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Chapter 1
INTRODUCTION

The purpose of this paper is to examine the relationship between
finite Abelian groups and rings associated with those groups. This pa-
per will consider only finite groups, and since rings by definition are
commutative with respect to the additive binary operation the group must
be Abelian. A group is a set of elements together with a binary oper-
ation that exhibits certain properties: closure, associativity, ident-
ity, and inverses. Every ring must exhibit all of those properties.
Groups and rings are thus closely related. They are so closely related
that a ring is often defined in part in terms of a commutative group.
With respect to the additive binary operation the elements of a ring are
isomorphic to some commutative group. It is in this manner that rings
may be associated with Abelian groups.

Looking at this association from the reverse point of view pre-
sents the problem. Given any finite Abelian group, are there rings
associated with it? 1Is there one ring associated with the given group?
If there is at least one, how many are there? How can we find them, and
are we able to find all of them?

The problem may be stated in this form. List all of the dis-
tinct finite rings whose elcments, with respect to the additive binary
operation, are isomorphic to a given finite Abelian group. A ring is
distinct if it is not isomorphic to some previously listed ring.

The thesis will be organized in this fashion. The remainder



2
of this chapter will identify part of the notation and define terms. The
second chapter will state and prove the three basic theorems of the the-
sis. The theorems will be those concerning the zero ring, the ring of
endomorphisms, and the specific ring isomorphism theorem. Chapter three
will examine more closely finite Abelian groups. Chapter three also will
define new notation to facilitate working with endomorphisms on commut-
ative groups. Chapter four will show the method for listing the rings
and determining which are isomorphic. The fifth chapter will give a
few more complicated examples, and the sixth chapter is a conclusion and
suumary.

As a general rule the set of elements of the given group will
be represented by an upper case letter G. Rings as sets will be rep-
resented by upper case letters R with various subscripts for additional
identification. Elements of rings on groups will be represented by
lower case letters. Endomorphisms will be represented by upper case
letters other than G or R. The algebraic notation <G,+), and (R,+.>
will be adopted for use throughout this report. <R,+') is an alge-
braic structure with a set of elements R and two binary operations
on those elements denoted by + and °. Other notation may be generated
in the course of this report and will be specifically identified.

DEFINITION: A homomorphism is a mapping A: G-H from a group
G to a group H that preserves the operation of G. That is, if * and °
are the operations of G and H respectively, then A preserves the op-
eration of G if, for all a and b in G it is true that (a *# b) A =

(ap) ¢+ b(A). An isomorphism is a 1-1 homomorphism of G onto H.

(1, p.33]



DEFINITION: A group (G,+) is a non-empty set G = {a,b,c,... g
together with a binary operation (which will be referred to as the addi-
tive binary operation) such that:

1. + is closed, i.e., for all a and b in G, a + b is in G.

2. + is associative, i.e., for any a, b, ¢ in G, a + (b + ¢) =
(a +b) + c.

3. There is an identity element 0 in G such that for all a in
G, a+0=0+a=a.

4, For each a in G, there exists an inverse element -a in G
such that a + (-a) = (-a) + a = 0.

5. Foralla, binG, a+b=>b+a. [1, p.17]

DEFINITION: A group <C,+> is cyclic if there is an element a
in G such that for any b in G there is some integer n such that b = na
(where na means the n-fold addition of a). Such an element is called a
generator of the cyclic group. qu.Za

DEFINITION: A ring <R,+'> is a non-empty set R, together with
two binary operations, called addition and multiplication and written
+ and - respectively, such that for any a, b, ¢ in R:

1. a+bis in R and a «+ b is in R.

2. a+®L+c)=(a+b) +canda-* (b - ¢c)=4(a-*b) *c.

3. There is an element O in R such that a + 0 = 0 + a = a,

4. There is (~a) in R such that a + (-a) = (-a) + a = 0.

5. a+b=">b+ a.

6. (b + c)a=Dba + ca and a(b * ¢) = ab + ac. El, p.77]

DEFINITION: An endomorphism is a homomorphism of G into G.
[1, p.3j]

DEFINITION: An isomorphism of G onto G is called an auto-

morphism. Dq p.Bé]



DEFINITION: Let R and S be rings, A nanning A 1 R#S of R
is called a ring; homomornphism if, for any x and y in R,
(x + yJA = xA + yA (x * YIA = (x\) » (yA),

17 Yor any s in S. XA

s for somc x in R, then A is said to be a
homomorphiss ol R onto &, 1f also, sA = yA implies 8 = y, then A is
an isomorphism of 1D onto S, [1, p.a9]

The commutative property in the definition of a group was
included intentionally, When this paper now identifies a group, it
will be commutative by definition. Since it has alrcady becn statccd
that only finite gfroups arc in consideration, any group mentioned will
be fianite and Abelian,

In this thesis the rings associated with groups will be rec-
stricted to only thosc rings that have one element that is not a zero
divisor, The necd for this restriction will become clear in chapter
two, DLvery ring is now asswacd to have one elcment that is not a zero

divisor,



Chapter 2
THE RING OF ENDOMORPHISMS

Given an Abelian group (G,+) the most obvious question is, does
there exist at least one ring associated with it? The term associated
is now used to mean the Isomorphism between the group and the ring with
respect to addition. The proof that there is one ring associated with
every Abelian group is given here.

