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CHAPTER I
THE PRORLEM

It is the purpose of this study to demonstrate how
the operation of closure may be logically introduced in
group theory as an operation on the eleménts of a group.

Closure is usually defined in connection with par-
tially ordered sets. As an example of a lattice, the stu-
dent is invariably offered the structure of the subgroups
of 2 eroup with the operations of intersection and closure
equated to the meet and join operations of lattice theory,.
The student is familiar with the operation of intersection.
However, the operation of closure may not be‘familiar,
since it is not even named in such comprehensive studies
as W, R..Scott‘s "Group Theory",

This'study shows that the concept can properly be
introduced quite early in a study of groups, and, by pre-
senting theorems which relate to the tasic properties of
closure, demonstrates that closure can be logically used
in the development of a presentation of group theory.
Hence, this study should be meaningful to any student that
has had an introduction to the theory of groups, and should
be an aid to any study bf closure, whether related specif-
ically to groups or not.

Definition of symbtols used. The following symbols

will te used throughout the body of this thesis:



|

only if

< : if and only if

m

is an element of
such that

there exists

N w w

is a subset of

N

is a subgroup of

™~

used in conrection with the above implies
denial, e.g., £ : is not an element of

{R} : the set whose members are R

M ¢ will always te usea to represent the set

of natural numbers.

Other symbols will te introduced as they are needed

in the bhody of the paper,



CHAPTER II

DEVELOPMENT OF PACKGRQUND NECESSARY
TO INTRODUCE THE CONCEPT OF CLCSURE

Definition of a group.

Definition 1: A group is a set G for which an
operation called multiplication is defined such that:
l. If xe G, y € G, then xy € G. (The set is
closed.)
2. For every x, y, z contained in G. (xylz =
x(vz).
3. G contains a unique element e, called the ,
identity of G. 3 for all x € G, ex = Xxe = X.
L. For every x € G, 3 a unique element x~Le g

-1 -1

XX =X "X = e,

Theorem 1. If x is an element of a group then

(x~1)-1 = x,
Proof: Let x be an element of a group G. Then x1e
G and (x~1)-1

€ G by property L of the definition of a

group. Then

x'l(x_l')—1 = e = xIx by property L
x[x_l ( _l)f¥]= x[x_l x] by property 1
(xx—l)(x"l)'l = (xx'l) x by property 2
el —1)—1 = ex by property L

and (x~1)-1 = x by property 2 of a group.



Definition 2: A complex is a subset of a group. [7:2]

Basic properties of sets, their union and intersection.

If S; is a complex, the following properties arc obtainable

from set theory:
1. $;:& 8
2. 1f S; C Sy and S, C Sz, then S; C Sg
3. S C S, and S, € Sy & S; = Sy,
Definition 3: The totality of all elements that lie

in either Sl or 82 «e. OT Sn is the union of the S;

i, and 1is

denoted by S;US,U... US, = g{Si.
Definition 4: The totality of all elements that lie
simultaneously in n given complexes Sy, Sp, ... Sy is the

n
intersection of the Sj, denoted S;MN SN ...Ns, = [18;.

o~

Again from a consideration of set theory the following
properties are obtainable:
4, sS;US8; = 8.
. S3USy = S,UsS;.

. (SlUS2)US3 = SlLJ(S2L)S3).

. slﬂ S, Sy

5

6

7. S;C S, € 5,US, = S,.
8

9. s8,0s, = s,MNs;.

0. (8,Ms,)Ns; = 8, MN(5,Ns3),
11, S8;C s, ¢ 80185 = g,.

[7:2]
12, If Slg 82 and_S3g Su, then 51U82QS3USM.
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Definition 5: In a group G, the inverse complex
s=t of a non-enpty complex S of G is the complex con-
sisting of all the inverses of the elements of S.[7:1%
Theorem 2: If S, and Sj are non-empty complexes of a

1
-1, -1 - -
group, then (S; 7) = S; and if S; = 8; then Sy L e Sj l.

