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PREFACE 

The purpose of this paper is to investigate the 

Jacobian matrix in greater depth than this topic is dealt 

with in any individual calculus text. 

The history of Carl Jacobi, the man who discovered 

the determinant, is reviewed in chapter one. 

The several illustrations in chapter two demon

strate tile mechanics of finding the Jacobian matrix. 

In chapter three the magnification of area under 

a transformation is related to ti1e Jacobian. The amount 

of magnification under coordinate changes is also discussed 

in this chapter. 

In chapter four a definition of smooth surface area 

is arrived at by application of the Jacobian. 

It is my pleasure to express appreciation to Dr. 

John Burger for all of his assistance in preparing this 

paper. An extra special thanks to stan for his help and 

patience. 



C.G.J. JACOBI (1804-1851) 
"Man muss immer umkehren" 
(Man must always invert.) 
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CHAPTER I 

A HISTORY OF JACOBI 

Carl Gustav Jacob Jacobi was a prominant mathema

tician noted chiefly for his pioneering work in the field 

of elliptic functions. 

Jacobi was born December 10, 1804, in Potsdam, 

Prussia. He was the second of four children born to a 

very prosperous banker. 

Carl Gustav Jacob Jacobi should not be confused with 

his equally famous older brother Moritz II. Jacobi. Moritz 

H. Jacobi achieved fame, while still living, as the founder 

of galvanoplastics. The importance of the ideas and teach

ings of Carl Gustav was not realized until after his death. 

Carl's impatience with his brother's popularity during his 

lifetime once broug~out the following statement: "I am 

not his brother, he is mine." Today his statement aptly 

describes their relative importance. 

Jacobi's first mathematics teacher was an uncle. 

Under the guidance of his uncle, he was prepared to enter 

the Potsdam Gymnasium at the age of twelve. After grad

uating from the Gymnasi~m, Jacobi was still undecided as 
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to whether to pursue study in the field of mathematics or 

the field of philosophy. 

In 1821 he went to the University of Berlin. It was 

here that he made his decision to become a mathematician. 

He spent much time studying work on the masters of mathe

matics such as Euler and La Grange, as he felt the Univer

sity instructors had little to offer. 

He received his Ph.D. in mathematics from the 

University of .Berlin in 1825 at the age of 21. 

Having become "certified", his teaching career began 

as a lecturer at his alma mater, the University of Berlin. 

Due to a lack of respect for his own University professors, 

he attacked his new position with much energy and enthu

siasm. His basic teaching philosophy is summed up by the 

following quotation. 

That irrepresible innovator believed the infallible 
method to advance mathematics was for domineering 
professors in the leading universities to drill their 
own ideas and as little else as possible, into as many 
advanced students as could be induced to scribble 
lecture notes. L!. p. 4417 

The greatest portion of his lectures were devoted 

to his personal discoveries and ideas which he was pre

sently investigating. 

Some credit the lack of mathematical progress in 

the twentieth century to his teaching methods. LT. p. 4267 

The logic behind this feeling is that many poor mathema

.lo '_ 
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maticians do "drill their own ideas, and as little else· as 

possible" into their students. Thus, they offered the 

student little help and encouragement. 

After staying approximately one half year at the 

University of Berlin, he took a position as lecturer at 

the University of Konigsberg. A year later (1827) he was 

promoted to assistant professor largely due to a publica

tion of his works on cubic reciprocity. His greatest work 

FUNDAMENTA NOVA THEORIAE FUNCTIONUM ELLIPTICARUM (New 

Foundations of the Theory of Elliptic Functions) was com

pleted and published in 1829. 

The death of his father in 1832 resulted in the 

ultimate loss of the family fortune. However, Jacobi 

continued to work hard in producing works of mathematics. 

In fact, he worked so diligently that it began to affect 

his health. Jacobi's physician suggested that he take an 

active part in politics to get his mind away from his 

mathematical works. This decision nearly cost him his 

position of favor with the King of Prussia. 

Jacobi soon became the stoolpidgeon for the local 

liberals and gained the wrath of his only remaining 

monetary benefactor, the King. 

