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CHAPTER 1 

INTRODUCTION 

Ho~omorphisms are important in the study of groups. 

To testify to this there are several homomorphism and iso­

morphism theorems. These theorems are used repeatedly in 

proving other theorems. 

THE PROBLEM 

The transfer is an elusive homomorphism. To deter­

mine the images of the transfer, in many instances, requires 

much work, and the method prescribed by the definition 

reveals little about the transfer. However, the transfer is 

a homomorphism that is valuable in the study of groups. 

Although co~puting the transfer requires consider­

able work, this work is justified as the transfer is used in 

proving Burnside's Theorem. In addition, since each group 

determines a set of transfers, the transfer could be a way 

of characterizing groups. 

ORGANIZATION OF THE THESIS 

In this thesis, only finite groups will be considered; 

it is assumed that the reader has knowledge of finite group 

theory. In order to understand the development of the 

transfer, it is essential that the reader has worked with 
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Sylow's Theorem and the isomorphism theorems. 

The transfer is presented so that no previous know­

ledge of it is needed. Definitions, theorems and their 

proofs are provided. To aid the reader, exampl~s accompany 

the theorems as well as the definition of the transfer. 

The following list of theorems should be familiar to 

the reader. However, they are presented here for review and 

as a reference, since all of them are used in proofs of 

theorems in Chapter 11. 

Theorem 1.1 (Lagrange's TheoremJ 

If S is a subgroup of a finite group G, then [G:SJ, 

the index of S in G, is equal to the order of G divided by 

the order of S. 

Theorem 1.2 

If S is a normal subgroup of a group G, then the 

cosets of S in G form a group, denoted GIS, of order [G:SJ. 

Theorem 1.3 {An IsomorRhism Theorem) 

Let f be a homomorphism from a group G onto a group 

H, with kernel K. Then K is a normal subgroup of G and G/K 

is isomorphic to H. 

Theq~em 1.4 (Sylow's Theorem) 

Let G be a finite group with a p-Sylow subgroup P. 

All p-Sylow subgroups of G are conjugate to P and the number 

of these is a divisor of G and is congruent to one modulo p. 



CHAPTER II 

THE TRANSFER 

This chapter investigates the transfer, and includes 

its definition, its properties and its use in Burnside's 

Theorem. In addition, some information concerning cormnuta­

tors is included as an underlying concept connected to the 

transfer. 

COMMUTATORS 

A few basic concepts about commutators and commutator 

subgroups are essential for the development of the ,transfer. 

The commutator subgroup of a group G is a normal subgroup, 

and the factor group of G with respect to the commutator 

subgroup is an Abelian group. These two properties will be 

the main concern of this section. 

Definition 

If a and b are elements of a group G, the commutator 

of a and b, [a,b], is a-lb-lab. If Hand K are subgroups of 

G then [H,K] 'will denote the subgroup of G generated by the 

set of all [h,k], such that h is in Hand k is in K. The 

commutator ~ubgrouE Gl is the subgroup [G,G]: 

Since the definition allows a and b to be inverses, 

the identity is always a commutator. However, the set of all 
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[h,k] such that h is in a subgroup Hand k is in a subgroup 

K is not necessarily a subgroup itself. Therefore [H,K] may 

contain ~lements which are not commutators. 

The following theorem is supplied to provide the 

reader with a better understanding of commutators. Also, 

parts (i) and (iii) will be used to prove the two followin~ 

theorems. 

Theorem	 2.1 

If a, band c are elements of a ~roup G, then 

(i) (a,b] = e if and only if ab = ba , 
(ii) [a,b]-l = [b,a] , 

(iii) b-lab =a[a,b] , 

(iv) [a,bc] =[a,c]c-1[a,b]c , 
(v) [ab,c] = b-l[a,c]b[b,c] , 

(vi) b-l[[a,b-l],c]bc-l[[b,c·1J,a]ca-l[[c,a-1Jp]a 

=e • 

Proof.	 (Part (i». , 
and "if a-lb-lab = e then ab = ba. Conversely, if ab = ba , 

then a-lb-lab = e. Hence [a,b] = e, and (i) holds. Each of 

the other conclusions follows similarly by direct computation 

using the definition. 

Notice that if G is an Abelian group then ab = ba 

for all a and b in G. Hence, by Theorem 2.1 (i)~ Gl = {el • 
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Theorem 2.2 

The commutator subgroup Gl is normal in G. 

Proof. Let a be an element in Gl and let b be an 

element in G. By (iii) of Theorem 2.1, b-lab = a[a,b] • 

Now, a and [a,b] are elements of Gl so that their product 

must be in Gl. Therefore b-lab is in Gl and Gl is normal 

in G. 

