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CHAPTER I 

INTRODUCTION 

I. RINGS fu~D FIELDS 

Two of the more common mathematical structures 

studied in elementary abstract algebra are rings and 

fields. 

A ring must form a commutative group under an 

operation called addition, and a second operation called 

multiplication must be closed, associative, and distribu­

tive with respect to addition. These properties are the 

minimal requirements for a ri~g. 

A ring that, in addition to the above properties, 

con~ains a unity element is called a ring with unity. 

Because it is a well esta::)lished fact e'lat a ring without 

unity can always be considered to be contained in a ring 

with unity, rings in this paper will be, for the ~ost 

?art, rings with unity. 

If multiplication is commutative and each nonzero 

element of the ring has a multiplicative inverse, the 

ring is called a field. In other words, a field is an 

additive commutative group that is also a multiplicative 

con@utative group. 
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It should be obvious that a field is always a ring, 

but a ring is not necessarily a field. When referring to 

a ring that might contain a field, it is to be understood 

that the ring is not itself a field. 

II. STATE~lliNT OF THE PRODLEM 

There are rings that contain fields. Consider the 

ring Z/(6) of integers modulo 6. A straightforward argu­

ment will verify that the subset 

{06' 2 6 , 46 } 

is a field with unity 46 . 

Other rings do not contain fields. In the ring 

Z/(9) of integers modulo 9, the only proper subset ~lat 

forms a comnutative group under addition is the subset 

{09' 3 9 , 6 9 } • 

This ~:;et is not a field sir.ce (39) (6 9 ) = 09 proves that 

39 and 69 are proper divisors of zero. A field has no 

proper divisors of zero. 

It should be possible to determine which rings con­

tain fields and which do not. Chapter II will be an 

investigation of this conjecture. In Chapter III, a brief 

examination will be made of multiplicative inverses ln 

rings containing fields. 
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III. BASIC CONCEPTS 

It is assumed that the reader has knowledge of the 

basic concepts of the theory of groups, rings, and fields. 

However, in this section, some of the basic concepts 

necessary for an understanding of this presentation will be 

reviewed. 

Definition 1.1. A set S of one or more elements of 

a ring rt is called an ideal in R if and only if it has the 

following properties: 

(1) If a and b are in S, then a-b is in S. 

(2) If a is in 8, then, for .:tIl r in R, ar and 

ra are in s. [4, p. 52] 

Definition 1.2. Let Rand R' be rings. A mapping 

w:R~R' of R into R' is called a (ring) homomorpl1isln if, 

for any rand s in R, 

w(r+s) = vvr+ws, w(rs) = (vvr) (ws). 

If, for any r' in R', wr = r' for some r in R, then w is 

said to be a homomorphism of R on to R'. If, also, wr = ws 

implies that r = s, then w is an isomorphism of R onto 

R'·[l, p. 89] 

If w:R---tR' is a (ring) homomorphism, R has unity e, 

and r is any element of R, then 

(we) (wr) = w(er) = wr 

implies that R' will have unity e' = we. 
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Def ini tion 1. 3 . If w is a homomorphism of the 

ring R into the ring R', the set 

N ={r in Rlwr = OR} 

is called the kernel of w. [1, p. 90] 

These first few definitions are particularly needed 

to understand the following important theorem in the theory 

of rings. 

Theorem 1.4. (Fundamental Homomorphism Theorem 

for Rings) . If N is an ideal of the ring R, then the 

mapping w:R--7R/N, defined by wr = r+N, is a homomorphism 

of R onto R/N with kernel N. Conversely, if v is a 

homomorphism of R onto a ring R', then R' is isomorphic to 

R/K, where K is the kernel of v. [1, p. 90] 

Definition 1.5. Let R be an arbitrary ring, r a 

fixed element of R, and Z the ring of integers. If n is 

an element of Z, the ~atural multiples of r are the inte­

gral multiples of r defined as follows. For n greater 

than 0, 

nr = (r+r+r+---+r)n terms 

and 

(-n) r = n(-r) . 

For n equal to 0, 

Or = OR. 

Definition 1.6. If r is an element of a ring R, 
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the additive subgroup generated by r is the set of all 

natural Inultiples of r. The order of this group is the 

nunwer of elements it contains. 