THEOREM 2.1. For any Abelian group {G,"), there exists a ring
(G,+ '> with the second binary operation * defined for any x and y in
Gas x * y =0 where 0 is the additive identity in {G,*). This ring
is called the zero ring.

Proof: Given any Abelian group (G,+>. Define a binary oper-
ation + , as x "y = 0 for all x and y in G. Since (G,+> is a group
it is not necessary to demonstrate those properties for addition.

1. Forany xand y in G, x * y = 0 and 0 is in G.
Therefore =+ 1is closed in G.

2, For any x, y, and z in G
X *(y+*2)=x+0=0=0¢+2=(x-y)*zand - is

associative.

3. For any X, y, and z in G
(y+2) *x=0=0+0=y x + z * x; also
x*(y+2)=0=0+0=x+y + x * z and * distributes

over +.
<G,+> is a ring, thus for any Abelian group there.always exists at least
one ring, the zero ring. It should be noted that every zero ring is sim-
ilar, differing only in the number of elements and the additive nature
of the group. 1In this respect it is a trivial exercise.

Having shown that there is one ring associated with every group,



it now remains to list all others., If the given group is cyclic of
order n, then it is isomorphic to the integers modulo n'. In this case
the integers modulo n have a multiplicative binary operation already
defined on them, and they form a ring. This method of arbitrarily
searching for multiplicative operations is not in order since it would
not be known whether all the rings had been listed.

Turning to another method, it will be shown that, given a group
(G,+), the set R of endomorphisms on that group form a ring. Accomp-
lishing that, it must be demopstrated that this ring of endomorphisms
generates all the rings in that group.

THEOREM 2.2. The set R of endomorphisms on a finite Abelian
group (G,*) with operations,

x(A®B) = xA + xB and
x(A O B) (xA)B for all x in G, where A and B are elements

of R, forms a ring with unity, <R, (2] 0).

Proof: To prove this it is necessary to show the five group
properties: closure, associativity, identity, commutativity and inverse
hold for C). Closure is the most important since the other properties
hinge on closure for () and the corresponding properties of (G,+>. In
addition closure, associativity and identity for ® , and that ©
distributes over C) , must be proved.

To show closure for 69 , i1t must be proven that for all ele-
ments of (G,+), the image of the sum of any two elements of <G,+> is
equal to the sum of the images.

By definition, for x, y in G and A, B in R, (x + y)(A®B) =
(x + y)A + (x + y)B, and by the properties of an endomorphism

(x +y)A+ (x+ y)B = xA + yA + xB + yB., Since xA, yA, xB and yB are



all elcments of (G,%), they are commutative and xA + yA + xB + yB =

xA + xB + yA + yB. By definition xA + xB + yA + yB = x(A@® B) + y(A®B).
The image of the sum is equal to the sum of the images. A ® B is an
endomorphism and @ is closed.

For A, B, and C in R, x((A@B) ®C) = x(A@B) + xC and
x(A@B) + xC = (xA + xB) + xC. The elements xA, xB, and xC belong to
¢G,") thus (xA + xB) + xC = xA + (xB + xC) and xA + (xB + xC) =
XA+ x(B@C) = x(A@ (B@EC)) and @ 1is associative.

Consider a mapping E such that for all x in G, XE = 0 where 0O
is the identity in G. Then (x + yY)E= 0 =0+ 0 = xE + yE and E is an
endomorphism. For A€R, x(E@A) = xE + xA = 0 + xA and since O and xA
are elements of (G,+>, 0 + xA = xA, E is the identity for @®.

For A€R, let x(-A) = (~xA) for all x in G. Then (x + y)(-A) =
(-(x + y)A) = ((-x-y)A) = (-xA) + (-yA) by the properties of an endomor-
phism. (-xA) + (-yA) = x(-A) + y(-A) by definition, and -A is an endo-
morphism. Then x(A@® (-A)) = xA + x(~A) and xA + x(-A) = xA + (-xA) =
XA + (-x)A = (x + (-x))A = 0A = E and (-A) is an inverse for A.

For all x in G, x(A@® B) = xA + xB. xA and xB are elements of
@, and are commutative, thus XA + xB = xB + xA and xB + xA =
x(B@A). x(A@®B) = x(B®PA) and @ is commutative.