Since Gl is a normal subgroup of G, there exists a 

factor group G/G l , by Theorem 1.2. The existence of G/Gl 

makes the following theorem possible. 

Theorem 2.3 

If G is a group then G/G l is Abelian. 

Proof. Let x and y be elements of G, then xGl and 

yGl are elements of G/Gl. Consider the commutator [xGl,yGl]; 

since Gl is a normal subgroup, 

[xGl,yGl] = (xGl)-l(yGl)-l(xGl)(yGl) 

~ x-ly-lxyGl = Gl • 

Gl is the identity of G/Gl, and therefore G/Gl is Abelian by 

Theorem 2.1 (i). 

DEFINITION OF TRANSFER 

This section will be devoted to defining and explain­

ing a special homomorphism, the transfer. 

In a group G with subgroup H, a complete set of coset 

representatives S =(Xl,x2,X3,""X~ is a set such that for 
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any xi in S, xiH is a coset of H. Also, if xiH =xjH then 

x· and if y is an element of G then there exists one=Xj' 

and only one x in S such that y is in the coset xH. 

Notation 

If (gl,g2,g3, ••• ,gn) is a subset of a group G, 

then ngi is the product glg2g3 ••• gn. 

Definition 

Let H be a subgroup of a group G. Let S 

= {Xl,X2,X3' ••• 'Xn } be a complete set of left coset repre­

sentatives of H in G. If y is an element of G then for each 

xi there exists an hi in H and an Xj in S such that YXi 

=xjhi • T is the transfer from G into H/Hl if and only if 

T(y) = (nhi)Hl. 

The cosets of H partition G so that every element YXi 

is an element of one of the cosets of H. Thus, by the 

definition of coset, YXi is the product of some coset repre­

sentative Xj and some hi in H. Therefore, there exists an h·1 

for each xi such that YXi = Hence the definition isxjhi • 

valid. When H is an Abelian group the transfer can be con­

sidered as a function from G into H as Hl = {e} • 

For an example of the transfer, let G be the cyclic 

group of order six, {e,a,a2 ,a3 ,a4 ,a5] • Let H be the sub­

group ~,a2,a41 • Since H is Abelian, Hl = {e} so that 

the transfer is a mapping from G into H. Let the cosets of H 

in G be eH and aH, then {e,a) is a set of representatives. 
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a 3 3e 3Let xl = e and x2 = a. Thus, when y = , YXI = a = a

and YX2 = a 3a = a 4 • Nm-l, a 3 is in aH and a4 is· in eH, or 

a 3 = ria2 and a 4 = ea4 • Hence, hl = a 2 and h2 = a4 ; and 

2 4n hi = hlh2= a a = e. Therefore T(y) = e. 

Table 1 shows all possible forms of the equation 

YXi = Xjhi. For each y there are two such equations, one 

for xl = e and one for x2 = a. For each xi there is asso­

ciated an x· and an hi.J 

TABLE 1 

THE POSSIBLE VALUES
 
FOR THE EQUATION
 

YXi = xjhi
 

:.i :.i hi x·
--!. x·:.:.l hi 

y = e e e e y = a e a e 

a a e a e a 2 

y = a 2 e e a 2 y = a 3 e a a 2 

a a a 2 a e a4 

y = a4 e e a4 y = a 5 e a a4 

a a a4 a e e 

The table does not contain the image of any y under 

the transfer. However, for each y it gives the appropriate 

hI and h2 so that T(y) can be determined by taking their 

product. For y = a 5 , hl = a4 and h2 = e so that T(y) = nhi 

= h l h2 = a4e = a4 • Thus T(e) = T(a3 ) = e, T(a) = T(a4 ) -- a 2, 
and T (a2 ) = T(a5 ) = a4 • 
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ELEMENTARY PROPERTIES 

The transfer has two important characteristics as a 

mapping. First, the transfer T from G into H/H1 can be 

modified so that the mapping is from G/G 1 into H/H1 • By this 

modification, if K is a subgroup of H which is a subgroup of 

G, then the mapping from G/G1 into K/K1 is the composite 

function from G/G 1 into H/H1 and from H/H1 into K/K1 • This 

is the transitive property. Secondly, the transfer is also 

a homomorphism. 

The equation YXi = Xjhi contains a secondary mapping. 

For each xi there is a unique Xj' for which y is fixed. 

