is bounded. Therefore, J nO 
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3 x < 
-

n 
0 

V x E L. I
nO 

:::: [1 , 2, ••. , n o 
l 
)j 

. By defin1 t i on, 

LeInO' Define g s I 
na 

---7 L 3 

g(i) :::: i if i E L where L:::: [11,12, ••• ,1~ 
g(i) :::: 1 1 if i ~ L. 

This function is well defined, since I ~ ¢ and
nO 

L~¢. Clearly, flgIIn~KisanontomapPing. 
o 

Define S :::: [1; 2 iff f 1g(2) ~ f 1g(1); ) iff f g()) ~ 
1

f 1g(2) and f g()) ~ f 1g(1); .•• r nO iff f g(nO) ~ f 1g(no-l),
1 1

•••• and f 1g(nO) ~ f g(l)}. Now (f1gIS) is a function
i 

(f1gjS)sS ~K and (f
1

g IS) is onto. Let 1 E. K. If 1 E:- K, 

then j n E In ~ flg(n) :::: 1. HO",'1ever, n E S iff ~ nl < n :7 o 
f 1g(nl) :::: 1. If 3 nl < n ~ f 1g(nl) :::: 1, then if f 1g(1) :::: 1, 

1 ~ Sj if f 1g(1) ~ 1 but f g(2) :::: 1, 2 ~ S; ••• ; if f 1g(1) ~ 1,
1

f 1g(2) ~ 1, •••• f g(n -2) ~ 1 but f g(n1-l) :::: 1, n 1-l e S;1 l 1

if f 1g(l) -;. 1, to., f g(n1-1) ~ 1, n 1 t;. S. Thus,:J k 6 Ina 3­i 

f1g(k) :::: 1, k E S, and (f1gtS) (k) :::: 1. Denote (f i g\S) by h. 

Let m E Sand n E S. If h(m) :::: h(n) but m ~ n, then without 

loss of generality assume m < n. Then, f g(m) :::: f g(n).
1 1

But by definition of S, n ~ S. Thus, h is one-to-one. 

Since SCI ,the number of elements in S is less than or
nO 

equal to nO' Let k denote this number. Then, 

S:::: [k1t k 2 , ••• , kk~ t where k i :::: k j iff i :::: j. Then, 

k i < nO V i (Iko Define tlIk~S by 

t(i) :::: k i 
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t(2) = k2 
•
 
•
 
•
 
t(k) = kk·
 

This function is well defined since 1 c S. The 

function t is one-to-one since t(i) = t(j) iff k i = k which
j 

1s true iff i = j. Since t(Ik ) = S, t is onto. Consider" 

htllk ~K. Since hand t are both one-to-one and onto 

ht is one-to-one and onto. IJ 

The notation (S,l) has been used to denote a quasi 

topological space where ~is the quasi topology and {N I p 

p f S} the collection of neighborhoods in (S,Ll. Henceforth, 

when speaking in reference to the extension of (S,1) to a 

topological space, the collection of open sets in the topo­

logical space ~7ill be denoted by a and [N'p I pES] will 

represent the collection of extended neighborhoods. Thus, 

o is the topology for the topological space which is denoted 

by [S,aJ where [S,oJ is the extension of (S,~). 

Theorem J .15. Let (s, (:') be a qUf1.si topological space, tp I p (; ~ 

the collection of neighborhoods in (Sit), and fop I PES} 

the collection of open sets in (S.(1. Consider all possible 

non-e~pty finite collections of sets from [N I p £ s], i.e.,p 

by Theorem J.1L~ consider all possible sets of the form 

(U i] i Elk' Ui E- [Np I p E. S} V i € I k where k (;. N. For all 

sets of the form ruJ. E I conslder 0 u, L e., consider1 l k i ~ Ik i 
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all possible intersections of non-empty finite collections 

from (N , P (s]. The collection of these intersections isp 

[N'p ~'p £ s}. Then, the open sets, using Definition 2,5 

relative to {N'p I P £ s} as neighborhoods, satisfy the 

aXioms for a topological space with S as the set of points 

and where a is used to denote this collection of open sets, 

Proof, For Axiom 1, (Every non-empty open set is a set of 

points, i.e., a subset of So) let V £ a, V ~ 0. Let p ~ V, 

then "3 N' (p) E {r.rr p , p £ s] :3 p f N' (p) c. V. The notation 

N'(p) is used rather than N'p to avoid confusion with the set 

of limi t points of N ' For some kEN, N' (p) = i QIkUi •p 

Since pEN' (p), p £ Ui Y i f. I k , For all i ~ I k , U E 'L.
i 

Since Ui {. T V i £ I k , U c S ViE. I k , For all i t Ii k 

p £ Ui and Ui C S V i £ I k , Thus t P 6. S, Therefore t V c.. S 

and every non-empty open set is a set of points. 

For Axiom 2, (The empty set 0 is an open set.) consider 

¢. The definition (Definition 2.5) of an open set is vacuously 

satisfied. 

For Axiom 3~ (For all p, J an open set 3 p is in this 

open set.) let p £ S. Since p ~ S, by Axiom 1 for a quasi 

topological space, 3 V (: 1: -:3 P f: V C S. Since V E -r an 

p £ V, V f {Np I PES}. In the definition of [N'p I PES) 

let I k ; fI}. Then, V ; i Q{IJVi where VI _; V. Even though 

[Vi} i f {J} contains only one set, i ~ f I} Vi is consistent 
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with Definition 2.8. Thus, VE {N'p I p E.. s} and V p G S, 

'] an open set 3 p is in this open set • 

. For Axiom 4, (The union of any collection of open 

sets is open.) consider U U where Va. is o~en V a f:Jl, i. e.,a. E:..A.. a. 

Ua. f tJ V a f -Il. If..L:::: 0, then a.~.A. Va. == 0 and a. ~.A.. Ua. is 

open since 0 was sho~m to be open by a previous part of this 

proof. Suppose 1. I: ¢. Let p f U Ua.' Then p (; U for 
a. 6J\.. a 

some aEJL. Since p f V , "3 !,:t(p) '9 P E N"(p) cU. Since a. a. 

Do. c U U and N' (p) C U , N' (p) c.. LJ Va' Therefore,J 

a.E~ a. a a.6~ 

U 
a. E......L Da. is open. If Da. :::: 0 V a E. --A-, then U U :::: 0 and 0

a.G.A- a 

is open from above. 

For AXiom 5, (The intersection of any finite collec~ 

tion of open sets is open.) consider the empty collection. 