At the age of 45, real poverty had finally struck. 

He had neither his job nor the family fortune, and a wife 

and seven children to support. A generous offer from Vienna 

." 
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helped him solve this problem. Germany did not want to, 

lose one of their greatest mathematicians, so the King 

reconsidered. IIe returned to his position at the University 

of Konigsberg. He died shortly thereafter (February 18, 

1858) of e1e small pox. 

Jacobi, often called 'the great algorist', was second 

in his field only to Euler. (An algorist is one who develops 

a way to solve a specific type of problem.) A.lthough he 

made many contributions to the field of mathematics, his 

greatest was in the area of elliptic functions. Later, it 

was found that Guass, working independently, had previously 

discovered elliptic functions and tileir doUble periodicity. 

Had he published his findings, the total contribut.ions of 

Jacobi may have been much more advanced. 

At approximately the same time Jacobi ~as working 

on elliptic functions, so was his elder rival Niels Henrik 

Abel. Neither of them realized the existence of the other 

when they first started their work. Abel was credited with 

first inverting elliptic integrals, thus smoothing the way 

for further development in that area. 

In 1830 the academy awarded Jacobi and Abel the 

Grand Prize in Mathematics for work done with trancen

dental functions. 

While working with rational numbers Jacobi discovered 

that an elliptic identity would determine the number of 
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representations of an integer as the sum of two squares .• 

This is found in his "Fundamenta nova", published in 1829. 

In 1841, Jacobi first presented the functional deter

minants which carry his name. DE FOIU-mTIONE ET PROPRIET

ATIBUS DETERMINANTIUM was a "landmark on the subject of 

determinants". L!. p. 4267 

The basic works of these functional determinants 

are as follows: 

If Y , Y , ••• Y , are functions of x , x , ••• x ,
1 2 n . 1 2 n 

then the functional determinant, or Jacobian, is the 
equations as follows: 

I· 

a(Yl,Y2, • • • •X,n )I: I:J I'M'x ,x , ••••x 10\ 1 2 n 

~ ax; 

~
 
1 

• 
• 

;~n 
1 

~ ... . ~ 
2 n 

~ . 
2 

aYn 
~ 

2 

This determinant is often more briefly written as: 
J(y~!x~). L!. p. 916-9177 

Some properties of the Jacobian are: (a) J(y~!x~) 

J(XI.!Yi.)=l. (b) J(y<.!zdJ(Zi,!xi.) = J(y,,!x~). A Definition 

for the Jacobian is: A Jacobian is a functional determinant 

formed by the n2 different coefficients of n given functions 

of n independent variables. L? p. 340-34!7 Sylvester ts 
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attributed for having given the name Jacobian to this 

functional determinant. 

With the possible e~ception of Cauey, Jacobi is gen

erally, considered to have contributed more to the field 

of functional determinants than any other person. 

Additional areas in which Jacobi worked would include 

continued fractions, Abelian functions, maxima and minima, 

and the geometric interpretation of the conjugate point. 

His early works led to a field (late 19th century) later 

known as elliptic modular functions. He established a theory 

of dynamics which was not extended until fifty y~ars later 

by Poincare. 

Jacobirs famous memoirs appeared in "Crellers' Journal 

For Pure and Applied Sciences" in 1841. Many of his 

important writings were also published by Crellers. 

It is obvious that Jacobi's theory of elliptic 

functions was responsible for much of the mathematical 

analysis in the 18th and 19th century. 

Much of the work Jacobi started was continued by 

Weirstrass and Hermite. 

Kronecker and Reimann were former students of 

Jacobi's who would have to be _considered famous mathema

ticians in their -own right. 

,; ., 



CHAPTER 2 

THE JACOBIAN AND ITS RELATED THEOREMS 

The purpose of this chapter is to define a Jacobian 

and discuss its related theorems. It generalizes the theory 

of inverses of one variable to transformations defined by 

a system of equations. 