Consider the operation ®@ . (x + y)(A®B) = ((x + y)A)B by
definition and ((x + y)A)B = (xA + yA)B by the properties of an endo-
morphism. (xA + yA)B = (xA)B + (yA)B by the propérties of an endomorphism,
and (xA)B + (yA)B = x(A® B) + y(A ® B) by definition. The image of the
sum is equal to the sum of the images, A © B is an endomorphism, and
© 1is closed.

For all x in G, x((A® B) ©C) = (x(A ©B))C = ((xA)B)C by
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definition. Also x(A® (B ©¢)) = (xA)(B o) C) = ((xA)B)C by definition,
thus x((AOB) ©C) =x(AO BOC)) and O 1is associative.

Consider a mapping I: G-*G, such that for all xeG, xI = x. Then
(x+y)I=x+y=xI 4+ yl and I is an endomorphism. TFor A€R, x(A @ I) =
(xA)I and (xA)I = xA since xAeG. Also x(I(?.A) = (xI)A = xA. Therefore
I is the unity element for R.

Finally for all x in G, x(AQ B@®C)) = (xA) (B@ C) by the def-
inition of © and closure for @® . By definition xA(B@C) = (xA)B +
(xA)C and (xA)B + (xA)C = x(A®B) + x(A©QC), and x(AOB) + x(AOC) =
X EA OB AL c]. Also x((A@B) O C) = (x(A@B))C by definition,
and (x(A@®B))C = (xA + xB)C = (xA)C + (xB)C. Thus by definition (xA)C +
(xB)C = x(AB C) + x(BOC) =x[(AC) DB © c)] and © distributes
over @ .

(R,@ O) is a ring with unity.

That the ring of endomorphisms is related to each of the rings
assoclated with a given Abelian group must be proved. The next theorem
shows that every ring is isomorphic to a ring of endomorphisms on its
own elements. The importance of this is that if a ring is isomorphic to
a set of endomorphisms of its own elements then it is a subring of the
ring of endomorphisms generated by the additive group of its own ele-
ments.

THEOREM 2.3. Every finite ring (R,+ 3> is isomorphic to a ring
of endomorphism on (R,+>.

Proof: Since the additive group (R,+)is part of the ring <ﬁ,+ '>,
it is possible to define mappings from R to R and use cautiously the prop-
erties of (k,+>and <B,+ '). Having defined the mappings from R to R, it

will be shown that these mappings are endomorphisms.



For each a in <R,+ ')define a mapping A,: R=-R by XA, = x°a
for all x in <R,+). For x and y in <R,+), (x +y)A; = (x + y)ra, but
since x and y are in (R,*) they are also in (R,* *). By the distrib-
utive property of <R,+ '), (x + y)ea=x+a+y-a, xa+yra-= XA, + yA,,
thus (x + y)Aa = xA, + yA,, and the image of the sum of any two elements
~ of <R,+> is equal to the sum of the images. A, is an endomorphism.

Let Rl be the set of all endomorphisms of the above form. Then
with operations @ and () as defined in Theorem 2.2., if Rl is closed
with respect to @ and O , then Rl is a ring <R1 ,QO) .

For all x in <R,+) and a, b in R, x(Aa@Ab) = xA_ + xAy =
x+a + x+b by definition. But for all x in <R,+), x is also in <R,+ >
and (R,+ ) has the distributive property. x* a + x*b = x+(a + b) =
VxAC where a + b = ceQ®R, T ) . @ 1is closed in R'.

For all x in (R,+> and a, b in <R,+ '), x(A, @Ab) = (xAy)A, =

(x-a)Ab

(x+a)*b. But for all x in (R,"'), x is also in (R,+ > and

(x+a)+b = x°*(a*b) = xAg where a-b = deQ{,"' ) ® 1is closed in RI.

Thus (Rl, ® 0) is a ring. It remains to be proven that (R,"' )
is isomorphic to Qll, ® O).

Define a mapping 8: R-RI! by a® = A, for each a in <R,+ )
8 is clearly one to one. Since a + b 1is closed in <R,+ '), let a + b =
¢ as above. Then (a + b)B= c8 = A., but from above A, @ A = AL and
A, = a8 and Ab = b8. Thus (a + b)8 = ad + bo. Ip the same manner (a*b) =
de<R,+ > from above, and (a'b)® = d8 = A;y. Also from above, Ay = A; O Ay,
but A, = ab and Ay = b8. Thus (a*b)8 = aB * b8. The operations are pre-
served, and 8 is an isomorphism that maps R to rl,

Every ring then can be generated by the group associated with it

by taking the set of all endomorphisms and listing each subring where the
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sub,roup with respect to addition is isomorphic to the given group.
The reason for the reyuirement in chapter one that cvery ring
have at least onc clement that does not divide zero should now be clear,
I the proel of Theorem 2,3 the mapping 8 is clecarly 1 to 1| hecausce of

tais regulrement.  Suppose XA = XAI' then xAJ - XA = 0 und x-a - x-b =0,
: , . )