By Definition 2.8 the intersection of the empty collection 

is S; as in Corollary 2.12, S is open. Now consider all other 

finite collections given by {vJ i E 3 v. ~ a ViE I k ,Ik 1 

\I'here k f. N. It must be ShOll>fD that () v. is open where
i r: Ik 1 

k 'N. Thus, a proof by in~uotion will be used, i.e., it 

\llill be shollm that it is true for 1 and i.f 1 tis true for 

n £ N, then it is true for n+l, i.e., the intersection of 

n+l open sets is open. vfuen considering any [vJi € Ik the 

case where Vi == 0 for some i ~ I k is eliminated since then 
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by previous remarks in this proof.1 QIkVi == ¢ and ¢ is open
 

Now let k = I and consider all possible sets ivJ i ~ II'
 

However, i QIIVi = VI and i QI V1 is open since VI 
I 

1s open where VI is variable over cr. Now let k ~ 2 and 

consider all poss1 ble sets [VJ 1 £ 12' HO\'lever, 1 Q1 V1 
2 

= VI n V • Let p E VI n V • Then, p ~ VI and p E V ' Since2 2 2
 

p (;. VI' '] NI'(p) "3 N'(p) c V s1nce V 1s open. Since p £ V
 
III 2 

"3 N;(p):7 N2(P) c V s1nce V 1s open. Aga1n VI a.nd V are
2 2 2 

var1ables over a. However, Ni(p) = 1 ~ImVi' where Vi ~ 
( Nip E:- S} V 1 E. I and N ' (p)::: n W where H EL p » m 2 1 E: In 1 1 

{ Nip E. S1 ViE I. Thu s, N' (p) n N' (p) ::: (n V1) n 
p . lJ n l 2 1 E 1m 

(1 QInW and Ni (p) n N;(p) -/:. ¢ s1nce p Eo Ni (p) and p E. N2(p).1 ) 

Thus, (1 QI V1) n (1 QI Wi) = n S where S1
1 G. I m+n 1m n 

= Vi V i 3 1 ~ 1 :: m and Si ::: Hi _ Vi:> m+l :5. 1 :: m+n.m 

Thus, Ni(p) n N;(p) f {N'p \ pes} and in particular 

Ni(p)n N2(p) E[N'p} wh1ch 1s used. to denote the collect1on 

of extended ne1~hborhoods of a particular po1nt p. Therefore, 

N'1 (p) nN2(p) ::: Nj (p). 

If x E Ni(p) n N2(p), then x E Ni(p) and x E N2(p).
 

Thus, x E. VI and x E. V since N' (p) c- VI and N' (p) c V •
 
2 1 - 2 2 



29 

Thus, x E VI n V and N3(P) C VI n V2 • Therefore, VI n V22 

1s open. 

Now assume i QInVi is open for all possible sets of 

the form LviJ i 6 In for n EN. 

Consider 0 Vio Then, i QI Vi = (if] I Vi)
1 c. In+l n+l '=- n 

nV +l • By the indue tiol1 hypothesi s, i QInViis open. Thus,
n

t Vi Slo Let V 1 = S2' Then, Si is open byIe i nE In = n+ 0 
i c:- 12 

the case above for n = 2. Therefore, the intersection of 

any fini te collection of open sets is open. II 

Definition 3.16. The collection of open sets in (Sl'~l) is 

the same as the collection of open sets in (S2'~2) iff 

(Sl'~l) = (S2'~2)' 

Definition 3.170 Let S be a set and IT a collection of sUb­

sets of S. Then 0 is a basis for a collection ~ of subsets 

of S iff K E Z iff K = LJ A U 'I,'There U E. IT V 0. e JL • 
0. t. ..1\.... 0. 0. 

Theorem 3.18. If (S,~ is a quasi topological space where 

(N ) PES} and Lap} p E ~ are the collections of neigh-p 

borhoods and open sets respectively, then LNp \ p 6, 0 is a 

basis for fop I p E S~ • 

Proof. Let K ~ [op I p E: s}. If K = ¢, then K = ex ~.A. Uo. 

whereJl= 0. If K -/: 0, then V pE K 3N ~N £{N \ pE sl 
p p L p J 
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and N C K. Consider the union of these p ~ KNp. Ifp Np ' 

x C p ~ KNp' then x ~ Np for some p. Since Np C. K, x t;; K 

and LJ N C K. If x E. K, then .3 N 73 x E N. C K and p <::: K p x x 

Thus, K C P ~ KNp. Therefore K = U NyNx E (Np}p 6 K· P E. K p. 

U ULet K = a. E.A ex where Ua. E. [Np \ p (f ~ V a. E J.. • Let x 6. K, 

then x ~ Ua. for some ex €. -A. • Thus, U C U 1 Ua. and U c. K. 
a. a. ~.ft- a. 

Thus, K is open. Therefore, K 6. [Op I p £ ~. Thus, 

[N I p cf S} is a basis for fop I p E. ~. IIp 

By the same token the collection of "extended" neigh­

borhoods obtained from an extension of a quasi topological 

space is a basis for the topology in the topological space 

obtained under the extension. 

Corollary 3.19. If (S,~) is a quasi topological space where 

{N I p E: s} and [Op I p E: 0 are the collections of neighbor­p 

hoods and open sets respectively and [s,aJ is the extension 

of (Sl~)' then [N'p I p £ S} is a basis for o. 

Proof. The proof follows that for Theorem 3.18.11 

Quite obviously, sinceT-[¢} = [N l p E: ~ in (S,~,p 

~ is also a basis for the open sets in (s,11. The addition 

of 0, if that is the case, makes no difference as far as 
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having a basis. 

A oollection of sets ° oan be shot1n to be a basis for 

i Iff V U €oT it can be shown that V p (; U 3 V E a 3 p ~ V CU. 

Lemma 3.20. Let S be a set. Two collections "° 1 and 02 of 

sUbsets of S generate the same colleotion~, i.e., they are 

both a basi s for?:, iff t 

1) U (;. CIl and p (;.. U imply "3 V ~ °2 => P £. V C U and. 

2) V£.. CI 2 and pES V imply 3 UE 01 3p£ DC- V. 

Proof. (Sufficiency) Let 01 and 02 generate~. 

1) If U 6. ° 1 , then U €. 7:. Thus I U = LJ V \'lhere 
a. E...J...- a. 

Va.~02Va.~.A-. If P € U, then p c V for some a 
a. f....A. and V c... U. a. 

2) The proof for this part is the same as above 

except for obvious substitutions. 

(Necessity) Let 1) and 2) hold. Let 01 generate~l 

and 02 generate~2' If W E ~l' then W = a.~JLUa where 

Ua E.. 01 V a E...A.. For any o. E. Jo.-, let p b Ua.' Then, '3 Vp "7 

p ~ Vp C U and V p, V 6 02' Just as in Theorem 3.18, for 
a U p LJ 

any a 6 .A-, r V = U. Then, L WV = "1. Thus, H c1:'.2' p c Ua.. pap c p 

Therefore, '{1 C 'T ' Likewi se, ~2 c 7 and thus, T = G ' II 
2 1 l 2 

Definition 3.16 was stated in terms of Sl and S2' 

However, the definition forces 8 = S2'
1 



32 

Theorem 3.21. If (8 ,1"1) = (82'~2)' then 8 1 = 8 2 •1 

Proof. Let p E 81 • Since p ~ Sl' 3 u ~ -'2'1 ~ P 6. U. Since 

U t 1:'1' U €. LN I p E S11 in (Sl' '2'1) • Since U ~ ~ N I pp p 

(S11 ,U is open. Si~ce U is open in (Sl"l' and 

(Sl'~l) = (S2,T ), U is open in (8 2 ,t;). By Theorem 2.26,
2 

U c S2. Thus, P E S2 and 8 c 8 • The symmetry of the
1 2 

argument dictates that if p E 8 , then p ~ 8 and S2 C 8 •
2 1 1 

Therefore, Sl = 8 2 • The case where (8 1 , [0] ) :: (8 2 , to} ) 
forces Sl = S2 = 0. 1/ 

Theorem 3.22. Let a denote the collection of neighborhoods 

in (Sl'~l) and y the collection of neighborhoods in (82'~). 

Then, (81'~1) = (82'~2) iff ~ and y generate the same 

collection of open sets. 

Proof. (Sufficiency) If (Sl'~l) = (S2'~)' then the 

collection of open sets in (81'~1) is the same as that in 

(82'~2) by Definition 3.16. Since ~ and y generate this 

collection, they generate the same collection of open sets. 

