
AN INTPODUCTION TO THE OPERATION OF
 

CLOSURE AS DEFINED IN A CROUP
 

I 

A Th esis
 

Presented to
 

the faculty of the Department of Mathematics
 

Kansas State Teacher's College
 

In Partial Fulfillment
 

of the Requirements for the Degree
 

Master of Arts
 

by 

George Oliver Elliff 
-:;:;;­

AUf-ust 1968 



T1- c 

tt::rz!J
 
Approval for Major Department 

1 
27,2894 



TABLE OF CONTENTS 

CHAPTER 

I. THE	 PROBLEM..• . . . . . . . . .
 · 1 

Definition of the problem · . 1 

Definition of symbols used · 1 

II.	 DEVELOPMENT OF THE BACKGROUND NECESSARY TO 

INTRODUCE CLOSURE . . . • • . . • . . • . . . . . 3 

Definition of a group .••..•••..... 3 

Basic Properties of sets, their union and 

intersection••••••••••.••.•. 4 

III.	 THEOREMS AND DEFINITIONS RELATING TO CLOSURE ••• 8 

Definition of closure . . . · . 8 

Basic Properties of closure • . . · 9 

Normality theorems .•••.•••••••• • .12 

A theorem on Abelian sUbv,roups ••• · .111 

Theorems on cyclic groups and generators .. · .15 

Homomorphism theorems • • • • . • • • . .• · .1 7 

IV. SUlV1HJ\RY 21 

BIBLIOGRAPHY 22 

APPENDIX 21 

http:intersection����������.��.�


CHAPTER I 

THE PROPLEM 

It is the purpose of this study to demonstrate how 

the operation of closure may be logically introduced in 

~roup theory as an operation on the elements of a group. 

Closure is usually defined in connection with par­

tially ordered sets. As an example of a lattice, the stu­

dent is invariably offered the structure of the subgroups 

of a P:TOUp with the operations of intersection and closure 

equ~terl to the meet and join operations of lattice theory. 

The student is familiar with the operation of intersection. 

However, the operation of closure may not be familiar, 

since it is not even named in such comprehensive studies 

as W. H. Sc ott's !'Group Theory!!. 

This study shows that the concept can properly be 

introduced quite early in a study of groups, and, by pre­

sentinp theorems which relate to the casic properties of 

closure, demonstrates that closure can be lorically used 

in the development of a presentation of p,roup theory. 

Hence. this study should be meaninpful to any student that 

has had an introduction to the theory of groups, and should 

be an aid to any study of closure, whether related specif­

ically to groups or not. 

Definition of symbols used. The following symbols 

will te used throughout the body of this thesis: 
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~: on] y if 

¢::t?: if and only if 

E : is an element of 

3 : such that 

3: there exists 

C:	 is a subset of 

(: is a sub~roup of 

/: used in connection with the above implies 

denial, e.g., t : is not an element of 

{R} : the set vlhose members are R 

N : will always te used to represent the set 

of natural numhers. 

Other symbols will te introduced as they are needed 

in the body of the paper. 



CHAPTER II 

DEVELOPMENT OF PACKGROU~D NECESSARY 

TO INTRODUCE THE CONCEPT OF CLOSURE 

D~finitioE of .§. group. 

Definition 1: A group is a set G for which an 

operation called multiplication is defined such that: 

1.	 If x ( G, y E: G, then xy E G. (The set is 

closed. ) 

2.	 For every x, y, z contained in G. (xy)z = 

x(yz). ~. 

3.	 G contains a unique element e, called the, 

identity of G. 3 for all x € G, ex = xe = x. 

4.	 For every x E: G, ] a unique ele:nent x-I E: G 3 

1xx- = x-Ix = e. 

Theorem 1. If x is an element of a group then 

(x- 1 )-1 ==:. x. 

Proof: Let x be an element of a group G. Then x-I E: 

G and (x-1 )-1 E G hy property ~ of the definition of a 

group. Then 

-1(	 -1)-1 -1x x· ==: e ==: X X by property lJ 

[ -1 (-l)-lJ [-1 Jx x x .. ==: X X X by property 1 

(xx- 1 )(x-1 )-1 ==: (xx-I) x by property 2 

e(x- 1 )-1 ==: ex by property ~ 

and	 (x- 1 )-1 x hy property 3 of a group.;0­
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Definition 2: A complex is a subset of a group. [7:2] 

Basic £££perties of sets, their union and intersection. 