4

Thus x+{a = b) =0 for all X in (R;+i>_ If therc exists onc x in (R,+'>
that is not a zero divisor, thema - Db = 0; and a = b, If cach celecuent
orf (R,+)> were a zero divisor, then there would be no justification for
sctting a4 - b equal to zero; and the proof would not be valid,

1t cach clement of (B,+:> is a zero divisor, is <3{;*'> isomorpnic
to the zero ring? Consider tne set R = {0,2,4,Q} witih the copcerations

of ordinary addition and multiplication mod §. The sct R does then fornm

. 11160y { + '>
d Tln\.;, I, .

+10 24606 U240
glo 2460 O YRR VAR B Y
2124060 2104 0 4
414069 2 4100 00
6lo 024 610 40 4

As shown in tuc tables cach clenent of <B,+'> is a zero divisor,
and Q{,+'> is not isomorphic to the zero ring,

Theorom 2,3 would break down in this iunstance when gencrating
the endomorphisms in accordance to Theorem 2.3, Using the sicthod in
Theorem 2,3 there would only be two cndomorphisms: the zero endomorphlsn,
and the ondomorphism that maps the gencrator, 2, df <R,+'> to 4, A
sct of two claicnts caunot be isomorphic to a sct of four clenents,

Given below arc three examples demonstrating the thcory just

cstablisheld,
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The rines of order onc arc a trivial but consistent cxample. Tac

croup of order one can be represented by the following table,

+| 0

010

There i1s only onc endomorphism on the groupn of order one, the onc

that maps O to O, Call it A, By definition O(A + A) = UA + UA = 0 + U =

O and O(A A) = (UA) = (0O)A = 0, Thercfore the only ring of order onc

is the zero ring,

A A
A A AJA

0 is mapped to A isomorphically and the ring appears

+1 0 < |0
0y 0 010

There exists only one group of order two [3, p,38], ana that

sroup 1s represented by the integers modulo 2,

Addition for I/2 is given by the table

There eoxists two cndemorphisms on 1/2, One is called thne zcro

mar, As would be cxpected, it maps cach clement of I/2 to 0O, The otaer

is called the identity map, and it maps cach clcerent of I/2 to itsclf,

The mappings, for convenience, can be represented 1in the following manncr

A B
(O—~—*0 u—0
l—>0 1—>1

The ring of endomorphisms has the operations
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0 maps to A, and 1 maps to B and the ring is

+
—
—
[
—
f

Otol 0
1

o
— =

'
There are only two rings of order two, the above ring and the
Zero ring,
There are two groups of order four; one is cyclic, and the other
is not, The cyclic group affords a final simple example, The cyclic

group of order four is isomorphic to I/4, and the addition table is

There are four endomorphisms on 1/4

A B C D
(=0 0—0 0—0 0—0
1—0 1—1 1—2 1—3
2= 22— 2= 2—2
3—0 3—3 33— 3—1

The ring of endomorphisms is

@ADL CD

AADLCD
BB C DA
CiCDHAB
Db ABC

Thus there are only two rings on the cyclic group of order four,
the zero ring and the ring below which is isomorphic to the ring of

cndonorphisms,

+ 01 23
010123
111230
212301
35012
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The other group of order four is ncither simple wor cyclic, It
will be glven as an cxamnple after a discussion of the problems of

notation and isomorphic subrings.,



Chapter 3
FUNDAMENTAL THEORY OF ABELIAN GROUPS

The background of theory is now established for the solution of
the problem. The more practical aspects of the elements of that theory
should be studied more thoroughly. The definitions for the binary oper-
ations, although theoretically sound, leave much to be desired with re~-
gard to application. The notation for the endomorphisms is extremely
bulky when applied. There are other practical problems regarding the
order of the ring of endomorphisms and the actual application of the

binary operations.

In chapter two we denoted the endomorphisms on I/4 in the follow-

ing manner.

A B c D
0—0 0—>»0 0—0 0—0
1—0 1—>1 1—»2 1—3
2—»0 2—>2 2—0 2—»2
3—0 3—»3 3—»2 3—l

Using the definition of @ , to add elements C and D it was

necessary to follow this procedure.

x(C@D) = xC + xD for all x in (G, *).
0OC+0D =0+0=20
1C+1D =2+3=1
2+ 2D =0+ 2 =2
3C+3D =2+1=3

Thus ¢ @ D is equal to the element which maps 0 to 0, 1 to 1,
2 to 2, and 3 to 3; that element of course is the identity element B.

Using the definition for © , to multiply B times D, this proced-

ure was necessary.
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x(B ®@D) = (xC)D for all x in {G,™),

(0B)D=0D =0
(1B)D = 1D = 3
(2B)D = 2D = 2
(3B)D=3D =1

Thus BO D equals D.