Theorem 1.7. For each ring R with unity 1', there 

is exactly one homomorphism u:Z~R. 

Proof. Each homoJOorphism w:S~s' of rings, as a 

homomorphism of additive groups, is a horoomorphism of 

natural multiples, in the sense that 

w(ns) = n(ws) 

for all s in S and all integers n. In particular, since 

we = e', it follows that 

w(ne) = n(we) = nero 

This determines the effect of any homomorphis!L1 of rings on 

all natural multiples of the unity e of S. Every element 

of the ring Z of integers is a multiple of 1. Thus, given 

a ring R, the only possible homomorphism u:Z---"7R is 

defined by un = nl'. 

This mapping is a homomorphism. For, in addition 

to ul = 1', 

u(n+m) = (n+m)l' 

= (l'+l'+l'+---+l')n+m terms 

= (l'+l'+---+l')n terms+(l'+l'+---+l')m terms 

= nl'+ml' 

= un+um 

by the associative property of addition in R and the 
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meaning of natural multiple. Similarly, 

u(nm) = (nm)l' 

= (l'+l'+l'+---+l')nm terms 

= (l'+l'+---+l')n terms(l'+l'+---+l')m terms 

= (n 1 ') (ml I ) 

= (un) (urn) . 

This completes the proof. [2, pp. 120, 121] 

The homomorphism in the previous theorem, defined 

by un = nl', depends essentially upon the unity elements, 

so will be called the unital homomorphism for the ring R. 

Definition 1.8. fuL arbitrary ring R has (positive) 

characteristic n if n is the least positive integer such 

that nr = OR for every r in R. If no such positive integer 

exists, then R is said to have characteristic zero. If R 

has unity e, then, for any r in R, 

nr = n(er) = (ne)r = OR' 

and it follows that the characteristic of R can be defined 

as the (additive) order of its unity e. Thus, a non­

trivial ring R with unity e has a positive characteristic 

n if n is the least positive integer with ne = OR and has 

characteristic zero if no such multiple ne is 0U. 

Theorem 1.9. Let R be a ring with unity e. If the 

characteristic of R is a positive integer n, then the 

image Z' of the unital hornomorphisp.\ is isomorphic to Z/ (n) , 
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while if the characteristic of R is zero, then Z' is 

isomorphic to Z. 

Proof. If R has characteristic n, the kernel of 

the unital homomorphism is (n), and, by Theorem 1.4, 

Z' ~ Z/ (n) • 

If R has characteristic zero, the kernel of the unital 

hornomorphism is (0), 

Z' ~ Z/ (0) = Z, 

and the theorem is established. [1, p. 139] 

TheoreQ 1.10. Any two nonzero elements band d in 

the ring Z of integers have a greatest cowaon divisor (b,d). 

It can be expl:essed as a 11 1 inear combination of band d,11 

with integLal coefficients s and ~, in the form 

(b,d) = sb+t.d. [3, p. 17] 

Theorem 1.11. For each prime number p, Z/(p) lS a 

field. 

Proof. Z/(p) is a conL~utative ring with unity 

l+(p) . Consider any nonzero element a+(p) in Z/(p). Since 

a+(p) is not equal to zero and p is a prime, (a,p) = 1, and 

there exist integers sand t in Z such that sa+tp = 1. The 

unital homoQorphism applied to this equation carries prime 

p to zero, hence s to an inverse s+(p) of a+(p), as required 

to prove Z/(p) is a field. [2, pp. 157, 158] 



CHAPTER II 

RINGS CONTAINING FIELDS 

I. RINGS WITH POSITIVE CHARACTERISTIC 

Now it will be shown that if a ring with unity ha3 

positive characteristic n = pm, where p is a positive prime 

and (p,m) = 1, then R contains a field isomorphic to the 

field Z/(p). Before this can be done, it is necessary to 

introduce some of the ?roperties of a direct sum of rings. 