1 J
Proof: (a) Let x c(Si—l)_l. Then x is the inverse of

-1 -1
an element of (S; ~) by the preceding definition, i.e., x ~¢€

-1 -1 -
S; .+ But by the same definition x € S, 1¢¢'xF?Si. Hence

1
=1, =1 -1, -1
x€ (S; 7) "= xe8y, l.e., (S5 7) "C S;. Let x € Sy

Then x_l€ Si—l "1)"1 —1)—'1

Hence Si = (Si_l)"l by property 3 of sets.,

ll
. . o ~1y=-1
and (x = x € (Si P g;(ui ).

1

(b) Let Si = Sj and let x"l be an element of Si—l.

Then x Si by part (a) and the definition of an inverse
complex, But if x € Si’ then x € Sj by property 3 of

sets. Hence x"1€ Sj—l, i.e., S.'lg; Sj"l. Interchanging

i
the i's and j's in the above demonstration yields Sj'lg;
Si_l. Hence Si'l = Sj'l by property 3 of sets,
Theorem 3: If Si is a non-empty complex of a group
Y 1 i -1 1 -1 -1
= S. N = §."*tMNs. .,
g, then (}3 SiT Ei(si ), and (%1r1327 1 S,

b

Proof: (a) Let X—l [ gg(si"l). Then x“lc some Si"1
saysj*k by definition 3. But x~te Sj'l = x €5, by

definition 5, Now if x € Sj’ then x € C{Si by definition
(:

. . ) n - 1 7
of union. But x € }}Si =2 % e |

=1

(CJSi)_l. Now let x~te (l:lSi')'1 . Then x € CISi and hence
=/ i=1

L=

S,)"l. Hence !j(S.—l)
1 ‘ ¢zt Y

X € sone Si’ say Sj' But x ¢ Sj==> x~leg -1 by definition of

]

. n
an inverse comnlex. But SJ,"l C!ﬂ(Si'l), hence x'l'CZEJ(Si‘l),

(=)



-] n - | n
ices, (US;) C (S 7). Therefore U(S

-1
=1 (>l i

by property 3 of sets.

(b) Let x_le (S]r]SZ)—l. Then x € (Slr182), thus

- - -1
X €S1 and 82, which implies x 1€ Sl 1 and S2 5 1e€uy
-1

— — -—

-1
(SlﬂS2) c slﬂsz. How X €81082=>x €5 and S, ,

o,y |
but this = x€35; and S,, i.e., x€38;MS,, thus x = €

-1 N PR | <1 -
(8;M85) 7, 1.e., 5, N5, C (5;M5,) 7, hence (S;NS,) =

P |
Sl nk)z .

Theorem U4: If S1 and S2 are non-empty complexes

-1 -1
such that slg; Sy, then 5 "C S, 7.

Proof: By property 11 of sets, 5,CS,=S, = S;M 5,5,

- -1
Taking inverses in this equality yields Sy 1 (S,MNs,) 7,

-1 -1 -1 -1
and by theorem 3, (S4MS8,) = =38, "Ns, *. But sy = =

(81—1032_1) =>Sl_1§; 52—1, again by property 11.

Definition 6: If AysAs,...A  are non-empty complexes

n
of a group G, then the product A1A2...An is the complex of
G which contains all the elements of the form 818544485,
where a;e€ Aj. [6:15]

Definition 7: A subgroup of a group G is a complex
H of G whose elements form a group under the multiplication
defined on G, and is denoted H € G.

Theorem 5: Necessary and sufficient conditions that
a non-empty complex S of a group G be a subgroup are:

1. SSC S.

2. s7tc sl7:21

Proof: The necessity of the conditions follow
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immediately from the definition of a group, the first condi-
tion from the fact that a group must be closed, and the séc—
ond from the réquirement that every element have an inverse.
. Sufficiency: Condition 1 insures that S is closed; the
associativity follows from that of G; condition 2 guarantees
that every element of S has an inverse in S; and this cou-
pled with condition 1 guarantees that the identity is in S.