This procedure, which is sufficiently bulky for simple examples
.such as I/4, becomes completely unmanageable for groups that are of greater
order or are not cyclic. In the examples up to this point, the number of
endomorphisms generated by the group have been equal to the order of the
group. This will be untrue of examples that are not cyclic. Knowing the
order or being able to compute the order of the ring of endomorphisms is
important. If the order of the ring of endomorphisms is known, then the
generation of all distinct endomorphisms on the group may be completed
with confidence.

Since all of the groups used to generate these rings of endomorph-
isms are Abelian, the fundamental Theorem of Abelian groups will apply.
This theorem states that every finite Abelian group is the direct sum of
a finite number of cyclic groups of prime power order.EZ, p.39:] This
theorem and the fact that every finite cyclic group of order n is iso-
morphic to I/n will provide the basis for the solution of these two prob-
lems.

The proof to the solution of these problems consists of three
parts which are of independent interest and will be given as lemmas.

The first two lemmas are fundamental properties of commutative
groups and will not be proved here.

Lemma 3.1. A finite cyclic group of order n is isomorphic to

the additive group of residue classes of the rational integers mod n.

[2, pp.22-23)
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Lemma 3.2. A finite group is the direct sum of a finite number
of cyclic groups of prime power order, Ez, p.39:)

Lemma 3.3. Every homomorphism from a cyclic group A to a cyclic
group B, where A and B are of prime power order, can be represented by
a single non-negative integer.

Proof: Let A be of order m and B be of order n. By Lemma 1l any
cyclic group of order n is isomorphic to I/n; the homomorphism will be
represented by the integer to which 1 is mapped.

Let g be a homomorphism from A to B where 1 is mapped ﬁo b in B.
Assume h is another homomorphism from A to B where 1 is mapped to b in B.
Then g is the map g: 1=¥b, 2-3b2, 3-9b3, « + + , 0n=9b1; and h is the map
h: 1—b, 2-+b2, 3—+b3, « + + , n=3b", Then g = h. Thus the number to
which 1 is mapped determines the homomorphism and can be used to represent
the homomorphism.

If m and n in the proof of the above Lemma 3.3. are relatively
prime, there exists only one homomorphism. That homomorphism is the
one in which each element of A is mapped to the zero element in B. If
m and n are not relatively prime, then they must be powers of the same
prime by the uniqueness of prime factorization. This fact will be used
in applying the next theorem.

Theorem 3.1. Every endomorphism on a finite Abelian group G
can be represented by an n-tuple of non-negative integers.

Proof: The proof of this theorem hinges'upon two facts. The
first is that every endomorphism is dependent upon the elements to which
the basis elements of G are mapped. The second is that each element of
G must be mapped to an element whose order is equal to or is a divisor
of the order of that element of G.

Lemma 3.3. proves that each cyclic group of prime power order can
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be represented by a one-tuple consisting of one non-negative integer.

If G is not a cyclic group of prime power order, then Lemma 3.2.
asserts that G = Hy +Hy + = = = +H, where each of the H; for i =
1, 2, . . . , n is a non-trivial cyclic group of prime power order.

Thus each H; is a cyclic group of order my, and by Lemma 3.l. it is
isomorphic to I/mi' Each element of Hi is the isomorphic image of a
non-negative integer.

Every element g of G can be represented by an n-tuple, g =
(hy, hy, « . « , hy) where hj€H;. Since H;y is isomorphic to some I/my,
the integer 1 will generate each of the Hj for all i since the H; are
non-trivial. The set A = {31, o, ... ,0, (0, 1,0, ... ,0,
voe oos (O, v .., 0, li} is a basis for G, that is, A generates G.

[?, p.léz] Let a; = (1, 0, . . . , 0) be the generator of Hy, ap =
(0, 1, 0, . . . , 0) be the generator of Hy, and in general a; will gen-
erate Hy; and will indicate a 1 in the ith position of the n-tuple.

The properties of an endomorphism guarantee that every endo-
morphism is determined by the element of G to which each element of
the set A, the basis for G, is mapped. By showing to which element of
G each aj is mapped, the endomorphisms can be represented by nz-tuples
of n sets of n integers. Each set of n integers will represent an ele-
ment to which an element of the set A is mapped. In particular the ith
set of n integers will be the element to which a; is mapped.

The question of the order of the element ﬁo which a; is mapped
must be disposed of first. Each element ay of A must be mapped to an
element of G whose order is equal to or is a divisor of the order of aj.
If this were not the case, the result would be that the zero element of

G would be mapped to an element other than zero. That is not acceptable
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in an endomorphism. If aj, of order my, is mapped to an element 8 =
(81> 825 - + « > gn), then g, must be of order my or a divisor of mj.
For g, to be of order my, the order of each of the gi in the n-tuple
(81> 87> « + « , Bp) must be equal to or a divisor of my. This is
true since mjay = O must imply that mygy = O, and for mjg, to equal 0
-the order of each of the gi must be equal to or a divisor of my .