If 5i is a complex, the followinE properties are obtainable 

from set theory: 

l. Si C Si 

2 • If 51 52 and 52 C then 51 C 53C 5 31 

3. 51 C 52 and S2 C 51 <=> 51 :: 52' 

Definition 3: The totality of all elements that lie 

in either 51 or 52 ... or 5 is the union of the Sil and isn 
71 

denoted by 51 U S2U, .. U 5n :: 9/ Si' 

Definition 4: The totality of all elements that lie 

simultaneously in n Given complexes S11 ••• 5n is the521 
'Y1 

intersection of the Si' denoted SlnS2n .••nSn :: DSi' 

Again from a consideration of set theory the following 

properties are obtainable: 

4 . Sl U Sl :: Sl' 

5. Sl U S2 = S2 U Sl'
 

. 6. (Sl US 2)US
3 

:: Sl U (S2US 3 ),
 

7. Sl CS 2 ~SlUS2 = S2' 

8. Sl n Sl = Sl' 

9. Sl n S2 = S2 n Sl • 

10. (Sl nS2)nS 3 = Sl n (S2 nS 3)' 

11. Sl C S2 ~ Sl n S2 :: Sl' 

[7 : 2]12. If Sl C S2 and S3 C S4' then Sl U S2 CS 3 US 4 · 
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Definition 5: In a group G, the inverse complex 

S-l of a non-e~pty complex S of G is the complex con­

sistinr-; of all the. jnverses of the ele:;lents of 5. [7:19] 

Theorem 2: If Si and 5 are non-empty complexes. of aj 
-1 -1 -1 -1 

group, then (Si ) :: 5 i and if Si :: Sj then Si :: Sj . 

-1 -1
Proof: (a) Let x ((Si ) • Then x is the inverse of 

-1 -1 
an element of (Si ) by the preceding definition, i.e., x € 

-1 -1 -1
Si • But by the same definition x E: S i ¢=> x F 5 i . Hence 

-1 -1 -1 -1 ' 
x E: (5 i ) => x ( Si' i. e ., ( S i ) C S i • Le t x ( S i • 

-1 -1 (-1)-1 _ (-1)-1. (C -1)-1Then x (Si and x - x( 5 i ,l.e., SiC '-'i • 

lIe·nce 5. :: (S. -1) -1 by property 3 of set s. 
l l 

-1 -1( b) Let S. :: S. and let x be an element of S. • 
l J l 

Then x S. by part (a) and the definition of an inverse 
l 

complex. But if x ( S., then x ( 5. by property 3 of 
l J 

-1. -1 C S -1 I 1 .sets. Hence x-I ( S. ,l.e., S. .• nterc1anglng
J l - J 

the i's and j's in the above demonstration yields S.-l C 
J ­

-1 -1-15 • Hence 5 :: Sj by property 3 of sets.
i i
 

Theorem 3: If Si is a non-empty complex of a group
 

g, then (.0 S.}'l :: U(S. -1), an d (S 1 n S 2 j 1 :: S -1 n C' 

,:/ 1 ° 2
-1 

,L=' l l 

Proof: (a) Let x-I E: U(5. -1). Then x-I ~ some 5 -1 
l~1 l . i ' 

saySj
-1

, by definition 3. But X-IE: 5 -1 ~ x € Sj' by
j 

71 

definition 5. Now if x E: S., then x € US. by definition
J (~, l 

71 

of union. But x I:: US. =} x-I € (U s. )-1. Hence U(S. -1)
i=/ l i::1 l c=/ l 

~ 1 ~OJ S )-1 No i'J 1 e t x-1 ~ ( US. j . Then x ( U S and hence(=, i • i=' l ,=/ i 

x € so~e S., say S .• But x £ Sj => x-I € Sj -1 by definiti~n of 
l J 

an inverse complex. But 5. -1 € LJ (S . -1 ) hen c e x-I € .U (S -1),
J ,-, l ' ,=, i 



." 1 11 -1 71-1· ( -1l.e., US.) C ,U(S.- ) Therefore .U(Si )::: (.u Si )1 - =/ 1 • L .. I l </ 

uy property 3 of sets. 

-1 -1 n
(b) Let x C (SJ n S2 ) . Then x ((Sl S2)' thus 

h' h' l' -1 S -1 d S -1 .x ~ S1 an d S2' W, .1C lmp le s x E: '·1 an 2 ' 1. e . , 

-1 -1 n -1 -1 -1
(Sl n S2 ) C Sl n S2 . Nov.i x E Sl S2 => x E Sl and S2 ' 

but this => XCS I and S2' i.e., X(SlnS2' thus x-I E: 

-1 -In -1 -1 -1
(31 n S2) , i. e., Sl S2 C (Sl n 3 2 ) , hence (Sl n 32 ) ::: 

-1 n -1
Sl 3 2 , 

Theorem 4: If Sl and S2 are non-e~pty complexes 

-1 -1 
such that 3 1 C S2' then Sl C S2 . 

Proof: By property 11 of sets, 31 C S2=} Sl ::: SIn S2. 