Hence, the equation YXi = x·h· can be written YXi = (Axi)hiJ 1 

where A is a function from the set of coset representatives 

(X1,X2,X3' ••• ,Xn) into itself such that AXi = Xj. In the 

previous example y = e corresponds to the identity permuta­

tion, and y = a corresponds to the permutation (ea). In 

Appendix A other permutations of the transfer can be found. 

Theorem	 2.4 

The function A is a permutation. 

Proof. By definition, it must be shown that A is 

one-to-one. If 

then 

• 
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Now, 

(YXi) -l = « ) )-1AXi hi 

and 

(yX.)
J 

= (Ax.)h·
J J 

so that 
-1

«Axi)hi) (Axj)h j 

= hi-l«AXi)-l(Axj»hj • 

However, 

AXi = AX j , 

and hence 

• 

Thus xiH = xjH, and, since xi and Xj are elements of a com­

plete set of representatives, A is one-to-one. Therefore A 

is a permutation. 

For every group G and subgroup H there exists a 

transfer from G into H/H l • This follows directly from the 

definition of transfer. 

Theorem 2.5 

If H is a subgroup of a group G then there exists 

exactly one transfer from G into H/H l • 

Proof. It remains to be shown that there is only 

one transfer from G into H/H l ; or equivalently, the transfer 

is determined independently of the choice of the coset 

representatives. Let YZi = (Bzi)ai and YXi ~ (Axi)hi~' where 

ai and hi are in Hand {Xl'X2'X3," ••• ,Xn] and {ZttZ2,Z3, ••• ,Zn} 
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are complete coset representative sets e Now, every zi is in 

some coset xjH so that zi = XjCie For each xi there exists 

an Xj and a permutation D such that xi = Dxje Also, a permu­

tation of the xi's must necessarily permute the hi's and so 

hi = Dhje Thus YXi = y(Dx j ) = (ADxj)(Dhj). By using this 

equation and the equation zi = (DXi)ci' it follows that 

YZi = y«Dxi)ci) = (y(Dxi»ci 

= «ADxi)(Dhi»ci • 

Now, (ADxi ) can be replaced as 

(D-1ADzi) = (D(D-1ADxi)(D-1ADci) 

= (ADxi)(D-1ADci) 

which implies that 

(ADxi) = (D-1ADzi)(D-1ADci)-1 • 

Thus 

and 

, 

• 

• 

and 

However, YZi = (Bzi)ai so that 

(Bzi)ai = (D-1ADzi)(D-1ADci)-1(Dhi)Ci 

Since (Bzi) and (D-1ADzi) are uniquely determined, 

(Bzi) = (D-1ADzi) 

Hence 

• 

'I 
i 

• 
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Now, since H/Hl is Abelian and Hl is a normal subgroup of 

H, the products may be taken in any order. Also, D and D-1AD 

are permutations so that 

(nai)Hl	 = (rr (D-1ADci)-1(Dhi)Ci»Hl 

= (nci)-l(nhi)(rrci)Hl = (rrhi)Hl 
• 

Hence a group and a subgroup determine a transfer. 

Therefore when two or more transfers are being considered 

the following notation will be used. 

Notation 

If H is a subgroup of G then TG,H is the transfer 

from G into H/Hl • 

Theo~m	 2.6 

The transfer is a homomorphism. 

Proof. Let YXi = (Axi)hi, and zXi = (Bxi)ci where 

Z and yare elements of G, ci and hi are in H, and A and B 

are permutations. Then 

(YZ)Xi = y(zxi) = y«Bxi)ci) = (y(Bxi»ci 

= (ABxi)(Bhi)Ci • 

Hence 

, 
and since H/Hl is Abelian, 

(rr(Bhi)ci)Hl = (rrhi)Hl(rrci)Hl = T(y)T(z) • 

Therefore 

T(yz) = T(y)T(z) 

and T is a homomorphism. 
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The next property to be considered is that of transi­

tivity. In general the transfer is not transitive. However, 

when the-subgroup H of the transfer TG H is Abelian the, 
image of Gunder TG H is a subset of H and so, if K is a, 
subgroup of H, there is a transfer TH K and a transfer TG K, , 
such that TG K = TH KTG H. This is the transitive property. , " 

Through the following theorem, a function greatly 

related to the transfer for which the transitive property 

holds can be defined. This new function is the same as the 

transfer when the subgroup of the transfer is Abelian. 

Theorem 2.7 

The function T~ ,H' from G/Gl into H/Hl , defined by 

T~ ,H(yGl) = TG ,H(y), for all elements yG l , is a homomorphism. 