Definition 2.1. Let 51 and S2 be any two rings, and 

consider the set S of all symbols (sl,s2) with sl in Sl' 

s2 in S2' Defining addition and multiplication by 

(sl,s2)+(t l ,t2 ) = (sl+t l ,s2+t 2) 

and 

(sl,s2) (tl,t2) = (sltl,s2 t 2)' 

it is easy to verify that the set S, denoted by Sl+8 2 , 

satisfies the minimal requirements for a ring. S is called 

the direct sum of Sl and S2' [4, p. 114] 

The zero element of S = Sl+S2 is (01,02)' the first 

zero being the zero of Sl' the second the zero of S2" If 

Sl and S2 have unity elements el and e2 respectively, then 

S has the unity element (el,e2)' If both Sl and S2 have 

more than One element, S has proper divisors of zero since 

(sl,02) (01,s2) = (01'02) 



9 

for every sl in Sl' s2 in S2. S is a co~nutative ring if 

and only if both Sl and S2 are corrunutative. The one-to-one 

correspondence 

(sl,s2) H(s2,sl) 

between elements of Sl+S2 and S2+S1 is an isomorphism, so 

no distinction is Dade between the two rlngs. 

The set of all elem8nts of S of the form (sl,02), 

where sl is in Sl, is an ideal Si of S isomorphic to Sl by 

the correspondence 

sl~(sl,02) . 

Similarly, the set of all elements of S of the form (01,s2)' 

where s2 is in S2' is an ideal S2 of S isomorphic to S2. 

If s = (51,s2) is any element of S, the correspond­

ence 
s~(sl,02) 

is a homomorphism of S onto Si. The elements of S that 

correspond to the zero element of Si are "precisely the ele­

ments of S2. It follows, from Theorem 1.4, that 

S/S2 ~ Si ~ Sl' 

and, similarly, 

S/S1 ~ S2 ~ S2· 

Since 

(sl,s2) = (sl,02) +(01,52)' 

it is clear that every element of S is uniquely expressible 

as a sum of elements of Si and S2 respectively. 
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Theorem 2.2. If a ring S has positive c~aracter-

istic n = n l n 2 , where nl and n2 are greater than one a~d 

(nl,n2 ) 1, then 5 N S2+51' where Si is a ring of charac­

teristic n. (i = 1, 2).
1 

Proof. Since (nl,n 2 ) 1, there exist integers k 

and h such that 

1 = nlk+n2h, 

and, hence, 

(1) s = n l ks+n2 hs 

for every s in S. Let S2 be the set of all elements of S 

of the form nlks, s in S. It follows easily that S2 is a 

rinSi (with unity if S has unity), and its charact.eristic 

does not exceed n 2 since 

n2(n l ks) = riks = OS, 

In like manner, the set 51 of all elements of 5 of the form 

n2hs is a ring (with unity if S has unity) whose character­

istic does not exceed nl. 

From	 (1), 

nlks = (nlk)2s+nkhs, 

and, since ns = OS' this implies that 

(n l k)2 s = nlks 

for every element s of S. Similarly, 

(n2 h )2 s = n2 hs . 

These relations will be used presently. 

Now the correspondence 
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( 2) s~ (n1ks, n2hs) 

will be shown to be an isomorphism of 5 with the direct 

sum 52+51. If sand t are arbitrary elements of 5, then 

s+t--0(n1k (s+t) ,n2h(s+t)) = (n1ks,n2hs)+(n1kt,n2ht), 

and the above relations show that 

s t --7 ( n 1k s t , n 2h s t) = ( n 1k) 2 s t, (n211) 2 s t ) 

= (n 1ks,n2hs) (n 1kt,n2ht) 

Futhermore, 

n1ks+n2ht--7(n1ks,n2ht) , 

so that every element of 5 2+51 is the image of some element 

of 5. It follows that the correspondence (2) is a homo­

morphism of 5 onto S2+51. However, if 

s-) (0 ,0 ) , 
2 1 

then 

n 1ks = n 2hs = 032515' 

and (1) shows tha t s = 052S 15 " Thus, the homomorphism has 

zero kernel and is actually an isomorphism. 

To complete the proof of the theorem, it must be 

shown that the characteristic of 5i is ni (i = 1,2)" If 

5 i has c~aracteristic mi' it has already been poi~ted out 

that mi ~ ni" If (s2,sl) is dny element of 52 +5 1 , it 

follows that 

m1 rr.2 ( s 2 ' s 1) = (m1m2 s 2 ' rillm2 s 1) = (0 2 ' 0 1) , 

and the char2cteristic of 5 2 +5 1 cannot be greo.ter than 
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ffilm2. Since n is the characteristic of S, it is also the 

characteristic of the isomorphic ring 8 2+81' and, there­

fore, 

L. n -mlm2. 

But mi ~ ni implies that 

ffi1In2 -6 n1n 2 = n, 

and 

n = nln2 = mlm2. 