(Necessity) If ~ and y do generate the same 

collection of open sets, then the definition of equality for 

quasi topological spaces is satisfied.11 

Corollary 3.23. For quasi topological spaces (8 '[1) and1 

(82'~2)' (81'~1) = (82'~2) iff~l and~2 generate the same 

collection of open sets. 
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Proof. The proof holds by Theorem 3.22 and the remark fol­

lowing Corollary 3.19.11 

A question that needs consideration is the uniqueness 

of an extension of a quasi topological space. It will be 

shotm -in the follovTing proof that given a quasi topological 

space (S,~), then (S,~) extends to a unique topological 

space [S,oJ. 

Definition 3.24. For topological spaces [Sl,olJ and [S2,02J , 

[Sl,olJ = [S2,02J iff Sl = S2 and 01 = 02. 

Theorem 3.25. Given (St~), then (SJ~) extends to a unique 

topological space [s,oJ. 

Proof. Suppose the contrary. Suppose (s,21 extends to [S,olJ 

and to [s,a where cr t 02. Thus, 3 V £ 0 1 3 V ~ 02 or 3
2J l 

V E 0 3 V ~ 0" Let V 6 01 but V ¢ 02. The symmetry of
2 1 

the argument handles the other case. For all p E V 3 N'(p) ~ 

pEN' (p) C V where N' (p) E [N' pIp E sJ. Clearly, 

V = U N' (p). By the definition of extending (S,'2:') to 
p E- V 

[sea J, U N' (p) ea. Thus, V E 02. Therefore, the 
2 p e V 2 

assumption was wrong and 01 = °2 " Thus, [s,olJ = [S'02J by 

Defini tion 3.24. /{ 

Since a topologic~l space is also a quasi topological 

space, a quasi topological space may be a topological space. 
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Theorem 3.26. Let (s,11 be a quasi topological space and let 

o denote the collection of open sets in (s,~). Then, (S,~) 

is also a topological space with cr the topology, [S.oJ, iff 

VUE [N III PES] and V f. [Npip f. sJ a~d V p f: U n V p 

3 W E:. [N I pES} :7 p E. W c U n v. 
p 

Proof. (Sufficiency) Since U and V are open U n V is open. 

Thus, V p E U n V "3 ~J E {N I PES] ~ p G W C U n V.p 

(Necessi ty) It must be sho",m that (S, '2:) satisfies the 

aXioms for a topological space. By Theorem 2.26, the remark 

following Corollary 2.12, Theorem 2.25, and Theorem 2.11 a 

quasi topological space satisfies the first four aXioms for 

a topological space. To prove that axiom 5 holds, consider 

A,B E. a and A n B. Since A e. 0, A == UJ Aa. i'lhere A E 
a. E. -'l-- a. 

fNip £ S} V a. t: A. Likel~ise, B::: U By. Considero U . u Y & f3 LJ 
(a.e::.;l Aa.) n (y Eo SB ). Let x E (a. E -A-\l,) n(y G ~By). Then,y 

x e U A and x f: U B. Thus, x E A for some o. andJ 
a. C~L ex y E 13 y ex 

x E. By for some y. Therefore, x t: A n B for these ex and y.LJ a. y 
Thus, x E. ~...A-. (A n B ). Consequently,

ex o. y
 
y G 13
 

( ~" A ) n ( U B ) C ~ A (A n B ). Let x (. a. 
u 
f. JL (A 

. 
)(\ B0. L.JL ex y E.	 ~ Y n. <::. J'- a. y y€~ a. y'y c 13 

Then, x E A n B for some a. and y. Thus, x {;. A for this a. 
a. y a. 

and x E. B" for this y. Therefore, x f:: U A and 
r 0. EJ.- a. 

x £ U B. Then, ld I (A n B ) C (U A) n ( LJ B )
YEl3y	 a.c;..J\.- ex y a.E...A-.a Y6~y 

y Eo f3 

and (U A) n ( U B ) ::: U	 Since, given a 
a. y y a. E. JI- (An. n B ).aE:.Jl E. f3
 

YES Y
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and y, by the hypothesis Act n B = LJ C where C ~ 
Y --t' {' r. Ai

[N I p E. s} V A( ~ l:, An B is the union of a collection of p 

sets from {N j PES]. By asinduction, in the proof forp 

Theorem 3.15, the intersection of any finite Gollection of 

open sets is open.. Thus, (S, T) is a topological space. 1\ 

The question now to be discussed is that of what 

topolo~ical spaces can be considered as extensions of quasi 

topological spaoes. It will be ShOltffi that any topological 

space can be considered as the extension of at least one 

quasi topological space. The uniqueness of the question 

will also be considered, i.e., can more than one quasi topo­

logical space be extended to the same topological space. 

Of course, every topological space can be considered 

as the extension of at least one Quasi topolo~ical space 

since a topological space is also a quasi topological space. 

Theorem 3.27. E"'lery topological space can be obtained by 

the extension of at least one quasi topological space. 

Using a trivial example it can be seen that given a 

topological space there can exist more than one quasi topo­

logical space that extends to this topological space. 

Example 3.28. Let 1:'1 := {[El], {a'b}, ta,c} , ta,b,~} and 

L2 "= {fa, b], fa, ~ ' {a, b,~} where S "= [a, b, 0. Thus, 

(S, z;.) /: (8-. ( ) but (S,1:'2) and (S, ~) botrl extend to [S,a]2
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1qhere 0" ={ ¢, {8]' [a,0' {a, ~, [a, b, ~] • 

The question then is under what conditions, if any, 

does more than one quasi topological space extend to a given 

topological space. 

Lemma 3.29. If [8,0] is a topological space where r 1s a 

basis for 0", let A denote the set of all non-empty finite 

intersections of sets from 7, i.e., K l;;, A iff K = 1 QInVi 

where Vi E. 1: ViE. In' for some n t N. Let B C A, then 

TUB is 8. bo.s.'ls for CT. 

Proof. By defin.'l tion T' generates 0". Let 1: U B generate L 

It must be Sh01 that L: = o. If V €.. 0, then V:= lJ V 
UtA 0. 

where V 
U 

£ L V ~ E A.. Since 1:'C-t: UB, Ua.t 1:UB Vaf..A.... 

Thus, U VEL Therefore, ° L L Let VEL Then,
atA. a . 

V = U U where U f. l U B V a E .A • If U E ?: V a. E: A,a 

then U Ua. f ° and V f 0". 1vere this always the case, teo. 
atA- a. a 

af..A.. 
Suppose for V:= U Va 3 V J V t. B. For these a, Va.n a E-A.... a D'. 

:= i f I Hi where ~li f 7: V i ~ 1 , for so m (;. N, Sincem
ill 

111. l: cr If 1. f l m• then 1. QImHi f cr, Thus, n W = U V 
i E 1m i y E ~ y 

vlhere V {: 1: V y £ fl. Therefore, V these a .3 Va. == Q H.
Y i 1m 1 

for some m ~ N, U := U V i'lhere V f: <:' Vy E~. Thena y ~ ~ y y 

V (. CT since V ~ U S i'lhere S f.1:'VA.(f. ~ 01/
"'-( E ~ A( .ot( 
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Theorem 3.30. If [S,cr] is a topological space 'where 'lis a 

basis for cr, let P ~ [A , V p f S pick one and only onep 

A ~ T .:J p E. Ap]. Let A denote the set of all non-empty
p 

finite intersections of sets from P, i.e., K ~ A iff K = 
for some N. B Ci QInAPi Hhere Api E. P ViE In' n t. Let A. 

