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Chapter I 

Introduction 

"A semigroup is a set considered wi th respect to a 

binary associative operation defined in it. The concept 

of a sernigroup is so simple and natural that it is hard 

to say when it first appeared. js Klein, Lectures On The 

Development of Mathematics in The 19th Century (Part I, 

Chapter VIII), points out there were doubts, even in che 

period when the theory of groups was formulated as a 

separate mathematical discipline, as to whether that which 

we call a'semigroup should be taken as ehe fundemental 

concept. However, the problem facing mathematics at that 

stage of its development made it necessary to choose a 

more restrictive concept, that of a group.1l 1 

This thesis is a study of the matrix representations 

of semigroups. The main problem in this area : "Given an 

arbitrary semigroup, is it possible to find a matrix 

representation for that semigroup?1I 

The matrix representations dealt with are matrix 

representations over a group. Chapter I is an introduction 

to semigroups, some of the necessary definitions, and a few 

'preliminary theorems. Chapter II contains ehe theorems 

lLjapin, Semigroups (American ~athematic81 Society,
 
Providence, Rhode Island~ 1963) p.v. Preface.
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and definitions necessary for Chapter III and Chapter IV. 

In particular, principal ideals of a semigroup ana the 
I 

partitioning of a semigroup by these principal ideals into 

IJ,W-,{, and !?-classes have been considered. P~obably the 

most used theorems of the Chapter is Green's Lemma on 

transformations fromFf-class toW-class." It is sho"'rn in 

Chapter III that any completely O-simple semigroup is 

isomorphic to a semigroup of matrices. In Chapter IVan 

arbitrary semigroup is represented as a semigroup of 

matrices. In the more general case the mapping may be a 

homomorphism instead of an isomorphism as in the case for 

completely O-simple selligroups. 

Definition: The ordered pair (S,*) is a se~igroup if and 

only iff (iff) 

(i) for all (~) x,ycS, there exists (3) a unique scS 

such that (3) s=x~y and 

(ii) x,y,Z€S, x*(y*z)=(x~y}~z. 

If the operation is obvious, the set S will be referred to 

as the semigroup. 

Examples of semigroups are numerous. To list a few: 

Any group is a semigroup. 

The set M of all square matrices over the complex 

numbers of order n with respect to ordinary multiplication 

of matrices 1.s a semigroup. The non-singular matrices in 



3
 

M form a semigroup with respect to the same operation. 

The set ~,2,3, ... ,n] with the operation of finding 

the greatest common divisor is a semigroup. 

Let n be any natural number. Let M~{0,1\2, •.• ,n-l~ 

with the operation, X multiplication modulo n defined on 

the set M. (M,X) is a semigroup. 

Definition: An element e of a semigroup (8,*) is called a 

left identity of 8 iff VaE8, e*a=a. e is called a right 

identity of 8 iff a*e=a. e is called an idenGity (two 

sided) of 8 iff e¥a=a*e=a. 

Definition: An element 0 of a semigroup (8,*) is called a 

left zero of 8 iff V af8, ~*a=O. 0 is called a right zero 

of 8 iff a*O=O. An element 0 of 8 is called a zero of 8 

iff 0 is both a left and right zero of 8. 

Any binary operation ·on a se:nigroup 8 may be extended 

to include an identity element by adjoining the element 1 

to the set 8 and defining lfl=l and for all ae8, l~a=a~l=a. 

When this is done, the resulting semigroup 8U~11 will be 

said to have had an identity ele~ent adjoined and will be 

denoted 8 1 • 

Theorem 1.1: If a semigroup 8 contains a left identity e. 

and a right identity ez then el =e;t.' 
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Proof: Assume e. and e~ are, respectively, left and right 

identities of a semigroup (8,*) and suppose that a£8. Then 

e. * e~ =e2. and e," ez =e, by defini tion of left and right 

identi ties. Therefore e, =e2. • 

Corollary 1.1: A semigroup possesses at. most one identity 

and at most one zero element. 

Proof: Assume e
l 

and e2. are identity elements of a semigroup 

(8,'*"). If e\ is em identity of 8 then el* e2. =e l • If e2. is 

an iden ti ty of S then e l 1- el =e j Hence e l =e? In the same• 

manner, "if 01 and O~ are zero elements of S then qtO~ =02, and 

0l:t Of =°1 , Therefore 01 =0£ • 

The image of a mapping, 8, from A into B will be 

denoted (a)8, for aEA. 

Definition: The mapping e of ~he semigroup (8,0) into 

the semigroup (T,*) is said to be a homomorphism, if for 

any x,y€8, (x 0 y ){) =(x )B t-( y )() . 

If B is a mapping of 8 onto T, then e is a homomorphism 

of (8,0) onto (T,*). 

Definition: A one-to-one homomorphism is called an 

isomorphism. 
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Definition: A mapping of a set A into itself is called 

a transformation. 

The symbol ~A will repr~se~t the set of all 

transformations of the set A. 

Definition: The product of transformations e,Yf~ is 

defined as the transformation (jo'fEq3Ya E 1\ (a)(@°-n= ~.a)~1-'. 

Theorem 1.2: The set ~ of all transfor~ati0ns of an 

arbitrary set A is a se~igroup with respect to the opera

tion of forming the product of the transformations. 

Proof: Let A be a set 8nd ~ the set of transformations 

of A. Suppose e,lf/y-f.C{. 
Va(A; (a) (e ..-rf)= [(a)8J1". But by definition of 

transformation (a)8fA, [(a)ri11f'cA and con.sequently so is 

(a) (8 orjJ) E A. Therefore (~, 0) is closed under the operation. 

For all a£l\, (a) {(8oy~] = {(a) (e o)b)),u = frra)9J1P].? by 

definition of product of transforEL1.ations. Also (a) {80 (1;:;-<)1 
= [(a)8J (rf;?) = {ITa)~-rJy. Therefore (a) r(eop)~~ =(a){8 0 (-rf/,)] 

So (B e 7/l);p =8 o (rf;U) , giving that (~,.) is associa t i ve. 

Satisfying the necessary conditions, (~,o) is a semigroup. 

Definition: A one-to-one mapping of a set A onto itself, 

is called a permutation. The symbol JrA will denote the set 
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of permutations of the set A. 

Theorem 1.3: (JJ, 0) is a se::J.igroup.
A 

Proof: Let '(,p £ dJ'A' Suppose r,,'jJ is not a permutation. 

Then 0']1 is either not one-to-one or else cop is not 

onto. 

Suppose 'Yap is not one-to-one. Then 3 a,bE.A3(a)( 'f("f)= 

(b)( 't"j>} but aJb. (aor=a('tjO)=b( oap)=(bY)f' But f is 

one-to-one and therefore (a)¥=(b)~. Also ¥ is one-to

one and so a=b. Hence t)p is one-to-one. 

Suppose O<f is not onto. Then (A) (o'jJ) s: [(A)'tJp. 

(~bere (A)(tjP) denotes the image set of ¥of and similarly 

for (A)o). 

Suppose bE [(A)~.f' Then 3 CE(A)Y,,(C~=b because f is 

onto. Hence 3 a€A3(a)l:c because ~ is onto. 

Therefore [(a)8jf=b and so (A)(oy;)= [(A)~.f' There

fore 'top is onto. Hence ~"f is a permutation. _4ssociativity 

h0lds for general transformations and in particular for 

permutations. 

Definition: The image of a mapping e of a semigroup S into 

a semigroup S1 is called a homomorphic representation of 

S iff e is a hOQo~orphism. If e is an isomorphism then e 
is called an isomorphic rapre£entation of S. 
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Isomorphic representations are also referred to as 

true or faithful representations. 

Theorem 1.4: Any semigroup with identity, st, is isomorphic 

to a semigroup of transfor~ations. Namely (~~,o). 

Proof: Suppo se (S\,"*") is a semigroup and sbSl is the se t. of 

permutations of S1... By theorem 1.3, (JsSHo) is a semigroup. 
. . 1
For aE-S let...pa. be the permutation defined by (s~x. =s,*"x, 

S£S1. Let e be a mapping from Si into Jt
S 

1 defined by 

(s )8=.,P&' 

For each XfS
l 

3 one and only one (X)e=f~E~~ because 

si-x=s*x¥SE:S. 

For each .Pl- Jjs'1:3 one and only one XES
1

• To see this 

suppose xly and (x)8=(y)e. Then ~=jJ~ which implies 

s~x=SlY V s~S1 which is impossible because then l*x=lfY 

or x=y. Therefore e is one-to-one. 

Suppose 3 a ]JxE. 0 5 1 3 there does not exist an 

X(S1 3 (x)8=)PX. This is impossible by definition of fx and 

(x)e. Let x and y~S2 and.fY..'f~(.J:Js1' Then (xly)e=A*Ij= 

s~(xlY) YS(S~=(s~x)ty V s~Sl. But s*x is (s)f~ and 

(( s)fx?~y= ( (s) fx. )Ftj' And by defini-ti on (( s )f'1)f~ = 

(s) (Px. 0 f1:J)'tfs cs 1 • 

Therefore (x*y)e=fxojP~=(x)eo(y)e. Hence e is an 

isomorphism. 
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Let G be a group and G
O;Gu{01 the group with a zero 

element adjoined. 

