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CHAPTER I
INTRODUCTION
I. RINGS AND FIELDS

Two of the more common mathematical structures
studied in elementary abstract algebra are rings and

fields.

A ring must form a commutative group under an
operation called addition, and a second operation called
multiplication must be closed, associative, and distribu-
tive with respect to addition. These properties are tﬁe
minimal reguirements for a ring.

A ring that, in addition to the above properties,
contains a unity element is called a ring with unity.
Because it is a well establisihed fact that a ring without
unity can always be considered to be conteained in a ring
with unity, rings in this paper will be, for the most
part, rings with unity.

If multiplication is commutative and each nonzero
elerent of the ring has a multiplicative inverse, ths
ring is called a field. 1In other words, a field is an
additive commutative group that is also a multiplicative

conmutative group.



It should be obvious that a field is always a ring,
but a ring is not necessarily a field. When referring to
a ring that might contain a field, it is to be understood

that the ring is not itself a field.
II. STATEMENT OF THE PRO3LEM

There are rings that contain fields. Consider the
ring zZ/(6) of integers modulo 6. A straightforward argu-
ment will verify that the subset

o, 241 1)
is a field with unity de o
ther rings do not contain fields. In the ring
Z/(9) of integers modulo 9, the only proper subset that
forms a comnutative group under addition is the subset
{09, 39, 69} .
This set is not a field since (39)(69) = 0g proves that
39 and 69 are proper divisors of zero. A field has no
proper divisors of zero.

It should be possible to determine which rings con-
tain fields and which do not. Chapter II will be an
investigation of this conjecture. In Chapter III, a brief
examination will be made of multiplicative inverses in

rings containing fields.



ITI. BASIC CONCEPTS

It is assumed that the reader has knowledge of the
basic concepts of the theory of groups, rings, and fields.
However, in this section, some of the basic concepts
necessary for an understanding of this presentation will be
reviewed. |

Definition 1.1. A set S of one or more elements of

a ring R 1s called an ideal in R if and only if it has the
following properties:

(1) If a and b are in S, then a-b is in S.

(2) If a is in S, then, for all r in R, ar and

ra are in S.
[4, p. 52]

Definition 1.2. Let R and R' be rings. A mapping

w:R=—R' of R into R' is called a (ring) homomorpnisnm if,

for any r and s in R,

w(r+s) = wr+ws, w(rs) = (wr) (ws).
If, for any r' in R', wr = r' for some r in R, then w is
said to be a homomorphism of R onto R'. If, also, wr = ws

implies that r = s, then w 1s an isomorphism of R onto

R'.
[1, p. 89]

If w:R—R' is a (ring) homomorpnism, R has unity e,
and r is any element of R, then
(we) (wr) = w(er) = wr

implies that R' will have unity e' = we.



Definition 1.3. If w is a homomorphism of the

ring R into the ring R', the set
N ={r in ler = OR}
is called the kernel of w.[1 p, 90]

These first few definitions are particularly needed
to understand the following important theorem in the theory
of rings.

Theorem 1.4. (Fundamental Homomorphism Theorem
for Rings). If N is an ideal of the ring R, then the
mapping w:R—>R/N, defined by wr = r+N, 1is 2 homomorphism
of R onto R/N with kernel N. Conversely, if v is a
homomorphism of R onto a ring R', then R' is isomorphic to

R/K, where K is the kernel of Vel[1l, p. 90]

Definition 1.5. Let R be an arbitrary ring, r a

fixed element of R, and Z the ring of integers. If n 1is

an element of Z, the natural multiples of r are the inte-

gral multiples of r defined as follows. For n greater
than O,
nr = (r+r+r+———+r)n LErTis
and
(-n)r = n(-xr).

For n equal to 0,

Or = OR'

Definition 1.6. If r is an element of a ring R,




the additive subgroup generated by r is the set of all

natural lultiples of r. The order of this group is the
nunber of elements it contains.