Theorem 6: A non-empty complex S of G 1s a subgroup
of G if and only if S™'s C g, [7:21]

Proof: s"ls CS = e € 8, Therefore s'le = S

S and condition 2 of the previous theorem is satisfied.

-1 -1 .
C S=SC S ", and hence by property 3

By theorem 4, S
of sets, S_l = S and condition 1 of theorem.B is satisfied,

Theorem 7: If A and B are subgroups of G then the
complex C = AB 1s a subgroup if and only if A and B
commute.[2:57]

2
Proof: (a) If C = AB = BA, then C = (AB)(AB) =
A(BA)B =-A(AB)B = A2B2. But since A and B are groups and
2 2 2
hence are closed, A~ = A and B = B, Therefore C = AB =

Y eptateBa = aB, i.e.,

]

C. Now if ab e AB, then (ab)
(AB)—lg; AB, Consequently C is a group by theorem 5,
(b) Let C = AB be a group and ab € AB., Then by

definition 6 a € A and b € B, but if a € A, b € B, then

- - o, -1 -1.-1
a Le A and b 1 € B, hence a 1b 16 AB. Therefore (a 1b )

- ba € AB, i.e., BA € AB. Similarly, b a~> € BA and
(b‘la"l)“1 = ab € AB and AB € BA. Hence AB = BA.



CHAPTER IIT

TEEOREMS AND DEFINITIONS RELATING
TO CLOSURE

In this section we will develop the theorems
necessary to provide a familiarity with the basic
properties of closure and demonstrate how the concept
can easily bhe inteprated into a study of group theory,.

Defirition of closure.

Definition &: ©Let S be a non-empty complex of
a grouv G and S1 = SlJS’l. The closure of the complex
S, denoted <S), is the complex S, = SiLJSiLJSi... = U st,

leN
where N is the set of all ratural numbers.[7:22]

As an example of closure, consider the group J of
interers. the operation addition and the complex S = {2}.
Then s~1 = {_2}, sy =sus™t = [2, -2}, sf = {4, 0, 1},
si = [-6, -2, 2, 6}, Sg = {-¢. -1, 0. L, 8, and ()=
(0o0-6. <L, -2, 0.2, L. 6,...}.

The following is a useful alternate definition:

Theorem g: A complex S, is the closure of a non-
empty complex S if and only if S, is the set of all

finite products x where x: € SLJS"l, i € N.

1X2...Xn, i
Proof: Let Sy be the set of all finite products

XqXpeeeX s X5 € Sl =sUs™l, 1€ N. Ifxe€ S then from



CHAPTER III

TFEOREMS AND DEFINITIONS RELATING
TO CLOSURE

In this section we will develop the theorems
recessary to provide a familiarity with the basic
properties of closure and demonstrate how the concept
can easily be integrated into a study of group theory.

Defirition of closure.

Definition &: Let S be a non-empty complex of

a group G and §, = SUS™L. The closure of the complex

S, dennted (S), is the complex So = S%LJS%LJS%... kLSl,
(7:22]

As an example of closure, consider the group J of
interers. the operation addition and the complex S = {2].
Then s°1 = {2}, 5, =suUs™ = [2, -2}, §2 = {4, 0, 1},

831 = (-6, -2, 2, 6], s‘l* = {-8. -L, 0. L, 8, and (S)=

{ioe=b. <L, -2, 0. 2, L. TP

The following is a useful alternate definition:
Theorem &: A complex S, is the closure of a non-
empty complex S if and only if S, is the set of all

finite products X)X50..X,, Where xi € SLJS’l, i € N,

Proof: Let S, be the set of all finite products

X)Xge e o Xy X; € S = sUs™L, i e N. If xe€ S then from



the definition of Sy, x e 571 and x7lx = e € S,, xe =

X € 82, and hence S% C 82. Suppose S% U Silj ...LJS? - 82.
+

The elements of S? are of the form xjxlxg...xn,.where X5

i
and X4 € Sq . Therefore ST is a set of finite products of
n+l ’
the elements of Sy and hence S5, C S, and consequently

1 2 n+1l .
SlLJSILJ...L)S - Soy 1.e., ) C So. Let ¢ = x9X5...X

n
€ S,. Then c € S; and hence in <S), therefore S, C (S)
and S, = (s) by property 3 of sets.

