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CHAPTER I 

THE PROBLEM AND DEFINITIONS 

1 • 1 STATE!1ENT OF THE PROBLEM 

The purpose of this thesis was to study bounds of eigen

values of non-negative matrices. This study extended non-ne.ga

tive matrices to a special class of non-negative matrices and 

certain theorems of this class were introduced. 

1.2	 DEFINITION OF TERMS 

For any nxn matrix, A, if; ()...)= dot (A- AI ), is called n

characteristic equation of A. The values of ~ satisfying the 

equation p(t\)= det. (A- ,)..In)=O are called eigen-values of A. 

Eigen-values of a matrix are bounded if there exist real con

stants sl and 8 2 such that s2 ~IAI? 8 for all values of ~ • 
"cI "I = modulus of 'J\ if A is conplex = absolute of /I if 1\ is 

real = ja2 + b2 where A = a + bi). s, and s2 are called bounds 

for the eigen-values of the matrix A. A matrix is non-negative 

if all its elements are non-negative. 

1.3 ORGANIZATION OF STUDY 

Tho next section of this chapter deals with basic defi 

nitions a.'"ld terms to be used in succeeding chapters. Chapter 

II contains basic information about eigen-values of general 

matrices. Effects of certain operations on eigen-values of 

these matrices are also shown. Hany results and theorems on 

bounds for eigen-values of g~neral matrices are stated with Wi 

extenf.>ive s·tudy of· eigen-values of non-negativa matrices in 
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Chapter III. All results are proved and examples are given. 

Bounds for eigen-values of a special class of non-negative 

matrices are di'scussed in Chapter IV. Chapter V contains the 

concluding remarks of this study. 

1.4 INTRODUCTION 

Most of the definitions and terms will be defined in the 

chapter in which they are used. Before proceeding to discuss 

eigen-values of matrices, certain elementary ideas about 

matrices are needed. A matrix is a rectangular array of 

numbers or functions. A matrix A, also denoted by (aij ) , 

is a square matrix if it has the same number of columns as 

rows. Unless otherwise stated matrices discussed in this paper 

al'e square matrices. A matrix A is over a field F if all of 

its elements are members of the field F. Unless otherwise 

stated, matrices will be assumed to be over the complex field. 

Let A be a matrix of order n 

all a 12 ••• a 1n 

8 21 a22 ••• 8 2n 

A = • 

• 

• 

an1 a n2 ••• a 
nn 

Consider the equation Ax = A x, where A is a scalar, A 

is a matrix and x is a non-zero vector. AX-Ax = OJ {A - A In} 

x =OJ where In is identity matrix of order n. (A -~ I ) x = 0 n 
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is a homogeneous system of equations ( The system of equations 

in n unknowns t. x j = 0, ( 1 = 1 t 2, ••• , n, ) or 111 matrixa1jj=l 

notation, Ax = 0 is called a system of homogeneous linear 

equations). This homogeneous system of linear equations has 

non-trivial solutions if and only 1f det ( A - AIn > =o. 
Written in matrix form: 

all -oX	 8.12 a 13 ·.. a 1n 

8. -/\ a ·.. 8.2na21 22 23 
a a 8. -A ·.. 8.

31	 32 33 3n 

•	 • I = 0 

a ·.. a - Aan1 a112 n3 nn 

eft ( A ) :: Idet ( A - /-.I > :: 0 J is ca.lled the characteristic n 

equation of A. All values of ~ satisfyins the equation det 

( A - >. I ) = 0 are called e:1.gen-values of A. The vectors x 
n 

satj.sfying Ax :: )\x, for these Y&.luos of A are called eigen

vectors of A. 

The vector x ( which is a column matrix ) satisfying 

tl10 equation Ax :: >--lx, is called the corresponding eigen-·vector 

of A , • If Ax:: A x, gives x = 0 for all values of ~ , then A 

1s said to have a trivial solution. If Ax:: >.X gives non-zero 

vectors for at least one value of ~ then the solution is non

trivial. There are three elementary operations used to simplify 
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a matrix: 

( i) Interchange of any two parallel lines. 

( 1i) Multiplying any line with a non-zero constant. 

(iii) Addition of a scalar multiple of one line to a 

parallel line. 

It must be noted that the third type of operation does 

not change the value of the determinant of the matrix. A 

matrix A is said to be non-singular if its determinant is not 

equal to zero. Otherwise it is said to be singular. A matrix 

is said to be of order n 1f it has n rows and n columns. A 

matrj.x 1s said to be of rank r if and only if it has at least 

one non-singular submatrix of orderr. The three elementary 

transformations applied to a matrix A result in a matrix ot 

the same order and of the same rank. 
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CHAPTER II 

GENERAL MATRICES AND BOUNDS FOR THEIR EIGEN-VALUES 

General matrices and basic properties of general matrices 

concerning eigen-values are discussed in this chapter. Informa

tion about eigen-values of special matrices are given. Many 

theorems about bounds for eigen-values of general matrices are 

stated and all localization theorems are discussed 1n detail as 

another approach to bounds for eigen-values of general matrices. 

2.1.1 Let A be any nxn matrix whose expanded form is: 

all •••a 12 a 1n 

a21 a22 8 2n 

.A = • 

'. 
• 

••• annan1 an2 

and let 'PC A) be def~ned as an expanded form of a characteristic 

equation as: 

all -A a 12 
... a 1n 

a21 a22 -).. ... 8 Zn 

¢ C>.) = det C A -.A I,) = • o 

• 

• 

an1 an2 
••• ann -~I 

I 
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It easily follows from properties of determinants that 

a matrix A and transpose of A have the same eigen-values. It 

has been further stated that multiplication of the elements 

of a column (row) of A by a nOll-zero constant and division. of 

elements of the corresponding row (column) by the same constant, 

leaves the eigen-values of the matrix A unchanged. 