Theorem 1.7. For each ring R with unity 1', there
is exactly one homomorphism u:Z-—>R.

Proof. ILach homomorpnism w:S—>»S' of rings, as a
homomorphism of additive groups, is a homomorphism of

natural multiples, in the sense that

w(ns) = n(ws)
for all s in S and all integers n. In particular, since
we = e', it follows that
w(ne) = n(we) = ne'.

This determines the effect of any homomorphism of rings on
all natural multiples of the unity e of S. Every element
of the ring 2z of inteyers is a multiple of 1. Thus, given
a ring R, the only possible nomomorpihism u:Z—>R is
defined by un = nl'.

This mapping is a homomorpnism. For, in addition
to ul = 1",

u(n+m) = (n+m)1l'

t 1 LI 1
(LP+17+1% +l)n+m terms

(L'+1'+===+1")  termst(l'+1'+-—-+1") terms

nl'+ml'

un-+umn

by the associative property of addition in R and the



meaning of natural multiple. Similarly,

u(nm) = (nm)l’

(l'+1'+1'+———+l')nm terms

(1"+1"+===+1") g terng(l'+l'+==—+1")n terms

(n1') (ml')

(un) (um) .

This completes the proof. [y, p,p. 120, 121]

The homomorphism in the previous theorem, defined
by un = nl', depends essentially upon the unity elements,

so will be called the unital homomorphism for the ring R.

Definition 1.8. An arbitrary ring R has (positive)

characteristic n if n 1is the least positive integer such

that nr = 0 for every r in R. If no such positive integer
exists, then R is said to nave characteristic zero. If R
has unity e, then, for any r in R,
nr = n(er) = (ne)r = ORr

and it follows that the characteristic of R can be defined
as the (additive) order of its unity e. Thus, a non-
trivial ring R with unity e has a positive characteristic
n if n is the least positive integer with ne = Qi and has
characteristic zero if no such multiple ne is 0y.

Theorem 1.9. Let R be a ring with unity e. If the
characteristic of R is a positive integer n, then the

image 2' of the unital homomorphism is isomorphic to zZ/(n),



while if the characteristic of R is zero, then Z' is
isomorphic to Z.
Proof. If R has characteristic n, the kernel of
the unital homomorphism is (n), and, by Theorem 1.4,
2" % z/(n). "

If R has characteristic zero, the kernel of the unital

nomomorphism is (0),

z' £ 2/(0) = 2,
and the theorem is establlsned.[l, p. 139]
Theorem 1.10. Any two nonzero elements b and d in

the ring 2 of integers have a greatest commcn divisor (b,d).
It can be expressed as a "linear combination" of b and d,
with integral coefficients s and t, in the form

(b,d) = sb+td.

[3, p. 17]

Theorem 1.l1l1l. For each prime number r, Z2/(p) is a
field.

Proof. Z/(p) is a comautative ring with unity
l1+(p) . Consider any nonzero element a+(p) in Z/(p). Since
a+(p) 1s not equal to zero and p is a prime, (a,p) = 1, and
there exist integers s and t in Z such that sa+tp = 1. The

unital homomorphism applied to this equation carries prime
P to zero, hence s to an inverse s+(p) of a+(p), as required

to prove z/(p) 1is a field. ., ., 157, 158]



CHAPTER II

RINGS CONTAINING FIELDS

I. RINGS WITH POSITIVE CHARACTERISTIC

Now it will be shown that if a ring with unity has

positive characteristic n = pm, where p is a positive prime
and (p,m) = 1, then R contains a field isomorphic to the
field z/(p). Before this can be done, it is necessary to

introduce some of the properties of a direct sum of rings.