Theorem 9: If A C B, then (AY & (B).

Proof: If A C B, then A1 C B™! by theorem 4,

hence AU A™L C BU B~1 by property 12 of sets, hence

auaHl c sus™hl., suppose Uy " hlc gJ,(B ushi,
Consider g(AUA_l)i. Uaua™ht = aua™hHu {Q(A ahH1),

e=]
1 -1
) € (BUB ") then by property 12 of sets

(AU U [‘,L?,!(AUA'l)i] c [BU B-l):] U [‘L:'JI(BU 8711, Hence
:U:’(AUA_l) - ‘gI(BUB_l), i.e., ‘LGJN(AUA_l) - ‘yN(BUB'l), 1.€.,
Ay < (B,

Basic properties of closure. The following two

Since (AUA~

theorems present the most fundamental properties of
closure,

Theorem 10: The closure of a complex of a group G
is a unique subgroup of G.

Proof: Let S be a non-empty complex of a group G.

Then {S) is the set of all finite products of the elements
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of Sl = SLJS_l by theorem 8. Hence (S) is a closed set,
since the product of any two finite products is a finite

product., i.e.,

(x %X soex Mx, % seux, ) =x Xy eeeX Xy e eXy
iy By 25 1 "2 m 1 72 n n+l n+m

€(8>. The identity element e €S, since if a€ S, then
a-1 € 51, and aa'l = e € Si C (SY». That every element
of S has an inverse.follows from the definition of (S),
fgr if a = x3Xg...%, € S?, then xn'lxn:%...xl_l = a7t e
Sl' The associativity follows from associativity of the
multiplication defined for G, VFence €S) is a subgroup,
and is unique by virtue of theorem &.

The following theorem has been used in some works
to define closure:

Theorem 11: The closure of a non-empty complex S
is the smallest subgroup which contains S.%:17]

Proof: Suppose 3 a subgroup S; » SCS;, and <s>gisl.
Then 3 an a2 € (8) 2 a £ §1. Put a is of the form Xxyxg...
X, where x; € S or x; € S-l bty theorem &. Therefore
‘a € 89, since S; must contain s71 and must be a closed
set since its a subgroup.

We can see now that our definiﬁion’of closure as
restricted to a group does satisfy the more generalized

definition btelow that is found in lattice theory.

An endomorphism<b(x) = i of the partially ordered
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set P which maps an element x of P onto the element X of

P is a closure operation of P if:

l. xC y= xC V.

2. x C X.
3. % = x.[5:97
Theorem 12: If H and X are non-empty complexes

of a group, then HU K = «H>LJ<K»_[7:22
Proof: Let ¥ = KHYUKKD. = UL G Uk)HU
(<H>LJ<K>)-1]i. Note that ((H)U(K))"1 = ((H)-lLJ<K)”1)

(H> U(K). Therefore Y = &%((H)LJ(K))i. Suppose 4 Xx 3

n

x € Y and x £ (HUK), Now x has the form Y1¥p«++¥,» where
yy € ) or vy € (K), i.e., y; € Hor ! or K or K—l.
But then each y; € (HUK), consequently x € (HUK) and
hence Y C (HUK). Also, since HC (H), K C (K), then HU K
CH U K) by property 12 of sets and (HUK) C HYU (K) by
theorem 9. Therefore (HUXK) = ) U<CK) by property 3 of
sets,

It+is worth noticing that the "dual" of this
theorem, i.e., (HMNK) = «H) N K)» is not necessarily true,
even if HNK is non-empty. If H = {1,2,4 and K = 1,3},
then from the lattice in the appendix we see that HNX) =
Jana Ny = {1,2,3). If H and K are subgroups then
the statement would be valid but trivial, since the inter-
section of two subgroups is a subgroup.