The fact that mi ~ ni (i = 1, 2) also implies that 

mi = ni' 

and the proof is completed. [4, pp. 116, 117, 118] 

By this theorem, whenever a ring R with unity has 

positive characteristic n = pm, where p is a positive 

prim~ and (p,m) = 1, R contains rings (ideals) Rl and R2 

with characteristics p and m respectively. By Theorem 1.9, 

Rl contains a ring Z' isomorphic to Z/(p), and since Z/(p) 

is a field as a result of Theorem 1.11, Z' is a field. If 

e is the unity of R, correspondence (2) from the previous 

theorem shows that (pke,mhe) must be the unity of the 

direct sum R2 +R l , and mhe must be the unity of Rl . Remem­

her hand k must be such that 

1 = pk+mh. 

As an example, consider the ring Z/(60) of integers 

modulo 60 with positive characteristic 60 and unity 160 , 
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Since 60 = (3) (20), (3,20) = 1, and 

1 = pk+rnh 

= 3k+20h 

= 3(-13)+20(2) 

Z/(60) contains a field F with characteristic 3 and unity
l 

mhe = (2 0) (2) (1 6 0 ) = (4 0) (1 6 0) = 40 6 0 . 

Similarly, since 60 = (5) (12), (5,12) = 1, and 

1 = pk+mh 

= 5k+12h 

= 5(-7)+12(3) 

Z/(60) contains a field F with characteristic 5 and unity2 

mhe = (12) (3) (1 60 ) = (36) (160) = 36 60 , 

The smallest fields Fi and F2 contained in F and F2 arel 

the additive subgroups generated by the unity elements 

40 60 and 36 60 respectively. The field Fi isomorphic to 

Z/(3) is 

{40 60 , 20 60 , °60}' 

and the field F2 isomorphic to Z/(5) is 

{36 60 , 12 60 , 48 60 , 24 60 , °60}' 

A ring R with unity that has a positive character­

istic and no divisors of zero must have a prime character­

istic. For suppose the characteristic of R is a composite 

number n = kf, where k and f are two positive integers. 

If e is the unity of R, 
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ne = (kf) e = (ke) (fe) = OR 

implies that the elements ke and fe are divisors of zero 

in R. Similarly, any nontrivial ring S containeu in R 

with no divisors of zero must have prime characteristic p 

less than n. 

Suppose a nontrivial ring S containeu in R has a 

prime characteristic p less than n such that (p,n) = 1. 

Then, there exist integers sand t such that 

1 = ps+nt, 

and, for all a in S, 

a = psa+nta = 0SR. 

This means that if R contains the ring S with prime charac­

teristic p less than n, p must be a factor of n. 

Now suppose the characteristic of R is n = pkq , 

where k is an integer greater than one and (p,q) = 1, and 

suppose R does contain a nontrivial ring S with prime 

characteristic p. From Theorem 2.2, R is isomorphic to 

the direct sum of two rings (ideals) R' and R" contained 

in R with characteristics pk and q respectively. Thus, 

the direct sum R'+R" must contain a ring Sf' isomorphic 

to S. Since (p,q) = 1, there is no nonzero element r" 

ln R" such that pr" = OR'" so the elements of Sf' must 

be from the set Ri of elements of the form (r' ,OR' ,) with 

r' in R' and OR" in R". Next, the isomorphism 

r'r-7(r' ,OR' ,) 
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between R' and Ri implies that R' must contain a ring SI 

such that 

S ~ S" ~ Sr. 

Remembering that e is the unity of Rand pk-le fOR' 

p(pk-le ) = pke = °R'R 

implies that pk-le must be an element of S I in RI . Ho~",ever, 

(pk-le )2 = p2k-2 e 2 = p2k-2 e = pk(pk-2 e ) = °S'R'R 

shows that pk-le is a divisor of zero in SI, and, thus, its 

corresponding element a in S is a divisor of zero in S. 