'raking inverses in this equality yields Sl-l ::: (Sl n S2 )-1, 

-1 -1 -1 -1
and by theorem 3 to (S1 n S2) ::: Sl n 3 2 . But Sl ::: 

-In -1 -1 -1
(31 S2 ) =::} Sl C S2 ' a~ain by property 11. 

Definition 6: If Al ,A 2 , ... A are non-empty complexesn 

of a roroup G, then the product AI A2 ... A is the co~plex ofn 

G which contains all the elements of the form a l a 2 ... a ,n 

vJhere a. <t: f\ .• [6: 151 
1 1 

Definition 7: A subgroup of a group G is a co~plex 

H of G whose elcffients form a group under the ~ultiplication 

defined on G, and is denoted H , G. 

Theorem 5: Necessary and sufficient conditions that 

a non-empty conplex 3 of a group G be a sub~roup are: 

1. SS C S. 

2. S-1 C S P:21J 

Proof: The necessity of the conditions follow 
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immedi~tely from the definition of a group, the first condi­

tion from the fact that a group must be closed, and the sec­

ond from the requirement that every element have an inverse. 

Sufficiency: Condition 1 insures that S is closed; the 

associativity follows from that of G; condition 2 guarantees 

that every element of S has an inverse in S; and this cou­

pled with condition 1 guarantees that the identity is in 3. 

Theorem 6: A non-empty complex 3 of G is a subgroup 

of G if and onlv if 3-1 S C S [7:2D
v - • 

-1	 -1 -1
Proof: 3 3 C 3 =* e ~ S. Therefore 3 e = S C 

S	 and condition 2 of the previous theorem is satisfied. 

-1	 -1
By theorem 4, S C 3 ~ 3 C 3 ,and hence by property 3 

1
of sets, 3- = 3 and condition 1 of theorem 5 is satisfied. 

Theorem 7: If A and B are subgroups of G then the 

complex C = AB is a subgroup if and only if A and B 

commute. [2: 57] 

2
Proof: (a) If C = AD = BA, then C = (AB)(AB) = 

2 2
A(BA)B =.A(AB)B = A B • But since A and B are groups and 

2 2 2
hence are closed, A = A and	 B = D. Therefore C = AB = 

-1 -1-1
C. Now if ab £ AD, then (ab) = b a £ BA = AB, i.e., 

(AB) 
-1 

CAB. Consequently C	 is a group by theorem 5. 

(b) Let C = AB be a group and ab € AB. Then by 

definition	 6 a £ A and b £ B. but if a ( A, bE: B, then 

-1 -1 -1 -1 -1 -1 -1 
a c A and b £ B, hence a b € AB. Therefore (a b ) 

-1 -1=	 ba c AD, i.e., BA CAB. Similarly, b a £ BA and 

-1 -1 -1
(b a ) = ab e AD and AD C BA. Hence AB = DA. 



CPA PTER III 

TEEOREMS AND DEFI~ITIONS RELATING
 

TO CLOSURE
 

In this section we will develop the theorems 

necessary to provide a familiarity witb the basic 

prnperties of closure and demonstrate how the concept 

can easily he inte~rated into a study of ~roup theory. 

Definition of closure. 

Definition 8: Let S be a non-empty complex of 

a group G and Sl = S US-I. The closure of t~e complex 

St denoted <S), is the comDJex S2 = SiUS~LJ ~f ... = l~NSi, 
"There J',1 is the set of all natural numbers. [7: 22J 

As an example of closure, consider the group J of 

intevers. the operation addition and the complex S = (21. 

Then 8-1 = [-2} , Sl = SUS-1 
= [2~ -2}, S~ = [-4,0, q, 

si = [-6, -2, 2, 6}, si = {-to -l, O. 4, ~, and (S)= 

[ • . •- 6. ~ L· ~ - 2, 0 . 2, 1+. 6....}. 
The following is a useful alternate definition: 

Theorem 8: A complex S2 is the closure of a non­

empty complex S if and only if S2 is the set of all 

finite products x l x2 ... x : ....There xi ~ SUS-I, i € N.n 

Proof: Let S2 be the set of all finite products 

x1x2 •.• x ' xi E: Sl = S US-l, i E N. If xES then fromn 



CPAPTEH III
 

TEEOREMS AND DEFI~ITIONS RELATING
 

TO CLOSURE
 

In this section we will develop the theorems 

necessary to provide a familiarity with the basic 

pr0perties of closure and demonstrate how the concept 

can easily be inte~rated into a study of group theory. 

Definition of closure. 

Definition P: Let S be a non-empty complex of 

a group G and Sl == S US- l • The closure of tre complex 

S, denoted <S), is the comn] ex S2 = Si usf U ~i ... = llJNsi, 

"There Jl1 is the set of all natural numbers. [7: 22J 

As an example of closure, consider the group J of 

intevers. the operation addition and the complex S = {2}. 