Definition 6: A non-empty complex S of a group G

is a normal complex of G if and only if x'lsx C S for all
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x€ 6, If S is a subgroup of G, S 1is called a normal
subgroup of G, denoted by S4G, [2:22

Normality Theorems. In this section it will be

shown that normality is a property of complexes that is
preserved by closure,

Theorem 13: The inverse of a normal complex 1is a
normal complex, and the closure of a normal complex is a

normal subgroup.

Proof: Let A be a normal complex. Let ai_lc A"l

1

But a; " € A=l if ana only if a; € A, by definition of an

inverse complex. Now for every x € G and every aj € A 3

il -
aJ.e A2 x a;x aJ.,

x‘lajx'= aj, then (x_laj
aj € A, then aj—l € A_l, hence A—l is a normal complex,

since A is a normal complex., If

- -1 = -
) 1. a = X lai lx. But if

X

-1
Let a € <A>. Then a is of the form Y1¥oeee¥ps Vg € AUA 7

i€ N. Consider then x—lax = x“l(yly2...yn)x =

x“l[yl(xx“l)yg(xx_l)---yn_ <Xx—l)yn]X -

)

1
-1, -1\ - =
(X7 7y Ty, x) e (X Ty X)) Yo Vo, +¥p, € A. Hence
A 1is a normal subgroup.
Theorem 14: If H < G and K< G, then (HUK) = i 3163
Proof: (a) HK is closed, i.e,, if hiky, hok, € HK,

then h,k,h,k, € HK, for, by letting h, = hih, so that

17172 3
T _ » _ ,
h2 hl h3, we have hlk1h2k2 hlkfhl h3)k2
-1 _ ’ _
(hlklh1 )h3k2 = k3h3k2, since K9G, and k3h3k2 =

] _ =1 o . )
(h3h3 )k3h3k2 = h3(h3 k3h3)k2 = h3kuk2{aga1n since K4 G;

but h3kuk2= h3k5 € HK.
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(b) Since H and K are groups, hk € HK only 1if

1 -1 1

- -1 - - <1
(hk)™1 = k™'h™ € KH.c But if hk € HK, then (ek )(h Te) =

El El € HK by part a, hence HK = KH, and HK 1is a subgroup
by virtue of theorem 7, and {H U K) C HK as a result of
theorem 11. But HK C (HU K)° C U KD. Theref‘ore.
(HU K) = HK. |

It was demonstrated in the proof of theorem 12 that
when working with the closure of the union of two subgroups
that the definition of closure as applied could be modified
from (HU K) = iLEJN[(H Ux)U HU K)—lji to (H U K) =U(HU 0.
It might be assumed that a still less cumbersome definition
of the closure of H UJ K should be readily available, such as
(H UK) = HK U KH or (HK)2 or (HK)(XH). While not denying
the assumption, at least the above hypotheses are all false,
as can be seen by considering the subgroups H = {1, M
and K = {l, 5] in the group given in the appendix. The
above hypotheses yield, respectively, ({1, 4, 14, 15, 18},
(1,2,4,5,14,15,17,18}, and {1,4,14,15,17,18}, while
HUK)= {1,2,3,4,5,6,13,14,15,16,17,18} .

Theorem 16: If Q, M, and P are normal subgroups
of G such that M C 0, then Q T {PU M) = (@ NP)U M.

Proof: Since Q, M, and P are normal subgroups,
the condition to be. proven can be rewritten thusly:
QNP =(Q N P)M. Now Q ) (PM) is the set of all pm>

pm = q, or p = qmnl. Since M C Q, m~1 ¢ Q and hence
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p€ Qand p€ QN P and pme (Q N P)M. Conversely, (Q M P)M
1s the set of all qm > g € Q, g€ P, and me€ M C Q, Then
gm € Q and gqm € PM, therefore gme Q) PM and Q N (PM) =
QN p)M.[S:lﬁ

The above theorem 1s the modular condition from

lattice theory and proves that the lattice of normal
subgroups is modular.,

A theorem on Abelian subgroups. The closure of

the union of Abelian subgroups 1is not necessarily an
Abelian subgroup, for an element from one subgroup may
not commute with an element from another, Stronger
conditions, however, yield the following theorem,

Theorem 17: If H and K are normal Abelian sub-
groups of G and HM K = e, then (H U K) is Abelian.