2.1.2 RANK AND EIGEN-VALUES 

The rank of a matrix has definite effect on its eigen

values. If a matrix A is non-singular then obviously A has 

only non-zero eigen-values and A haa only trivial solution. 

A =0 is an eigen-value ot A if and only if A is singular. 

2.1.3 THEOREM 

Let A be of rank r and of order n,then A has at least 

n - r zero eigen-values. 

2.1.4 THEOREM· 

The equation Ax =Ax has non-trivial solution x if and 

only if ~ is an eigen-value of A. There exists at least one 

value of A and corresponding non-zero x such that this equation 

is satisfied. 

Definitions: A matrix is real if all its elements are 

real numbers. A matrix A is symmetric if the transpose of A 

is A itself ( i.e. AT =A). Matrix A is a Hermitian. matrix 

it A is transposed and conjugated is still A itself ( i.e. A* = 
A ).
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2.1.5 SPECIAL MATRICES 

There is quite a lot of information about eigen-values 

of special matrices. Diagonal and triangular matrices exhibit 

their eigen-values on the main diagonal. All eigen-values of 

a nilpotent matrix ( i. e. Ab =0 for some integer b ) are 

equal to zero. While all those of idempotent matrices ( i. e. 

A2 =A ) are equal to 0 or 1. All eigen-values of a unitary 

matrix ( i. e. A* =A-1 ) lie on the unit circle in the complex 

plane. Eigen-valuas of Hermitian matrices lie on real axis 

while those of skew Hermitian lie on imaginary e.xis. Eigen

-1values of a real symmetric matrix are real. A is called the 

multiplicative inverse of A ( i. e. AA-1 = 1 ). 

2.1.6 THEOREM 

If /\, t "2 t ••• , ;... n are distinct or not distinct eigen

values of A then the eigen-values of A-1 ( if A-1 exists ) are 

)\-1 )\-1 \. -1 
1 t 2 t ••• , "'n • 

2.1.7 THEOREH 

If "1' A2 t ••• tAn are eigen-values of A then eigen

values of Akare k A 1 t k "2 t ••• , k A n where k is a constant. 

2.2.1 BOU~IDS FOR ~~IMAL EIGEN-VALUES OF GENERAL MAi~ICES 

As far as eigen-values of a general matrix are concerned 

nothing specific can be said about their bounds and location in 

the complex plane. They can obviously lie anywhere in the 

complex plane. However eigen-values of a matrix can be thought 

of fn t erm,~ 0 f simple func tion 0 fits clements. There fore 
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bounds on eigen-values of a matrix depend on the elements of 

the matrix. Bounds, of course, are real constants. Most of 

the results on bounds of general. matrices, in this section are 

stated and not proved since their importance is historical. 

2.2.2 HIRSCH'S THEOREM 

If A = ( a1j ) is an nxn matrix and r = max. ( /a1jl ) 
then IAI ~ nr for all values of ~( where ~ is an eigen-value of 

A ). 

2.2.3 SCHUR'S INEQUALITY 

If A = ( a1j ) is any nxn matrix with eigeu-values ~p' 

( p = 1, 2, ••• , n ), then: 

n I~ /2 :$ n 
~ p -~ laiil2 

p= 1=1 

Let Ri =f= !aij \ 
( 1 = 1, 2, ... , n ) 

j=l 

Cj =~ ( j = 1, 2, ••• , n ) 
1=1 \a1j1 

R = max. ( R )1
 

C = ms.x .. ( C )
j 

2.2.4 FROBENIUS THEORID1 

Frobenius proved that if A is any e1gen-value of A .a..."d R 

and C as defined above, then: 

A ~ min. ( R,C ) G.g, min. (3,5 )=3J 
2.2.5 PERRON'S THEOREH 

If C1, C2 ' C ••• , C are any positive, real numbers
3

, n 

and R is the greatest of n numbers, 
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C1 ladJ + Cz larzl + ••..: + en \arnl 
Rr =----,·-c 

r 
( r = 1, 2, ••• , n ) 

then, IAI ~ R. 

2.3.1 LOCALIZATION OF EIGEN-VALUES OF GENERAL ~~TRICES 

Localization of the eigen-values of a matrix in the 

complex plane is ~notherapproach to the problem of finding 

bounds for the eigen-values of the matrix. The thing of 

interest here is a curve bounding tho region that contains 

all eige,n-values or the matrix. Here is a theol'em which is 

called the Hadamard Theorem, ~dnkowski ~heorem and Levy

Despla.nque Theorem. 

Define: -t=: la .I ( i, j =1, 2, ••• , n ).Pi - J,::1 iJI 
if.j 

2.3.2	 LEVY-DESPLANQUE THEOREH 

If A = (aij ) is a complex n-square matrix and ~) 
Pi for i ='1,2, •• " D.then det (A) I. o. 

Proof: Suppose dat (A) =O. Then Ax =0 has non

trivial solutions ( A Theorem ). Let x = ( xl' %2' ••• , xn ) 
, I Ibe a solution. There exists r for 

n which J..:~~ ~ Ix1 1tor all 1. 

Since Ax :: 0, 2r --. a . X =0 , '. a j = 0 or
J=I rJ j J= r x j 

~ ar j x j = o.+ arr xr -
j~r n
 

a x I:-~
rr r J: arj x j 
j~r 

=I±= arj :X,1\arr \ Ixrl = 1- ~;r ar j x j I j;tir 
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~~r /arjl\ x j \ ~ ~r larjllxJ = IxrllPr \ 

lar~ ~ Pr which is a contradiction, ( det (A) ~ 0 ). 