Definition: Let X and Y be index sets. A mapping 8 of 

XxY into GO is called a XXY matrix over GO. 

Definition: Let X be an index set with Sand T subsets 
2 

of X. If a is an element of tl:le group (GO,+), i--aj 

D
will be used to represent the mapping of X into G . 

.z.a~ =0 if a. =oV ) ~ S;
1£$ • I 

.La. =a if 3 jcT3a · /:0 and a. =0 V i I: J' 
lilT I J I 

~a~- is undefined if3 j,keT3a
J
·/:O, ak/:O, j/:k

)iT ' 

If (i ~ \ )C:XXY then for SO!::le a.. € GO, a',' will denote 
J IJ J 

(i,j)Band will be called the element in the i th row 

and the j th column of the matrix denoted (a Ij ). 

In keeping with standard notations a matrix will 

often be denoted with a capital letter. 

Definition: Let .x:,Y,Z be index sets. Let A=(a'lj ) be 
• 0 

an XxY matrlx over G and B= (b jk ) be a YxZ matrix over 
o 

G. If for every pair (i , k )E.XXZ3Cik = fxeij bjk is 

2If the group operation + is to be used more then 
once the suggestive notation ~will be used to indicace 
this. 



9
 

defined then the matrix product AB is the XxZ matrix 
o 

C=(CiK) over G • 

Definition: ~n XxY matrix A over GO is called row 

monomial iff each row of ~ contains at most one non-zero 

element. A is called column monomial iff each column of 

A contains at most one non-zero element. 

Definition: If I and 1\ are index sets, an Ix1\. matrix A 

over GO is called a Ree s Ix/\. rna trix over GO iff 3 one and 

only one. aij E. .A3a ij pO. 

Definition: Let A=(ai~) and B=(bj~) be Rees Ix~ matrices 

over GO. Le t P= (p >.j ) be Cl fixed AxI rna t rix over GO. , 

The Rees matrix product AoB of .A and B is AoB=APB, where 

the products APB are the matrix product defined above. 

P is calle d a sandwich rna t.C'ix. 

Because there is only one non-zero element in a 

Ree s matrix, che Ree s rna trix (a i). ) wi 11 often be deno ted 

(a). to distinguish it from th~ sandwich matrix. 
I). 



Chapter II 

Funda~ental Theorems 

In this chapter the se:nigroup is partitioned into 

ide al s by the re la tions fJ,;(, 1f,1:1 and 1. Green's t;he orem 

will provide a mapping from lI-class to ~-class that will 

be important in the determination of the non-zero elements 

in the matrix. Theorem 2.11 provides a possible group, 

contained in the semigroup, from which elemenbs for the 

matrix may be selected. 

Definition: A non-empty subset A of a semigroup S is a 

right ideal of S iff AS A. A is a left ideal of S iff 

SA~A. A is a two sided ideal of S iff A is a right ideal 

and A is a left ideal of S. 

Consider the non-empty subset B of the semigroup S. 

Let fAl ,At ,A..3, •.. j be the set of left ideals of S 3 for 

each Aj in the se t, B~Al •. Suppose SES and a E. nA i. Then 

a~Ai for each i=1,2,3, ... Therefore sa EA· for each 
I 

i=1,2,3, ••• 80 sa~nA\ for ~ach i=1,2,3, •.• 
I 

Then 

S(flA, )~ (\A, and ()Aj is a left ideal of 8. 

• 

Definition: Let B be a non-e~pty subset of a se~igroup 

8 and {A ,A ,A
3 

, ••• l be the set of left ideals of S 3
l z 

B~Ai. Then nAi is called the left ideal of 8 generated 

by B. If the subset B has as its only element 
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the element b then nA, is called a principal left ideal 

of S. 

In the following discussion and definition the left 

ideals of S were obtained by multiplying on the left by 

S. If the same procedure were followed using multipli

cation on the right by S the same ideas would follow for 

right ideals. For each definition about left ideals it 

can be seen that commuting the multiplication provides 

a corresponding definition about ri~ht ideals. These 

definitions will be referred to as duals of one another. 

The following example might help to illustrate the 

preceding discussion and definition. 

Consider the semigroup (I~,X) where I~~~0,1,2,3,4,5J 

and the operation is multiplication mod 6. Let B in the 

definition above be \0,21. The left ideals that contain 

Bare AI ~ I It ' A1 :: {o , 2 , 4J. AInA2=f°,2 , 41 =.A z: A2 i s the 1eft 

ideal of S generated by B=lo,2J. If B=l3! then the left 

ideals AI =I~ ,A~=lo,31 are the left ideals containing B. 

Therefore A10 A ={0,31 =A • In this case At is a principal
2 2 

ideaL 
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Definition: Let SxS be the cross product of the semigroup
 

Sand (a,b) SxS.
 

{== tCa , b) \ S1 a ==S '" b) will be called an {-relation,
 

f== ~(a,b)\as1 =bS1) will be called an f-relation and
 

~(a,b),stas1==slbS1]Will be called ant-reiation.1=
 

Let (Ll,o) be 
2

the semigroup of cransformations of the 

set ~,21 and the operation is the product of transfor

mations. 

0 (11) 12 ) (21) ( 22 ) 

(11) (11) (11) (22) (22) 

(12) (11) (12) (21) (22) 

(21) (11) (21) (12) (22) 

(22) (11) (22) (11) (22) 

F..LuUM 1 

Si;;i1IGROUP OF TR44..tlS}t'()R..';jJi'!:I0J.~S 

1
It is seen from fifT,ure 1 that (11)~1 ==(22)c3z are right 

principal idee.ls of (L{,o). Then'f==f((lJ.),(ll)), ((11),(22)), 

( (22 ) , (11 )), (( 22 ( , (22) )1is an f- re 1a t ion 0 f (~, 0) • 

(22) Vr.! == 1(22)J. Therefore .{ = {( (22), (22))J • 

If a,b~S are in the rele.tion~, a~b will often be 

used to denote this f ac t. Simila:rly for f,9. 
In what follows, it is important to consider sets of 

order pairs formed by tc-king the co~position of the 
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relations f and {and intersection of f and.{. The 

largest of these sets is obtained by taking the composition 

of the relations fand:{. 

Definition: J9 =~of(=. r (a,c)!3 beS3(a,b)f..{ ,·(b,C)E'fJ. 

The smallest of these will.be obtained from the inter

section of the relations If and!:.. 

I?efinition: t:. and if are relations. tI is the relation.:(fl1[. 

From the previous example: fj =;t°f={((22)(11»)((22)(22))} 

and W::(Of= {( (22) (22))1. 
• . \.I 1 ~ -P VGlven a semlgroup S, y a€S S a=S a and so a~a. 

a,b(S~a~b then Sla =S1 b or S1 b=Sl a and so b~a. If a~b 

and bZc then Sl a =S\b=Sic or a~c. Therefore ~ is an 

equivalence relation. In like manner 1f,~ and consequently 

a andll can be shown to be equivalence relations. 

The set of all elements of the semigroups S that are t 
related to a will be denoted by Lo... and called the t. -class 

containing a. Similarly the ele~ents that are in the same 

f~class, ~. -class, '1:J -class and IJ-class as a will be denoted 

Ro.. ,Jo.. ,He..., Do..' 

If f=\((11),(11)),((11),(22)),((22),(11)),((22),(22))J 

and ~=1((22),(22))Jas in the previous example, then 

R(II) =R(l1) =1(11), (22)1 and L(12)= 1(22)1· 



ILl· 

Definition: An elenent a of a semigroup S is called 

regular iff 3 XES 3ax~=a. A semi3roup S is called 

regular iff every element of S is reGular. 

An idea closely related to that of regularity is 

given in the next definition. 

Definition: a and b elements of a semi3roup S are 

inverses of each other iff aba=a and bab=b. 

Because ~,~,~,~ are equivalence relations it is 

kno~m that the corresponding equivalence classes for 

f,t:.,f), and 11 are disjoint. Using this fact, a helpful 

way of r~presenting the 1f,{"IJ, and 1I-class~s in a 

relatively sinple way is given in Clifford and Preston 

and is called by them an egg-box picture. 

D2 

D,; 

FIGURe; 

R...... 
H\-,,,,, 
Hi", 

POSSIB~ ~GJ-riOX PICT~ 

~fuere each large square is a B-class, e3ch rowan {-class, 

each column an if-class and each SQuare an '1I-cla~2s. 