A method for assuring the proper order of each of the g must
be provided. Consider the n2 sets of homomorphisms: Hyr—H;, Hj—H,,
e oo HpOl, Hp=—Hy, Hp—lp, . . ., Hy—=¥H,, . . ., Uz,
Ig=2H,, . . . , Hy?H,. Each homomorphism HI-9Hj can be represented
by a single non-negative integer by Lemma 3.3, The nz-tuples of non-

negative integers representing the homomorphisms from H; to H; will

J
represent the endomorphisms from G to G. These nz—tuples will be
called S¢ representations., Partition the nz—tuples into n sets of

n Integers having the same arrangement as that of the n2 sets of homo-
morphisms above. The order of the first n integers of the S« n-tuple
is equal to or a divisor of the order of H;, and consequently of aj,
since they represent homomorphisms from H; to each of the H;. Moreover
the order of the ith set of n integers is equal to or is a divisor of
the order of H;, and consequently of a;, since they represent homo-
morphisms from Hj to each of the Hj.

By the manner in which the n2 sets of homqmorphisms were
arranged, each ith set of n integers of S is a representation of an
element of G. Each aj in A is then mapped to the element represented
by the ith set of n integers in S¢. Since the proper order is assured,

each of the S§ i1s an endomorphism.

Let X be any endomorphism on G, then each ag is mapped to an
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element g, = (81, 825 + + + 5 8y) of G where the order of each g is
equal to or is a divisor of the order of a;. But each such gj is in

one of the Sy representations. Thus each of the endomorphisms from

G to G can be represented by an Sy.

When all of the qualifications concerning the order of each
element in the Sy representation and its relation to the n? sets of
homomorplhiisms are removed, Theorem 3.1. states that any endomorphism
‘on a group G can be represented as an nz—tuple of elements of G to
which the basis is mapped. This simplifies the notation by reducing
the number of elements involved in representing the map and the use
of integers from I/n provides a more consistent notation for all graups.

Although the Sq notation is more consistent for all examples,
if it does not facilitate a handier method for using the binary op-
erations, it is of little value.

Consider the S« representation of the endpmorphism

(ags « « ¢ 5 @55 aptls + + o a5 5+ v e a( . ey anz).

n2-1)+1’
The first n integers represent the element to which (1, 0, . . . , 0)

is mapped. The ith n integers represent the element to which the gen-
erator, that has a 1 in the ith position, is mapped. The operation C)
has been defined as x(A®B) = xA + xB for all x in G. If the elements

to which the basis elements are mapped are known, then the endomorphic
image of each element is known. The Sy represengation provides exactly
that information. Thus if XA is an endomorphism on (C,+), then it has

an S4 representation, and the same is true for xB. By the manner in which
they are arranged the elementwise addition of the Sq representations in

their relative modular settings is equivalent to xA + xB. Since xA + xB =

x(A ®B), ® can be redefined as the elementwise addition of the S«
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representations of the endomorphisms.

1f the operation © can be redefined, a completely consistent
method of dealing with the endomorphisms and the binary operations would
be available. This would facilitate the application of any theory pre-
sented in this report.

As before the ith n elements of the Sg representation is the
element of <§,+> to which the generator, that has a 1 in the ith po-
sition, is mapped. The first n elements is the element of (G,+> to
which (1, 0, . . . , 0) is mapped, but the first n elements of an S
representation is equivalent to an element of (G,+). Thus the first
n elements of an S¢ representation can be broken down into the element-
wise multiple addition of the generators of (G,+>. The first n ele-
ments of an Syq representation can be brokem down in this manner,
a1(1, 0, + + . ,0) +10y(0, 1, 0, « v . , 0) +* * = +n(0,...,0,1),
where each of the n; represent multiple additions. But in a composite
mapping elements of the form (1, O, . . . , 0) must be mapped to the
first n elements of the S representation, elements of the form
(0,1, 0, . .., 0) must be mapped to the second n elements and so on
in the general form already described. In a modular system repeated
additions of the same element are equivalent to multiplicationin the
modular setting. Thus composite mappings of S representations can be
redefined in the following fashion: for S and T elements of the ring of

endomorphisms and S = (sl, S S At LR szn; . e e 3

s(nz—]_) +1) . . . 3 5112), T = (tl, . . . 9 tn; t‘};l + 1, . . - ’ tzn;
Ce Sty ettt 0 G2 8O TS (25:EG-1yn + 1

n
zlsit(i-l)n + 25 ¢ ¢ ')isit(i - Dn + n° isn + 1%i-1)n + 17
i i

tal i=1
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n a)

'__Z’Sn+it(i—l)n + 2> ¢ _Z_Sn + it(i—l)n +n”> " "
)
i;f(i—l)n + lt(i—l)n + n). Although complicated to represent, the
Y]
operation is handled quite easily in practice. For an example, the

n-tuples (2, 0, O, 3) and (1, O, 0, 1) are endomorphisms on the group

G =1/3 x I/4. A convenient method for applying the new definition for

C) is

2 0 0 3

1 0 o 1
2.1 2-0 0°1 0°0
0°0 0-1 30 31

2 0 O 3 .