Q. E. D. 

2.3·3 GERSGORINIS THEOREM 

The eigen-values of an n square complex matrix A, lie 

in the closed region of the z plane consisting of all circular 

discs Iz - aiil ~ Pi (i=" 2 , ••• , n ) ••• (i ) • 

Proof: Let>' be an eigen-value of A. det ( A-X I ) = o. p p n 

Following the proof of Levy-Desplanque Theorem: 

for at least one iIaii - Ap I~ Pi 

or I.>.p ai~ ~ Pi for at least one i 

Since ).. is an arbi trary eigen-va1ue of A. this in-equality io 
p 

true for all eigen-values of A. 

All eigen-values are contained in the union of n circular 

discs: Iz - ai J ~ Pi (i = 1. 2. 3 ••••• n ). 

Def1nition: A matrix is irreducible if it can not be 

brought to the form ~KJ_Ql by simultaneous row and column 
~1~ 

permutations. Otherwise it is called reducible. If a matrix 

A. is irreducible. then all eigen-values of A lie inside the 

union of n circular discs of jz - aiJ ~ Pi (i =1, 2. 3. ... , 
D ). 

2.3.4 OVALS OF CASSINI 

Let A =( aij ) be a matrix of order n with real or 

eompl~x elements and P as defined before. Each eigen-value wk 

of A lies in the interior or on the boundary of at least one of 
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the p (n-1) ovals of Cassini: 
2 

z- akkl Iz ~,).I ~ Pk P ( A • k ::: " 2 , ••• , n j k I >.. )A 

••• (1). 

Proof: Since w is an eigen-value of A, Ax = wx or 

b-k ;>. x ::: w~k ( k ::: " 2, ••• , n ) ••• (1i) has non-trivialA 

solution (Theorem) (x" x2 ' x3 ' ••• , x )~n 

Suppose Ixr \ ~ IXs \ ~ max. (Ixvl ) for (v::: " 2, ••• , 

nj vI r, vI s ) consider the r-th equation in (ij) 

~',a x :::wx v= rv v r
 

n
 
or ~ a x - a x = wx - a 1Iv::: rv v rr r r rr r 

or ~ a x ::: ( w-a ) x ••• (iv)
v::: rv v rr r
 

vir
 

Similarly s-th equation can be written as
 

IL a x = (w-a ) X ••• (v)
sv v ss s~ 
yls 

If X ::: 0, then also Xv = 0 ( Xv = 0 for all v ) for everys 

T I r. It follows from (iv) that w = a • Since xI" t 0,rr

therefore w lies in the oval Iz - a I Iz - a I ~ p P vv SS I" S ••• 

(vi). This proves the theorem if X ::: O. s 
Now suppose x t o. By multiplying (iv) and (v) : s 

I 
n n( w - ) ( w - a ) x x = (> a x ) (~ aa yV ss I" S 1 rv v -- svy::;:lv= 

lLE.,Xv)· nence w - arJlw - assl xr Xs f Ixrlv~r 
~ rv • 

vJs 

y= 
vI-I" 
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(b X PXa ) = w - assl ~lpJlpj =pJ · Iw r arrsv r s 

yJr 

Pr Ps • Therefore w lies in the oval Iz - arrl Iz - assl~ Pr Ps 

Q. E. D. 

Every point of the oval (vi) l1es in at least one of the 

circular discs, Iz - a I ~ Pr and Iz - a I~ rr ss Ps • 

In other words the union circular discs contains the 

union of ovals and therefore this theorem of ovals of Cassini 

1s an improvement over Gersgorin's Theorem. 

Example: 

7 + 31 -4 - 6i - 4 
Let A = 1-1 - 6i 7 -2 - 6i I ' be the matrix. 

2 4 - 6i 13 - 3~ 

<Y(~) = 17 + 3i - ~ -4 - 6i - 4

- 1 - 6i 7 - A - 2 - 6i I = 0 

2 4 - 61 13 - 31 -)\ 

which gives eigen-values as 9, 9 + 91 and 9 - 9i. These Modul1i 

are 9 and 12.73. 

The bounds given by: 

Hirsch's Theorem: l~ I~ 40.03 

Schur's Inequality: t I>-~Z = 405 ;;z:::laijI Z= 486 

Frobenius Theorem: 23.10
 

Perron's Theorem: 22.55
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Gersgorin's Discs: IZ - 7 -}~ ~ 11.21, Z - I} + }~ 
~ 9.21 

contain two eigen-values each. 

2.4 SUHMARY 

General matrices and their eigen-values were discussed 

in this chapter. Several theorems stated on bounds give a feel 

for the problems going to be discussed in the next chapters. 

Localization theorems are discussed in detail as another 

approach to the problem of finding bounds for eigen-values of 

matrices. 



CHAPTER III 

BOUNDS FOR MAXI~~ EIGEN-VALUE 

OF NON-NEGATIVE MATRICES 

This chapter is exclusively concerned with non-negative 

matrices and bounds for its eigen-values. Many results have 

been proven about bounds mainly by Frobenius, Ledermann, 

OstrowsF~ and Alfred Braur. This chapter gives an extensive 

study or their results and proofs. Each result is exemplified 

taking different matrices. Unless otherwise stated all matrices 

considered in this chapter are non-negative. 

Derini tion: An eigen-value, r of a matrix A,is called a 

maximal e1gen-value of A if r ~IAI ,tor all eigen-values, 

~ of A. 