15
 

Lemma 2.l(Green): Let a and b be if-equivalent elements of 

a semi~roup S, and let sand s/ be elements of S1 such 

that as=b and bs' =a. Then the mappings x--xs(xEL~) and 

y--ys' (yeL ) are mutually inverse, ~-class preserving,
b 

one-to-one mappings of L~ onto Lb , and of Lb onto L~, 

respectively. 

/ 

Proof: Deno te the tvro mappings by Band fJ. It is no ted 

that e is the inner right translation /6. Restricted to 

La. and e / is the inner right translation A,. restric1Jed to Lb. 

Suppose aft. Then by definition aS1 =bS1 • But thi£ 
. .., i I 1, 1 

impl~es that .::J SE.S 3 as=b and s €. S 3 a=bs. Let XE.S:3 XE:La.. 

SX=Sl a by definition and so (Slx)s=(S1 a )s. But because 

of associativity S1 (xs)=S1 (as) and hence xs{as or, because 

as=b, xs~b. Therefore xs~Lb. And e maps La. into Lb " 

Again let xtL~. Then St x =S1 a and so there exists 

tfS1 such that x=lx=ta, and x8fJ 
, 
=xss' =tass' =tbs l =ta=x. 

I 
Thus ee is the identity transformation on Lo... 

,
Similarly t ee is the iden t i ty transforma t ion on Lb , and e 
and g"" 

/" 

are mutually inverse, one-to-one mappings of L~ 

and L p onto each other. 

To see that e is~-class preserving, it is noted that 

if xELo.. and y=xB=xs, then ys'=x, so that y~. Similarly, 

e' is al so f-Cl ass pre serving. 

As a consequence of Green I s theorem the" following 
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theorem follows. 

Theorem 2.2: Let a and c be il-equivalent elements of a 

semigroup S. Then there exists b in S such that a~ 

and b~c, and hence as=b, bs~a, tb=c, t/c=b, for some 

I I s,s, t, t£.S. The mapping x -txs(xE.H ) and z--t' Zl Slo


(zEH ) are mutually inverse, one-to-one mappings of H~
c 

and ~onto each other. Any two~-classes contained in 

·the same B-class have the saIDe cardinal number. 

Proof: By the dual of Green's Lemma, the mappings 

1:y-ty (y~Rp) and 1:I z -+tz (zER ) are mutually inverse,c 

~-class preserving, one-to-one mappings of R~ onto Re 

and He onto Rb • Let e and e I be as in Green's Lemma, but 

restricted to H~ and Hb respectively. (Since the unre-. 

stricted e 8nd e are f-class preserving, they map 

H~ and Hb upon each other in a one-to-one fashion.) 
I 

Similarly, let l' and ~ be restricted to Hb and He' 

respectively. Then at( and if 
I

e 
I 

are mutually inverse, 

one-to-one mappings of H~ and He upon each other, 

But these are the mappings defined in the theorem. 

One of the l1-classes, D, for the semigroup (~,o)
 

is composed, in part, as shown in figure 3.
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L\= [c1222), (2111), (1211), (2122), (1121), (2212), (1112), 

(2221), (1122), (2211), (1212), (2121), (1221), (2112)1 

L:t= {(1333), (3111), (1311), (3133), (1131), (3313), (1113), 

(3331), (1133), (3311), (1313), (3131),· (1331), (3 113)J 

R = {(1222), (2111), (1333), (3111), (1444), (4111),
1 

(2333), (3222), (2444), (4222), (3444), (4333)] 

R2.= ~(1211), (2122), (1311), (3133), (1411), (4144), 

(2322), (3233), (2422), (4244), (3433), (4344)1 

FICrU.flli 3 

ONE OF THB ILCltABSBS, D, FOR !J:'H~ S~diIG.H.OUP (~, 0), IN PART 

According then to Lemma 2.1, pick out two 

1f-equiva1ent elements of, say, R1 • (1222)r(3111). Th-;;;::l 

(1222)~t3122)=(3111) ~n~ (3111)0(2211)= (1222). So in 

the Lemma 2.1 choose s= (3122) and S/= (2211). 
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x-----> x( 3122) 

(1222)---(3111) 

(2111)------(1333) 

(1211)------(3133) 

(2122)-(1311) 

(1121 )-(3313) 

(2212)~(1131) 

(1112)---+-(3331) 

(2221)---(1113) 

(1122)---'(3311) 

( 2211 )-------+- ( 1133 ) 

(1212)- (3131) 

(2121)-(1313) 

(1221)-(3113) 

(2112)~(1331) 

Notice also that: 

x-x(3122) 

(1222)---+-(3111) 

(2111)-(1333) 

(1211)-(3133) 

(2122)-(1311) 

and 

and 

l!'IGufili 4 

y-y(2211) 

(1333)---(2111) 

(3111)-(1222) 

"(1311)-(2122) 

(3133)---'(1211) 

(113l)---'(2212) 

(3313)-(1121) 

(1113)---.(2221) 

(3331)-(1112) 

(1133)---'(2211) 

(3311)-(1122) 

(1313)-(2121) 

(3131)----(1212) 

(1331)-(2112) 

(3113)--->(1221) 

y------y(2211 ) 

(1333)---'(2111) 

(3111)-(1222) 

(1311)---.(2122) 

(3133 )~(1211) 

.lYLUTUALLY INVl!JRb~ Ol'.E ':"'l'C_o.dE M.A:P.r1I1'.J"G-S 

OJ!"' L ON'I'O L
1 Z 
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It is ~een that under the mappings in figure 4 

f-classes are preserved.' 

In the same manner, the mappings may be defined 

so that they are mutually inverse ~-class preserving, 

one-to-one mappings of RQ onto Rb • 

To illustrate theorem 2.2 the computation in 

figure 4 is carried out for {-classes and ~-cla8ses. 

The needed tV-classes would be : 

Hi = {(1222), (2111)1; H2.= 1(1333), (3111 )1; 
1 

H3 = l(1211), (2122)J and H.Q=!(1311 ), (3133)J. 

Theorem 2.3: The set product LR of any {-class L and any 

~class R of a semigroup S is always contained in a 

single L1-c l ass of S. 

I I -(I .fl,1 -r ..
Proof: Let a,a ,b,bES3c~a and b?b. But a~a ' lmpl~es 

/ab{a/b because s1 a =S1 a ' implies S1(ab)=(S1 a )b=(S1 a )b= 

Si(a/ b). In the same manner, b"tfb ' implies a/bfi/b/ . 

But applying the defi~ition of t...cfit is seen that 

(ab,a/b' )E:f!:.for that abBa/b/. 

IFor the remainder of the D structure of this semi;roup 
see A.H.Clifford and G.B.Preston, The Algebraic Theory Of 
Semigrou~ (American Mathematical Society, Providence, 
Rhode Island, 1961) Volume I, p. 55 



Lemma 2.4: An element a of a sernigroup S is regular 

iff R~ contains an idempotent. 

Proof: Suppose a(S and a is re5ular. Then ?xa=a for some 

1 t
XES. But then as =axS and so aXER~ and (xa)(xa)= 

(x)(axa)=xa. Therefore ax is idempotent. 

Suppose that R~ contains an idempotent element e. 

Then as! =eS1 
• Hence 3 XCS

1 
3 0.=0. 1 =ex. But ea=e (ex )=e'l,x= 

1 
ex=a. Also 3 yeS 3 e=ay. Then a=ea=aya. Therefore a is 

regular. The dual of this Le~~a is also true. 

Theorem 2.5: (,) If a E-class D of a semigroup S contains 

a regular element, then every element of D is regular, 

(11) If D is regular, then every ~-class and every 

~~class contained in D contains an idempotent. 

Proof: (1) Let a be a regular element of aB-class 

Djaxa=a. Then the if-class R containing e=ax contains an 

idempotent element, namely e. Then every element of R is 

regular by Lemma 2.4. But, every {-class of D contains 

an element of R and every ~class of D contains an ele~nent 

of each ;(-class. Therefore every f-class and (-class of 

D contains regular elements and hence idempotent elements. 

Therefore every element of D is regular. 

(ii) If D is regular then axa=a for some XtS. But 



21 

ax is an element of so~e 1f-class and xa is an element of 

some {-class. (ax) (ax)=(axa)x=ax. Also (xa)(xa)=(x)(axa)= 

xa. Therefore, ax is an id ~mpo tent in a if-class and xa is 

an idempotent in an ~-class. 

Lemma 2.6: If a and a
l are inverse elements of a se:::J.igro'i)p 

S then e=aa 
l 

and f=a/a are ide~potents 3 ea=af=a and 

a l e =fa l =a /. Hence e£Ra. n Lo! and f~ Ro.' n Lo... The element s 

'a,a l ,e,f all belone; to the same fJ-cl ass of S. 