Then S-l = [-2} , Sl =sUS-1 
= [2, -2}, S~ = [-4, 0, ~}, 

si = [-6, -2, 2,6), si = {-to -L, O. 4,8], and (S)= 

[••• -6. -L" -2, O. 2, 4. 6 . •••J. 
The following is a useful alternate definition: 

Theorem P: A complex S2 is the closure of a non­

empty complex S if and only if S2 is the set of all 

finite products x l x2 ••• x , where Xi ~ SUS-I, i E: N.n 

Proof: Let S2 be the set of all finite products 

x l x2 •· .xn ' Xi E: Sl ~ S US- l , i € N. If x E: S then from 
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the definition of Sl' x-I € S-l and x-Ix:: e € S2' xe :: 

x € S2' and hence si c Suppose Si U Sf U •.. U S~ CS2'	 S2' 
n+l

The elements of Sl are of the form XjXlx2"'xn, where Xj 

and xi E: Therefore S~+l is a set of finite products ofSl' 
n+l 

the elements of Sl and hence Sl C S2 and consequently 
1 2 n+l 

Sl U Sl U , .• U S C S2' i. e., <s> C S2' Let c = xlx2' •. x n 

E: S2' Then c € S~ and hence in <S), therefore S2 C <S) 

and S2 :: (S) by property 3 of sets. 

Theorem 9: If A C B,then (A) C ([3). 

Proof: If A C B, then A-I C B-1 by theorem 4, 

hence	 A U A-I C B U B-1 by property 12 of sets, hence 

1(A U A-I) 1 C (B U B-1 ) 1 • Sup p 0 s e .U (A U A-I) i C U(B U B- ) i , 
t =I t" I 

1''''! -1 1 T/otl -1 i -1 r Tl -1 i)
Consider .u(AUA ). U(AUA ) = (AUA )U lU(A A ) . 

", 1=1	 t=1 

-1	 -1
Since	 (AU A ) C (BU B ) then by property 12 of sets 

l(AUA- ) U [.lJ(AUA-l)iJ C [(BUB-I)] U [O(BUB-l)iJ. Hence 
PI	 '~I 

"nt'	 -1 -1 -1U'( A U A-I) C U(BUB ), 1.e., U (AUA ) C !J(BUB ), Le.,
£'1 t"	 lEN L OJ 

(A) C (B). 

Basic E.roperties ££ closure. The following two 

theorems present the most fundamental properties of 

closure. 

Theorem 10: The closure of a complex of a group G 

is a unique subgroup of G. 

Proof: Let S be a non-empty complex of a group G. 

Then <S) is the set of all finite products of the elements 
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-1 bof SI =-= sUS y theorem 8. Hence <S) is a closed set, 

since the product of any two finite products is a finite 

product. i.e., 

(x x ••• X )(x x ",x ) = x x ••• x x ",xa a a·t b b a a a b b.1 2 n 12m 1 2 n n+l n+m 

~ (S>. The identity element e E. S, since if a E S, then 
2la-I E. S-l, and aa- = e E. SI C (S). That every element 

of S has an inverse follows from the definition of (S>, 

. Sn th -1 -1 -1 -1 £for lf a = xlx2", xn E l' en xn xn_l ",xl = a 
n 

Sl' The associativity follows from associativity of the 

multiplication defined for G. Pence (S) is a subgroup, 

and is unique by virtue of theorem a. 
The followinV theorem has been used in some works 

to define closure: 

Theorem 11: The closure of a no~-empty complex S 

is the smallest sub~roup which contains S.~:ln 

Proof: Suppose 3 a subrroup Sl 3 SCSi, and (S>¢8 •
1

Then 3 an a € (8) ) a ¢ Sl' But a is of the form xlx2••• 

xn ' ,,!here Xi E S or Xi ~ S-1 by theorem 8. Therefore 

a E 81 , since 81 must Contain S-l and must be a closed 

set since its a subproup. 

We can see now that our definition of closure as 

restricted to a group does satisfy the more generalized 

definition below that is found in lattice theory. 

An endomorphism~(x) = i of the partially ordered 
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set P which maps an element x of P onto the element x of 

P is a closure operation of P if: 

1. xC y=*,xC y. 

2. x C x. 

3 • x = x. [5: 97J 

Theorem 12: If Hand K are non-empty complexes 

of	 a group, then (H UK) = «H) U (K». [7: 2 2] 

Proof: Let Y = «H) U (X». = UK (H) U (K»)U
tH! 