Therefore, if the characteristic of a ring R with 

unity is n = pkq , where k is an integer greater than one and 

(p,q) = 1, R cannot contain a ring S of prime characteristic 

p, so R cannot contain a field. The ring R will contain a 

field if and only if it has a prime characteristic, or, 

when expressed as a product of prime factors using expo~ 

nents, the characteristic contains first degree prime 

factors. For each of these first degree prime factors p, 

there is contained in R a field F with characteristic p, 

and the smallest field contained in F is isomorphic to 

Z/ (p) • 

II. RINGS v·nTH ZERO CdARACTERISTIC 

In this section, it will be shown that the smallest 

field contained in a ring with unity, zero characteristic, 

and no divisors of zero must be isomorphic to the field 
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of rational numbers. 

Definition 2.3. If w' is an isomorphism w':R'~5' 

of rings R' and 5' contained in rings Rand 5 respectively, 

then an isomorphism \v:RH5 will be called an extension of 

w' if wr ' = w'r' for all r' in R'. [1, p. 97] 

Definition 2.4. If D is a nonzero integral domain 

contained in a field F, then 

K ={ao-lla, 0 in D, b * QD} 

is the quotient field of D in F. [1, p. 99) 

Theorem 2.5. Let D and D' be isomorphic integral 

domains with isomorphism w:Df-?D', contained, respectively, 

in fields F and F ' , and let K, K' be the respective 

qqotient fields. Then w can be extended in one and only 

one way to an isomorphism w' :K~K I. 

Proof. If an extension w' of w exists, then, for 

ab- l in K, it must be true that 

w' (ab- l ) = (w'a) (w'b- l ) = (w'a) (w'b) -1 = (wa) (wb) -1. 

Thus, w' is unique if it exists. 

Define w' :KHK' by 

w' (ab- l ) = (wa) (wb) -1 

for arbitrary ab- l in K. Now 

w' (ab- l ) = \'-1' (cd- l ) iff ('vva) (wb) -1 = ('vvc) (wd)-l 

iff (wa) (wd) (wc) (wb) 

iff w(ad) = w(cb) 

iff ad = co 
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if and only if 

ab- l = cd- l . 

Thus, w' is one-to-one. 

If xy-l is any element of K', then x, y in 0' and 

x = wa, y = wb for some a, b in 0, hence, w' (db- l ) = xy-l, 

and w' is onto. 

Finally, 

w' (ab-l+cd- l ) w' [(ad+bc) (od) -1] 

= [w(ad+bc)] [w(bd)]-l 

= [(wa) (wd)+(wb) (wc)] [(vlb)-l(wd)-l] 

= (wa) (wb) -l+(wc) (',vd)-l 

= w'(ab-l)+w' (cd- l ), 

and 

w' [(ab- l ) (cd- l )]	 = w' [(ac) (bd) -1] 

= [w (a c) ] [w ( bd) ) -1 

= (wa) (wc) (wo)-l(wd)-l 

= [(wa) (wb) -1] [(wc) (\'1d) -1] 

= [w'(ab- l )] [w'(cd- l )]. 

Thus, w' preserves both sums and products and is, indeed, 

an isoloorphism. Since w' trivially agrees with w on ele­

ments of 0, the theorem is proved. [1, pp. 99, 100] 

Results of this theorem are needed in the proof of 

the followins theorem. 

Theorem 2.6. Let R be a ring with unity e and no 

divisors of zero. If R has characteristic zero and contains 
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a field F, the smallest field contained in F is isomor­

phic to the field Q of rational numbers. 

Proof. The characteristic of R is zero, so, by 

Theorem 1.9, the image Z' of the unital homomorphism 

u:Z--7R must be isomorphic to the integral domain Z. 

Since R has no divisors of zero, for any nonzero r 

in R, er = fr implies that (e-f)r = OR' and e = f. Thus, 

any field F contained in R must contain Z' isomorphic to Z. 

Theorem 2.5 proves that the smallest field contain­

ing Z is its quotient field Q. Also, by Theorem 2.5, the 

smallest field in R containing Z' must be a set Q' isomor­

phic to Q, and the theorem is established. 

As a result of these last two theorems, a ring of 

zero characteristic and no divisors of zero that contains 

a field must be an extension of a set isomorphic to the 

set of rational numbers. This includes any integral domain 

or division ring with zero characteristic that contains a 

field. Note that finite integral domains and finite 

division rings have positive characteristics and are fields. 