Proof. It first must be shown that T*G,H is well 

defined. If hand k are elements of G, such that hGl = kGl 

implies that T~,H(hGl) = Ta,H(kGl), then the mapping is well 

defined. T~,H(hGl) = T~,H(kGl) if and only if Gl is contain­

ed in the kernel of TG H. Let K = Ker(TG H). By Theorem 1.3,, ,
 
G/K is isomorphic to H/Hl , and hence Abelian. By Theorem 2.1 

(i), since the identity of G/K is K, K = [aK,bK] for all 

elements a and b in G. Now, K is a normal subgroup of G so 

that [aK,aK] = [a,b]K~ Thus, all co~uutators of G are in K. 

But, K is a subgroup of G and hence Gl is contained in K. 

Therefore T* G,H is well defined. 
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Let yGl and zGl be elements of G/Gl. Since TG,H is 

a homomorphism it follows that 

Therefore T* G H is a homomorphism., 

Theorem 2.8 (Trans~~ivity of__the Transfer) 

If G is a group and K is a subgroup of H which is a 

subgroup of G, then TG* K = TH* KT* G H. 
, 'J 

Proof. Let {xl'X2Jx3' ••• ,xn) be a complete set of 

coset representatives of H in G, and let [Zl'Z2,z3' ••• 'Zm} 

be a complete set of coset representatives of K in H. Let y 

be an element of G and YXi = (Axi)hi where hi is in H and A 

is a permutation of the xi's. Since G is the union of all 

cosets of the form xiH and H is the union of all cosets of 

the form zjK, it follows that G is the union of all cosets 

xiZjK. Thus, for each i and j there is a permutation Ai and 

an element k ij of K such that hiZj = (Aizj)kij • 

Hence 

YXiZj = (YXi)Zj = «Axi)hi)zj = (Axi)(hiz i ) 

= (Axi)«AiZj)kij) = (Axi)(AiZj)kij • 

Hence 

and 
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* * 1= TH KTG H(Y) = TH K«nihi)H 

=TH K(nihi ) = ni(TH Khi) 

= n· (n·k· .)K1 = (n..k .. )K1 
1 J 1J 1J 1J • 

The last equality is justified. since K/K1 is Abelian. 

Therefore 

• 

CHARACTERISTICS 

Computing the transfer is often time consuming. Some 

of this work can be eliminated by using the theorems in this 

section. These theorems are also valuable in proving other 

theorems. In particular. Theorem 2.9 is needed for the proof 

of Burnside's Theorem. 

Theorem 2.9 

Let G be a ~roup and H a subgroup of G. Let T be 

the transfer from G into H/H1 • Then. for each y in G. there 

exists a subset S* = {X1.X2.X3 •••••Xr] of a complete set S 

of coset representatives of H such that 

H for proper choices of ni 

and xi. i = 1,2•••• ,r , 
(ii) Eni = [G:H] , 

(iii) T(y) ~ (n(Xi-1yniXi»H1 • 

Proof. For each element y in G, there exists a 
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permutation A of S such that YXi = (Axi)hi where xi is an 

element of S and hi is an element in H. If A is the identity 

permutation, then (Axi)hi = xihi for all xi, so that 

h . - x. -lyx. Thus Xi-1YXi is an element of H, and1 - 1 1· 

T(y) = (nhi)Hl = (n(Xi-1YXi»Hl 
• 

Also, in this case each ni = 1 and it follows that 

•
 

of length ni. Then 

YXil = xi2h il 

YXi3 = xi4h i3 

Thus 

YXit = xilhit • 

-1 x i 2 YXil 

X -lyxi4 i3 

h= il 

= h i3 

1• x i 3- YXi2 

,.... 

h= i2 • 

Xit-1YXi(t_l) = hi(t-l) 

xil-1YXit = hit , 

, 

so that 

(Xil-1YXit)(Xit-1YXi(t_l»· •• (Xi2-1YXil) 

Therefore 

= hithi(t-l)···hil • 

and it follows that xi-lniXi E. H, and so (i) holds. Since 

H/Hl is Abelian and Hl is normal in H, the product nh i may 

be taken in any order so that 
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1 ni 
lThi = IT (xi - Y xi) • 

Thus (iii) holds. Now, since A is a permutation, and there­

fore onto, the sum of the lengths of the cycles of A 

(including cycles of length one) is the number of elements 

in the complete set of coset representatives. Therefore, 

by Lagrange's Theorem, the sum of the lengths of the cycles 

of A is [G:H]. 

In itself, this theorem does not aid in the ca1cu­

1ation of the transfer. However, from it the following 

three theorems are proved, the first two of which simplify 

the transfer for special cases. 