Definition 2.1. Let S; and S, be any two rings, and

o

consider the set S of all symbols (sj1,s;) with S in Sq,
Sy in S,. Defining addition and multiplication by
(Sps8)(ty,8)) = (sy4ty,s,t)
and
(s1,s3) (t1,tp) = (s1ty,s0t)),
it is easy to verify that the set S, denoted by S1+S5,

satisfies the minimal requirements for a ring. S is called

the direct sum of S; and S2'[4, p. 114]

The zero element of S = S1+S3 is (071,02), the first
zero being the zero of S;, the second the zero of S;. If
S; and S, have unity elements e and e, respectively, then
S has the unity element (ejs,ep) . If both S; and S, have

more than one element, S has proper divisors of zero since

(51102)(01152) = (01102)



for every s; in S3, s; in S3. S is a commutative ring if
and only if both S; and S; are commutative. The one-to-one
correspondence

(s1,82) & (s5,51)
between elements of S;{+S, and S3+S] is an isomorphism, soO
no distinction is made between the two rings.
The set of all elements of S of the form (s1,02),
where 8 1 ip 5, is an Ideal Si of § isomorphic to S; by

the correspondence
s162(s1,05) .
Similarly, the set of all elements of S of the form (03,s3),
where s; 1is in S;, is an ideal Sé of S isomorphic to Sj.
If s = (sl,s? is any element of S, the correspond-

ence

5_9(81102)

is a homomorphism of S onto Si. The elements of S that

correspond to the zero element of Si are precisely the ele-

ments of Sé. It follows, from Theorem 1.4, that

(4 ~
S/S2 = Si = Sl’
and, similarly,
] A_’ 1 é_l o
S/Sl = S5 = Sy
Since
(s1,85) = (s1,00)+(071,85),

it is clear that every element of S is uniquely expressible

as a sum of elements of S! and Sé respectively.

1
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Theorem 2.2. If a ring S has positive character-

istic n = where n; and n, are greater than one and

Mt
(ny,ny) =1, then S

Sp+57, where S is a ring of charac-
teristic n. (i =1, 2).

Proof. Since (ny,ny) =1, there exist integers k
and h such that

1l = nlk+n2h,
and, hence,
(1) s = njks+n,hs
for every s in S. Let 52 be the set of all elements of S
of the form niks, s in S. It follows easily that S, is a
ring (wiih unity if S has unity), and 1its characteristic
does not exceed n, since
ny(njks) = nks = 0Og.

o

In like manner, the set Sl of all elements of S of the form
n,hs is a ring (with unity if S has unity) whose character-
istic does not exceed nj.
From (1),
n ks = (njk) *s+nkhs,

and, since ns = OS’ this implies that

(n;k)2s = niks
for every elemnent s of 3. Similarly,

(nzh)zs = nzhs.

These relations will be used presently.

Now the correspondence
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(2) - sé—>(n1ks,nyhs)
will be shown to be an isomorphism of S with the direct
sum S3+S7. If s and t are arbitrary elements of S, then
s+t——9(nlk(s+t),n2h(s+tﬁ = (nlks,n2h5)+(nlkt,n2ht),
and the above relations show that

st—>(n;kst,n,hst) = ((nlk)2st,(n2h)25t)

I

(nlks,nzhs)(nlkt,nzht).
Futhernmore,
niks+noht—>(n1ks,nyht),
so that every element of S,+57 is the image of some element
of S. It follows that the correspondence (2) is a homo-

morphism of S onto Sp+S,. However, if

s—>(0,,04},
then
nlks = nzhs = 052515,
and (1) shows that s = 052515- Thus, the homomorphism has

zero kernel and 1is actually an isomorphismn.
To complete the proof of the theorem, it must be
shown that the characteristic of S; is n; (i =1, 2). If

S; has characteristic m;, it has already been pointed out

that mj £ n;. If (s3,37) is any element of 82+Sl, i

follows that
M, (S,,87) = (mlm232,mlmzsl) = (02,01),

and the characteristic of 52+Sl cannot be greater than
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mymy. Since n is the characteristic of 8, it is élso the
characteristic of the isomorphic ring S,+S;, and, there-
fore,

n —L— mlmz.