Proof: Suppose e=aa I and f = at a where a and ~I are inverse 

elements of S. e 2. =(aal ) (aa l )=a(al aa I )=aa t 
=8 

fZ=(a/a)(a'a)=(a'aa/)a=a'a=f 

Therefore e and fare idempotent elements of S. If 

e=aal' then efR~ and e~L~1 • Therefore 8tRa,nL a.' • Likewise, 

if f=a' a then f('Ro..l and ff: La-I. Therefore feRa"nLa.. e~ 

and a~f implies e~f. afe and e(a implies a18. Also e and 

a in the same ~class implies ePa. Therefore e,f,a,al 

are all elements of the same ~-class. 

Le~ma 2.7: If a is a regular element of a semigroup S, 

then aS1 =aS and Sl a =Sa. 

Proof: Obviously'a~a~because a=a·l. It is necessary then 

to show that ataS. But a is regular and so axa=a. Let 

f=xa which has been shown previously to be an idempotent. 
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Then af~a implies that a£aS. In like manner S1 a =8a. 

Lemma 2.8: If a and b are regular elements of S, then 

a~b iff Sa==Sb. 

Proof: Supp.ose a and b are regular elements of Sand 

it· ~ ~ 
a~b. Then S a==S a. But by Lemma 2.7 t S a==Sa and S b==Sb. 

Therefore Sa=Sb. 

Suppose a and b are regular and Sa=Sb. Then by 

Lemma 2.7, Sa==Si a and Sb=S1 b . Therefore S1 a =Si b and 

hence a~b. Similarly for afb. 

Lemma 2.9: Any idempotent element e of a semigroup S 

is a right identity element of Le , a left identity 

element of Re, and a two sided identity element of ~, 

. ~ 

Proof: If a~Le then aES1 e and bence 3 XES 3a==xe. 

Therefore ae==xee=xe=a. So e is a right identity of Le . 

In the same manner e is a left identity of Re • If 

a€He=RenL~, then ea=ae=a. 

Definition: A subset T of a semigroup S is a subgroup of 

S iff aT==T a=TVa~T. 

Lemma 2.10: If a and ab~H then Hb==H. 
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Proof: Suppose a and ab£H. Then afab and ,3 S€S1 3as=ab. 

Let s=b. Then by Lemma 2.1, x-+xb is a one-to-one 

mapping of H onto itself. Therefore Hb=H. 

Dually if b .and ab€H then aH=H. 

Theorem 2.11 (Green): If atb and ab all belong to the 

sameW-class H of a semigroup St then H is a subgroup of S. 

In particular, any~-class containing an idempotent is a 

's'ubgroup of S. 

Proof: Suppose a,b,abeH. Then by Lemma 2.10 aH=Hb=H. 

Let x be an arbitrary element of H. Then x,axeH 

and X,XbEH. From Lemma 2.10 it folloVls that Hx=H and 

xE=H. Therefore H:x:=xH=H V x£H. Hence H is a subgroup. 

Theorem 2.12: If a and b are elements of a semigroup S, 

then abERo..n L
b 

iff Rbn La. contains an idempotent. If this 

is the case, then aH b =Ha.b=HQ,H b=Rcf' Lb. 

Proof: .Assume first tha t abEI\,.,n Lb. From ab€:Ro.. there 

exists b'E S such that (ab)b' =a. By Green's Lem.;na, the 

mappings e:x~xb (x£La..) and e:y--?yb' (YELo.b) are 

mutually inverse, 1?-class preserving, one-to-one 

mappings of L~onto L~band of L~ponto Lo..' respectively. ,
But abcLp' and so L~b=Lb. Thus e illaps the 

. 

element b of 
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, I . 

L\) upon the element bb of Lo..' and moreover bbE.R b since 

e/ is "f-class preserving. Hence bb'E.RbnLo..' If xELa.' when 

xbb l =xee/ =x; putting x=bb' , therefore bbl is idempotent. 

Converse ly, assume tha t Rbn La contains ~n idempotent e. 

Then eb=b by Lemma 2.9. Since efb, it follows from Green's 

Lemma that e:x~xb CXEL~) is an -({-class preserving, 

one-to-one mapping of L e onto Lb. Since aELe , abE.L b ; 

moreover, ab~R~ since e is 1?-class preserving. Hence 

.abE.RQn Lb. 

C~ntinuing with the hypothesis that R~nL~ contains 

an idempotent e, let x€Ho. and y€H b • Then e::R~nLlC' and 

hence X"'yE.~nLll=Ro-nLb' Hence Ho.Hb£R~nLb. Since Le=La. and 

Lb=L"b' e:x -xb maps La. upon La..b' Since e is "f-class 

preserving, it maps HQ upon H~b' and so Ha. =H~b. Hence, 

H~h~Ho..Hb~Ro..nLb=Ha.b=H~ , and equalities hold all down the 

line. Dually aHb=Ho..b ' 

Theorem 2.13: Let a be a re~ular element of a semigroup S.
 

C ',) Every inverse of a lies in Da.
 

ell) An AI-class H contains an inverse of a if and only
 

if both of the 1I-classes ~nLb and RbnL lA , contain
 

idempotents.
 

C),\) No 1:I-class contains more than one inverse of a.
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Proof: (',) If a and a I are inverse element s of each 

other they all belong to the same E-class by Lemma 2.6. 

(i)) Suppose Hb contains an inverse al of a. By 

Lemma 2.6 thell-classes Ra.nLb:;=Ro..nL~ and Rtf'.Lo..=Ra:OLo.. 

contain the idempotents aa' and a' a respectively. 

Conversely, suppose e is an idempotent in ~nLb' 

and that f is an idempotent in R~nL~. From afe and a{f; 

ea=a=af~ by Lemma 2.9 and e=ax, f=ya, for some x,y~S, by 

Lemma 2.8. Let a I =fxe. 
, , 1

Then	 fa =a e=a ,
 

aa' =afxe =axe =e~ =e
 

1 f	 1 1 fa a= a a=yaa a=yea=ya= 

Since aa/a=ea=a and a/aa/=a/e=a l 
, a and a l are mutually 

inverse. From fa'=a ' and a/a=f, a/~f. From a/e=a' and 

'/~	 1aa =e. a ~e. Hence a E. RfnLe =Rbf'l Lb=H b •
 

( i ~ 1) Le t band c be 1I'-e quivalent inverse element s of a.
 

By Lemma 2.6, ab is an idempotent element in ~nLb' and
 

ac is an idempotent in R~nLc. If ab and ac are idempotents
 

such that H~b=H~~ then by Lemma 2.9, each is a two sided
 

identity of the other and hence Lb=Lc and ab=ac.
 

Similarly from Rb=Rc., ba=ca.
 

Therefore b=bab=cab=cac=~.
 



Chapter III 

Representations of Completely O-simple Semigroups 

A special class of semigroups kno~~ as completely 

O-simple semigroups can be represented isomorphically 

by a semigroup of matrices. It will be found that theorem 
I 

2.11 provides the group onto which the matrices will be 

defined. Theorem 3.14 will then provide the necessary 

i somorphi Sl!l.• 

Definition: A semigroup S is said to be simple iff S 

does not contain any proper two sided ideals. 

Definition: A semigroup S with zero 0 is called O-simple 

iff ( i ) S
2 

= SSpO,

(1, ) o is the only proper two sided ideal of S. 

Lemma 3.1: Let S be a semigroup with zero 0, and such 

that SpO. Then S is O-simple iff SaS=S for every apO of S. 

Proof: Suppose S isO-simple • Let B= {bl SbS=O f. From 

the expression SBS=O~B it is seen that B is an ideal of S. 

But because S is O-simple B=O or B=S. If B=S then S3:0 • 

But since S2=S, O=S3=S~:S which is impossible because 

Sl pO if S is O-simple. Therefore B=O and SaSJO for every 
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a!O. But SaS is an ideal Va!O and SaS!O. Therefore 

SaS=S. 
Suppose SaS=S V a!O. Let A!O be an ideal of Sand 

a!03aEA. Then S=SaSsSASsA so that S=A. Hence S contains 

no proper ideal 10. But s/O therefore S contains an element 

ala. From S=SaSsS~, it is seen that S~/O. Therefore S 

is a-simple. 

It should be noted from ~his Lemma that neither 

8-a=O or as=O if S is to be O-simple. 

Definition: An ideal M of a semigroup S is called minimal 

iff there does not exist an ideal N3Nc::/i. 

Definition: An ideal M of a semigroup S is called a-minimal 

iff ( 'I) MlO 

(~~) 0 is the only proper ideal of S consained in M. 

Comparing this definition with the definition for 

O-simple it is seen that.any O-simple semigroup is a 

O-minimal ideal of itself. 

It will be necessary to indicate whether the zero 

element is to be omitted when discussing semigroups with 

zero elements. If L is the subset under consideration 

and SO is the semigroup with zero element, then L\O will 

indicate the set L without the zero element. 

The word ideal in the preceedin6 two definitions is 
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intended to mean two sided ideals. It should be 

noticed that the definitions apply equally well for left 

or right ideals. 

Lemma 3.2: Let L be a O-minimal left ideal of a semigroup 

S with 0, and CES. Then Lc is either 0 or a O-minimal 

left ideal of S. 