Definition: S =max. (51)' s =min. (Si) 

51 defined before as the sum of absolutes of elements in ith 

row of A. 

Alfred Braur has proved that every positive matrix has 

at least one positive eigen-value. And in another theorem he 

has proven that the co-ordinates of an eigen-vector belonging 

to the maximal eigen-value or the positive matrix can be 

chosen as positive numbers. 

3.1 FROBENIUS THEOREM: 

s ~ r ~ 5 where r is maximal eigen-value of a matrix. A. 

Proof: (i) Let x = ( Xl' x2 ' ••• , x3 ) be the positive 
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eigen-vector corresponding to eigen-value r and A be positive 

matI'ix by standard continuity argument. 

Suppose xp = max. (xi) and x. = min. (xi). Ax =rx 

x = rX (1 = 1, 2, •••• n). Considering p-thor ~ aij j jj=l 

row: 

rx = tl a . x. ~ t=r a . x = x SP J= PJ J J= PJ P P P 

rx ~ x S ... r ~ S 
p P P P
 

since S ~ S by definition

P 

r ~ S 
n 

(i1) Again~ = rX j (1. = 1.2, •••• n)aij x j 

Consider • th row 

rx. =~ a. j x j ~-f:::.. a. j x. = x. S. 
j=l j=l 

~ Srx. - x. • r ~ S. 

r ~ s
 

From (i) and (ii) s ~ r ~ S
 

Q. E. D. 

Example: Let A be the matrix 
r 
0 1 2 5 7 

7 0 3 4 3 

A = 12 3 6 7 1 

2 4 5 1 1 

0 1 2 1 1 
L 

Row sums: [15, 17, 19, 13, 5J s :: 5, S = 19. 
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Frobenius Theorem: 5~r;?19 

Column Sums: [",9, 18, 18, 13] 

By Frobenius ~heorem: 9 ~ r ~ 18 using columns and using 

both rows and columns: 9 ~ r ~ 18. 

Definition: A non-negative matrix is row Stochastic if 

all row-smns of A equal 1. 

}o'or non-negative matrices, the result of the Frobenius 

Theorem seems to be the best possible result. It is noticed 

that if A is row Stochastic matrix then s = S = r = 1. 

3.2 LEm~RHANN I S THEOHEH 

If m =min. (aij ) and p =max. <:i) and not all S. are 
Si<Sj j J.. 

equal then: 

s + m ~ - 1 ) ~ r ~ S - m ( 1 -~). 

Proof: Let x be corresponding positive eigen-vector to 

an eigen-value r. x = ( X" X2 ' ••• , X ). ObViously not alln 

xi are equal. 

Let x = max. ( xi ) and x. = min. ( xi ).p
 

Ax = rx
 

i=l aij x j = rXi ( i = " 2, ••• , n ) 

Considering p-th row
 

<n
 
x.=~a.x =X Srxp apj= t:" J j=l PJ P P P 

r ~ Sp 

As proved in the Frobenius Theorem r ? S. 



<.S. = r ~ = S
P 
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or 
S.-
S 

P 

rx. 

< 1 

= t- a. j
=1 

x. 
J < xp S. (i) 

rx
P 

n 
=~ 

=1 
a j

P 
x j > x. Sp (11) 

From (i) and (11) 

x. -x p 
< Xp S. 

x. Sp 

or (~J < S.-S
P 

or ~<x p J~p 
~Jf (iii) 

or 

r 

r 

=~ 
Apj X

j 

j=l x p 

;;. , x, + a2 x2=,P P. . 
xp 

+ ••• 

[ using (ii) ] 

+ a X~ (a, x,
pn n = P 

X p 
+ a 

p2 

X2 
-x p 

+ 

• • • 
a x+~.x- + 

p 

a xpp p 
xp 

+ ••• +~ 
xi 

Looking at i: ' 
p 

Xi 
it is found that i-

p 
~·1 for all n { 1 =1, 2, 

••• , n ). 



18 

Xl x2	 X 
n 

r ~ a 1 -- + a 2 -- +	 ••• + a .Sf> + ••• + ap x p x p	 pn x p p p 

r ~ ( a 1 + a 2 + ••• + a ) + a *JP' - a * p p pn p p 

r~S -a.(l- rP )p p rJ I
 

r ~ S - ( , -Jr)
m 

Similarly 
a*j x j 

r =:t=- x.j=l 

r ~ ( a. , + a. + ~+ •••+a· )2 • • • + a*, x• n 

1 
r ~ ( a*1 + a*2 + ••• + a. ) + a. ,.J p - a.n p p 

> (1)
r = S* + a*p \ ff - 1 ~ S. +m(h- V·
 
r~ s+ m(~- 0
 
s +(m ff - 0~ r ~ S - m ( 1 -ff) Q. E. D. 

Example: Let A be the matrix. 

1 2 3 

A = 2 1 1 
1 

2 3 4 
...J 

S = 4, S = 9 (rows) 

s = 5, S = 8 (columns) 

m = 1 

51 =[6, 4, 9J , Sj '=[5, 6, 8J 
,If =if = .89, m =	 1 

<.. < 8Ledermann's Theorem:	 4.13 = r = 8. 9 (rows) 

5.13~r~7.89 (columns) 
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Except in the case of Stochastic or generalized 

Stochastic matrices, Ledermann's result gives better bounds 

for r since (1 -JP> is always positive. If the matrix is 

non-negative then Ledermann's result is reduced to that of 

Frobenius. Ostrowski further improved the results of 

Ledermann for positive matrices. 1 

3.3 OSTROWSKI'S THEOREM 

If A> 0 and s (5 then,
 

1 ~ .

s+m(S-1 )~r_5-m( 1-8)
 

~ Js-m
where ~ = 5-m 

and s, S, m and other notations as defined before. 