But mj € nj implies that

mimy € njny, = n,
and
n = njn, = mmy.
The fact that mj £ nj (i = 1, 2) also implies that
m; = nj,

and the proof is completed.[4, pp. 116, 117, 118]

By this theorem, whenever a ring R with unity has
positive characteristic n = pm, where p is a positive
prime and (p,m) = 1, R contains rings (ideals) Ry and R,
with characteristics p and m respectively. By Theorem 1.9,
Ry contains a ring Z' isomorphic to Z/(p), and since Z/(p)
is a field as a result of Theorem 1.11, 2' is a field. 1If
e 1s the unity of R, correspondence (2) from the previous
theorem shows that (pke,mne) must be the unity of the
direct sum R,+Rqy, and mhe nust be the unity of Rj. Remem-
per h and k must be such that

1 = pk+mh.
As an example, consider the ring Z/(69) of integers

modulo 60 with positive characteristic 60 and unity lgg.



Since 60 = (3)(20), (3,20) = 1, and

1 = pk+mh

3k+20h

It

3(=13) +20(2) ,

2/(60) contains a field Fl with characteristic 3 and unity
mhe = (20) (2) (lgg) = (40) (lgg) = 404q-.

Similarly, since 60 = (5)(12), (5,12) = 1, and

1

Il

pk+mh

5k+12h
= 5(-7)+12(3),
Z2/(60) contains a field F2 with characteristic 5 and unity

mhe = (12)(3)(160) = (36)(160) = 3660.

The smallest fields Fi and Fé contained in Fy and F, are
the additive subgroups generated by the unity elements
4060 and 3660 respectively. The field Fi isomorphic to
Zz/(3) 1is

{4060’ 20460 060}’

and the field Fé isomorphic to z/(5) 1is

{3660’ 1260+ 4860 2469- 060}’

A ring R with unity that has a positive character-
istic and no divisors of zero must have a prime character-
istic. For suppose the characteristic of R is a composite
number n = kf, where k and f are two positive integers.

If e 1is the unity of R,

13
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ne = (kf)e = (ke) (fe) = Or

implies that the elements ke and fe are divisors of zero
in R. Similarly, any nontrivial ring S contained in R
with no divisors of zero must have prime characteristic p
less than n.

Suppose a nontrivial ring S contained in R has a
prime characteristic p less than n such that (p,n) = 1.
Then, there exist integers s and t such that

1 = ps+nt,
and, for all a in S,
a = psa+nta = OSR'

This means that if R contains the ring S with prime charac-
teristic p less than n, p must be a factor of n.

Now suppose the characteristic of R is n = pkq,
where k is an integer greater than one and (p,q) = 1, and
suppose R does contain a nontrivial ring S with prime

characteristic p. From Theorem 2.2, R is isomorphic to

o

the direct sum of two rings (ideals) R' and R'' contained

in R with characteristics pk and g respectively. Thus,

the direct sum R'+R'' must contain a ring S5'' isomorphic

to S. Since (p,q) = 1, there is no nonzero element r''

in R'' such that pr'' = OR"' so the elements of S'' must

be from the set Ri of elements of the form (r',OR..) with

r' in R' and OR" in R''. ©Next, the isomorphism
r'¢e—>(r',0 )

Rll
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between R' and Ri implies that R' must contain a ring S'

such that

Remembering that e is the unity of R and pK~le # ORr-

p(pk~le) = pFe = 0zip

implies that pX~1

(p¥7le)2 = p2k-2e2 = p2k-2e = pk(pk-2e)

e must be an element of S' in R'. However,

Ogrqrg

shows that pk_le is a divisor of zero in S', and, thus, 1its

corresponding element a in S is a divisor of zero in S.
Therefore, if the characteristic of a ring R with

unity is n = pk

g, where k is an integer greater than one and
(p,q9) = 1, R cannot contain a ring S of prime characteristic
p, so R cannot contain a field. The ring R will contain a
field if and only if it has a prime characteristic, or,

when expressed as a product of prime factors using expo-
nents, the characteristic contains first degree prime
factors. For each of these first degree prime factors p,
there is contained in R a field F with characteristic p,

and the smallest field contained in F is isomorphic to

z/(p) .
II. RINGS WITH ZERO CHARACTERISTIC

In this section, it will be shown that the smallest
field contained in a ring with unity, zero characteristic,

and no divisors of zero must be isomorphic to the field
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of rational numbers.