Theorem 2.10 

I
,

Let H be an Abelian subgroup of a group G. Let ~ 

[G:H] = n and let T be a transfer from G into H/H1 • If 

G = HK, H is a subset of C(K), the centralizer of K, and y ~l 
i 

is any element of G, then T(y) = yn. 

Proof. Since G = HK, K contains a complete set of 

coset representatives of H. Let yki = (Aki)hi where k i is 

an element of K, and hi is an element of H. Then, by 

Theorem 2.9, 

n· 
T(y) = (IT(ki- 1y 1 ki »H1 

• 

n· n. 
Hence ki-ly 1 ki (H and y 1 £ k i Hki -1 But, H is a subset• 

n·
of C(K) so that kiHk-1 = Hkiki-1 = H. Now, y 1 is in Hand 
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so it commutes with all elenents of K, and therefore 

• 

Theorem 2.11 

Let [G:H] = n and let T be a transfer from G into 

H/Hl • If H is contained in Z(G), the center of G, and y is 

an element of G, then T(y) = yn. 

Proof. Since H is a subset of Z(G), Hl = {el so 

that T can be considered as a transfer from G into H. 

By Theorem 2.10, 

n· 
x. -ly 1.x . E H 

1. 1. 

and 

• 

Hence 

• 

But, H commutes with all elements of G since it is a subset 

of Z(G) and so 

-1xiHxi = H.
 

ni
 
Thus y is in H and it too commutes with all elements of G 

so that 

• 
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Therefore 

T(y) = yn • 

In A40Z2(Appendix A) the center is {1,3}. Con­

sider the transfer from G into Z(G). Theorem 2.11 says that 

for each y in G, T(y) = yn where n = [G:H] = 12. However, 

all of the ela~ents of A4~Z2 have orders which divide 12. 

Therefore, T(y) = 1 for all y in G. 

Theorem 2.12 

Let [G:H] = n and let T be a transfer from G into 

H/H1 • If G = HK and the intersection of Hand K is the 

identity then K is a subset of the kernel of T, Ker(T). 

Proof. Since G = HK and the intersection of Hand K 

is the identity, K is a complete set of coset representatives 

of H. Let y be an element of K, if k i is a representative 

from Kj then 

ni 
k. -ly k. E K 
~ ~ • 

However, by Theorem 2.9(i), 

1 ni
k i - Y ( Hk i • 

Hence I
n. 

-1 1k ki y i = e • 

Therefore 

n.
IT(y) = (n(~i - y ~ki) )Hl = , 
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and K is contained in Ker(T). 

For an example of this theorem, consider A4~Z2 again 

(Appendix A). The subgroups H = {1,3,9,12,14,16,18,20) 

and K = {1,2,4} satisfy the hypothesis of the theorem. The 

transfer TG H has kernel (1,2,4,lO,11,12,15,16,17,18,2l,24}, 
which contains K. Notice that the subgroups (1,lO,17), 

(1,11,21J, and [1,15,24) could each replace K, and so each· 

is a subset of the kernel. 

Theorem 2.13 

Let T be a transfer from a group G into the factor 

group H/R1 • If x and yare conjugates in G then T(x) = T(y). 

Proof. Let g be an element of G such that g-lxg = y. 

Then 

T(y) = T(g-lxg) = T(g-l)T(x)T(g) 

= (T(g»-lT(x)T(g) 

as T is a homomorphism. Since H/Hl is Abelian, 

(T(g»-lT(x)T(g) = T(x)(T(g»-lT(g) = T(x) • 

The fact that the images of conjugates are the same 

decreases the work of computing the transfer. In A4~Z2 

(Appendix A) two thirds of the work is eliminated by Theorem 

2.13. 

Theorem 2.14 

Let G be an Abelian group with p-Sylow subgroup H. 

I 
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If T is a transfer from G into H then T is onto. 

Proof. Since G is Abelian, H is Abelian and so T 

can be considered to be a mapping into H. Now, for every y 

in H, 

YXi = xiY , 

as G is Abelian. Thus T(y} = yn where n = [G:HJ. Suppose g 

and h are in H such that T(g} = T(h}. Then gn = hn , which 

implies that 

, 
so that 

• 

H is a p-Sylow subgroup so that (p,n) = 1, and so gh- l = e 

or g = h. Therefore T is onto. 