Proof: Suppose r is maximal eigen-values of A and 

( xl' x2 ' ••• , x ), is the corresponding eigen-vector. For n 

simplicity assume that 1 = xl~ =.: ••• ~ x • 'l'his can bex2 
~ 

- n 

ach1.eved by pre-multiplication of A by a permutation matrix 

and post-multiplication by its inverse. Let k and t be any 

subscripts. 
n 

rXk = Axk =>j~l = &kl xl + + ••• + akn xakj x j ak2 x2 n 

r~ = &kl + &k2 X n + ~ xn + ... + ~ xn = ~1 + xn j=2 ~j 

r~ =~, + (Sk - Sk + (1 - ) &klak1 > xn = xn Xn

'Walter Ledermann, "Bounds for the Greatest Latent Root ot 
a Positive I-latrix," lQurnal of.: London Mathe!l1at:tcal. Society, XXV 
(1950), pp. 265-268. 
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x Sk + ( 1 - x ) m
r? n n (I)
xk
 

rXt =~=1 £l.tj x j = at 1 x, + a t2 x2 + ••• + atn xn 

~ (at1 ••• + a tn- 1) =~	 + at2 +	 + a tn xn a tj + a tnj;;l 
a + x atn n	 tn 

~ - St - (	 1 - xn ) a tn 

therefore l' ~ St - (1 - xn ) m (II)x t 

In particular is Sk =Sand 5t =s, then results (I) and 

(II)	 will yield 

> x S + (1 - x ) m > 
r = n	 n =x S + (1 - x ) m n	 nxk 

s - (1 - x ) m s - (1 - x ) m< ' n ~	 nand r	 = -X	 xt	 n 

l' ~ i§-m)or	 + mx n 

Therefore x (5 - m) + m ~ r ~ ~ + m n	 x n 

or X (5 - m) ~ r - m ~ §.::.l!n	 x n
 

2 < s-m <Js-m
or x =--- and therefore x = --- = s 
n 5-m n S-m 

Futting k =nand t = 1 in (I) and (II): 

S + (! - 1 ) m ~ r ~ S - ( 1 - x ) mn x	 1 n n 

and s + ( t - 1 ) m ~ r = S - ( 1 - S ) n 
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Ostrowski's result is sharper than that of Ledermann 

since: 

s-m < s < f 5 i 
S-I:1 = S = max. S":" where 5i <Sj
 

J
 
5
s-m< itherefore -8 =max. -8 

-m j 

S2 ~ P sinee 6'~ " p~ , 
! _ J... 
S-,rp

1 > ,
therefore s + m ( 6 - 1 ) = s + m (~ - 1 ) which is a better 

bound. Similarly 

S - ( 1 - 8 ) m ~ S - ( 1 -,If ) which also is a better 

bound. Therefore Ostrowski's result is sharper than that of 

Ledermann. 

Example: Let A be the matrix 

1 2 3 

A = 13 1 2 

1 1 1 

s =3, S = 6, m = , (rows) 

s = 4, 5 =6, m = 1 (columns) 

G	 _ .!=1l
 
- S-n
 

3.59 ~ r ~ 5.63 (rows) 

4.48 ~ - r =< 5.77 (columns) 

Alfred ~raur improved Ostrowski's results over bounds 



2.2. 

for maximal root of a positive matrix.2. 

3.4	 BRAURIS THEOREM 

If A = (aij» 0 and r, s, 5, and m as defined earlier 

then: 

< < (1s + m (h - 1) =r =5 - m 1 - -)g 

S - 2.m	 + Js2. - 4m (S - s)where g =	 ,2. (s -	 m) 

h = -	 s + 2~ + 1;2 + 4m (5 - s) 
2m 

Proof: Assume without 10s8 of generality that 51 =8 

and 5 =s. Let B be the matrix obtained from A by multiplyingn 
the elements in the last row of A by g and those in the last 

column of A by i so that the last row sum of B is the smallest 

row sum. Then oDviously A and B are similar and have the same 

eigen-values. Then i th row of B, ( i = 1, 2.,3, n-1),
• • • J 

-f-	 ain 8 - a (1 1) L:is J;;1 aij - ain + g = i in - i = 

1S S - m ( 1 - i ) .= K, ( sa:y) 

The n th row sum of B is equal to 

~ a	 .g - a g + a = g s - a (g - 1 ) ~ g s - m ( g - 1 ) = 
~ nJ nn nn nn 

12. (say) 

2.A• Ostrowski, "Bounds for the Greatest Latent Root of a 
Positj.ve r'latrix," Journal 2.! London Hathematical Society, XXV!! 
(1952.), pp. 253-2.56. 
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g as defined in the statement of this theorem.' 