Proof: Since H and K are Abelian, it only needs to
be shown that the elements of H and K commute with each

ether, i.e., that hikj = kjhi’ where h; € H, kj € K.
. i, W | -1, -1 _
-1

] _ .
(hi' kj hi)kj = kfkj € K, since H and K are normal
1, -1

subgroups. Therefore hi_ kj hikj € HNK, i.e.,
hi'lkj"lhikj = e, and by multiplying on the left first

by h;y and then by kj we get hiky = kyhy, l.e., (H U K

is Abelian.
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Definition 10: A eroup G is a cyclic group if and
only if there exists an element g € G such that(g) = G.

Theorems on cyclic groups and generators. It can

te proven that all subgroups of a cyclic group are
cyclic.[6135J Hence, we have as an immediate corollary.
the following:

Theorem 18: If H and K are subgroups of a cyclic
group G, then (HUK) is cyclic.

That theorem 1& is not generally true for all
_groups G can be demonstrated by considering the subgroups
B = {1,&} and K = {1,13} of the group in the appendix.
Since (L) =FH, (12 =K, H and X are cyclic subgroups.
Now (HUK? = {1;b,13,16}. But (1) =1 =e, (L) =H, |
(1°) = J; and (16> = {1,16}. Hence BUX) is not cyclic,

Definition 11: A complex C of a group is indepen-
dent if no element of C is contained in the closure of
the remgining elements. If C is ar independent complex
of G such thet ¢(C) = G, then C is an independent generator
of G.

If G is the cyclic group of order 6 > (g) = G,
then all the independent generators of G, called the
svstem of generators of G, are: [g}; {g5}, {gz, gB}, and
[gB, gh}. Notice that gé = e¢ is not in any independent

generator of G, since the closure of any element will
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generate e,

Theorem 19: Let G' be the set containing those
elements of G which are in the system of independent
generators of a non-trivial group G. Then the elements
of G not contained in G' form a subgroup H of G, [7:51]

Proof: (a) Since G # e, e € H,

(b) If xe€ H, y € H, then xy € H, for, supposing
Ja complex C 3 [xy, C} is an independent generator of
G, it follows that {{x,y,C}) = G; but x € H implies
{{y,C}) = G, ang, since y € H, {{CH = G, hence xy € H.

(¢) If x € H then it follows from <[x‘l,c]> = G
that {{x,c}) = G, since {{x,C}) generate x~1. But if
({x,c}) = G, then {C) = G, since x € H. Hence x-lerfﬁ
The associativity of H follows from that of G, hence
H 1s a subgroup of G.[7:51]

It can be proven that the subgroup H, defined in
theorem 19, is a characteristic subgroup, and hence 1s
normal.[7:51]

Definition 12: A homomorphism of a group G
‘into a group H is a function T of G into H such that if
X € G and ye G, then (xy)T ; (x)T(y)T. That T is a
homomorphism of G into H will be denoted T € Homo(G,H).[5:2m

As an example of a homomorphism, let G = {1,2,3,

4,5,6} and I = {1,13] from the group in the appendix.
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Then T 2 1T = 1
2T = 1
3T = 1
4T = 13
5T = 13
6T = 13 is a homomorphism of G onto H,

Homomorphism Theorems,

Theorem 20: If T e Homo(G,H), then esT = e

and if xT = y, then (x~1)T = y~1,

H,

Proof: Let e;T = m and aT = n, where a € G,
Then (egza)T = (egT)(aT) = mn. But (eza)T = (2)T = n,
hence mn = n. Multiplying both sides on the right by
1

n~ " yields m = ey

(b) Let xT =y, (x )T = z. Then (xx 1)T = (x)T

1

- -1
(x 7)T = yz. But (xx )T = (eG)T = e hence yz ey and

1

Let us state the following two corollaries, each
due solely to the definition of homomorphism:

Corollary 1: (x1x2...xn)T = (x1x2“'xn—1)Tan =
S xlTng...an. |

Corollary 2: {xl,x2,.;.xn}T = {x9T,%x5T,...x,T}.