Proof: Suppose Lc/O. Lc is a left ide81 of S generated 

by c. Let A be a left ideal of p contained in Lc. Let 

B~{blbfL and bCEA} , then Bc5A. If xEA3x~yc·then yc€A and 

by definition of B, yc~Bc. Therefore AsBc and A~Bc. If 

bEB and SES, then sbc~sASA, and b£sL~L. Hence sb~B, and 

so B is a left ideal of S. From the O-minimality of L, 

either B~O or B~L, and therefore A~O or A=Lc. 

Theorem 3.3: L€t S be a semigroup with O. Let M be 8 

O-minimal ideal of S containing at least one O-minimal 

left ideal of S. Then M is the union of all the 

O-minimal left ideals of S contained in M. 

Proof: Let A~UB,(i=1,2,3,•.. ) where B is a O-minimal 

left ideal of S contained in M. A is a left ideal of S.
 

Let aEA and CES. Then 3 Bj=UB j 38E.Bj' By Lemma 3.2,
 

Bj c =0 or Bj cis a minim.al lef t ideal of S. Also Bj cS~i1ccM,
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and Bjc~A. Hence acej and thus A is a right ideal of S. 

A~O because it contains at least one O-minimal left ideal 

of S. Therefore A is a non-zero ideal of S contained in 

M and bBnce A=M because M is O-minimal. 

Lemma 3.4: If L is a O-minimal left ideal of a semigroup 

S with zero 0, then L~O is an Z-class of S. 

·Proof: Let a~L~O. Then either Sa~O or Sa~L. 

Suppose Sa :oLV'a~L\O. Then S' a:oS1 b \;/ a, bE.L\O. Hence 

L\OSL~. If c~L~ then ctSta=L and hence L~~L~O. 

Therefore L\O=L~. 

Suppose Sa:oO for some aEL'O. Then L= \0, a1 is a non

zero left ideal of S contained in L. Then if S2 a :o L andV 

x€L\O, Sl x =S1 a it can be concluded x=a. Therefore 

L\O~ ~a1 =Lo.' 

Lemma 3.5: Let L be a O-minimal left ideal of a O-simple 

semigroup S, and let aEL\O. Then Sa=L. 

Proof: Since S~ is a left ideal of S contained in L, it 

follows that Sa:oO or Sa=L. The case 8a=0 is ruled out by 

Lemma 3.1. 

- Definition: ·Let e,f be idempotents of a semigroup S. 

e~f iff ef:ofe:oe. 
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Definition: An idempotent element f of a semigroup 8 is 

called primitive iff f~O and if e~f then e~O or e=f for 

all idempotents e£S. 

Definition: A semigroup 8 is said to be completely 0

si~ple iff 8 is a O-simple semi5 roup containing a primitive 

idempotent. 

-Example: Any group G is a simple semigroup because for any 

ASG, GAG+G and G is not a proper ideal of G. GUfO) is 

completely O-simple and the primitive idempotent is the 

identity of the group. 

Let I be 3 set. Let S= (IXI)U\01. For i,j,k,l~I 

define (i,j)o(k,l)" t'~) if j=k, 

if j~k; 

Oo(i,j)=(i,j)oO=OoO=O 

Then (8,0) is a completely a-simple semigroup. 

Theorem 3.6: Let 8 be a O-simple semigroup. Then 8 is 

completely O-simple iff it contains at least one a-minimal 
1 

left ideal and at least one O-minimal right ideal. 

1 
There are 11 Lemmas needed to prove this theorem. 

They are not used elsewhere in the paper. 8ee A.I.Clifford 
and G.B.Preston, The Alg~braic Theory Of 8emigroups 
(American Mathematical Society, Providence, Rhode Island, 

-1961) Volume I, p.78 
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Theorem 3.7: A completely O-simple semigroup is the 

union of its O-minimal left (ri~ht) ideals. 

Proof: Let S be a completely O-simple semigroup. By 

definition S is O-simple. Therefore S1/0 and 0 is the 

only proper ideal of S. So S is O-minimal. By theorem 

3.6, S contain~ at least one O~minimal left (right) ideal. 

By theorem 3.3, S is the union of all the O-minimal left 

'(right) ideals of S. 

Theorem·3.8: If S is a completely O-simple semigroup
 

then S\O is a E-class of S.
 

Proof: Let S be a completely O-simple semigroup. Let a 

and b be non-zero elements of S. By Corollary 3.1, a 

belongs to some O-minimal right ideal L of S, and b belongs 

to some O-minimal right ideal R of S. By Lemma 3.5, 

L=Sa and R=bS. By Lemma 3.4 and its dual, L~=L\O and 

Rb=R\O. Since a~L and btR, bSa~RnL. Since S is O-simple, 

and a/O, b/O, SaS=S and SbS=S. Hence S=S~=SbSSaS~(bSa)S/O, 

so that bSa/O. SiLce RbnLQ contains the non-empty set 

bSa\O, it follows .that alto. 

Corollary 3.1: If S is a completely O-simple. semigroup
 

then S is regular.
 



Proof: By definition of complete O-simplicity, the 

E-class S~O contains an idempotent. By theorem 2.5 ( 1), 
every element of S\O is regular. Since ° is regular, S 

is regular. 

Terminology: A completely O-simple semigroup S is said 

to be O-bisimple iff S\O is a~-class of S. 

Theorem 3.9: Let S be a completely O-simple semigroup. 

( l) If aES and a'LIO, then a7.€.Ho..' and HCl.. is a group. 

(11) If a,b£S and ab/O, then ab£RQnLb 

Proof: (1) By Corollary 3.1, a belongs to some O-minimal 

left ideal L of S. Then aZ~L. By Lea~Q 3.4, L\O is an 

{-class of S. Since aZIO by hypothesis, and a/O, both a 

and a~ belong to L\O~ so that a{al • Duallyafaz • 

Therefore a~a2 and hence by theorem 2.11, H~ is a group. 

(11) If ab/O then a/O and b/O. By theorem 3.8, abb, 
and hence R~P Lo.IO. Suppose ct:RbnLa.. Then c'l-€ L(l.R b• By 

theorem 2.3, either L~Rb=O or LaRbSS,O. The former is 

excluded by ab/O. So c2 /0. By ( i ) He =RbnLo. is a group. 

By theorem 2.12, abE.Ra.nLh. 

To illustrate theorem 3.9 consider figure 5. 



33 

~ e 120 

e leI 2 0 

1 I 1 2 e. 0 

2 I 2 e 1 0 

o I	 000 0 

:.."'"	 {(ee), (el) ,(e2,)' (Ie), 

(11),(12),(2e),(21),(22)) ""'I(. 
71~~nf=~ 

FI~lJR.ii: 5 

IL1..JU8'J.1 £{A 1'1ON OF 11.\liliOrt.l~J11i1 3 •9 

Therefore H~::: ~e,l ,2] • 

Obviously He is the group of Integers mod. 3. 

The Rees IxA matrix semigroup over the group GO with 
o • ° 

sandwich matrix P will be denoted by )1.(G;I;A ;p) or fl. G 

will be referred to as the structu~e group of J1~ Denote 

the elements of r(by (a)iA with aEGo, if I, and AEA. 

Let Rj={(a)jA\ aEG,>..EA} and Rf= RiUOj 

L)..= f(a)'ll cHG, itI1 and L~= L.lUO j 

Hi).:= RpL}.= {(a)IAI atG]. 

o 
Lemma 3.10: The Rees IxA matrix semigroup !1.(GjIjA ;p) 

o 
over a group with zero G and with sandwich matrix P is 

regular iff each row and each column of P co~tains a 

non-zero entry. 
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Proof: I. €t P==(Pjl). Let a,bEOG;i,jc:I; il.0~A. Then 

(a) l}.. 0 (b)~ 0 (a)\I. =(aP?j b~, a)1). • 

This is equal to (a)ii\ iff P"j b~i ==a....~ (i 1 
is the inverse 

o 
of a). With (a)i~ given,3 such an element (b~i.r in Jf. iff 

P).j 10 and Ij.Li 10 for some jE.I andfEA-, that is, iff the 

")... th row and the i th column of Peach 'contains a non-zero 

element of G • 

Theorem ,.11: The set of all Rees IxAmatrices over the 

group GO with sandwich matrix P is a semigroup with respect 

to mat~ix multiplication. 

b 

Proof: Let (a)."\ , (b)' (}1with (P).j,)EP. The (a),":\ Q (b). == 
If'. jjA \,.. JjJ

(ap"b). E: J1.". Also for (a) ,")' (b). , (c)kv£}~~ lea). 0(b)J' ]0
"J YJ- ". JJA • \).. !P

(e)\c)':: Eap}.j b)yJ 0 (c)kY== ([aPt-j ~ ~k C)i)' =(aP/.j!b~kC] ir )= 

(a). c> (bP
11 

C)'v =(a). 0 L(b). (c)k"']' Hence J1. is a semigroup.
11. ..-'"

1. 