Definition 2.3. If w' is an isomorphism w':R'é&—S'!

of rings R' and S' contained in rings R and S respectively,

then an isomorphism w:R€&>S will be called an extension of

w' if wr' = w'r' for all r' in R"[l, p. 97]

Definition 2.4. If D is a nonzero integral domain

contained in a field F, then

K ={ab'l|a, b in D, b # oD}

is the qguotient field of D in F‘[l
14

P. 99]
Theorem 2.5. Let D and D' be isomorphic integral

domains with isomorphism w:D€&2D', contained, respectively,
in fields F and F', and let K, K' be the respective
quotient fields. Then w can be extended in one and only
one way to an isomorphism w':K€&—2K'.

Proof. If an extension w' of w exists, then, for

1

ab~l in K, it must be true that

w'(ab~ 1) = (w'a) (w'b~1l) = (w'a) (w'b) -1

It

(wa) (wb)~1,
Thus, w' 1is unique if it exists.

Define w':K&9K' by

w'(ab~l) = (wa) (wb) "1
for arbitrary ab-l in K. Now
w'(ab~l) = w'(ca™l) iff (wa) (wb)~1l = (wc) (wad)-1
iff (wa) (wd) = (wc) (wb)
iff w(ad) = w(cb)

iff ada = c¢cb
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if and only if
ab-l = ca-1,

' is one-to-one.

Thus, w
If xy"l is any element of K', then x, y in D' and
Xx =wa, y = wo for some a, b in D, hence, w'(ap~l) = xy”l,
and w' 1is onto.
Finally,
w'(ab~l+cd™l) = w'[(ad+bc) (bd) "1

[w(ad+bc) ] [w(bd)] ™1

[(wa) (wd) +(wb) (wc) ] [ (wb) ~1(wd) "1

(wa) (wb) ~1+(we) (wa) ~1

= w'(ab~ 1) +w' (ca"1y,

and
w'[(ab™1) (ca™)] = w'[(ac) (bd) 1]
= [w(ac)] [w(bd)]~1
= (wa) (wc) (wo) ~1(wa) ~1
= [(wa) (wb) ~1] [(wc) (wd) 1]
= [w'(ab™h) ] [w'(ca )],
Thus, w' preserves both sums and products and is, indeed,
an isomorphism. Since w' trivially agrees with w on ele-

ments of D, the theorem is proved.[l pp. 99, 100]
’ . 4

Results of this theorem are needed in the proof of
the followinyg theorem.
Theorem 2.6. Let R be a ring with unity e and no

divisors of zero. If R has characteristic zero and contains
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a field F, the smallest field contained in F 1is iéomor—
pnic to the field Q of rational numbers.

Proof. The characteristic of R is zero, so, by
Theorem 1.9, the image Z' of the unital homomorphism
u:Zz-—>R must be isomorphic to the integral domain Z.

Since R has no divisors of zero, for any nonzero r
in R, er = fr implies that (e-f)r = 0z, and e = £. Thus,
any field F contained in R must contain Z' isomorphic to Z.

Theorem 2.5 proves that the smallest field contain-
ing Z 1is its quotient field Q. Also, by Theorem 2.5, the
smallest field in R containing Z' must be a set Q' isomor-
phic to Q, and the theorem 1is established.

As a result of these last two theorems, a ring of
zero characteristic and no divisors of zero that contains
a field must be an extension of a set isomorphic to the
set of rational numbers. This includes any integral domain
or division ring with zero characteristic that contains a
field. MNote that finite integral domains and finite
division rings have positive characteristics and are fields.