It will now be proved that K, = K
2 

5 - 2m +JCS-- 2m? + 4m (s - m) 
g = 2 ls - m) 

• 2
2 o I ag + bg + C =0which gives g (s-m) - l5-2m) g - m = 

2 
_ -b - b - 4aci 

g - 2a 

5g - mg + m = g2s + mg _ mg2 

1
S - m (1 - -) = gs - m (1 - g)g 

K1 = K2 

Therefore for this value of g all the row sums of B 

are bounded by 5 - m (1 - i) and using Frobenius's Theorem: 

< 1r =5 - m (1 - -)g 

In order to obtain the lower bound one might construct 

a matrix C by dividing the elements in the first row of A by 

h and multiplying those in the first column by h so that the 

first row sum is the greatest row sum. The first row sum of 

a 12 ~ a1n ~~ all 
C is ( a,l + ~ + h + ••• + ~ ) = j=l h - ~ + all = 

S + a (1 _! ) ~ 2 + m ( 1 _ 1 ) - K (say)h 11 h - h h - 3 

The i-th row sum of C, ( i = 2, 3, ••• , n ), is 

~=1 aij - ail + a11 h = 5i + ail (h-l) ~ 6 + m (h-l) = K4 (say) 
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When h has the value given in the statement of this theorem 

, 1 2 
h :: -s + 2m + s + 4m (5-s) 

2m 

it easily follows that K3 =K4 

... :Zm + (s-zm: h + m - s=0 which gives] 
[ h + m ( 1- h ) :: S + m (h-1) 

Thus all of the row sums of C are bounded below by s + m (h-1) 

and Rgain by the Frobenius Theorem: 

r ~ s + m (h-1) 

Therefore s + m (h-1) &r ~ S - m ( 1 - !g ) 

Q. E. D. 

Example: Let A be the matrix 
r
1 2 3 

A :: 13 1 2 

1 1 1 - -.J 

B =3, S :: 6, m = 1 (rows) 

s :: 4, S :: 6, m:: 1 (colwnns) 

h :: 1.78, g =2.23 (rows) 

h :: 1.45, g =1.55 (columns) 

Therefore by the Braur's Theorem: 

3.78 ~ r ~ 5.31 (rows) 

4.45 :! r ~ 5.64 (columns) 

Let P and Q for which it is assumed that the numbers 

S > s~ nm > 0 are prescribed and whose maximal eigen-Yalues 
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attaj.n the upper and lower bounds in the inequality. 

s + m (h-l) ~ r ~ S - m ( 1 _ 1 
g 

). 
I 
I 

Pl : P2 
____ .L _ 

Let p = 
P3 !

I 

m 
, 

where every element is not less than m, the row sums of the 

n-l square matrix P1 are equal to S-m, all the elements of P2 

are equal to m while th~ose ~~ Pi add up to s-m. Then the matrix 

P1 : g Pz------f-----
gP3: m 

has the same eigen-values. Each of its n-l row sums is equal 

mto S - m + g =K1 and its last row sum is gs - gn + m =K2 =Ki 
Hence by the Forbeniu8 Theorem the maximal root of P is Kj 

Similarly, , 
I 

m : Q2----4--- Q = I 

Q3 ; Q4 
I 

where every element is not less than m, the row sums of the 

(n-l) square submatrix Q4 are all equal to a-m, all the elements 

of Q are equal to m, while those of Q2 add up to S-m. Now if
3 

the first row is diVided by h and the first column is multiplied 

by h the resulting matrix is similar to Q and has the same 

eigen-values and is a generalized row Stochastic matrix with 

the row sum K =K4 and therefore maximal eigen-value of Q is3 
~. 
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Thus Alfred Braur's bounds for the positive matrices are 

the best possible using S, s, and m.3 

3.5 SUMHA..-qy 

The main problem discussed in this chapter was bounds 

tor maximal root for non-negative and positive matrices. If 

bounds for a non-negative matrix is Slthen all eigen-values of 

the matrix lie in the interval - S ~ A ~ S, which easily 

tollows from Gersgorin's Theorem. It has been realized that 

bounds depend upon the elements in a matrix. If a matrix is 

non-negative, then the result of Frobenius is the best. If a 

matrix is positive,then the result of Alfred Braur is the 

sharpest using S, s, and m. If a non-negative matrix belongs 

to a class of matrices,then better bounds for eigen-values can 

be obtained. 

Example: Let A be the matrix 

1 1 2 

2 1 3 

2 3 5 

The bounds given by: 

Frobenius: 4 ~ r ~ 10 (rows) 

5 ~ r ~ 10 (columns) 

A = 

3Alfred Braur, "The Theorems of Ledermann and Ostrowski 
on Positive l1atrices," ~ Hathematical iL9urnal, XXIV (1957), 
pp. 265-274. 
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Ledermann: 4.225 ~ r ~ 9.816 (rows) 

4.414 ~ r ~ 9.707 (columns) 

Ostrowski: 4.732 <=r =< 9.577 (roYls) 

4.500 ~ r ~ 9.667 (columns) 

Braur: 5.167 ~ r ~ 9.360 (rows) 

5.86 ~ r ~ 9.527 (columns) 

The actual value of r to 4 significant figures is 

7.531. 



CHAPTER IV 

BOUNDS FOR MAXI}~ EIGEN-VALUES OF TWO SPECIAL 

CLASSES OF NON-NEGATIVE MATRICES 

Two special classes of non-negative matrices, namely 

power-positive matrices and matrices satisfying the inequality 

O<A2 ~ A are discussed in this chapter. Some theorems on both 

classes have been proven and statements about bounds of their 

eigen-values were made. 

4.1.1	 POWER-POSITIVE MATRICES 

A matrix with real elements of which a positive-power 

( i.e. natural number ) is a positive matrix is called a power

positive matrix. If only even powers of such a matrix are 

positive then the matrix is called power-positive of even 

exponent, otherwise power-positive of odd exponent. Every 

power-positive matrix has a greatest eigen-value r which is 

the maximal eigen-value. If A is power-positive of an odd 

exponent, then r is positive. If A is power-positive of an 

even exponent then it may be positive or negative. If r is 

negative, then the matrix -A has the greatest positive eigen

value -r. Hence it is sufficient to consider such power

positive matrices which have positive maximal eigen-value. 