Jg lA Jf0

4 

Lemma ,.12: (1) For each i in I, Rf is a right ideal 
o 

of )(0; any two R-equivalent ele@ents of )1\0 must belong 

to the same Ri' for some i in I. 

(,,) If P is regular, then, for each if I, Rf is a 

O-minimal right ideal of J1D, and Ri is an -f..class. 

(i\\) If, for sO!D.e.i in I, P~i=O for every AinL\"then 
o L/() 0
R: is a two-sided ideal of J1 such that /l rt i =OJ in
 

particular, (Rr )~==O. 
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(l~) The set H\~(i£I, A~~ contains an idempotent element 

iff P~l ;to. If P}.i ;to, then Hi). is an lI-class of )(0, and 

is a subgroup of J1~Ni th identity element e.~(p .-1). • 
I" ).1 ) A 

The mapping a-t(ap).. -\. ). is an isomorphism of the group 
1 1A 

G onto H· • n. 
( V ) For every i,jEI and A,y inA, 

;to,H. • H· • { H· if P .I). ap IJ"- ;lJ 

o if P)..j =0 

• 0 ~o
Proof: Lemma 3.12 (1) Let (8)' E. R. and (b). E./l.

1).' JjA 

(a},o (b). = (ap"b). E. R~ . Therefore RO. is a right
I..... Jy "J ~ I 

ideal of )i0. Let (a). and (b)' be non-zero, ..o-equivalent
I). J)A (J '1' 

elements of J1~ Then there exists (c )k..lJ in If such that 

(8).0 (c) :(b). , hence (ap,\<. c)'jJ=(b)J'lu. Since b;tO, this 
I ~ k j) Jy "\ '/ . 

requires j=i. 

( i , ) Assume that P is regular, and let (a)" and (b). be 
)~ ~ 

(non-zero) elements of R;. Since P is regular, there 

exists k in I such that p~",;tO. Then (a). o( C )L == (b).\ if 
\ A. '".?- l)A

-i -\. • 0 . o 
C==P).K a b;tO •..R j ;to. ThlS shows that R, is a 

o 
a-minimal right ideal of f1, and that any two elements of 

Hi are R-equivalent. That R 1 is an ~-c1ass then follows 

from ( i ). 
(jil) Suppose p .. =0 for every')..£!l. If (a). ~ R.o and

AI n. \ 
{} 0o 

0(b). (. J1. , then (b). (a). =(bp '0.). =0. HenceJ(°R. ;;;OfR,·.
1)0.. :;,u.l J).. I

~ ~ 
From this and (i) it follows that R~ is a two sided ideal. 

I 

0 
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it is(\v) Let (a). ~ Hi).. From (a)iA Cl (a\~ =(api\l a)iA
1~ 

seen that (a)lj\ is idempotent iff Pi\l ~a and a=p~; 

Assume PAl ~o. Then H\i\. contains the idempotent e, ~ :: 
-1 . -1(p.,., ).. For a In G , Ie t ae= (ap, \ ).. Then for 

,..\ 1}. 1\ l). 

a and bl:G, (ae)o('ce)=(ap~~l P", blt~1 )\~ =(ab)8, 'and, since 

for each a 3 ODe and only one (a)8 and for each (a)8 3 one 

and only one a ~e is a Qne-to·_·Jne mapping of G onto Hi~ , it 

follows that e is an isomorphism of G upon Hi).. Hence 

H;~ is a subgroup of }1°with identity e 1A • 
o 

Let H be the lI-cla ss of If containing ei,\. Evidently 

Hi,,~H since H1). is a group. But by ( ; ) and its dual, 

H'=Rp L~ =H,~, and hence H=Hi~ • 

(V) Let (a). EH·.,. ond (b)· f.H· • We have (a)'"l°.(b). = 
1 ). 1 1\ J)! Jj.1. I " Jr 

(ap.,. b). • If P . =0, this is O. If p .. ' ~O, it belongs 
....J ~ AJ ""J 

to H~. In the latter event, any element (c)Yu of Hj~ may 

be obt~ined as such a product by taking a=p ~ and b=c. 
~j 

Theorem 3.13: A Rees matrix semigroup is O-si~ple iff 

it is regular, and if so it is completely a-simple. 

o 
Proof: Let ~(G,I,~,P) be a Rees matrix semigroup. 

o 
Suppose first that n is not regular. By Lemma 3.10, 

there is a row or column of P which consists of zeros, 

say the ith column: Pi\.; =0 for all ;t in A. By Lemma 3.12 
. • 0 o 

(1\1), R 1 is a non-zero nilpotent ideal of J1 , and so 
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can not be a-simple. 

o 
Assume conversely that J1 is re6ular. Le t (a) A and 

o 
(b)jy be any two elements of n with ajO. By Lemma 3.10, 

there exis ts )} in A and k in I such tha t P.vi jO and P.1\</O. 

Let c;;b(PlJi ap~k fl , and let e be the identity' element of 

G. Then (c)'Jjo (a) ~ 0 (e\ =(b)· , and it· follows from 
J 0 I ,.. . ~ . J}-" 

Lemma 3.1 that J1. is a-simple. . 

. 110
By Lemma 3.12 (lV), the non-zero idempotents of are 

the elements eiA=(p~l
-1 );A. There is one such for each 

pair, 1;\ (1E.I, )..dl) such that PAl JOe If ei),o e~ =ej)A0 e iA =e~, 

then i== j. and A"'jJ, so tha tel,).. =ej II • Thus every non-zero 
o "./ 0 

idempotent of rr is primit ive, and so J( is completely 

O-simple. 

Let D be a tJ=class of a semigroup S. Let \Ri11£I]' 
and ~L).\)..fL\1 be i:;he sets of 1( and. .{~Classes of S contained 

in D. Then the set of 1I-classes contained in D is 

{HiAI i EI, At:A} and HiA =Rl n L". Choo~e an 1:I-class of D tha t 

contains an idempotent element anei call it HH,' For each 

i~I select and fix an element ri of Hi1 • For each A€J\ 

select and fix an element q).. of I\A • 
The AxI matrix P;;(p).\ ) over flU is then 

P 
{q). r 1

. 
. = if q~ T'l EHn 

~l 

o otherwise 
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Definition: Let D be a B-class of a semigroup (8,0). 

Let T=DUO. T will be called the trace of D. 

If a and b are any elements of D then a product 

( *") msy be defined in D. 

a * b ={ ab if abE. Ri" L b , 

o otherwise 

a\- 0= 0 ~a=O 

Theorem 3.14: Every element of D is uniquely representable 

in the _form r, aq). with a in H1'l ' in I, and A inA. The 

one-to-one mappipg 0 of ItDupon T defined by 

( r; aq ).. if alO 

(a)· 0= l 0 1f a=O,I A 

is an isomorphism. 

/ 

Proof: For each).~A, le t e be an idempotent in L).. L). 

exists by theorem 2.5. By theorem 2.13, qA has a unique 

inverse q; in Re£, L. Then eqA=q~ and ~).q; =e, where e is 

the idempo tent in :f\t . By Green's Lemma 2.1, the mappings 

x~xq~(x L) and y~yq~ (YELA) are mutually inver~e, ~-class 

preserving, one-to-one mappings of Li onto L~. 

Dually, for each iE-I, :3 an inverse r( of rj E Ri , and 

the mappings x~ri x(xER ) and y-»r(Y(YER j ) are m.utually1 

inverse, Z-class preserving, one-to-one mappings of Hi 

onto R~. Combining the two mappings as in theorem 2.2, 
. 1 
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X ~ri xq:;\. (XE.H ) and y-r j 
I 

yq (yER,;\.) are mutually
l1 

inverse one-to-one mappinjjs of H onto H1A •u 
Since every element of D belongs to 8xactly one HiA' it 

follows that the mapping 0 defined in the theorem is 

a one-to-one mapping of J1oonto DUO=T. 

To show °is an isomorphism suppose qAri£R11 ~ Then 

by theorem 2.12,(r., aq.J(r. bq )EH. =R.nLu ' 
. ~ J ~ ~ \ /

Therefore rj a q/. R" rj b~E.~. 

From the definition of the trace product (j:) (r i aq).) *- (rj b~) 

is the product in D. From the definition of P).l (a\A 0]-,*" 

[(b)if O];:: (rj aq:;\.) *(rj b~);::ri aqArj b~;::ri ap}..j bq.JoA=(ap).j b)jjA0= 

[(a)iAo (b)j J0. Now suppose q).rjiHl1' Then P}.j =0, Hj}..y 
does not contain an idempotent, and (rj aq)) J-(rj bq.))¢H~. 

Again by the definition of p,\; (ri aq}.) ~ (rj bq)J)=OET. 

Therefore O=0 which is true by definition of O. 

Theorem 3.15: (Rees) A semigroup is completely O-simple 

iff it is isomorphic with a regular Rees matrix semigroup 

over a group with zero. 