The equations u = f(x,y), v = g(x,y), define a 

transformation from points in the xy plane to points in 

the uv plane. The Jacobian matrix for this transformation 

is the matrix I 

au au 
ax dy 

dV av 
ax ay 

The determinant of the above matrix is the Jacobian deter

minant of the transformation (noted T) or the Jacobian of 

T.	 This is also denoted by a(u,v). The idea of the . 
a(x,y) 

Jacobian is easily extended to dimensions greater than two. 

The above is the Jacobian of u and v with respect to 

x and y. That is, the transformation is from the xy plane 

to the uv plane. If one wishes to define the inverse 
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function from the uv plane to the xy plane, the equations 

would be in the form x = F(u,v) and y = G(u,v). Then the 

Jacobian matrix of these equations would be: 

ax ax 
au av 

2Z ~ 
au, av 

These are inverse transformations (if inverses exist) and 

their JacObians are rec~procals. 

Some theorems about J acobians are as follows. In 

each one must agree that the functions are continuously 

differentiable. 

THEOREM 1.	 A necessary and sufficient condition that the 
equations F(x, y, z, u, v) = 0', G(x, y, z, u, 
v) = 0 can be solved for x and y '(for example) 
is that a(u,v) is not equal to zero in a region 

a(x,y) 
R. In other words a necessary and sufficient 
condition that the equations be a 1-1 trans
formation is that J ~ 0 in any region. 'In 
this case J-1 exists and is also nonzero--JJ-1 • 1. 

THEOREM 2.	 If x and yare functions of u and v, while u 
and v are functions of r and s, then, 

a(x,y) a(x,y) a(u,v) 
:i(r ,s) = a(u,v) • a(r,s) 

This is known as' the chain rule for Jacobians. 

THEOREM 3.	 If u = f(x,y), and v = g(x,y), then a necessary 
and sufficient condition that a functional 
relation of the form ~(u,v) = 0 exists between 
u and v is that a(u,v) be identically zero. 

a(x,y) 

.. " 
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Example ,1. GIVEN: u'= 3x2 - xy 
v = 2xy2 + y3 

au: = 6x-y au = -x 
ax ay 

av = 2y 2 av .. 4xy + 3y2ax ay 

6X y • (6x-y) (4xy + 3y) 2 _ (-x) (2y2)J • 1 - -x I,2y2 4xy + 3y 2 . 
= y'(24x2 + 16xy - 3y 2) 

Since the Jacobian ,does not equal zero, there exists 

no functional relation of the form ~(u,v) = O. This follows 

by theorem 3. But when y = 0, the Jacobian is zero. By 

Theorem 1, this is not a 1-1 transformation. There exists 

no inverse. 

In investigating this particular transformation when 

y • o. One obtains (by direct substitution) u • 3x2 
v .. 0 • 

Thus if y = 0, so also must v. 

u = 3x2 + x = ± {U7! y x= ±3] MAPS, TO [u = 27 
Y = 0 ",) v = 0 

These points (3,0) and (-3,0) in 
the xy plane both map to (27,0) in 
the plane. (See sketch) (-3,0) I(3,~) I I I II I I I I .. XI I k l 

As u cannot be a negative number and 
produce a real value for x, it is 
obvious that the x.axis maps its 
points only to the positive u axis. 

I I I I I I I I 1 1 1 1"I I(27,0)1 .. U 
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Example 2. GIVEN: u - x + 2z 
v = 2y + 3z 
w = 2x - 2y + Z 

au 
ax - 1 au 

ay = 0 au 
az 11:1 2 

av 
ax • 0 av 

ay 
11:1 2 av 

az 
11:1 3 

aw 
ax 11:1 2 aw 

ay = -2 aw 
az 

11:1 1 

1 o 2 
THUS J • 10 2 3 1 .I-~ tI I~ tI + 2 j~ ~2111:1 11:1·-0 0 

3 -2 1 

This transformation has no inverse by theorem ,1, but there is 

a functional relationship of the form ~(u,v,w)= o. 

By ~e following methods one can arrive at this 

relationship. 

by using the first and u = x + 2z 
third equations to -2w = -4x + 4y - 2z 
eliminate z u - 2w = -3x + 4y * 

by using the second and v = 2y + 3z 
third equations to -3w = -6x + 6~ 
eliminate z v - 3w - -6x + 

-
By

3z 

v - 3w = -3x + 4y *2 

By using the two resulting equations (*) 

u - 2w c v - 3w or 2u - w - v = 02
 
which is a plane in the uvw space.
 