Then, P U ({'-B) is a quasi topology L on Sand (S,L) extends
 

to [S, crJ.
 

Proof. Since PeL and V p f S 3 V (;. L, namely Ap ' '3 p E
 

V C S. L is a quasi topology on S.
 

If it can be sho~n that the extension of Lt i.e., the 

extended neighborhoods (2:1) is a set 1:' UD v.rhere D is a 

sUbset of the collection of all finite intersections of sets 

from r, then by Lemma 3.29 Ll is a basis for a and thus 

(S,L) will be sho~~ to exte~d to [S,a] by the definition of 

an extension of a quasi topoloeical sphce to a topological 

space. 

Let E f Ll' then E::::: ') Vi where Vi ~ P U (t"-B) V 
i t In 

if In' for some n EN. Since Vi ~ P U(Z'-B), Vi E P or 

Vi E. 1"-B. If Vi £ P, then Vi (: T since P C 1:. If Vi (; T-B, 

then VI' f7'. Thus, E = n v. TtJhere V. ~<: Vi 6. I. 
i E In lIn 

NOlI it must be sh01m that c: C 2:
1 

• Let E E 't', then E E P or 

E E. ~-P. If E E P, then E (;, Ll' since pc 2: C IfLl , 

E f r -P, E E B or E E -B. If E E •• B, then E 6. 'l-B and 

E £. Ll' since['-B C L cLIo If E {;, B, then -E = i QlmUi 
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where U
i 

E. P V 1 t. 1
m

and m £ N, since B c AI Thus, E {;.. Ll 

by the defini tlon of Ll I Thus, r c. Ll I Therefore, 't:' c. L
l 

c. 

[E , E = i QInVi \'lhere V1 E ?:: V 1 (;. In and n ~ .N} I Thus, 

r: C C 1: U F \'1here F c.. fE IE::: 1 QInVl wh~re Vl 6.?:Ll 

Y i (;. In and n EN]. Precisely, F = [E I E = i QInVi where 

Vi £ -r V i f In and n E, N- IJ • Obviously, Ll = 1: U D where 

D C Fill 

An immediate question is whether or not this theorem 

considered all possible quasi topological spaces that extend 

to a given topological space. The answer 1s yes. 

Lemma 3. 31. Given (S, n :=> ¢ t L, then (S, r- [¢]) = (S,11 . 

Proof. Let the collection of neighborhoods for (S,T) be 

denoted here by a l By the definition of neighborhoods 

Ia = 'L- [¢} Since (Z'- [0] )-[q ::: L'-f¢} = a, the collection of 

neighborhoods in (s.r-{¢]) is the same as that in (s,r). 

Thus, the collection of open sets in (S 1['· f0]) 1s the same 

as that in (S, T) • (/ 

Theorem .3 • .32. Given that (S,'l1 extends to [S,oJ, where a. 

and ~ denote the set of neighborhoods in (S,'T) and the set 

of extended neighborhoods respectively, then (S,~) ::: 

(S,CL U (f3- (~-a))). 
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Proof. If ¢ ¢ 1:. then L - \?1 = T ::: Cl and a. U (~- (~-o.»
 

= a. U (~ () -(~ n-o.»::: a. LJ(~ n (-~ Uo.»::: a. U «~n - a)
 

L)(o. n 13» = a. U (¢ U (a. n 13» ~ a. U (a. n 13) = (a. U a.) n (o.U 13)
 

= a. n !3 = 0., since a. c~. Thus. (S,'t) = (s,0..0 (~-(f3-ex.»),
 

since ex. LJ (~- (~-a.» ::: a. and t::: a..
 

If ¢ £1::. then a. ::: 't-(¢} and (S.1:) ::: (Slo.) by Lemma 3.31. 

Thus, (S,T) = (S,o. U (f3-({3-ex.»), since a. ::: a. U (f3-(~-0.».11 

Since ~ is a basis for 0, a. U (f3-(!3-0.») is of the form 

expressed in Theorem 3.30 for a quasi topology. Thus, given 

a topological space all quasi topological spaces that extend 

to it can be expressed by Theorem 3.30. 

Since every quasi topological space extends to a 

topological space, all quasi topological spaces can be expressed 

by Theorem 3.30. 

Now a topological space is related directly to a struc­

ture, a quasi topological space, more fundamental to the 

foundation of topology, set theory. The quasi topological 

space, which rests solely on a single axiom, through two 

definitions and an extension was extended to a topological 

space. The relationship between the two structures having 

been established, a further study of the properties of a quasi 

topological space and s ltaneously a study of invariant 

properties under the extension frc], the quasi topological 

-
space to the topological space will be undertaken. 



CHAPTER IV 

CLASSIFICATION OF SPACES 

By classification of spaces is meant that the spaces 

are classified as a certain type iff they satisfy certain 

conditions. 

Definition 4.1. A quasi topological space (S,11 is Hausdorff 

iff V p ~ 8 and q ~ S 3 p ~ q 3 disjoint open sets in (8,~), 

U and V 3 p £ U and q G V. A topological space [S,a] is 

Hausdorff iff Vp E 8 and q E S ~ p t q ~ disjoint open sets 

in [8,aJ, U, and V ~ p £ U and q t V. 

Then, any space that satisfies this condition is Hausdorff. 

By invariant under the extension of (SIZ) to [S,aJ 

is meant that the property under consideration in (S,i) also 

holds in [S,aJ. 

Since an open set in (S,~) is also an open set in [S,a], 

Hausdorff is invariant. 

Theorem 4.2. Hausdorff is invariant under an extension from 

a quasi topological space to a topological space. 

Henceforth the definition for a type of quasi topologi­

cal space will be used for the corresponding type of topologi­
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cal space with the obvious substitution of [S.aJ for (S,ll. 

Definition 4.J. A space (S,7') is discrete iff .every subset 

of S is open. 

Since a discrete space is by definition a topological 

space, "discreteness" is invariant. 

Theorem 4.4. "Discreteness" is invariant under an extension 

from a quasi topological space to a topological space. 

Definition 4.5. A space (S.~) is regular iff V closed set 

C and all points p, p ~ c. 3 disjoint open sets U and V 3 

C C U and p E V. 

Theorem 4.6. A regular quasi topological space (S,11 extends 

to a regular topological space [S,oJ. 

Proof. It must be sho~m that if (S.T) is regular, then its 

extension [S,oJ is regular. Let A be closed in [S,aJ. Then 

S-A is open, by definition. Thus, S-A:::: U U where U £ 
a EA. a a 

[Np ' I p E ~V(Y. £..1-. If A == ¢. then S-A :::: S and VpES"3 

disjoint open sets Sand ¢ 3 ¢ c ¢ and pEs. If A :::: S, then 

S-A :::: ¢ and the definition, Definition 4.5., is vacuously 

satisfied. Thus, ~ A ~ ¢ and S-A f- ¢. If P £ S-A, then 

p f Ua for some a E...A... Since p E. Ua , p E i QlnVi t'lhere 

Vi {;.. [Np I p E S}Vi ~ In' for some n ~ N. _Thus, Vi is open 

in (S."?J V i £ In- Thus S-Vi :::: Bi is closed Vi E In' Since 
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p f Vi V i fIn' p ({ Bi V 1 f In~' Thus~ Bi is closed in 

(S,T) Vi ~ In' since Vi f the open sets in (S,'1 Y i ~ In. 