Requiring G to be Abelian seems to be a stronger 

restriction than needed. However, the theorem cannot be 

proved by only requiring the subgroup H to be Abelian. In 

fact, the theorem with such a change is false. To prove 

.,l'this, refer to A4(&}Z2 (Appendix A). The subgroup 
~ 
II

{1,3,9,12,14,16,18,201 is Abelian and the transfer to this II
II 
II 

subgroup is not onto. The image of the transfer is {l,~ • II 

BURNSIDE'S THEOREM 

So far the transfer is little more than an interest­

ing homomorphism. However, in this section, it will be used 

to characterize the structure of some groups. 
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Theorem	 2,1~ 

If.P is a p-Sylow subgroup of G, and Land Mare 

self conjugate subsets of P which are conjugate in G, then 

they are conjugate in N{P). 

Proof. At first, the conclusion seems obvious. 

However, for Land M to be conjugates in N{P) there must 

exist an element y in N{P) such that y-lpy = M. 

By definition of conjugate, there exists a g in G 

such that g-lLg = M. Let t be an element of P; then g-ltg 

is an elereent of g-lpg, and 

(g -1tg )-l{g-lLg )(g -1 tg )	 = (g-lt-lg){g-lLg){g-ltg) 

= g-1{t-1Lt)g = g-lLg • 

This last equality is justified as L is self conjugate in P. 

Hence g-lLg is a self conjugate subset of g-lpg. Thus, M 

is a self conjugate subset of g-lpg, and so g-lpg is con­

tained in N{M). Hence, by Sylow's Theorem, there exists a z 

in N{M) such that z-1{x-1Lx)z = P. Therefore, z-1{x-1Lx)z 

= z-lMz = M, and since zx is in N{P), the theorem is proved. 

The next theorem is usually presented as part of the 

proof of Burnside's Theorem. However, it characterizes the 

transfer for certain types of subgroups and so is valuable 

in itself. 

Theorem	 2,16 

Let P be a p-Sylow subgroup of a group G, and let T 

I 
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be a transfer from G into P/pl • If N(P) = C(P), then 

(i)	 the intersection of Ker(T) and P is 

the identity, 

(ii) T is onto P. 

Proof. Since C(P) = N(P) which contains P, P is 

Abelian. Thus, consider T as a transfer from G into P. Let 

{Xl,X2,X3, ••• ,Xn} be a complete set of coset representatives 

and let y bean element of P. By Theorem 2.9, 

and • 

Since 

nn i iit follows that xi- ly xi and yare conjugates in G. Now, 

each of these is a self conjugate subset of P since P is 

Abelian. Hence, by Theorem 2.15, there exists a z in N(P) 

• • 

I! 
41,:
.1 

" 

[G:pJ = n •. 

Therefore, 

P is a p-Sylow subgroup of G and 

n. 
xi- ly 1xi 

ni n i= y and T(y) = TT Y 

so 

• 

(n,p) 

Let 

= 1. 

" II 
II 

Ii
I: 
1\ 

It 

Hence yn ~ e if y ~ e. Therefore the intersection of Ker(T) 

and P is the identity. Conclusion (i) is proved. Now, if z 

is an element of.P such that T(y) = T(z), then yn = zn and 

hence (yz-l)n = e. This implies that yz-l = e, or that y = z. 

Therefore the transfer is onto. 
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Definition 

A .subgroup K of a group G is a conplement of a 

subgroup H if and only if G = HK and the intersection of H 

and K is the identity. 

Theorem 2.17 (Burnside's Theorem) 

Let G be a group, and let P be a p-Sylow subgroup of 

G. If N(P) = C(P), then P has a normal complement in G. 

Proof. From Theorem 2.16, it follows that the inter­

section of Ker(T) and P is the identity. Also, by Theorem 

2.16, the transfer is onto P. Thus, by an isomorphism 

theorem (Theorem 1.3), the factor group G/Ker(T) is 

isomorphic to P. Thus G =Ker(T)P, and therefore Ker(T) is 

a normal co~plement of P. 

A4QOZ2 (Appendix A) can also be used to illustrate 

this theorem. Let the p-Sylow subgroup P be anyone of 

the subgroups tl,2,4}, {1,lO,17}, {l, 11, 2l} , or (1,15,241. 

Each of these has its normalizer equal to its centralizer, 

and each has the subgroup {1,3,9,12,14,16,18,2~ as its 

normal complement. 



CHAPTER III 

CONCLUSION 

The transfer is only a small part of group theory, 

and this thesis hardly reveals anything about the transfer 

compared to what is still unknown about it. 

S~~RY 

In this thesis, a brief discussion of commutators 

and commutator subgroups provided enough background informa­

tion to develop the transfer. The transfer was developed 

starting with the definition. From the definition a few 

elementary theore~s followed. The theorems presented next 

were intended to characterize the transfer, and to give the 

reader a better understanding of it. Chapter II was con­

cluded by Burnside's Theorem. Burnside's Theorem is the 

most important theorem of this thesis and is one of the 

major theorems of group theory. 