Example 3. GIVEN: u = x + 2z 
v = 2y + 3z 
w 11:1 2x - 2y + Z 

1 o 2 
"J. 10 2 31 011:1 

2 -21 

.. ". 
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Again this indicates	 a functional relationship between u 

and v. 

Some 1-1 transfor.mations and their inverses are 

illustrated below. 

Example 4. GIVEN:	 u = 2x + 2y 
v = 5x + 7y 

au = 2 au IOl 2 
ax ay a(u,v) _ J IOl 

a(x,y) 1;;1	 • 4 

av = 5 av = 7ax ay 

Since this Jacobian will never equal zero, it is a 1-1 

transfor.mation. Thus their exists the following inverse: 

By using determinants to solve for x and y: 

x -
J; ~I 

y = I; ~I
 
I; ~ j I; ~ I
 

NOTE:	 Notice that the determinant in the denominator is 
actually the Jacobian. 

x = -7 -1	 y = 5u +-l
lU+"2v "4 -ZV
 

-7 1 I 1
a(x,y). _ J-1 4" '! ="4= a(u,v) 5 -1 
"4 '! 

This inverse could als9 have been found by finding the 

inverse matrix associated with J, solving for x and y is 

not necess.ary, but is possible. 

It is noted that JJ-I	 = 1. 

Example 5: GIVEN:	 u = 2x + 3y - z 
V I: x -7y + z 
w - x + Y + 2z' .;. " .. 
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2. 3-1 
J .. 1 -7 1 = -41 

112 

This is also a 1-1 transformation. The inverse can 

be found by solving for x, y, and z in terms of u, v, and w 

or by finding the inverse matrix. Since in this case finding 

the inverse matrix is easiest, one will proceed in that 

manner. 

15 7 4 
14 14 14 

J-1 • I 1 -5 3 -1 
iIT 4I' 4I' = 4I' 

-8 -1 17 
iIT iIT iIT 

It is noted again that J and J-I are reciprocals. 

Assume that one wishes to evaluate the Jacobian of a trans

formation at a specific point. Given T(x,y) = (2x + 3y, 

5x + 7y) it follows that J =I;~I = 14 _ 15 =-1. 

In this particular transformation ,the Jacobian will be -1 

regardless of the point chosen, as there are no variables 

present in the value of the Jacobian. 

Following is an example where the Jacobian chapges 

values at different points. 

Example 6. GIVEN: T(X,y) = '(X+l , x+Y)
x+y
 

J .. -x-l
 - (-x-l~ ..1~2 • ~2 (x+Y)x+yx+Y (x+Y) 2 

1 1 

x+Y 2 
1:1 

I 

-rffir --1: 
x+Y 
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CHAPTER 3 

TRANSFORMATIONS OF AREA 

In this chapter the importance of the Jacobian 

when transforming one area to another area will be shown. 

For most transformations, closed regions in one 

space map to closed regions in the image space. If 6Axy 

and 6Auv denote respective areas in these regions, then: 

Ia (x ,y) Ilim ~Axy
Auv 

1:1 a(u,v) 

where lim denotes the limit at 6Axy (or 6Auv) approaches 

zero. This Jacobian is often called the Jacobian of the 

Transformation. lb. p. lO!7 If the Jacobian of the func

tion is a constant the expression lim is unnecessary as 

the value of. the Jacobian varies with position. 

Example 1. u = XiY
 

v= xiY
 

Suppose one wishes to transform the area bounded by the 

followi~g lines to the uv-plane:	 x = y 
x = 1 
Y • 4 • 
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,,'\ 
~ 

Area of R' D 1/2(3/211) . 
, (3/211) D 9/4 • 

-
" IC 

I ~ £~J!li('..u y II 4 

I 'ttL!. nLE"" 1 1 1 1 I - u 

y 

X I 1.1 I 1 I 1 I - X 

x = y ( ~ v • 0 
x = 1 ( ~ u + v = 1. 
Y c 4 ( ) u - v c 4 

v. 