While the maximal eigen-value of a positive matriX is greater 

than the greatest main diagonal element, this is not always 

true fo~ maximal eigen-value of a power-positive matrix. There 
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exist matrices with positive maximal eigen-value r for which 

r is greater than the greatest row sum. 

The aim of this thesis was to see that the power-

positive matrices have the most important properties of 

positive matrices. 

Definition: An eigen-value ~, of a matrix A is simple 

if A, is distinct from all other eigen-values of A. 

Definition: If the maximal eigen-value A, of a matrix 

1s simple then all eigen-vectors are of the form ( cx" CX2 ' 

••• , cx ), where ( Xl' x2 ' ••• , x ) is an eigen-vectorn n 

belonging to Al • 

4.1.2 BRAUR'S THEOREM 

Every power-positive matrix has a real eigen-value A 1 

which is simple. Its absolute value is greater than the 

absolute values of all the other eigen-values. the coordinates 

of an eigen-vector belonging to A, ( r =IAJ ) can be chosen as 

positive numbers. 

Proof: Let A = (aij ) be a power-positive matrix of the 

order n with eigen-values Al , ~2' .·., ""n· AK is positive for 

the positive integer K. Then maximal eigen-value of AK is 

positive. Since the roots of AK are 

K~lK > max. (>'/ .>../ ' , >'n ) • 

hence 1~1\ > max.Q"J ' 1~31 ' ,rJ) , 
and A1 is the maximal eigen-value of A. Obviously A

1 
is real. 
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Since neither A, nor its complex conjugate can be one of the 

numbers )\2' "3' ... , An' it folloVls t ha t .x 1 =~1 and therefore 

A 1 is real and the simple eigen-value of A. 1 

Let ( x" x2 ' ••• , x ) be an eigen-vector belonging to n


A, of A. Since this eigen-value A, is simple, all eigen


vectors are of the form (CX 1 ' cx2 ' ••• , cx ).n

It is well-known that an eigen-vector belonging to the 

eigen-value A, of A is also an eigen-vector belonging to eigen

value A1
K of AK• On the other hand, since ~lK is a simple 

eigen-value, the set (cx1' cx2 , ••• , cx ) is the set of all n
eigen-vectors belonging to ~lK. Since~lK is maximal eigen

value of AK (a positive matrix) all coordinates of the given 

vector ( ~xl' cX2 ' •.• , Cx ), have the same sign. Thereforen

coordinates of an eigen-vector belonging to the eigen-value 

~, can	 be chosen as positive numbers. 2 

Q. E. D. 

4.1.3	 THEOREN 

A power-positive matrix of an odd exponent has the 

positive	 maximal eigen-value ~1. 

Proof: AK is positive where K is odd. By Theorem 

1Alfred Braur, "On the Characteristic Roots of Power
Positive Matrices,lI ~ Nathematical Journal, XXVIII (1961), 
pp. 291-196. 

2Alfred Braur, "I...imits for Characteristic Roots of a 
Matrix," ~ Mathematical Journal, XV (1948), pp. 871-877. 



31 

4.1.2,	 the maximal eigen-value of A is real and ~lK is positive. 

Q. E. D. 

4.1.4	 THEOREl-l 

The maximal eigen-value ~1 of a power-positive matrix 

lies	 between the greatest and the smallest row sums of A. 

Proof: Let 51' 52' ••• , 5 be the row sums of A.n 

Assume 51 ~ 52 ~ ••• ~ 5 • Consider the system of linear n 

equations belonging to A l with regard to columns. 

~ 
~ 

aij Ii = Al I. 
J 

( j = 1, 2, ••• , n ) 

Adding these equations we have, 

S1 I l + S2 1 2 + ••• + 5n In = ).. 1 (Y1 + 12 + ••• + In)· 

It may be assumed that Yl' Y2' ••• , In are positive, 

-51 (11	 + 1 + ••• + In) ~ A 1 (11 + 12 + ••• + In)2 

~ 5 (1 + 12 + ••• + I ),n 1 n 

.>" >Therefore 5, = A =5l n 

4.1.5 TREOREH 

If all the elements of a row in the power-positive matrix 

A are all non-positive (non-negative), then the maximal eigen-

Yalue 1s negative (positive). 

Proof: Suppose that the first row of A has only non-

positive elements. 

Let (Xl' x ) be an eigen-vector with negativex2 , •••• n 

coordinates belonging to the maximal eigen-value)r.· 
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.t a i · x j = A x1 For i = 1. 
J=l J 

all xl + ••• + = ~ xla 12 x2 + a 1n xn 

~he left hand side of the above equation is positive. ~xl is 

positive and \ is negative. 

A similar proof holds if all the elements of a row are 

non-negative. 

4.1.6 THEOREt·! 

If all the elements of a column of the power-positive matrix 

A are non-positive (non-negative). then the maXimal eigen-value 

1s negative (positive). 

Proof: The Proof is similar to the previous theorem and 

it would only be repetitious to present it here. 

4.1.7 STATENENT 

'The proceeding theorems show that many properties of eigen

values of positive matrices hold for power matrices of odd 

exponents. But the maximal eigen-value of such a matrix is not 

always greater than the main diagonal element. 

4.1.8 MATRICES SATISFYING O<A2 ~ A 

Now consider matrices satisfying the inequality O<A2 ~ A. 

The inequality A ~ B means that every element of A is less than 

or equal to the corresponding elp';ent of B. Of course. both 

matrices are of the same order. 