It is possible for a ring with unity, with zero
characteristic, and with divisors of zero to contain a
finite field and not contain a set isomorphic to the field
of rational numbers. Consider the ring R formed by the
direct sum of the ring Z of integers with the field z/(3)

of integers modulo 3. The ring R has divisors of zero.
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The unity and zero of R are (1,1') and (0,0'), and there
is no positive integer n such that n(1,1') = (0,0'). It
is easy to verify that the subset
{(o,a)lo in z, a in z/(3)} - {(o,o'), (0,1'), (o,z')}
is a field isomorphic to z/(3).

The ring formed by the direct sum of the field Q
of rational numbers with the field Z/(3) of integers
modulo 3 is an example of a ring with zero characteristic
and divisors of zero that contains a subset isomorphic to
Q and another subset isomorphic to Z/(3).

The direct sum Q+Q of the field Q of rational
numbers with itself is a ring with unity, zero character-
istic, and divisors of zero that contains an infinite

field but no finite field.



CHAPTER III
MULTIPLICATIVE INVERSES

Again consider the ring R with unity element e and
positive characteristic n = pm, where p is a positive
prime and (p,m) = 1. It has been shown that R contains a
ring (ideal) R' with characteristic p. It has also been
shown that R' contains a field F, and the unity e' of R’
is also the unity of F. Every nonzero element b in F must
have a multiplicative inverse bl in F. Does b in F have a
multiplicative inverse in R? Does b in F have a multipli-
cative inverse in R' other than b~1? These questions will
be answered in the remainder of this chapter.

In the ring R, a nonzero element that has a multi-
plicative inverse cannot be a proper divisor of zero in R.
For if ¢ and d are nonzero elements of R, (c) (d) = 0z, and
c-1 exists, then

(c=1) (c) (@) = (c~1)(0y),
and d = Og. Similarly, if a1 exists, then c = Oy,

Now let b be an arbitrary nonzero element of the
field F contained in R, and suppose there exists an
element r in R such that (b)(r) = e (the unity of R). The
element b in F is also an element of the ideal R', and by

the definition of an ideal, if such an r existed, R' would

contain e and the entire ring R. Therefore, the nonzero
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elements cf F, as well as all the other nonzero elements
of the ideal R', have no multiplicative inverses in the
ring R. They are proper divisors of zero in R.

Next, suppose there exists an element y # b=l in

R' such that (b)(y) = e' (the unity of R'). Then
(b) (b-1) = (b)(y). However, since b T in R' exists, b
is not a proper divisor of zero in R', and p~l = Ve

Thus, a nonzero element b in F has a unique nmulti-
plicative inverse relative to R, R', and F. That being
the element b~ 1 in F such that (b) (b™}) = e' (the unity

of F).



CHAPTER IV
SUMMARY AND CONCLUSIONS
I. RINGS WITH POSITIVE CHARACTERISTIC

A ring R with unity e and positive characteristic
n contains a field ¥ if and only if n = pm and (p,m) = 1,
where p is a positive prime. The characteristic of F is
p, and the elements of F are divisors of zero in R.
If the integers k and h are such that
1l = pk+mh,
then the unity of F is
e' = mhe,
and the smallest field F' contained in F is the additive
subgroup generated by e'. F' is isomorphic to the field
Z/(p) of integers modulo p.
Express the characteristic of R as a.product of
prime factors using exponents. For each first degree
prime factor p, there is contained in R a field F with

characteristic p.
IT. RINGS WITH ZERO CHARACTERISTIC

Any ring R with unity e, zero characteristic, and
no divisors of zero that contains a field must be some

extension of a field isomorphic to the field of rational
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numbers.,

If a ring R with unity e and zero characteristic
has divisors of zero, no conclusions have been reached
as to when R might or might not contain a field. If R
contains a field at all, it may contain a finite field,

an infinite field, or both.
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