" 

Area of R. 1/2(3) (3) • 9/2, 

Each of these lines map as follows: (These may be found 

by substituting the respective lines into the transforma

tion.) 

Since both triangles are right triangles, the areas of each 

may be figured as shown below: 



and v • 1. 

~4f(H::t-=:;;rfi~:>,)';'j;I'4';:~I \ x 

1/21 = 1/2
·1/2 

y=o u 

y: I 

1 
1/2 
1/2 

v 

o 
" I " :I :I 
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The following are the line transformations: 

u = 0 ( ) 3y + x = 0 
v = 0 ( ) x - 2y = 0 
u == 1 ( ) 3y + x = 5 
v • 1 < ) x - 2y • 5 

amount of magnification. 

plane "magnifys" the area. The Jacobian tells one the 

is 

Example 2. Given the transformations: x. 2u + 3v 
y = u - v 

It is interesting to note that both orthogonality and the 

type of triangle remain unchanged under the transformation. 

The Jacobian of T from the xy-plane to the uv-plane 

Find and discuss the region bounded by u = 0, u = 1, v - 0, 

This is also the ratio of the area in the uv-plane to the 

area in the xy-plane. This might be explained in this 

manner. The transformation from the xy-plane to the uv
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The unit square is mapped to the parallelogram bounded by 

the above lines with vertices (0,0), (2,1), (5,0), (3,-1). 

The transformation is from the uv-plane to the xy-plane, 

so the area in the uv-plane is magnified by 5 (since the 

Jacobianis 5) and placed in the xy-plane. Thus, the area 

of the parallelogram is 5 units. All of this can be 

verified by analytic methods. 

If one returns for a moment to look at some proper

ties of vectors, these should help relate why the Jacobian 

shows magnification. 

First one wishes to show that the absolute value of 

a 2 x 2 determinant whose rows are components of vectos u 

and v is the area of a parallelogram with u and v as adjacent 
ysides. 

~ )x 

One wishes to prove the area of the parallelogram which is 

(u) (v) sin e is U' u I
 
v~v~I

Proof. The following identities will help in the proof; 
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(u.v) - lui Ivlcos e 

I (uxv) I. j u U 
V 1 V 2 

1 2 

2(u.v)2+ 1 (uxv) 1 - IUl2jvl2 

By starting with the last identity, we get 

Dull vi cos] 2 + I (uxv) 12 = 1ul 2 1vl 2
 

I (uxv) 12 = lul 2 1vl 2 - lul21vl2cos2e
 

=[I u/ 2 1v1 2J[1 - cos2e1_
 
D lul 2 1vl 2 sin2e 

UiU2	 "":' Iull vi sin e 
/ V1V2 1 

This idea can be extended to dimensions greater than 2. 

That is, a 3 x 3 determinant whose rows are components ov 

vectors u, v, and w will give the volume of the parallel 

piped formed,by these vectors. This leads to the follow

ing theorem which associates the Jacobian with this area. 

THEOREM	 4. 

Suppose T is a linear transformation of R 
. with matrix A. If T maps an n-dimensional 
parallelpiped P onto a parallelpiped P*, then 

(volume of P*) =,ldet(A) I (volume of p) 

Proof:	 The volume of P is \det(B) I where B has as its 
rows components of the vectors forming P. The 
edges of P* are rows of matrix AB and its volume 
is Idet (AB) I. Since det (AB) (det (A» (det (b», we 
get the above statement. L'7. 

:II 

p. 40!7 
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The value of the Jacobian is 1, then the area of the parallelo

gram is magnified byl to get the area of the unit square 

which also is 1. The area of the parallelogram is 1. 

( I, I) 

xx<*t I 
(1,0) 

v 

(0,1 ) 

-~)~~ 

( 3,8) 

y 

r I I I I I I I ) X 

If a transformation is not linear, then it can be 

approximated by a linear ~ansformation which is the 

Jacobian of the transformation. If it is linear, this 

matrix A (above) is just the Jacobian of the transforma-. 

tion. Thus one has the Jacobian as the "magnification 

factor". 