Thus, Bi ls closed and p € B1 , Then] disjolnt open sets Ci 

and Di 3 B1 C Ci and p f Di ~ 1 E In' since (S,L) is regular, 

Consider i I ) I Ci and n D ;' Since p £ Di Y i E In'1~ n i c= In 

p EO 1 (\ InDi · Is A C 1 ~ InCi ? Let x f: A but ~.$ Bi -;> 

x ~ Bi , Thus, V Bi x rt B1 , Then, x £ V1 ViE In and x f.:. 

i QInV1 ' Thu.s, x (; U for some Ct (O..A and x E a ~..A.. U Ifa a , 

x E U U, x ft. A since UJ U =:: S-A, This contradicts 
a E..A.. a a E ..Jl. a 

that x f A, Thus, 3 Bi 3 x fBi' Since Bi C C
i

, x E Ci and 

A L U Ci , Suppose ( n Di ) n (i VI C ) f- ¢, Then, 
i ~ In i f. In t n i 

~ x E i 0I Di and x ( U Ci , Then for some k E I , 
c:.. n i ~ In n 

x ~ D and x E Ck , This contradicts the fact that Ck n Dk k 
=:: ¢. Thus t 1 QI Di and . V Clare dis joint. Since Ci and 

n 1 c. In 
Di are open in (S I 'l) V i ~ In' Ci and Di are open in [SraJ 

V i f In' Thus, by axiom 4- for a topological space . S) C. 
1 c: In 1 

is open in [StuJ, By axiom .5•. n D is open in [S,rrJ.
1 E In i 

Therefore, the conditions of Definition 4 . .5 are satisfied 

for the extension of (St'L)t [S-,a]. II 

The follm·:in!'~ example illustrates ths.t non··C:iscret;e, 

non-Hausdorff, and non·-regular quasi topological spaces cS.n 
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extend to discrete, Hausdorff, and regular topological spaces. 

Example 4.7. Let 8 = [a, b, 0 and T = [(a} [a, b}, (a, cJ, {b, c}] •t 

Definition 4.8. A space (8,11 is TO iff give~ any two points 

p and q, p ~ q, 3 M ~ M is open and p ~ M, q ~ M or q ~ M. 

p Ef N. 

It is clear from the definition alone that a TO quasi 

topological space does extend to a TO topological space. 

Theorem 4.9. If (8,1) is To' then [S,oJ is TO' 

In contrast to discrete, Hausdorff, and regular spaces 

the following holds for TO spaces. 

Theorem 4.10 Given any TO topological space [S,oJ, then0 

any quasi topological space (8,7) that extends to [8,oJ is 

also a TO space. 

Proof. Given any two points p and q, p ~ q, ] A open in 

[8,OJ ~ p ~ A, q ~ A or q ~ A, P ~ A. Suppose without loss 

of generality p ~ A and q ~ A. Consider any quasi topological 

space (S,T) that extends to [5,oJ. If A(;.[, the proof is 

essentially done. Suppose A (. L . Then A = U V,.,. v.'here 
aE.A ..... 

Uo; EO 0p' I P E 0V 0; E.A. nP E- A. then P E- U" for some 

a ~1. If p £ U , then p E. i r I Ni 'l'rhere Va :::: .0 Ni for 
a c: n . 1 t'" In 

some n £ Nand N1 E. {~!p I P E SJ ViE In' - If P E 1 QI N1' 
n 
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then p E Ni V i = l, •.• ,n. Now, if n = 1 then Da = Nl, and 

the proof would be finished. For n f 1 if 3 Nk where 

1 < k < n 3 q ~ Nk, then the proof would be finished. Thus 

~ that q (. Nk V k = 1, ••• , n. Then q E 1 ~ InNi and q (; Da. c. A 

and this contradicts the fact that q ¢ A. Thus, 3 Nk where 

1 :< k .:: n :1 q ~ N but P E Nk • IIk 

De·fini tion 4.11. A space (S, i) is T iff every point is al 

closed. set. 

The follo\'ring theorem is a direct consequence of 

Defin1 tion 4.11. 

Theorem 4.12. A Tl quasi topological space extends to a Tl 

topological space. 

Example 4.7 illustrates a qu.asi topological space 

that is not TIl hOl';-ever one \'1hich does extend to a Tl topolo­

gical space. 

Definition 4.13. A set K is countable iff K = ¢ or 3 a 

mappiY~ of onto K. 

Definition 4.14. A space (SIT) is second countable iff 3 a 

countable basis for the open sets in (S,~). 

If, for a second countable space (Sfll with a count­

able basis ~ for the open sets, it can be sho1\.Tll that 
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[Act I Act = 1 QInUi where U1 £ a v 1 E In. V n ,; N} 1s 

countable, then second countability is invariant under an 

extension from (s. T) to [S,a] for the following reason. The 

set [Aa A = n V vThere Vi G 13 V i (;. In; V n EN} isr a 1 E: In i 

the set of extended neighborhoods and is thus a basis for o. 

To do this the mapping required by Definition 4.13 

must be eXhibited or a previously proved lenma must be used. 

A lemma will be used and the lewna states that the union of 

a countable collection of open sets is open. To prove this 

lemma. however, N x N must be shovm to be countable and a 

subset of a countable set must be shown to be countable. 

Lemma 4.15. A subset of a countable set is countable. 

Proof. Let K be countable and S C K, If S = ¢, then S is 

countable by definition, If S ~ ¢t let p £ S. Since K is 

countable "] fiN onto 7 K, 

Define g I K __~ S 3­

g(x) = x if xeS 

g(x) = p if x ~ S but x E K. 

Clearly, g:K ont~~ S. Thus, since g and f are onto gflN onto~ S 

and S is countable. II 

LeIIUlla 4.16. The set N x N is countable.
 

Proof, Let K = [2P 3q 1 p,q E I~, The set K is countable,
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since N is countable by Defini tion 4.15 and KeN (Lemma 

4.15). Define fIK~N x N 3f(2P3Q ) :: (p,q). This map­

ping is onto for given (p,q) 6. N x N 3 x :3 x :: 2P3q and 

thus x E K. Since K is countable, 3 gIN onto~ K. As in 

Lemma 4.15, since g and f are onto, fg:N onto~ N x Nand 

N x N is countable. II 
Lemma 4.17. Union of a countable collection of countable 

sets is countable. 

Proof. If the collection is empty, the union is countable 

by definition. If the colleGtion is not empty index it by N, 

[Ai}i ~ Nt Le., 3 frN =---7tl\Ji E. N.3 f(n) :: ~~-n Vn t N. 

By Lemma 4.15, the sUbcollection consisting of the non-empty 

sets from [Ai1i £ N is countable. If this sUbcollect1on 1s 

empty, then i ~ NAi = ¢ since Ai = ¢ Vi € N and thus 

i ~ N Ai is countable. Suppose this subcollection 1s non­

empty, Then. it can be indexed by N since it is countable, 

Thus. denote it by [BJ i E N' i.e., 3 g~N ----7>{Bi}i E N 

J,g(n) :: B V n (. N. Note that i ~ N Bi :: i l2 N Ai' since 

1
n 

fBi i E N consists of just the non-empty sets from [Ai} i E N' 

S1nce each En is countable, "3 a function hnlN onto.". B ~ hn(rn)n 

~ p(n,m)' i,e" p(n,m) is the image of hn(m), Since N x N 

is countable 3 IIlIJ onto> N x N, Define, kIN x N~ U B 
. i E: N i
 

) k(n,m) = p( )' This function is onto for a given

n,ill 

p £ 1 ~ NBi' pEEn for some n E N. Since B is countablen 
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"3 hand m E. N 3 h (m) = p. Thus P = P ( ) and k (n, m) = n n n,m 

p( )' Therefore, k 1s onto. S1nce k 1s onto and I 1s 
n,m 1,1- onto U' LJ 

onto kIlN ----~ 1 € N B1 and thus 1 E N B1 1s countable. 