SUGGESTIONS FOR FURTHER STUDY 

There remains a great deal to be studied about trans­

fers. As defined, the transfer is an into mapping. However, 

in many instances the transfer is onto. Determining when 

the transfer is onto would relate the transfer to the 

structure of groups. Also,a deeper study of the transfer 

I 
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could reveal an easier way of computing it. 

In pr~paring this thesis, other possible topics of 

study have come to attention. 

1) How are the transfer and Burnside's Theorem 

related to the solvability of groups? 

2) Can the class equation be used in connection 

with the transfer? 

3) How can the transfer be used in the study of 

Abelian groups? 

4) What is the importance of co~utators and 

commutator subgroups in the study of groups? 

I 
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APPENDIX A 

THE TRANSFERS OF A4~Z2 

Seven of the. transfers of A4~Z2 are presented as an 

aid to the reader. These transfers provide examples to 

theorems 2.4, 2.11, 2.12, 2.14, and 2.17. 

In connection with Theorem 2.13, the conjugate 

classes of A40Z2 are (2,10,21,24}; (4,11,15,17]; {5,7,22,23}; 

{6,8,13,19}; {9,14,20}; and {12,16,18}. The center is (1,3). 

For the transfer onto {1,2,4) the set 

S = {1,3,7,8,9,10,11,12) is used as the set of coset repre­

sentatives. \Vhen y = 1, T(y) = 1, and the permutation of S 

is the identity permutation. For y = 2, 

(1 8 9)(10 11 12) is the permutation. 

Xi AXi hi 

2 1 1 2Y ­
3 3 2 
7 8 1 
8 9 1 
9 7 1 

10 11 1 
11 12 1 
12 10 1 

T(y) = 4, and 

Permutation 

(7 8 9)(10 11 12) 

'I 

.:~I
c: 
C: 
..III' 
~, 

c: 
I'
'ill 
~I., 

.'"I:

.'I: 
c: 
" " 

I' 
! 
I 



-:L 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

T:A40z2 

11xl 
1
 

4
 

1
 

2
 

4
 

2
 

4
 

2
 

1
 

4
 

2
 

1
 

2
 

1
 

2
 

1
 

2
 

1
 

2
 

1
 

4
 

4
 

4
 

4
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--> {1,2,4} 

Permutation 
I 

(7 8 9)(10 11 12) 

(1 3)(7 10)(8 11)(9 12) 

(7 9 8)(10 12 11) 

(1 3)(7 11 9 10 8 12) 

(1 3)(7 12 8 10 9 11) 

(1 7 12 3 10 9)(8 11) 

(1 8 12 3 11 9)(7 10) 

(1 9)(3 12)(7 11)(8 10) 

(1 10 12)(3 7 9) 

(1 11 12)(3 8 9) 

(1 12)(3 9)(7 8)(10 11) 

(1 7 11 3 10 8)(9 12) 

(1 7)(3 10)(8 12)(9 11) 

(1 10 11)(3 7 8) 

(1 10)(3 7)(8 9)(11 12) 

(1 12 10)(3 9 7) 

(1 11)(3 8)(7 9)(10 12) 

(1 9 10 3 12 7)(8 11) 

(1 8)(3 11)(7 12)(9 10) II 
(1 12 11)(3 9 8) 

(1 9 11 3 12 8)(7 10) 

(1 8 10 3 11 7)(9 12) 

(1 11 10)(3 8 7) 
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Image of T 

U,2,4} 

---~ (1,2,4) 

Ker(T) 

{1 , 3 , 9 , 12 , 14, 16 , 18 , 2oj 

T:A4~Z2 

Image of T 

{1, 10, 17J 

-> \1,10,17} 

Ker(T) 

~,3,9,12,14,16,18,20J 

T:A4<X>Z2 

Image of T 

=:> [1,11,211 

Ker(T) 

{1, 11,21) {1,3,9,12,14,16,18,20} 

T:A40 z2 

Image of T 

[1,15,24} 

~ f1,15,24} 

Ker(T) 

U,3,9,12,14,16,18,20} 

---.;>~ {1, 2, 4,10,11,12,15,16,17,18,21 ,24} 

Ker(T) 

{1, 3,9,12, 14 ~ 16,18; 20} 

T:A40 z2 > {1, 12, 16, 181 

Image of T Ker(T) 

(1} A4~Z2 

T:A40 z2 > {1,3,9,12,14,16,18,20} 

Image of T Ker(T) 