Example 3. 

Find the linear transformation that takes the 

following parallogram into the unit square. What is its 

Jacobian? Its Area? 

The transformation is 
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THEOREM 5. 

Suppose T is a one-to-one transformation whose 
domain and range are in RN and that there is an 
open set U on which the component functions of 
T have continuous first-order partial derivatives
 
and the Jacobian of T is nonzero. Let R be a
 
subset of U that is mapped onto a compact set S 
that has n-D volume. If f is continuous on S, then 

~f(p)dv = ~f(T(q») IJ(T)I dv L"[. p. 41~.7 

This theorem generalizes a little more the role that the 

Jacobian plays in finding .areas. 

Example 4. 

Given a parallelogram with vertices (0,0) ,(2,1), 
'-

(5,0),(3,-1) under a transformation defined as x = 2u + ~: 

3v and y = u - v. Express ~(x + y) dA in the form 11du dv. 
I'
" 

Since this transformation was discussed in example" 2 
one knows the limits of integration are 0 and 1. 

1,(x+y) c1A a 101I' 0 (2u +3v+ u-v) (5) du elv 
,(,

~Jo (3u +av) (5) duav 

.(,'ic: (lSu + lOY) auav 

lSu2 + lOUV]'-r 0 

~(~ + lOy) av ,i~ 

'I' 

lSv + lOv2 J' 
~ ... ~ 0 

12 1/2 

The "local magnification factor" when rectangular 

coordinates are changed to other coordinate systems follows. 
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I
I
I
I 
I
I
I
I
I 

POLAR COORDINATES:
 

The proper coordinate'
 
changes are: 

x Ill: r cos e 
y • r sin e . 

p(x,y) 

Y 

x x 

The corresponding 
JaCObian(a(X,~»)iSl

:Hr, ) 

cos e -r sin e 
= r . 

sin e r cos e 

CYLINDRICAL COORDINATES: 

The transformation for rectangular coordinates to 

cylindrical coordinates is the same as for polar coordi

nates except a z coordinate is added as follows: 

X I . .~ 

~ 

x • p cos e y .p sin e ~. z • 

cos e-p sin e a 
a(x,y,z) = sin e p cos e a I.J • a(p,e,z) 

1ao 

~

The magnification factor is p which corresponds to r in 

the 2-d figure above. 

SPHERICAL COORDINATES: 

Spherical coordinates and rectangular coordinates are 

related in the following manner: 

x • r sin ~ cos e 

v 



a(x,~, z) .... sin ~ sin e r sin 4> cos e r cos 4> sin ea(r, ,4» 
cos 4> 0 -r sin 4> 

-r2sin 4> • 

The absolute value of the expression r 2 sin 4> is the 

magnification. 

! 

22 
P(ll,y,Z) 

)"-:: I I » )ly 

y = r sin ~ sin e 

z • r cos ~ 

)I; 

The Jacobian of this transformation is 

sin ~ cos e .-r sin ~. sin e r cos ~ cos e 
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FIGURE' 

y 

(CE) • 

1) has projection CE on the axis, the length of AB 

Coser 

(fig. 

1 

Chapter three was concerned mainly with magnification 

of areas from one coordinate system to another. This 

chapter will cover the i~vestigation of the Jacobian as 

it relates to surface areas. A concept of smooth surface 

areas will be developed. 

The relationship of the length of a line segment to 

its projection on an axis is basic to the concept of the 

relation of an area and its projection. If the line segment 

AB 

is 
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One can apply the idea developed above to the area 

I::',af 
ch 

FIGURE 2 

A,ee: - , IF 
I 
I I 
I I 
I I 
I I 
I I 
I I >xc E 

y 

relatively in the same position as discussed in the two 

One can at this time find another angle equal to « and thus 

a method of evaluating the angle ex:. V f is the direction 

of greatest change at a point and is perpendicular to a 

of the tangent plane divided by the cosex: , where ~ is 

of a small portion of a surface. If a surface has a tangent 

plane at a point, then a reasonable approximation of the 

area of the piece of surface is the area of the projection 

point on the segment. af at this same point would be 
ay 

perpendicular to thexaxis. (see fig. 2) The angle between 

the gradient (Vf) and a unit vector in the direction of af 
ay 

is equal to ex:. So the cos CIC can be evaluated by the formula 

at divided by the length of Vf. It might be well to note 
ay 
here that it is necessary to know the identity IVfjcosc 