«H) U (K) )-lJ1, Note that «H) U (1<) )-1 = «H)-l U (K)-l) 

= (H)	 U (K), Therefore Y = U«H) U <K»)i, Suppose 3 x 3 
'E/J 

x € Y	 and x t (H UK) , No Vi X has the form y 1 Y2 ... yn' where 

-1-1
Yi € (II) or y i € ( K,) i. e ., y i € H or H or K or K 

But then each y i E: (H U K), consequently x E: (H UK) and 

hence Y C (HUK). Also, since H C (H), K C (K), then H U K 

C (H) U (K) by property 12 of sets and (H UK) C «H) U (K» by 

theorem 9. Therefore (HU K) = «H) U (K» by property 3 of 

sets. 

It'is	 worth noticing that the Ildual" of this 

theorem, Le., (HnK) = «H)n(K» is not necessarily true, 

even if HnK is non-empty. If H = {1,2,4J and K = fl , 3} , 

then from the la t t ice in the appendix we see that (H n K) ::= 

{l}and (<H)n (K» = tl,2,3}. If Hand K are subgroups then 

the statement would be valid but trivial, since the inter­

section of two subgroups is a subgroup, 

Definition 6: A non-empty complex S of a group G 

is a normal complex of G if and only if x-1Sx C S for all 
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X E: G. If S is a sub croup of G, S is called a normal 

subgroup of G, denoted by S4G. ~:2~ 

Normality Theorems. In this section it will be 

shown that normality is a property of complexes that is 

preserved by closure. 

Theorem 13: The inverse of a normal complex is a 

normal complex, and the closure of a normal complex is a 

normal subgroup. 

-1 -1Proof: Let A be a normal complex. Let ai E: A . 

But a i - l 
E: A-I if and only if a E: A, by definition of ani 

inverse complex. Now for every x E: G and every a i E A 3 
-1

E: A 3 X aix = a , since A is a normal complex. Ifa j j 
-1 -1 -1 -1-1x-la.x = a then (x ajx) = a = x x. But ifJ j , j 

a i 
-1 -1 -1a.E: A, then a. e A , hence A is a normal complex.

J J 

y. E: AU A-ILet a E: (A). Then a is of the form YIY2" 'Yn' 
1 ' 

-1 -1 
i E: N. Consider then x ax = x (Y Y "'Yn)x = I 2 

lx-l[Y (xx- )Y2(xx- l ) •. ·yn_l(xx-l)yn]x = 
l 

(x-lYlx)(x-lY2x) ... (x-ly x) = Yb Yb "'Yb € A. Hence 
n 12· n
 

A is a normal subgroup.
 

Theorem 14: If H ~ G and K <J G, then (HU K> = HK)3: 631 

Proof: (a) HK is closed, Le., if hlk l , h 2k 2 E: HK, 

then h l k l h 2k 2 E HK, for, by letting h
3 

= h l h 2 so that 

-1 -1
h 2 = hI h 3 , we have h k h k = hl\(h h )k 2 = 

l l 2 2 l 3 
-1 .

(hlklh l )h k 2 = k h k 2 , Slnce K ~ G, and k h k 2 = 
3 3 3 3 3

-1 -1· . .(h h ) k h k 2 = h (h k h ) k 2 = h k 4k 2, agaln Slnce K <l G;
3 3 3 3 3 3 3 3 3

but h HK.k 4k 2 = h 3k S (
3
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(b) Since H andK are groups, hk E: HK only if
 

-1 -1-1 -1 -1

(hk) = k h E: KH.c But if hk E: HK, then (ek )(h e) = 
-1 -1
k h E: HK by part a, hence HK = KH, and HK is a subgroup 

by virtue of theorem 7, and (H U K) C HK as a result of 

theorem. 11. But HK C (H U K) 
2 

C (H UK). Therefore 

(H U K) = HK. 

It was demonstrated in the proof of theorem 12 that 

when workin~ with the closure of the union of two subgroups 

that the definition of closure as applied could be modified 

ifrom (H UK> = .U [(H UK) U (H UK) -lJ i to (H UK) =U( H UK) .
,€w ,€~ 

It might be assumed that a still less cumbersome definition 

of the closure of H U K should be readily available, such as 

(H U K) = HK U KH or (HK) 
2 

or (HK)(KH). While not denyinG 

the assumptio~ at least the above hypotheses are all false, 

as can be seen by considering t:he subgroups H = fl, 4J 

and K = {I, 5] in t he group given in the appendi x. The 

above hypotheses yield, respectively, {l, 4, 14, 15, 18J, 

{1,2;4,5,14,15,17,18], and [1,4,14,15,17,18J, while 

(H UK) = {I , 2, 3 , 4 , 5 , 6 , 13 , 14 , 15 , 16 , 17 , 18} . 