The number of endomorphisms on a group <§,+> 1s now easy to
compute. In the S, representation the first element represents the
homomorphisms from H1 to H;, and there are only a finite number x
of them. The kth element, lékénz, represents the homomorphisms from
some Ii; to some Hj and there are only a finite number X, of them.

The numbers of the endomorphisms then is simply the product of the X.

As stated before if the order of Hy and Hj are relatively
prime, there exists only one homomorphism from Hi to Hj, the one that
maps each element of Hi to the zero element of Hj. In addition if Hi
and Hj are not relatively prime, they are powers of the same prime.
Then if they are powers of the same prime the number of homomorphisms
from H; to H; is a power of the same prime. Thus the order of <§,+>

J

is a factor of the order of the ring of endomorph;sm by prime factor-
ization.

As an example of the representation of endomorphisms and binary
operations, the ring of endomorphisms on I/6 will be given. Six is not
a power of a prime, and therefore I/6 is the direct sum of cyclic groups

of prime power order. I/6 = I/2 + I/3. Since I/6 = Hy + Hp, n is 2;



and n2

n sets of homomorphisms are as follows:
Hl—')Hl HI—9H2 Hz——)ﬁl
0), (1) (0) (0)

is 4. Using S4q one~tuples to represent the homomorphisms, the

Hy—y
0, (L, (2).

There are six endomorphisms on I/6, and the Sy representations are as

follows: (0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1), (1, 0, 0, 1),

(0’ O’ 0’ 2), (1’ 0) 0’ 2)'

The table for the additive binary operation would appear as

) 0000 1001 0002 1000 0001

1002

0000 0000 1001 0002 1000 0001
1601 1001 0002 1000 0001 1002
0002 0002 1000 0001 1002 0000
1000 1000 0001 1002 0000 1001
0001 0001 1002 0000 1001 0002
1002 1002 0000 1001 0002 1000

The multiplication table would appear as

© 0000 1001 0002 1000 0001

1002
0000
1001
0002
1000
0001

1002

0000 0000 0000 0000 0000 0000
1001 0000 1001 0002 1000 0001
0002 0000 0002 0001 0000 0002
1000 0000 1000 0000 1000 0000
0001 0000 0001 0002 0000 0001
1002 0000 1002 0001 1000 0002

0000
1002
0001
1000
0002
1001

The isomorphism between the ring (R,e G} and the ring I/6 is:

0—(0, 0, 0, 0), 1-(1, 0, 0, 1), 2-»(0, 0, 0, 2), 3—(1, O, O, 0),

4—(0, 0, 0, 1), 5-(1, 0, 0, 2). Chapter four will deal with those

groups that are not cyclic.
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Chapter 4
IDENTIFICATION

The remaining problems are the identification of the subgroups
of (R,® ®> that are isomorphic to the given group (G,+>, and the class-
ification of the isomorphic subrings. The problem of finding all of the
subgroups of a ring of endomorphisms isomorphic to the given group is a
difficult one. There is a solution that can be generalized. It is more
convenient to begin with an example. Let G = szCZxC4 where C2 is the
cyclic group of order two and C, is the cyclic group of order four. The
elements (1, 0, 0), (0, 1, 0), and (0, O, 1) generate G. (1, 0, 0) and
(0, 1, 0) are of order two and (0, 0, 1) is of order four. For the sub-
group of endomorphisms to be isomorphic to G, (1, 0, 0) and (0, 1, 0)
must be mapped to different elements of order two, and (0, 0, 1) must be
mapped to an element of order four. 1In looking at the Sy representations
of the endomorphisms to which the generators of g must be mapped, the
individual elements of the n-tuples must be of order, or a divisor of
order, 2, and there must be at least one element of order 2 present.

Returning to the method in which the Se« representations were
originated, the homomorphisms of order 2 may be counted.