• af (directional derivative) • 
as 
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to fig. 4) 

) ~~ A ) Y 

FIGURE 3 

FIGURE 4 

AS 
l 
I 
I 
I 
J.._ 

",.",'"
",-' AD 

x 

cos lIll -

area of S -= -b Icos lit I-I dA 

Z 

tion to the area of !:J.S one can use the area of !:J.D/cos lit • 

dimensional illustration. 

One can be a little more explicit in explaining this 

in reference to figure 3. If one wishes a good approxima

applies here. 

The difficulty here is in finding the cos lit I but the 

method for finding cos lit in 2-space (refer tQ fig. 2) also 

So the area of the whole surface is given by the following 

formula I 
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adjacent sides. This can be expressed as ux v or 

l 

/C~c:::;==t . <'(u,.u., ,0) / : ),y
I' 

FIGURE ~, 

(This was determined in chapter 3.) 
v V 
:, 1 2. 

• 
u U 

1 2.'" 

All of this is related to the Jacobian. Let one presume 

figure 5 to be the small piece of the tangent plane in 

figure 4 projected on the xy plane.' Although the axis 

have been moved this will no~ change the final result. 

The area of this projection (~D) is the area of a 

parallelogram with (u , u , u ) and (v , v , v ) as its 
. 1 2. 3 1 2. 3 
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u may be thought of as au since in the xy plane x is held 
1 ay 

constant and the movement takes place in the y direction for 

this coordinate. Likewise, u as au; v as dV ; and v as 
2 ax 1 ay 2 

dV. Then the determinant becomes ax 
z 

(ul,~,u3) au dU 

I
I ~ -ax I d (u,v) 
I - cHx,y)dV dVI vI ~ ; ) ~ I 

" I "" 
I...v/" 

(u/,u2,O)
 
I'
 
X
 

FIGURE 6 

A surface is considered to be smooth at ~ point P if 

a tangent plane exists at that point and at every point in 

its neighborhood. This leads to the conclusion that the 

area of the projection of the tangent plane in each of the 

xy, yz, and xz planes cannot be zero. NoW let one introduce 

the following notation for these Jacobians. 

If a surface is parametrically defined as:· 
x = f(u,v) y = g(u,v) z =h(u,v) 
then: 

These Jacobians have to be nonzero for the surface to'be 

smooth since they represent the area of the projection of 

the tangent plane. The, ratio of these special Jacobians 

also gives the direction of the normal. 



CONCLUSION 

Jacobi made many contributions to the mathematical 

world. . Although his work in elliptical functions was 

probably most important, the discovery of the Jacobian 

matrix is not to be slighted. In analysis, this matrix 

is used to evaluate the change in area or volume under a 

transformation. This is particularly useful when an area 

or volume is difficult to find before transformation. 

'. This matrix is used to approximate:'surface area and to 

define smooth surface area. 

This paper has only discussed a few of the physical 

applications of the Jacobian. 





FOOTNOTES 

1.	 Bell, Eric T. Development of Mathematics. Second 
edition. New" York: McGraw=ii'il1 BOOk Company, 1945~ 
p. 441. 

2.	 ~." p. 426. 

3.	 Ibid. 

4.	 "Jacobi, C.G.J.", Van Nostrand's Scientific Encyclopedia. 
(3rd ed.), pp. 916=9I7. 

5.	 "Jacobi, C.G.J.", Encyclopedia Britanica. (1968) XII. 
pp. 340-341. 

6.	 Spiegel, Murray R., Theory and Problems of Advanced 
Calculus. New York: Schaum Publishing.p. 10 a-. 

7.	 ~. p. 401 

8.	 James, Robert C. Advanced Calculus. Belmont, Calif.: 
Wadsworth" Publishing Co., Inc., 1966. p. 414. 
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