It is possible for a ring with unity, with zero 

characteristic, and with divisors of zero to contain a 

finite field and not contain a set isomorphic to the field 

of rational numbers. Consider the ring R formed by the 

direct sum of the ring Z of integers with the field Z/(3) 

of integers modulo 3. The ring R has divisors of zero. 



is easy to verify that the subset 

{ (0 , a) lOin z, a in Z/ ( 3)} = {( 0 ,0 ' ) (0,1'), (O,2')} 

is a field isomorphic to Z/(3) . 

The ring formed by the direct sum of the field Q 

of rational numbers with the field Z/(3) of integers 

modulo 3 is an example of a ring with zero characteristic 

and divisors of zero that contains a subset isomorphic to 

Q and another subset isomorphic to Z/ (3) . 

The direct sum Q+Q of the field Q of rational 

numbers with itself is a ring with unity, zero character­

istic, and divisors of zero that contains an infinite 

field but no finite field. 

The unity and zero of Rare (1,1') and (0,0'), and there 

is no positive integer n such that n(l,l') = (0,0'). It 

19 



CHAPTER I II 

MULTIPLICATIVE INVERSES 

Again consider the ring R with unity element e and 

positive characteristic n = pm, where p is a positive 

prime and (p,m) = 1. It has been shown that R contains a 

ring (ideal) R' with characteristic p. It has also been 

shown that R' contains a field F, and the unity e' of R' 

is also the unity of F. Every nonzero element b in F must 

have a multiplicative inverse b- l in F. Does b in F have a 

multiplicative inverse in R? Does b in F have a multipli­

cative inverse in R' other than b- l ? These questions will 

be answered in the remainder of this chapter. 

In the ring R, a nonzero element that has a multi­

plicative inverse cannot be a proper divisor of zero in R. 

For if c and d are nonzero elements of R, (c) (d) = OR' and 

c- l exists, then 

(c- l ) (c) (d) (c- l ) (0;.» , 
n 

and d = OR' Similarly, if d- l exists, then c = OR' 

Now let b be an arbitrary nonzero element of the 

field F contained in R, and suppose there exists an 

element r in R such that (b) (r) = e (the unity of R). The 

element b in F is also an element of the ideal R', and by 

the definition of an ideal, if such an r existed, R' would 

contain e and the entire ring R. Therefore, the nonzero 
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elements of F, as well as all the other nonzero elements 

of the ideal R', have no multiplicative inverses in the 

ring R. They are proper divisors of zero in R. 

Next, suppose there exists an element y t b- l in 

R' such that (b) (y) = e' (the unity of R'). Then 

(b) (b- l ) = (b) (y) • However, since b- l in R' exists, b 

is not a proper divisor of zero in R', and b- l = y. 

Thus, a nonzero element b in F has a unique multi ­

plicative inverse relative to R, R', and F. That being 

the element b- l in F such that (b) (b- l ) = e' (the unity 

of F) . 



CHAPTER IV 

SU~ffiRY AND CONCLUSIONS 

I. RINGS WITH POSITIVE CHARACTERISTIC 

A ring R with unity e and positive characteristic 

n contains a field F if and only if n = pm and (p,m) = 1, 

where p is a positive prime. The characteristic of F is 

p, and the elements of F are divisors of zero in R. 

If the integers k and h are such that 

1 = pk+mh, 

then the unity of F is 

e' = mhe, 

and the smallest field F' contained in F is the additive 

subgroup generated bye'. F' is isomorphic to the field 

Z/(p) of integers modulo p. 

Express the characteristic of R as a product of 

prime factors using exponents. For each first degree 

prime factor p, there is contained in R a field F with 

characteristic p. 

II. RINGS ~nTH ZERO CHARACTERISTIC 

Any ring R with unity e, zero characteristic, and 

no divisors of zero that contains a field must be some 

extension of a field isomorphic to the field of rational 
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numbers. 

If a ring R with unity e and zero characteristic 

has divisors of zero, no conclusions have been reached 

as to when R might or might not contain a field. If R 

contains a field at all, it may contain a finite field, 

an infinite field, or both. 
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