Examine A2 in the expanded form: 
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n
 

B = A
2 

=~l aij Rji
 
j=l
 

Consi.der b11 

b ll = (all 2	 
+ R12 R21 + a 13 a31 + ••• + a ln anl ) 

By the above inequality 

=all + + + ••• =allb ll 
2	 a 12 a21 R13 a31 + a ln a nl 

< 

< 1 anda ll
a aR12 a 21 + a 13 a31 1n nl 

all +	 + ••• + < 1. 
all all all 

which gives the result that 

< 1 if i ~ jaij =Ii 

Therefore 

if i = j
0< A2 ~ A==9	 [aij < 1 

.	 ~ 1= ii if i	 # jaij 

where n 1s the order or A. 

Now certain proofs of some theorems on bounds for 

maximal eigen-values of this kind of matrices will be pre

sented. 

It has been examined that if n ~ 3 then aii ~ ~. 

4.1.9 THEOREM 

If 0< A2 ~ A then the maximal eigen-value r of A lies 

n+lbetween the least row sum and -n-' where n is the order of A 

and n 
;>.= 3. 
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Proof: Since A is positive matrix, therefore the 

maximal eigen-value r of A lies between the least row sum and 

the greatest row sum. (Frobenius Theorem) 

Therefore r ~ s when s is the least row sum of A. 

Suppose the first row sum of A is the greatest row sum, if 

n ~ 3 and A2 ~ A then: 

< 2 
= ii if i = jaij 
~ 1 

aij - ii if i !. j 

r < 
~ 5, =a" + a ,2 + ••• + a 'n 
-< 2 1 1 1 r = -n + ( -n + -n + ••• + -n )
 

r ~ g + n-l =!!±!
 
n n n
 

s ~ r ~ !!:!:.1
 
n 

Q. E. D. 

This usually increases efficiency in finding bounds since 

looking at the order of the matrix is enough to find the bounds 

tor maximal eigen-values. 

Example: Let A be the matrix such that 0 <A2 ~ A 

1/3 1/4 1/5 

A = 1/5 1/3 1/6 

1/4 1/5 1/7 

By the above theorem:
 

.593 ~ r ~ 1.333
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4.2.0 'l'HEOREl1 

If 0 < a A2 ~ A then the maximal eigen-value of A lies 

n+lbetween a jj , the greatest main diagonal element, and 
na 

(where a> 1). 

Proof: Since a A2 ~ A, therefore the obvious inequal

ities are: 

~ 2 if 1 = j- naaij 

~! if i t jaij -	 na 

Following the pattern of the previous theorem, it can be easily 

shown that a r, where a jj is the greatest main diagonaljj ~ 

element of A and 

.> 2 n-l n+l 
r = -	 + --- = --na na na 

4:: :S n+l 
r - Ma jj = 

Q. E. D. 

Example: Let A be the matrix such that 0 <a A2 ~ A 

.100 .150 .100 

A	 = 1.150 .150 .100 

.100 .100 .150-

.042 .045 .040 
2

A = 1.047 .054 .045 

.040 .052 .035 
-

a A2 ~ A where a = 1.9 



This theorem is sharper than the previous theorem since 

By theorem 4.2.0 .150 ~ r ~ .l!:J_
3X1.9 

.150~r~ .667 
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according to the previous theorem the bounds for the maximal 

~ <root are • 50 1 - r = 1.333. 

One does not have to obtain A2 to find the bounds if 

a~j ~ in for all i and j then the bounds can be obtained by 

< < n+1the above theorem. i. e. aj j = r =na 
Summary: The bounds for the maximal eigen-values of 

power-positive matrices and matrices satisfying O<A2 ~ A 

were discussed in this chapter. Similarity of the properties 

of power-positive matrices to those of positive matrices were 

shown. Two new theorems on bounds of matrices satisfying 

O<A2 ~ A were proved. 



CHAPTER V 

CONCLUSION 

5.1	 SUl-1lvlARY 

The primary purpose of this thesis has been accomplished 

by detailed discussion of the bounds for eigen-va1ues of non

negative matrices. The study was carried deep into two epecia1 

classes of matrices, power-positive matrices and matrices 

satisfying O<A2 ~ A. Properties of power-positive matrices 

were discussed in the form of theorems in order to show that 

power.,positive matrices behave like positive matrices in many 

ways ( not in all ways). Two new theorems stating: 

1.	 If 0 <A
2 ~ A and n~ 3 then the maximal eigen

value	 of A lies between the least row sum of A 

d n+'an - ( where n is the order of A ).n 
22.	 If 0< a A ~ A for the positive real number a 

and n ~ 3, then the eigen-values of A lie 

between the greatest main diagonal element a~j 

n+l 
and na 

have been proven. Examples were given for each. 

The results obtained give easy and quick solutions for 

the bounds of maximal eigen-value. The bounds can be obtained 

without considerlng the row sums or the characteristic equation 

by the second theorem which is sharper than the first as it 

gives better bounds. 
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5.2 SUGGESTIONS FOR FURTHER STUDY 

R. E. Demarr of the University of New Hexico presented 

a paper on the bounds for eigen-values of nOll-negative matrices 

; 
~ before the American Hathematical Society meeting ( September 
1 

~ 
i 

i 

1968). He proved a conjecture stating that if O(A2 ~ A then 
j 

1 
.1 

j

all eigcn-values of A lie between 1 and '~~ llis proof is not 

I published. An attempt to prove this conjecture can lead to an 

interesting research.l 
j This problem could further be extended to a theorem 

./. 2 Lsaying if O,a A = AJ for some real positive number a>O 

then all eigen-values of A lie between 1 and J2-J2. I f this 
a a 

theorem is true, it Vlould be an improvement over Demarr's 

conjecture. 
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