U BTherefore, 1 ~ N Ai 1s countable s1nce 1 ~ N A1 = 1 {; N 1 

and 1 ~ N B1 1s countable. ill 

Theorem 4,18. Let [Ui}i ~ N be a countable collection of 

sets. Then, [Ao. \ Aa == jQInVj ~ihere Vj ~{U}iGN 

Y j f.. In' V n E- 01S counta.ble , 

Proof. This theorem 1s proved us1ng Lemma 4 , 17. For each 

n ~ N let& QInVj I Vj E (Ui}i C N V j E In for one and 

only one n E ~ ~ L~ InvJ. Then LQInVJwill be show" 

to be countable. Then, the lemma 1s applied to conclude the 

proof. Induction is used to show that [j ~InVj} is countable 

Y n E N, 

Let n ~ L Then, LQII vjJ ~ [VI} and since VI is a 

variable over { uil i E N' then LQIIVj} ~ fVI? ~ {Ui$i co· N 

and ~uil i E N 1 s countable by the defini tioD of [u i?1 E N' 

Let n ~ 2. T'nen, LQ12Vj} ~ [VI n V21 and consider 

the "2" intersections which conform to the-folloNing form. 

[VI n V2] = {Ul nUl' Ul n U2 ' .,., Ul n Uk' ••• : U2 nUl' 



48 

U2 nU
2,···, U2 nUk"": ••• ; Um nUl' U nU "", umn Um' m 2

••• , U n Uk"": 0'']' All "two" intersections are thusm 

obtained. For if Un nU is under consideration Un n U ~ 
m m 

{Unn Ui \ i = 1, 2, • 0 ., m, •.•} and since (U nUt n· i 
\ i = 1,2, 

••• m, ••• } C VI n V
2 

all "two" intersections are under consid­

eration. 

Now let Ai be defined ViE: N as follows. 

Al = fUl nUi I i = ...}1,2, n,••• I 

A2 = tU2 n Ui I i = 1,2, 0 n, .. o}• 0' 

An =IUn /l Ui \ i == 1, 2, • 0 n, • 0 o}., 

• 

Clearly, by the way the A's are defined there is a 

countable collection of them, i.e., [~1k ~ N is a countable 

set. Thus, 3 fIN -7 tAJ k E: N "7 f(n) ::: ~. 

For all Ai define f i J N ------7' Ai by f i (n) = Ui n Un' 

Clearly, this is a function onto Ai' for given uill Uk' f i 

maps k to Ui n Uk' Thus, Ai is countable V1 6:. N and thus 

b~r Lemma 4.17 V Aj 1s countable.
iCoN -

NOVf assume a given n E N is countable.f. Q v.J forU In J 

Thus, a given n can be indexed by N, LetL~\nvJ for 

L~ I/j] '" {Bk}k EN' 
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Define Ci V 1 ( N as follows. 

C = [Bl nU , i = 1,2, .. ,}l i
 

C2 = [B2 nVi , 1 = 1,2" ..}
 

C = {B () Ui ~ i = 1,2, •..}n n 

All j ~ In+lVj e.re obtalned ln [ck1k E N' For j 
n£ In+l

Vj = 

( () V.) n V 1::: (n V ") n Uk for some kEN. Clearly J 

j t In J n+ j E. In J

1o V j E. [. 0 vj . Thus, (" 0I v.) () Uk ::: ~ n Uk for 
j t: In J t:. In ) J n J 

some hEN. However, () Uk f:. and [cJ i t:: N is countableBh Ch
 

s1nce 3 gIN -";';>~Ci]i £ N ;> g(n) = C and g is onto since
n
 

g1ven Ck ' g(k) ::: Ck ' Each Ci is countable as are the Ai'
 

Thus, by Lemma 4,17 U c. 1s countable. Therefore,
1 G N 1 

[.n V j1 is countable. 
J f. In+l U 

1'rlus, givem an3r n E N( Q V; is countable. SinceL In jJ 
N ls countable 3 a countable collectlon of LQInV j} , Thus 

byr)'el:l!lla 4. 17 the1r unl.~n i s cou~ table • Then. Go. 1 Ao. = 

j t InVj ~\'here vj f. [udi f:. N V J (. In' Y n E. N] is count­

able. H 
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As a reGu1t of Theorem 4.18 the following is true. 

Theorem 4.19. Any second countable space (S,~) extends to a 

second countable topological space [S,oJ. 

Proof. If S I. ¢, let (S,n have a countable basis for the 

open sets. Denote this countable basis by ~2. Then, (S,~ = 
(S'~2). Also by Lemma 3.)1, (s,T) = (S'~2-[¢}). So let 

~2-{¢} ~~. Since ¢ E~l' ~ is a set of neighborhoods for 

the open sets in (s,T). By extension the collection of 

extended neighborhoods is fAa I Aa ~ j QInUj where Uj (. 'l1 

Y j E. In' Vn E: N]. B;y Theorem 4.18 and the fact that "1 is 

countable I {A II Aa. =., j QInUj T~There Uj E. 'll Y j f. In' Y n ~ a 

N] is countable and thus [S,aJ is second countable. If S = ¢, 

then (S, [¢}) extends to [S J {¢] J and both are second countable. t\ 

Using Le 4.15 any quasi topological space that 

extends to a second countable topological space can be shown 

to be second countable since the set of neighborhoods in the 

quasi topological space is a subset of the set of neighborhoods 

in the topological space. 

A concept simila.r to that of second countabili ty is 

that of first countability where tcad of referring to a 

basis for the entire collection of open sets the concept 

rests on a basis of a point. 

Definition 4.20. A collection ~ of nei~hborhoods of a 

point p in a space (s,T) is a bas1s at p lff Vopen set 
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U :7 p £ U, 3 v f ~ :3 v cu. 

Definition 4.21. A space (S,T) is first countable iff 

V p f. s, "3 a coui1table basis at p. 

Theorem [f.22. A first countable quasi topological space 

(S,~) extends to a first countable topological space [S,a] 

Proof. Let p £ 8 and y a countable basis at P. By Theorem 

4.18, the extension of y. denoted here by y', is countable, 

It must now be argued that given any open set U in the topo­

logy cr :3 p E U I '3 V ~ y' :;) V c... U. Of course, V V ~ y' p £- V 

since p £. v.J '1 W E y. Thus, consider U £ 0 "3 P £. U. Thus I 

U = U A 3 A f. {Np ' I p £ ~ V o. E. A. Sinc e p E. U I
aEA. a CL ::s 

p (. A for some a. fA. Since A L {N ' I p ~ ~ V erE A ,a a p 

A = .n Bi Hhere B. f {N I p 6 81 ViE. I. Since p f A a. i f In 1 p ~ n a. 
p f Bi ViE In' Since B i is open in (Sir) ViE In' 3 for 

all i ~ In a C1 ;; Ci f: y and p E Ci c... Bl, Consider i QlnCi& 

Thus •. 0 C. (. y' and p E '()I Ci since p E. Ci Vi£. In' 
It.. 1n 1 le- n 

HOll1ever, . nE: C C ['n'-l hence e. subset of Au and ofn Bi1 In i i ~ In 

U. For if x f i QlnCi' th:··~ x to Ci Vi f In. If x £C i 

V i f I , then x E: Bi V i f I since C. c.. B. ViE I. Thus I n n 1 1 n 

x lS. B and hence x E A an x t. U I Therefore t P E­0 
i c I n i a 

n C C U ali. c:,
i e • QI Ci E y t C (N • I p E ~, [S I cr ]

i f.. In 1 n L p 



1s first count8.ble. II 

As an example of a nOh-first countable space (s.1) 

that extends to a first countable space [SroJ consider the 

following example. 