{1,3] {1,2,4,10,11,12,15,16,17,18,21,24} 

Image of T 

1 {H1 , 2H1 , 4H1}, where 
H = {1,12,16,1~ 

II 
II 

!l 



The Multiplication Table of A4~Z2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 
2 
3 
4 

1 
2 
3 
4 

2 
4 
5 
1 

3 
5 
1 
6 

4 
1 
6 
2 

5 
6 
2 
3 

6 
3 
4 
5 

7 
8 

10 
9 

8 
9 

11 
7 

9 
7 

12 
8 

10 11 
11 12 

7 8 
12 10 

12 
10 

9 
11 

13 
20 
15 
22 

14 15 16 
23 18 24 
16 13 14 
19 21 17 

17 18 
16 21 
19 20 
24 15 

19 20 
14 22 
17 18 
23 13 

21 
15 
22 
18 

22 
13 
21 
20 

23 24 
19 17 
24 23 
14 16 

5 
6 
7 
8 

5 
6 
7 
8 

6 
3 

13 
20 

2 
4 

10 
11 

3 
5 

14 
23 

4 
1 

15 
18 

1 11 
2 12 

16 17 
24 16 

12 
10 
18 
21 

10 
11 

2 
4 

8 9 
9 7 

19 20 
14 22 

7 
8 
5 
6 

18 
21 
12 
10 

24 
17 
21 
15 

20 
22 

9 
7 

23 
19 
22 
13 

14 22 16 21 
23 13 24 15 

3 23 1 24 
5 19 2 17 

13 
20 

6 
3 

15 
18 

4 
1 

17 19 
16 14 
11 3 
12 9 

9 
10 
11 
12 

9 22 
10 15 
11 18 
12 21 

12 
7 
8 
9 

19 
16 
24 
17 

21 
13 
20 
22 

17 24 15 
14 19 20 
23 14 22 
19 23 12 

1 
5 
6 
3 

23 
17 
16 
24 

13 
18 
21 
15 

3 
2 
4 
1 

11 
9 
7 
8 

18 
22 
13 
20 

8 
12 
10 
11 

20 
21 
15 
18 

6 
1 
2 
4 

14 
24 
17 
16 

4 
3 
5 
6 

16 
23 
19 
14 

5 
4 
1 
2 

2 
6 
3 
5 

10 
8 
9 
7 

7 
11 
12 
10 

13 
14 
15 
16 

13 
14 
15 
16 

14 15 7 
7 16 13 

16 13 10 
10 14 15 

16 10 
10 15 
14 7 

7 13 

18 
2 

20 
5 

2 
17 

5 
19 

17 
18 
19 
20 

20 
5 

18 
2 

5 
19 

2 
17 

19 
20 
17 
18 

24 11 
4 1 

23 8 
6 3 

23 
6 

24 
4 

8 
3 

11 
1 

22 
8 

21 
11 

6 
9 
4 

12 

21 
11 
22 

8 

4 
12 

6 
9 

9 
23 
12 
24 

12 
24 

9 
23 

1 
21 

3 
22 

3 
22 

1 
21 

17 
18 
19 
20 

17 
18 
19 
20 

12 19 
24 20 

9 17 
23 18 

21 
11 
22 

8 

9 22 
23 8 
12 21 
24 11 

3 
22 

1 
21 

23 
6 

24 
4 

13 1 
14 21 
15 3 
16 22 

24 
4 

23 
6 

15 
16 
13 
14 

5 
19 

2 
17 

6 2 
9 17 
4 5 

12 19 

4 
12 

6 
9 

10 
15 

7 
13 

11 
1 
8 
3 

7 
13 
10 
15 

8 
3 

11 
1 

16 14 20 18 
10 7 5 2 
14 16 18 20 

7 10 2 5 

21 
22 
23 
24 

21 
22 
23 
24 

17 
19 

8 
11 

22 
21 
24 
23 

12 
9 

20 
18 

19 
17 
11 

8 

9 
12 
18 
20 

13 
15 

4 
6 

3 
1 

16 
14 

23 
24 
21 
22 

15 
13 

6 
4 

1 24 
3 23 

14 22 
16 21 

14 
16 

1 
3 

7 16 10 
10 14 7 

2 3 5 
5 1 2 

18 
20 

9 
12 

2 
5 
7 

10 

20 
18 
12 

9 

5 
2 

10 
7 

11 
8 

19 
17 

8 
11 
17 
19 

6 
4 

15 
13 

4 
6 

13 
15 

w 
N 
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Lattice of A4C»Z2 
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