- Theorem 21: If T € Homo(G,H) and J and K are

complexes of G, then {J U K)T = {JT U KT).

Proof: Now (JT U KT) = MGT U KT U 77 U K'lT)i =
ylou xusturhr)t = glourkuystuxtin] -

e

(U U kU 7P U k™ = (JU KT, the second, third and

fourth equalities due to corollaries 2, 1, and 2, respec-

tively.
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Theorem 22: If F and K are complexes of the groups
C end J. respectively, and if there exists T € Homo(G, J)
such that HTC K, then (H)TXX).

Proof: Let FT =1, LCK. Then (HT) = (L). Hence
by theorem 21. (HYT = CHT) = (L)C(¥), the last inclusion
followins from theorem €, Put by theorem 10, (H) is 2
suteroup, thus (H)T € (k).

Theorem 23: Let A a2nd C te sutproups of G and B
and D Ye subgroups of J., TIf there exists a T € Homo(G,J)
such thet AT = P and CT = D, then (AUC)T = {BUD).

P?oof: By corollery 2, (AUC)T = ATUCT., There-
fore (AUC)T = ATUCT =RUD, hence (PUD) = (ATUCT) =
{(auc)T) = {ArUC)T.

An "obvious" converse of the above theorem is the
followine: .

Let A < G; C < G; P<£ Jand D<J, If3T € Fomo
(G.J) > <AlJC>T = (RUD) and AT = E, then CT = D, However,
this converse 1s false. Even if we strengthen the con-
ditions to make T a 1-1 homomorphism and A and P are
normal subgroup subtgroups, so that:

(AUC)T = (AC)T = PD and AT = P, CT does not have
to equal D! The follqwing example illustrates the
preceeding discussion,

Let {G} = {J] and & = {1, 2}, 2 = {1, &}, C = B,
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3] . Let T be the homomorphic mapping of G

J and let G have the table:

1 1 2 2 4

L if_l 2 2

: 22 1 4

2 313 L 1 2
Ll 3 2 1

the above conditions are satisfied but

The conditior thet T € Fomo (G,J) in theorem 23

is very important, for it is possitle to have even a

1-1 mapping
(BUD). To

T> AT =B and CT = D and still (AUC)T #

illustrate this fact, let G = J te the group

given ir the appendix; let A = [1, h}, B = {1, 13},

C =D = {1,
of A onto R
1T =
2T =
3T =
LT =

Yow (AUC) =

2, 3}, and T te the 1-1 homomorphic mapping
and C onto D 2 :

1

2

3 :

13. Note that T mey not be € Homo(G,J).

{1, 2, 3, &, 5, 6}, <FUDY = {1, 2, 2, 13, 14,

15}, and their mﬁltiplication takles are:
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2 2 17 14 15

1 2 ° L 5 6 1
11 2 » L 5 6 111 2 - 17 1L 15
212 > 1 6 L 5 212 2 1 1 15 12
2021 2 5 6 1 > 1 2 15 12 1L
LiL 5 6 1 2 = 17 |12 14 15 1 2 =
515 6 L 2 ° 1 14 [ 1h 15 12 2 3 1
éle 5 » 1 2 15115 1> 1L > 1 2

It may seem that with a "proper™ extension of
T, e.g., 5T = 14, 6T = 15, or 5T = 15, 6T = 1k, that we
could get (AUC) T = (PUD). Fowever, (PUD) is an
Absliar proup, while (AUC) is not, hence the hopkd for
extension of ? cannot exist for the given subgroups, i.e.,

T £ Pomo(G,J).