Example 4.23. Let S ~ R where R denotes the set of real 

numbers. Let T = [r,bJ I a, b E R and a f; b}. 

Consideration ShOIQS that this is a non-first countable 

quasi (topological) space that extends to a discrete topo­

logical space which is first countable. 

Since first countability and Tl have been sho~m to be 

invariant properties their combination called an I space is 

invariant. 

From here on quasi space and quasi topological space 

are used interchange~bly. 



CHAPTER V 

SUBSPACES AND CARTESIAN QUASI PRODUCT 

With a mathematical structure in hand a way was 

sought to generate the same type structure from that on 

hand. Such 1s the case with a subspace of a quasi space. 

Definition 5.1. If T is a collection of sUbsets of a set 

Sand K C S then K n 7: ::: {K n A l A t r]. 

Theorem 5.2. If (S,Ll is a quasi space and K G S then 

K n ~ is a quasi topology on K. 

Proof. Let p £ K. Then, p ~ S since K C S. If P G S. then 

"3 A G 1: 3 pEA. Thus, P E K n A and K n A £, K n T. If 

K ::: ¢, then K n ~ = {¢} and the definition of a quasi topo­

logy is vacuously satisfied. II 

Definition 5.3. If (8,L1 1s a quasi space and K C S, then 

(K, K n~) is a sub quasi space. 

Theorem 5.4. If (8-''(1) == (S'~2)t then (K, Kn-z:l ) == (K, Kn-T'2)' 

Proof. Let A be open in (K, K n 't'l) t then V p <=: A .3 Bp E.. '1:'1 

3 K () Bp C A Vlhere p 6. B ' Since B C 1:'1' B is open inp p p 

(S,t;). Thus, V q E. B "3 Cq 3 q E C c B ~'There C € £:2 
P q p q ( 

V q £ Bp ' For p £ B 3 Cp E '2"'2 ;> P E C C B ' Thus,p p p 



54
 

K nC C K n B for if x E K nC • x (; K and x E Cpt If
P p p 

x £ Cpt then x E B ' thus x € K n Bpi Thus, V P ~ A 3 K n Cpp 

~ p Eo K n C c. A and K n C E K n 't'2' Thus, A is open inp p 

(K, Kn 'Z"2)' Like"t'11se, if A is open in (K. K0"C'2)' then A 

is open in (Ie, K n 1:'1)' Therefore, (K. K (l '2:'2) == (K. K (l""2:"1). 11 

Lemma 5.5. If (S.~) extends to [S,O], then considering the
 

extens.iOl1 of (K. K n '() where K c.. S, A C:: the extended neighbor­


hoods of (K, K n -Z:) iff A = (i gInNi) n K Hhere Ni E- the set
 

of neighborhoods of (S,') V i ~ In and n ~ N.
 

Proof. \-That must be proved here is that i ':' I (Ie nNi )
 

n n n 
== K n (i E InNi)' Let a E i E In(Kn Ni ), then a E K n Ni 

ViE In' If a E K nNi V i 6. In' then 8. t, K and a E N
i 

ViE, In' Then f a E K and a E Q Ni • Thus, a f; K n () In (\ _i 
(1(i 6 InNi) and i E" In(Kn Ni ) c K n(i E InNi)' Let aG K 

n(i QInNi ) • Then f a E. K and a E ~ QI Ni) and 1 f 

a£ iQlnNif then a E Ni Vi f: In' ThU~. a E. K and a ~ Ni 

Vi f:. In' Therefore, a £. i QI (K () Ni ). Fin8.11y, 

K n(i ~ InNi) C i Qln(K n Ni')nand K n (iQ InNi) = 

n (1\ n N ) I nii f. In 

LenUlla 5.6. Given A and [B 1 r L' then A n ( U B ) =U pJ p e-J p f:..1L P 

P E./L (A n Bp ) • 

Proof. Let x E A n ( U B )' then x E A and x E YJ B' 
Pt~ p pc~~ P I 

Since x f:. U B x E B for SOi'::: p E -il. Then x E. A andpP £.JL P 
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U (A nBp )' p~ A­
x f; B 

p 
for SOlle p f. A. Thus, x G. A n Bp and x ~ 

Therefore, A n (p~.A.. Bp ) C P ~A. (A nBp )' 

Let x €. p ~.A. (A n Bp ) t then x E A n Bp for some 

p ~ ..1.. Sinc,e x £ A n B x G A and x E:: B for this p~.A- •p p . 

If x 6: Bp ' then x E U B. Thus x f: A and x G li..A- B •U p£.A. PUP P 
Then, x fAn (Pf..A...Bp)' Thus, pG.-A. (A n Bp ) CAn (pV~Bp). 

Therefore, A n( U. B) =: U (AnBp ).1l
p 6Jt.­ P P f: .A.. 

Follol'i1ng Lemmas 5,,5 and 5.6 the folloNing theorem 

can now be stated and proved. 

Theorem 5.7. If (S,T) extends to [Sta], then (S,K n'l') 

ext ends to [s t K no]. 

Proof. It must be sho~n that the extended neighborhoods of 

of extended neighbor­
( 

where V~ ~ the set of 

U. 8i nee U ba - a 

Ni (; [Npip E ~ \I i ~ 1m 

5.5 

in [S, K ncr]. Then, 3 B E a ~ A 

=: a Y..A..Ua '3 Ua E. [N' pIp € ~. 
By Lemma 5. 6 l~ n ( U Ua ) = 

a E-..A.. 

then p ~ K n U a for some a E.A. • 

(8, K f) 1:') do fo:.cm a basis for the topology K n a. Let 

A ~ K na, i.e., A is open 

= K n B. If B E a, then B 

Thus I A = K n ( U U ).
a E--L a 

U (K n Ua ). If pEA,
aE-A.. 

If p ~ K n Ua , then p E. K and p E 

[ N I pIp ~ q U = (IE Ni hlhere 
a i 1m 

and m <: N. Thus. P E K n (i QIm1'l ) • By Lemm 

K n (i (I T. ~·ri) is an element of the set 
c: -L' U 

hoods of (K, K n '(). ThUS, A,= SEY Vs 
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extended neighborhoods of (K. K n~) V V • II 
. ~ 

The method now to be discussed in relation to generat­

ing quasi spaces from others involves the concept of the 

Cartesian product of a collection of sets. 

Definition 5.8. Let 01 and 02 be collections of sets. The 

Cartesian product 01 x 02 of 01 and 02 is a collection of 

sets. 01 x 02 = [F ~ F = U x V where U ~ 01 and V € o~. 

Definition 5.9. Let (Sl.ll) and (S2'~2) be quasi spaces. 

Then (Sl x S2' 1'1 x is the quasi topologlcal product ofZ;) 
(Sl' ll) and (S2'~)' 

A cautionary note is in order. The notation for a 

topological space, [S,oJ' describes the space with ° as the 

topology. However, in speaking with reference to the 

topological product of two topological spaces [Sl,olJ and 

[S2,02J, bases for each topology must be used, for 01 x 02 

is not necessarily a topology on 8 1 x S2' Thus, if r l is a 

basis for 01 and ~2 for 02' describe the topological product 

of [Sl,olJ and [S2,02J as ~l x S2' 1(1 x l2~ where l:l x ~2 

is thought of as a basis and not necessarily a topology. 