Theorem 16: If Q, M, and P are normal subgroups 

of G s u c h t hat r1 C Q, then Q n (p U r'1) = ( (Q n p) U 1\1 ) • 

Proof: SinceQ, M, and P are normal subgroups, 

the condition to be. proven can be rewritten thusly: 

Q n Pi1 = (Q n P)H. Now Q n (pr/l) is the set of all pm3 

-1 1pm = q, or p = qm • Since H C Q, m- E: Q and hence 
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P E: Q and p <: Q n P and pm E: (Q n PH1- Conversely, (Q n PH1 

is the set of all qm.3 q E: Q, q E: P, and m E: f1 C Q. Then 

qm £ Q and qm E: PM, therefore qm E Q n PM and Q n (PM) = 

(Q n p HL [5: 18] 

The above theorem is the modular condition from 

lattice theory and proves that the lattice of normal 

subgroups is modular. 

A theorem £.!l Abelian sUbr;roup~. The closure of 

the union of Abelian subgroups is not necessarily an 

Abelian subgroup, for an element fro~ one subgroup may 

not commute with an element from another. Stronger 

conditions, however, yield the following theorem. 

Theorem 17: If Hand K are normal Abelian sub­

groups of G and H n K = e, then (H U K) is Abelian. 

Proof: Since Hand K are Abelian, it only needs to 

be shown that the elements of Hand K commute with each 

other, i.e., that hik j = k j hi' whe re hiE: H, k j E: K. 

Consider 
-1 -1

hi k j hik j • 
-1 -1 

11 i ( kj hi k j) = hi h f E H, and 

-1
(hi k j 

-1 
hi)k j = kfk j E K, 

.
SInce Hand K are normal 

-1 -1subgroups. Therefore h. k. h.k. E: H n K, i. e. ,
1 J 1 J 

-1 -1 
hi k j hik j = e, and by multiplying on the left first 

by hi and then by k j we get hik j = kjh i , i.e., (H U K) 

is Abelian. 
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Definition 10: A ~roup G is a cyclic group if and 

only if there exists an element f ' G such that(g) = G. 

Theorems on cyclic groups and generators,. It can 

re proven that all sutfroups of a cyclic group are 

cyclicJ6:35J Hence, we hRve as an i~~ediate corollary 

the following: 

Theorem If: If Hand K are subgroups of a cyclic 

group G, then (HUK) is cyclic. 

That theorem 18 is not generally true for all 

groups G can be demonstrated by considering the subgroups 

P =:: {1,4} and K == {1,l3} of the group in the a.ppendix. 

Sinc e (ll > = p., <l ~ ) = K, Hand K are cyc 1 i c SUD fT 0 ups. 

~TOi'T (HUK) :: {1,4,13,16]. Rut (I) = 1 == e, (h) = H, 

(1') = J, and (16) :::: (1,16]. Hence <HUK) is not cyclic. 

Definition 11: A complex C of a group is indepen­

dent if no element of C is contained in the closure of 

the remaining elements. If C is an independent complex 

of G sucr that (C) :::: G, then C is an independent generator 

of G. 

If G js the cyclic group of order 6 3 (g:) == G, 

then all the independent generators of G, called the 

system of generators of G, are: [~d, [g5] , {g2, g3] , and 

!g3~ g4}. Notice th2t g6 == e is not in any independent 

fenerator of GT ~since the closure of any element will 
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generate e. 

Theorem 19: Let ot be the set containing those 

elements of 0 which are in the system of independent 

generators of a non-trivial group G. Then the elements 

of 0 not contained in 0' forM a subgroup H of G. [7: 5JJ 

Proof: (a) Since 0 ~ e, e E: H. 

(b) If x € H, y E: H, then xy E: H, for, supposing 

3 a complex C :3 [xy, CJ is an independent generator of 

0, it follows that ({x, y ,C}) = G; hut x E H implies 

«(y,C}) = 0, an~ since y £ H, (fcr)" = 0, hence xy E: H. 

(c) If x E: H then it follows from ({x-l,cJ) = 0 

that ([x,c]) = 0, since <fx,c) generate x-I. But if 

([x,C}) = 0, then (C) = 0, since x E H. Hence x-I E H. 

The associativity of H follows from that of 0, hence 

H is a subgroup of o. [7: 51] 

It can be proven that the subgroup H, defined in 

theorem 19, is a characteristic subgroup, and hence is 

normal. [7: 51] 

Definition 12: A homomorphism of a group 0 

into a group H is a function T of 0 into H such that if 

x ~ 0 and y €. 0, then (xy)T = (x)T(y)T. That T is a 
1 

homomorphism of 0 into H will be denoted T £. Homo(O,H). [5:2 1] 

As an example of a homomorphism, let 0 = n,2,3, 

4,5,6} and If = [1, 13} from the group in the appendix. 
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Then '1' :3 1'1' = 1 
2'1' = 1 
3'1' = 1 
4'1' = 13 
5'1' = 13 
6'1' = 13 is a homo~orphism of G onto H. 

Homomorphisn Theorems. 