Proof: If a semigroup is isomorphic with a regular Rees 

matrix semigroup with zero, then it is completely O-simple 

by theorem 3.13. 

Conv~rsely, let S be a completely O-simple semigroup. 



40 

By theorem 3.8, S is O-bisimple, so that D~S\O is a fl

class of 8. Construct )1(H11 jI,A.:P) for D as in 

theorem 3.14. Now theorem 3.9 (i,) shows that S is 

isomorphic with the trace T~DUO of D, produc t (~) 

. f(~ 
therein being defined by (2). By theorem 3.14, T and 

are isomorphic. Hence, Sand J10are isomorphic. 

Consider the following example of a semigroup (S, *) 
where * is defined by the table in figure 6. 

;--JabcdO 
a abO 0 0 

b 10 0 abO 

c IC d 000 

d 10 0 c d 0 

o 10 0 0 0 0 

FIGUR~ 6 

EXAliI:f'Iill Of' A 8~DiIG-.8.0uP 

(8, * ) 
S is O-simple because. S2.;..O and 0 is the only proper two 

sided ideal. Also a and d are primitive idempotents. 

The f-classes of 8 are R1 =~a, b} Rz.::; ~c,d1· The (-classes 

of 8 are L1~ia,~ L ::; \b ,d1. The ii-classes of 8 are z 

H1\ =Ri f1 L'l == \a1 Hu =R\n L t =~b1 HZi =R/' L i ={c1 flu. =R znL2 == fd ~ • 
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Let r 1 =a and q1 =a 

r~ =c q2, =b 

PH =q1. r i =aa=a PU. ==q1 r l=ac=O 

P =q2r1 =ba=O Pzz =qz. rz' =bc =a 
l1 

p= (: :) 
(a)1\ ¢ C'--'Jo"r1 aq1 =a (a)u 0 ~r1 aqz::ob 

(a)Z1 ¢ E-+r2 aq1 =c (a)zz 0 ~rlaq2::od 

The matrix representation of S is bhen: 

a~C :)b~: :}~~a :)d~(: O~o{: :) 



Chapter IV 

Schutzenberger Representations 

In order to represent a semigroup as a semigroup of 

matrices over a group it is first necessary to construct 

the structure group. 

1
Definition: Let 8 be a semigroup and H an ~-class of 8 1

• 

T (H) = ~ t{ tE8
1 

and Ht~Hl. Notice that for each tET (H) , 

the image of H under the transformation 81 t is a subset 

of H. The symbol ~t will denote the transfor~ation of 81 

by an element of T(H). 

Definition: reH) = {'ttl t~T(H) and 4'L= f'!J H J (Where fll H 

is fl restricted to H) 

In other words, each .~ iS,in effect, a transformation 

of the --II-c las s into it 5e lf and r(H) is the se t of all 

such transformations. 

Lemma 4.1: Let H be an if-class of a semigroup 8. Let 
1 I 

~EH, and let tcs such that h 1 =h QtEH. Then h o =h1 t for 

l some t in S1, and the mappings ~;x-?xt and ~:x~xt 

are mutually inverse permutations of H. Thus t and t/ 

belongs to T(H), and it i (= b"t' ~t =~ • 
If L is the ~-class containing H, then the mappings 

x~xt and x--xt
/ 

are mutually inverse, one-to-one, ~~class 



43
 

preserving mapping.s of L upon i bself. 

I 
Proof: Both hi and hoER and t and t eT(H). By Green's 

Lemma the mappings r~:x~xt (XEL h ) and tt:x~xt/(XEL ),
ho .. ! 

are mutually inverse, ~-Class preserving, one-to-one 

mappings of L h onto L h and of L onto L • Because in 
0 h h- 1 i 0 

this case Lh =Lh and bhe mappings are ~class preserving 
o i 

the mappings }'t and ¥t.' are mutually inverse one-to-one 

mappings of R onto itself. 

The second part of bhe theorem is the same direct 

application of Green's Lemma. 

Definition: A set f(H) of bransformations of H is said to 

be simply transitive iff given any two elements x and y 

of H 3 one and only one element of r (li) mapping x onto' y. 

Theorem 4.2: Let H be. an 'I/-class of a semigroup S. Then 

the se~igroup f(H) of tr~nsformations of H induced by the 

inner right translations of S1 is a si~ply transitive 

group of permutations of H~ It follows that lr(H)/ = IH\ ( IIHI 
denotes the order of H). If H is itself a sUbgroup of S, 

then r(H) ~H. ( feH) is isomorphic to H). 

Proof: Let tt E. r(H) wi th t in T (H). If hoe H, then h J ;::ho tEH, 

and, by Lemma 4.1, bt has a group inverse ~'in f(H). 

Hence r(H) is a group. 



To show f(H) is simply Gransitive, let h o and hi 
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be any two elements of H. From hO~hJ it is true hot=h{
 

for some tES1
; by Lemma 4.1, tET(H) and hott=h .
i 

To show that '¥t is the only element of r(H) mapping 

onto hi' suppose h ¥!> =h i for some SET(H). Let x be anh o o


arbitrary element of H. From x{ho ' x=yho for some YES 
j

,
 

and so x ~t =xt=yh t=yh =yhos=xs=x'O:. Hence O's =0t.
o 1 

Suppose H is a group. Let e be the identity of H, 

and let h be an arbitrary element of H. From v/ha t ha s 

been said there is exactly one element of r(H) mapping e 

upon h. But "t~maps e upon h. Thus r(H)= fo~J h€H? • 

Lemma 4.,3-: Let H be an IV-class of a semigroup S, and let 

Rand L be the f and {-clas se s of S containing H. 

( i ) For every st:S, either HsnR=0 or else Hs is an 

ii-class	 contained in R, and Ls is t~e ~-class of S 

containing Hs. 

(ii) If HsnR=0, then Hstn~=0 :or every t in S. 

Proof: (i) Suppose HsnR/0. Let bE.HsOR. Then b=as for 

some aER. Since afb, a=bs' for some Sl E S. By Green's 

Lemma 2.1, x~xs is an ~-class preserving, one-co-one 

mapping of LQ onto Lb' Hence 3s=Hb~R, and L~=Lb~H. 

(\1) If HstnR/0, and bEHstOR, then b=ast for some 
, ~	 Ia(H, and b'la, so that a=bt for soue tES. 
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But the equations b~(as)t and as~b(t/s) imply. that 

b1fas, so asEHsnR, contrary to the hypothesis that HsrrR=0. 

As has been necessary so often, Green's theorem will 

again be resorted to, to I1 move " from ;(-class to ";;(-class 
. 

and from If-class to If-class or combining the two id~as 

from '1I-class to 1I-class. The ?-cle.sses will be 1R; I i(I? • 

The ~-classes will be {L~lAEA1. They will be contained in 

the i3-class D. The hi-classes will be denoted as Hi~ ~Ri n Ll. 

and it will be assumed I and~ have an element in common. 

Also, HJ1 ~H. 

For each 7I.d'l, pick an element h.l..( Hn . Since h).fh 1,3 
I 1 I

elements q),q).tS 3h~=h1q). and h 1=h q;>... By Lemma 2.1,A

the mappings x~xq). and y~yq ~ are mutually 'inverse, 

one-to-one, ~-class preserving mappings of L1 and LA onto 

each other. For each ~(A, make and fix a selection of such 

elements 
I 

q ,q
l. ). 

1
E 8 . 

Definition: Let SESe MD(S)=(ffi1p(S)) is a AxA matrix over 
o 

reB) defined as 

m~(s) = (r(q}.Sq;' ) if H:, s=H 1)' 

( 0 otherwlse 

Theorem 4-.4-: The mappin6s s~Mo(8) is a representation of 
o 

S by row monomial AxA matrices over r(H). Given A~ fA 

and O'(t) in reB) (tE.T(H)), ] an sE-83m A.lA-(s)="1t.! - ~ 



ProOf: First it is shown that each Mo(s) is row monomial. 

Let SE.S and AEJi.. RiA :;:R1nL). implies that Hu~ R • Applying
1 

Lemma 4.3 ( 'I ) to Hi). either H lAsf\R :;:0 or else Hn.s=H YA'~ 01.. 
In the first case, the condition of the definjtion has not 

been satisfied and therefore the Ath row is o. In the 

second case, it has O(qASq~) in the;-c'olumn and zeros 

elsewhere. 

To show that m~(s):;:o(t) take s=q~ t3u" Then 

Hi ~ s::oHU. q/A t;u =Hte;.u=H~=H)U and then m;y.;..( s)=d( q )..s~ ). 

If h is any element of H, then hq).s;M =hq)..q~ t~~ =ht 

because Xq),q{ =X and x~~ =X't/XEH. Hence O'(q).Sq~)=O(t). 