"< >" is used here because the usual notation for a topolo­

gical space uses the topology not just any basis. The 

following examples illustrates this. 
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Example 5.10. Let S = [a, b} and 0 ={¢, {a}, [a, b}j, Then 

[8;oJ is a topological space and 0 x 0 = t¢, [(a,a)}, 

{ (a, b )', (at a)}, [( a, a) t (b, a )} ~ ( a, a) t (b , a) ~ (a ~ b); (-b, b ~] , 

HOilever; [(a,b), (a,a)j Ufa,n)~ (b,aU ~ 0 X 0, 

Theorem 5.11. If (8 1 :"t;.) and (82, (Z) are quasi spaces, then 

(81 x 82 , 1; x L ) is a quasi spuce,Z
Proof, Let (p,q) [ 8 x 8 2 , Then, p £ 81 and q t 8 2 , Then,

1 

1 U E 11 and V ~ T z ::; P £ U ~nd qG V, Thus, (p,q) E U x V 

and U x vE T l x £2 by the definition of ~l x [2' If either 

81 or 8 2 is empty, then 81 x 8 2 = ¢ by definition, ~ x ~ 

= [¢J, and (¢, £0]) is a quasi space, II 

Lemma 5,IZ, Given {Auf a, EuL ~tnd {Bo] aE-..JL' then a~ Aa x 

n B = n (A x B ).
o.~JL u a,f-A. o. o.
 

Proof. Let (p,q) E. o.~Ao. x n B Then , p ~ anEo.A.. Aa
a (;.-A. a' 

and q £ a ~ Bo.' S inee p f Aa. V a ~ Jl and q f. B V a E-...A-,o. 

(p,q) f. Au x Bo. V 0.~..A.. and (p,q) E. aQ...A- (Au x Ba.). There­

fore, o Ao. x n Bo. C CI (Ao. X Brv ), Le t (p , q) ~ 
a t-t. a E:..A. a t..ft- "" 

(\ 
(A x Bo.)' Then (p,a) f: A x B Va f..A-, Then, p ~ A a ~J- a ~ a a a 

and q ~ B. \j a £.A... Thus i P (; n Ao. fUld q f rE.I B • 
a o,£...JL a A. a 

Then, (p,q) 6. n A x n Band () (Ao. x B ) c 
o,f-IL a a(;.A. a o.£.../'__ a 

a Q..JL Aa x a Q.A- Eo.' Therefore, a ~ Aa, x a ~ Ba. = 

a (\A. (1-1.0. X Ba ). \I 
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It is henceforth assumed that the topological product 

gives a topological space. 

Theorem 5.13. Let (S,l) be a quasi space and let (S x s, 

~x zj be the quasi topological product of (s;21 with itself. 

Extend (S.L) to <StY) l'lhere ~tY> == [Sta] and y the set 

of extended neighborhoods. Extend (S x S; 1 x 7) to <8 x S. 

s;> where ~ 1s the set of extended neighborhoods. Then, 

<8 x S, ~/ == <.s x S, Y x y/ • 

Proof. It must be shm';l1 that i:l and y x yare bases for the 

same collection of nets or that ~ == y x y. The latt~r course 

will be taken. Let WE~. Then, W::: i ~InVi where 

Vi E- 7: x r V i 6. In' Since vI () V. t \-J ::: n (D. x T . ) 
== i ~ In 1 i E In 1 1. 

and H == n D x n Ti by Lenuna 5.12 ~.'1here E.?: andi Diif-In i E In 

Vi (;. l V i ~ In" Since Di E T \I i {;. In and Ti {; ?: ViE In' 

n T and 1 QInUi are both elements of y and thusi f.- In 1. 

n T. x .QI E. y x Yo Thus, ~ c y x y. Let 101 E y x Y.i f In J. UiJ. n 
Then it is true that, H :: n N x n M. 1'lhere NiE.'?" V

i (; 1m i j E In J 

1 f Ira and Hj E- 1: V j f. In' If m f. n t then ~ n < m. Is 

Q Mj = . n Yj v:hcre Yj == j;{. V j ::: 1 •••• , n and Y. :;: ·rvlnj In J E 1m J J 

Y j ::: n-t-l, 0 • • ,m? The an~n}Ter is yes. Thus, ~1::: n N. x
i E. 1m 1. 





CHAPTER VI 

CONCLUSION 

This paper has shown that an elenentary structure. a 

quasi topological space, extends to a mathematical structure 

less elementary in nature. a topological space. It has sho~'m 

that most of the rUdimentary concepts of a topological space 

also hold in a quasi topological space. Absent from these 

concepts was an aXiom for a topologic8.1 space I that the 

intersection of any finite collection of open sets is open. 

Using this as an objective. a topological space was reached 

by extending the collection of neighborhoods of a quasi topo­

logical space, where this extension is unique. It was shown 

under what conditions a quasi topological space is a topolo­

gical space and how all possible quasi topological spaces 

that extend to a given topological space can be obtained. 

The chapter on classification of spaces showed that 

Hausdorff, discrete. regular, TO' T second countable. firstl , 

countable, and I quasi topological spaces do extend to Haus­

dorff, discrete, regular, TO' T , second countable, first -' .
l 

countable, and I topological spaces respectively. Also evi­

dent in Chapter IV was that any quasi topological space that 

extends to a second countable topological space is second 

countable. Also any quasi topoloeical space that extends to 

tJ 
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a TO topological spac e \'Tas sho\'Tn to be TO' 

Chapter V introduced the concept of a sUbspace and 

revealed the relationship between a subspace of a quasi 

topological space and the subspace of the topological space 

reached by the extension of the quasi topological space, 

where the same subset is used in defining both subspaces. 

The relationship ls, of course, that the sUbspace of the 

quasi topological space extends to the subspace of the topo­

logical space. The Cartesian product of the two spaces was 

introduced in the fifth chapter and the extension of the 

Cartesian product of a quasi topological space with itself 

was sho~rn to be the same topological space as the Cartesian 

topological product of the extension of the original quasi 

topological space with itself. 

Thus, properties, inherent in a topological space 

were related to the corresponding property in a quasi topolo­

gical space. 

The discussion was halted at this point to leave the 

reader with some points to consider and possibly verify. 

Definition 6.1 A space (S,7) is normal iff given any t"ro 

disjoint closed sets Cl and C2 3disjoint open sets Ul and 

U2 3 Cl C VI and C
2

c U
2

• 

The reader might wish to show that a normal quasi 
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topological space extends to a normal topological space. He 

might also wish to verify that sUbBpaces of Hausdorff, dis­

crete. regular, T To' second countable, first countable, I,I , 

and normal quasi topological spaces are respe9tively Hausdorff, 

discrete, regular, TI' TO' second countable, first countable, 

I, and normal or that the Cartesian product of Hausdorff, 

discrete, TI , TO' second cou~table, first countable, and I 

quasi topological spaces are Hausdorff, discrete, TI , TO' 

second countable, first countable, and I respectively, How­

ever, this is not true for regular spaces as the following 

example illustrates. 

Example 6.2. Let S :: [a, b, ~ and 1:= {f a}t [a, b}, i cJ, s]. 
As yet a type of space has not been found that is 

not invariant under the extension from a quasi topological 

space to a topological space. Also it has not been shown, 

nor a counter example exhibited to the contrary, that the 

quasi topological product of normal spaces is normal. These 

problems along with the further development of properties 

of a topological space originating from a quasi topological 

space will be investigated by this author, for one. 
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