Theorem 20: If '1' £ Homo(O,H), then eOT = eH' 

. ( -1) -1and lf xT = y, then x '1' = Y • 

Proof: Let eOT = m and aT = n, where a ~ O. 

Then (eOa)T = (eOT)(aT) = mn, But (eGa)T = (a)T = n, 

hence mn = n. Multiplying both sides on the right by 

-1 . ldn Yle s m = eH' 
-1 -1

(b) Let xT = y, (x )'1' = z. Then (xx )'1' = (x)T 
-1 -1

(x )'1' = yz. But (xx )T = (eG)T = eH' hence yz = eH and
 
-1
 

z = Y 

Let us state the following two corollaries, each 

due solcly to the definition of homomorphism: 

Corollary 1: (x l x 2 •.• xn )T = (xlx2".xn_l)TxnT = 

•.. = xl Tx 2T••. x T.n

Corollary 2: [xl,x2" .. xn}T = (xlT,x2T, .. ,xnT}. 

Theorem 21: If '1' E Horno(O,H) and J and K are 

complexes of 0, then (J U K)T = (JT U KT). 

Proof: Now (JT U KT) = .U(JT U K'I' U J-1T U K-1T)i = 
'EN 

.u [CJU K U J- l U K-l)TJi = U[(JU K UJ-1U K- l )iTJ = 
'Ell lEu 

[U(J U K U J- l U K-l)iJT = <J U K)T, the second, third and 
HN 

fourth equalities due to corollaries 2, 1, and 2, respec­

tively. 
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Theorem ?2: If ~ and K are complexes of the ~roups 

r enn J .. respectively, and if there exists T E: Homo(G, J) 

sur h th a t HT C K. then (H) TC<K>• 
proof: Let PT == L, LCK. Then <HT) == (L). Hence 

r-v treorem ?J.. <H)T == (HT) == (L)C (K), the last inclusior: 

follo~inr- from theorem t.. Put by theorem 10, (H) is a 

subr-roup! thus (H)T , (K). 

TheoTem ?3: Let A Rnd C te sucproups of G and B 

anri D }e subVroups of J. If there exists aTE Homo(G,J) 

surh tr.et AT == P and CT:::: D, then (AUC>T ==(EUD). 

Proof: By corolla ry 2, (A U C)T == AT lJ CT. There­

fore (AUC)T = ATUCT ==8UD, hence (PUD) == (ATU CT) :::: 

«.6. UC)T)- == <A UC)T. 

An flO tvious'l conver se of th e a have theorem is the 

f'ollo'.·rinp' : 

Let A ~ G, C ~ G, P ~ J and D ~ J. If 3 T E: Homo 

(C.J) 3 (AUC)T == (PUD) .and AT == B, then CT == D. However, 

this converse is false. Even if we strengthen the con­

ditions to ma~e T a 1-1 homomorphism and A and Pare 

normal sur-group subgroups, so that: 

<AUC>T == (AC)T == PD and AT == P, CT does not have 

to equal D! The following example illustrates the 

preceedin~ discussion. 

Let {G} = {J} and A == [1, 2}, E = {l, 4}, C = B, 
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ard D == (I, 3]. Let T be the homomorphic mapping of G 

orto J :3 • 

GT == J and let G have the table:
 

IT == 1 1 2 <
 ~ 

~2T == 1J- ~l 2 4/ 

? 'T' == ? 2 4 ?2 1L ~' -
Ie'J' == 2 J 3 4 1 2 

4 4 3 2 1 

Then the above conditions are satisfied but 

CT 1= D. 

The condition that T € Homo (G,J) in theorem 23 

is very import~nt, for it is possible 'to have even a 

]-1 mappinp: T:) AT == Band CT ~ D and still (AUC)T =f 

(B U D>. To illustrate this fact, let G == J 'be the group 

piven iI', the appendix; let A = [1, 4}, E === {I, 13J, 

C == D === [1, 2, 3}, and T be the 1-1 homomorphic mapping 

of A onto Band C onto D 3 : 

IT = 1 

2T = 2 

3T == 3 

4T == 13. Note that T may not be € Homo(G,J). 

tToT,' C!\UC) == {I, 2, ;, '-'-, 5, 6}, (~U D) == [1, 2, :, 13, 14, 

15], and their multiplication tables are: 
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')1 2 ') L 5 6 1 2 I; 14 15 
-

') ')III 2 J, 5 6 1 1 2 1: II. 15 
")2 I ;::> 1 6 4 5 2 2 ?•. 1 lLl 15 1: 