To show IVlo(S)Mo(t)=Filo(st)Vs, tES it must be shovVTl that 

(1) j-J:>jJ..(s)~J)(t)=m)'1J(st)VA,J)(:A" Suppose first 

that mA»(st)jO. Then H1A sC=H i » and 

( 2 ) m),1> ( s t ) =i (q)..s t q { ). 

By Lemma 4.3 (i 1), Hi). sf\Ri jO, 'since otherwise H
U

) =HjA 

stOR 1 =0. By Lemma 4·3 (.,), H1AS~H1t< for some ¥"EA, and so 

m),t-{(s)=(qASq;), m¥(s)=o forJAi+\. Since H11J=!IL~t, it 

follows that m"O)t=O'(qoHtq~). Hence the left side of (1) 

is (3) O(q)..Sq~ )¥(q-Ktq~ )=¥(q)..SQ~ Q+<tq~). To show 

(2) and (3) equal it is sufficient to show hqASq~q~tq~ = 
/ 

hq}..stqjJVhEH. But this is so because hq;.stH1).s=HH\ ' end 

x-+Xq~qK is the identity mapping of H1~ onto itself. 

Now suppose that mA~(st)=O, so that H1A stjH1». It is 

necessary co show the' left side of (1) is also O. If 
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HnsnR=0 then ffi)..jJ-(S)=O'tlf,f!, and (1) is a in this case. If 

H ?sORI0, then by LeJillla 4.3 (i ), H.1"s=H1~s=HH< for soroe'\(/l.
1

Since mA~(s)=O~J~, it is sufficient to show that m~»(t)=O. 

But Hiot{ t=Hn. stIH!llo' Therefore IDo\(ll( t )=0. 

As an example of Schutzenberger represeont;ations 

consider the following set of transformations and the 

operation defined by the table in figure 7. 

* 
(11) (11) (11) (22) (22) 

(12) (11) (12) (21) (22) 

(21) (11) (21) (12) (22) 

(22) (11) (22) (11) (22) 

FIGUR~ 7 

SBT OF TRh~SFOR~1IONS 

{O (11)1R = ~ (11) (22)1 L 1 = 
1 

L :: { (22) ~ 2 

=R~nLt f( 11)1 H12. ::oR1nL, = ~ (22)1H11 

T(H) = {(II), (12)1 0. = (11) (11) = (11) o= (11) (12)=(11) 
(11) (u) 

r(H) is the group consisting of the identity element, 

call it e. By computation it is seen 
( 

h = (11) qt = (11) qt= (11)
1 

h2.:::0 (22) q = (21) q 
I 

= (21)
l. f. 

By further computation it is seen 
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ID n (11)= 1Kll) (11) (11)1 ='t(ll)=e 

ID U (11)= OKll) (11) (21~ =1(22)=0 (ll)-(: :)
ID 

H 
(11)= "6K21) (11) (ll~ =O'(ll)=e 

ID
Zt 

(11)= ~~21) (11) (21j =0(12)=0 

mu	 (12)= lKll) (12) (ll~ =l(ll)=e 

(12)= O~11) (12) (21~ =0(22)=0 (12)~(:mlZ :)ID Zi	 (12)= lK21) (12) (11~ =0(11)=0 

IDfi?	 (12)= )'[21) (12) (215] =~(12)=e 

IDH (21)= 1rr11) (21) (11~ ='l(11)=0
 

ID (21)= oK11) (21) (21)] =)'(ll)=e (21)~(:
U :)ID ll	 (21)= 1K21) (21) (ll~ =~(11)=e 

ID	 (21)= Og21) (21) (21~ ='(21)=0
Zt 

ID 
B 

(22)= )'Kll) (22) (11~ =)'(11)=0 

ID 
1

2, (22)= iKll) (22) (21] =)'(ll)=e (22)-G :)m
21 

(22)= 1K21) (22) (11~ =1(11)=0 

mll (22)= D'E21) (22) (21J ="t(11)=e 



Chapter V 

Summary 

The question considered in this study was whether 

an arbitrary semigroup could be represent;ed by a semie;roup 

of matrices. The Rees Theorem showed that a completely 

O-simple semi0roup was representable. Not only can a 

completely O-simple semi3roup be represented, it's repre~ 

sentation is an isomorphism. Gre2tis theorem 2.2 provided 

the group for the Hees matrix elemenl:;s. In the case of 

any other sem.igroup, the representation'may or may not be 

an isomorphism. 

In the more gener~l caee, ehe Schutzenberger group 

of an ~-class provided the group. In the case of an arbi

trary semigroup, however, the representation mayor may not 

be isomorphic. 

It might be well to discuss the chain of events that 

lead from the elements s of the semigroup SO to the final 

elements of the semi6roup of matrices. 

Recall that SO was first partitioned off inbo its 

D-classes, ~-c18sses ~nd i?-cl~sses. The ~-classes and 

~classes were indexed by the sets I and ]\. This indexiU3 

was then used to provide an indexing of the IV-classes 

formed by the incersecGion of the ~-classes and ~-classes. 

In this manner, one of the -~classes was given the 
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index R
11 

• This ~-class was arbitrarily selected to forill 

the Schutzenberger group. The elements of this group 

would become the elements of the ~atrices. 

It was necessary then to set up a mapping from the 

elements of SO to the i(t) of \(Ru ). 

Greerrs theoreo 2.2 was used to calculate the qA that 

provided a mapping from the lI- c l~-- ~ to RD., and theH11 

q ~ that provided the :J.:.\pping from H1).. to Hit. It can be 

readily seen that given a!ly SES 
O 

and hcH that the productu 

hqAS q; is ~gain an element of HJ1 • Breaking the product 

down hq~E by definition of qA. But the conaition th~tHiA 

H1AS=Rl~ 'forces hq~S to be in H1y . The means used to cal

culate q{ then guarantees that hq). s~ E- and so qA so;. E:Hl1 

T(H) and 0' (q~ s:;' ) E r(H) . ' 

Therefore the element in the roV! A and Ghe column? of 

the ~atrix has the value t(q~s~) if H1AS=H~ otherwise 

it is zero. 

After the illBtrices have be~n calculated to represent 

the elements of SO the question, how the preservation of 

operations is the result, occurs. To put this more pre
o 

cisely given r,s,t~S and Ghe ~atrix representations 

A, B, C of r,s and t respectively. ~lhy is it ~hat if 

r.s=t then AoB=C? 

First recall that the matrices are row(or column) 

monomial. This means tt_at when ro,','s of A c;re "multiplied" 
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by each of the colurnns of B the resulting summation 'Nill be 

concerned ~ith at mos~ one Don-zero element. Only the case 

where a non-zero entry in C is calculaced will be considered 

here. 

Suppose that a~l ,aAl'~" is an arbitrary row ofa An 

matrix A an~ b~ ,b~ ••. , b~ is an arbitrary column of 

matrix B. Also suppose that aAk b9J.~O. Then ai\.k=-a(q1rq: ) 

and b~ =- 0'( q k s ~ ). So a).k b~ ::: '6(q). r Cl ~ ) 0(q I< Sc:; ) 
=-t(q).rq( QkSClf ) 

The reason for this is given in the proof of ~heorem 

4.4. In order for 1(qArq~ ~kSq~ ) to be the· element in 

the )ch row th8;UGh column of Ghe matrix C, hq~rq~ qkS~ 

mus~ equal h<l). ~.; for all hcHJ1' But q~ and qk are 

inverse moppin;s by theorem 2.2 and so r is illapped on~o tbe 

element of H~ that is mapped onto r. Therefore hqArq~ qks~ 

=- hqArs~
/ = hqi\.t~ 

/ 
. I~ csn be concluded from ~his that the 

"produc t II a Ak b~ ::: c-;y;. • 
The preceeding is not intended as a complete answer 

to how the representation is established or why the mapping 

is at least a homomorphism. It is hoped that it does 

provide a feel for some of the more bothersome questions 

that may enter ones mind as he flounders in the theory. 

In the special case of representing a group as a group 

of matrices it was found that following the definitions all 

matrices were lxl due to the fact that there was only one 

FI-class. 
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A few added theorems are of inGerest and can be found 

in the book ~l~ebraic Theory of Semigroups, by A.H. Clifford 

and G.B. Preston. 
o 

1. Let S be a regular Rees matrix semigroup n(GiI,lljP) • 
. 

Then the Schutzenberger representations of S corresponding 

to the fl-cl ass D=S~ can be taken to be MD(s)=Ps where s 

denotes an arbitrary element of S. 

2. Let Hand H/ be ~-classes of e semigroup S both 

contained in the same g-class of S. Then j(H) is isomor

phic to r(H"). 

3. Any of the tbeorems on completely O-simple semi

groups are also true about completely simple semigroups. 

4. For any of the theorems on SchuGzenberger represen

tations, there exists dual theorems on anti-rGpresen~ations. 

Anti-representations are anti-iso~orphisms or anti-ho~omor-

phisms defined by (a~b)0=(b0)o(a0). 



AllclVCi8011218 
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