CHAPTER VI
SUMMARY

It has been demonstrated that the consideration of
closure in group theory can add meaningfully to the
development of the theory as well as providing a familiar
foundation for a future study of lattice.theory. It
yields several important theorems to a discussion of
normal subgroups and a2llows a very natural definition
of eyclic groups. It has been shown that closure can be
included in many facets of a presentation of the theory
of groups, including the important homomorphism theorems.

It was the discussion which follows theorem 227 on
homomorphisms, in fact, which led to the investigation
which resulted in this pazper. An isomorphism is a 1-1
homomorphism, and it seemed 2n easy assumption to make
that the closures of the union of isomorphic subgroups
stould he isomorphic, i.,e., if A= F and C £ D, then
(AUc) 2 (CyUD). Upon finding that this assumption was
ipvaiid, a search was made for the necessary and suffic-
ient conditions that would meke it 2 valid hypothesis,
Theorem 21 is 2 sufficient condition, but a condition
that is both necessary and sufficient is still being

sought,



BIBLIOCRAPHY

Bohm, Harold W. "The Lattices of Abstract Groups of Order
Twenty~Four." IMaster's Thesis, Kansas State
Teacher's College, Emporia, 1961.

Lederman, Walter, The Theory of Finite Groups. New York:

——

Interscience Publishers, Inc., 1949,

MacDuffee, Cyrus C. Introduction to Abstract Algebra.
New York: John Wiley and Sons, Inc., 1949,

Miller, Kenneth S. Elements of Modern Abstract Algebra.
New York: Harper and Brothers, 1958,

Rutherford, D. E. Introduction to Lattice Theory,
New York: Hafner Publishing Co., 1965,

Scott, W. R, Group Theory. Englewood Cliffs:
Prentice Hall, Inc., 1964,

Zassenhaus, Hans J. The Theory of Groups. Second edition.
New York: Chelsea Publishing Co., 1958.




N

o ~N o U W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
ol

(oI ~ N © N S A

\O

11
12
10

4
15

17
18
16
20
21
19
23

22

12
10
11
15
15
14
186
16
17
21
19
20
ok

22

APPENDIX

MULTIPLICATION TARLE OF A

\N

10

12

11

[ ) B o N S

o N R Y

11

10

12

6 7 8 9101

5 8 9 7
b 9 7 8

>
2

1
12
11

10

22
21
20

19

10
11
12
15
14
15
16
17
18
19

20

o U1 W

11

12

10

12

10

11

' 15

13
14
18
16
17
21
19
20

ol

P22

\

12

11

22
ol

2>
19

21

20

10
12

8
7

12

11

10

=

13
14
1O

16

17

18
19
20
21
22
25

oL

14
15
15
17
13
16
20

21

o £ oW

~ ‘0

5 10 11

21112

112 10

TYPE L GRoup [(1:20]

15
13
14
18
16
17

21

20
ol

22

25

= O\ N W

oo ~N YV W

12

10

16
18
17
15
15
14

22

A TN |

10

12

11

17
16
18
14
15

20

19

21

(o N R S

11

10

12

18 19 20

17
16
15
14
15
oL
23
22

21

19

oW O O

12

11

10

7 8 9

9 7 8

8 9 7

20

21

22

10

11

12

o ~ N\ ))_;:- W

21
19
25
ol
22

2

o S/ oW

O

21
19
20
2L
20

25

12
10

ol

15

14

18

17

22

o4

.

19
21

LS 4

N

10
12

11

16
18
17
13
15
14

22

ok

19

21

11
10

12

ok
23
22
21
20

19

nNDW I W o

12
11

10

18
17
16
15
1



LATTICE OF A TYPE 4 croup 1720

{4 R, 8,435,867 83 10/, 12,13, 1, 15,16,/ T 7E:+3 8O, &1, 22, 23,2¢}

/
2/ 15,18, 15, 24}

{12,5,04,17, /8]

{1}