") I '") [, ') 'l1 2 5 6 1 2 15 1~ lit 

L I !J. 5 6 1 2 < I" 1; 1~ 15 1 2 ')-
5 5 6 I. ;::> ') 1 14 1L. 15 1: 2 ~ - 1 

6 6 L 5 ") 1 2 15 15 1") II. ') - 1 2 

It may seem tha t vIi th a "proper" extension of 

T, e.g. , 5T = 14, 6T ~ 15, or 5T ~ 15, 6T ~ 14, that we 

could ?et (A U C) T == (BU D). Powever, (PU n) i's an 

Ab':!1ie.n p-roup, vlhi1e (AUC) is not, hence the hoped for 

extension of T cannot exist for the given sub?roups, i.e., 

Tiporno (G ,J ) • 



CPAPTEE VI 

SmJ11f:ARY 

It has been de~onstraterl that the consideration of 

r]osure in group theory can add meanin~fully to the 

development of the theory as well as providing 8 familiar 

foundation for a future study of lattice theory. It 

yields several important theorems to a discussion of 

normal subgroups and allows a very natural definition 

0' ryclic fTOUpS. It has been sho'"m that closure can be 

included in many facets of a present8tion of the theory 

of groups, includinr the important homomorphism theorems. 

It was the discussion which follo~s theorem 27 on 

homomorphisms, in fact, which led to the investigation 

\'rhich resulted in this paper. An isomorphism is a 1-1 

homomorphism, and it seemed 2n easy assumption to make 

that the closures of the union of isomorphic subproups 

sboulrl he iso~orphic, i.e., if A~ P and C ~ D, then 

(A U C) ~ (c UD). Upon findinp. that this assumption VIas 

ipvalid, a search was made for the necessary and suffic­

ient conditions that would make it a valid hypothesis. 

Theorem 21 is a sufficient condition, but a condition 

th8t is both necessary and sufficient is still being 

sought. 
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APPENDIX 

MULTIPLICATION TABLE OF A TYPE LJ. GROUP [1: 20J 

1 2 :5 4 5 6 7 8 9 10 11 12 13 11t 15 16 17 18 19 20 21 22 23 24 

2 3 1 6 4 5 8 9 7 12 10 11 14 15 15 18 16 17 20 21 19 24 22 23 

:5 1 2 5 6 4 9 7 8 11 12 10 15 13 14 17 18 16 21 19 20 23 24 22 

4 5 6 1 2 3 10 11 12 7 8 9 16 17 18 13 14 15 22 25 24 19 20 21 

5 6 4 3 1 2 11 12 10 9 7 8 17 1B 16 15 13 Vf 25 24 22 21 19 20 

6 4 5 2 3 1 12 10 11 8 9 7 18 16 17 14 15 13 24 22 25 20 21 19 

7 8 9 10 11 12 15 lLf 15 16 17 18 19 20 21 22 25 24 1 2 5 It 5 6 

8 9 7 12 10 11 14 15 15 18 16 17 20 21 19 24 22 25 2 5 1 6 4 5 

9 7 8 11 12 10 15 15 14 17 18 16 21 19 20 2) 24 22 3 1 2 5 6 4 

10 11 12 7 8 9 16 17 18 13 14 15 22 25 24 19 20 21 4 5 6 1 2 3 
0 

11 12 10 9 7 8 17 18 16 15 13 14 23 24 22 21 19 20 5 6 4 3 1 2 

12 10 11 8 9 7 18 16 17 14 15 13 24 22 23 20 21 19 6 4 5 2 3 1 

13 14 15 16 17 18 19 20 21 22 25 24 1 2 5 4 5 6 7 8 9 10 11 12 

14 15 15 18 16 17 20 21 19 24 22 23 2 3 1 6 4 5 8 9 7 12 10 11 

15 15 14 17 18 16 21 19 20 25 24 22 3 1 2 5 6 4 9 7 8 11 12 10 

16 17 18 15 14 15 22 25 24 19 20 21 4 5 6 1 2 3 10 11 12 7 8 9 

17 18 16 15 13 11+ 25 24 22 21 19 20 5 6 4 , 1 2 11 12 10 9 7 8 

18 16 17 14 15 15 24 22 25 20 21 19 6 4 5 2 , 1 12 10 11 8 9 7 

19 20 21 22 25 24 1 2 3 4 5 6 7 8 9 10 11 12 15 14 15 16 17 18 

20 21 19 24 22 25 2 3 1 6 4 5 8 9 7 12 10 11 14 15 13 18 16 17 

21 19 20 2) 24 22 3 1 2 5 64 9 7 8 11 12 10 15 15 14 17 18 16 

22 25 24 19 20 21 4 5 6 1 2 5 10 11 12 7 8 9 16 17 18 13 14 15 

23 24 22 21 19 20 5 6 It 3 1 2 11 12 10 9 7 8 17 18 16 15 13 14 

co;24 22 25 20 21 19 6 It 
./ 2 :; 1 12 10 n 8 9 7 18 16 17 14 15 15 



{t]
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