CoxCy  CoxCy CoxCqy  CoxC2  CoxCp  CopxCj;  CyxCo  CyxCyp  C4xCy

2 2 2 2 2 2 .2 2 pd
The CAXCA may be discounted, since the element (0, 0, 1) must be mapped
to an element of order four, and all such mappings are equivalent. There
are 28 - 1 ways an element of order 2 may be chosen as an image of

(1, 0, 0), and there are (28 - 1) - 1 elements to which (0, 1, 0) may
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be mapped. It is most convenient to map (0, 0, 1) to (0, 0, 0, O, O,
0, 0, 0, 1) of the S¢ representation. There are (28 - 1)((28 -1) -1
subgroups of C,xCoxCy, but they are not all distinct. For example let
(1, 0, 0) be mapped to (1, 0, 0, 0, 0, 0, 0, O, 0) and (0, 1, 0) be
mapped to (C, 1, 0, 0, O, O, O, O, 0) then (1, 1, 0) is mapped to
(1, 1, 0, 0, O, O, O, O, 0). If (1, O, 0) were mapped to (1, 1, 0, O,
0, 0, 0, 0, 0) and (0, 1, 0) were mapped to (1, 0, 0, 0, 0, O, 0, 0, 0),
then (1, 1, 0) would be mapped to (0, 1, O, 0, 0, 0, O, O, 0) and the
group would be isomorphic to the one obtained first. Any one of the
three endomorphisms could be chosen to be mapped to (1, 0, 0) and then
either of the remaining two could be chosen to be mapped to (0, 1, 0).
Thus for each subgroup there are six subgroups isomorphic to it. The
number of distinct subgroups isomorphic to G would be (28 - 1)((28—1)—1)/6.

The group G = C,xC, will be used as an example in chapter five.

The homomorphisms of order two can be generated like this:
CoxCy  CyxCz  CapxCy  CoxCy
2 2 2 2
There are fifteen endomorphisms that (1,0) could be mapped to and
fourteen to which (0,1) could be mapped. But again they are arranged
in isomorphic groups of six. The number of distinct subgroups is
210/6 or 35.

In general it is easier to arrange G = Hy + H2 + ¢+ Hn
such that the order of the Hy Hygge The set of n? maps of HI—§H1,
Uy, - . ., H5—+Hn will identify all of the elements to which the
generator of each Hy is to be mapped. The product of the number of
mappings for each Hi is adjusted to account for the isomorphic maps

as in the examples above will give the number of subgroups that are
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isomorphic to <G,+>.

Examples of non-cyclic groups using the S, notation seemed to
point up very little difference between automorphisms of a group onto
itself and endomorphism of a group into itself. The following theorem
gives a method for determining whether an element of <Rf9(3>13 an
endomorphism or an automorphism. Each element of the given group
(G,+> will generate a cyclic subgroup of (G,+).

THEOREM 4.1. An endomorphism A on (R,®®>is an automorphism
if and only if both of the following conditions are true:

(1) The order of the ith set of n integers in the S, represen-
tation of A is equal to the order of H; where <R,+> =H; + H2 +
A '+Hi+' ‘ ’+Hn.

(2) The ith set of n integers in the Sy representation is not
an element of a subgroup of (R,+> generated by all other ith sets of
n integers, lé4i.

Proof: Let A be an automorphism on (R,GD>' . Adisaltol
mapping from {R,¥) onto (R,+>. Suppose 1 is not true. Let H; be of
order n, and let the ith set of n integers of A be of order k{n. The
generator H; generates n elements of (R,+> and thus generates n elements
of the mapping from (R,+) to<3,+>. 0 is mapped to 0 and the element of
the endomorphism that is the ith set of n integers added k times since
k(n is also mapped to 0 thus A is not an automorphism and that is con-
tradictory to the given condition.

Suppose (2) is not true. Let the ith set of n integers be an
element of the subgroup of (R,+>'generated by all other ith sets of n
integers. Since it is a group, each element of this subgroup must have

an inverse. Since the ith set of n integers is an element of the subgroup
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generated by all other ith sets of n integers, an clement of this subgroup
nust be its inverse, Adding the ith set of n integers nand its inverse
must cqual 0, Then A is not an automorphism which is again a contra-
diction, Thus both (1) and (2) must hold,

Let A be an cndomorphism and let (1) and (2) be truc, Then
cach ith set of n intcgers of the S, represcntation of A gencrates n.
clceuents of A where n. is the order of the “i‘ Suppose A is as n to 1
cndomorpnism, Consider the kcrnel of the endomorphism, Some multiple
of thc 1th sct of n integers and an e¢lement of the subgroup gencrated
by all other ith sets of n integers must Le mappcd to zero which indi-
cates that thosc scts of n integers arc from the same subgroup of (R,+>,
That contradicts (2) and A must be an automorphism,

As an example of Theorem 4,1 consider the endomorphisms A =
(1,0,0,1,1,0,0,1,0) and b = (1,v,0,0,1,0,0,0,1) on the group G =
1/2 x 1/2 x I/2, iritten out for all x in 6 the cndowmorphisms arc

.
A ¥

(3,0,0)—(0,0,0) (0,0,0)———(0,0,0) ¢
(l,”,ﬂ)—-#(l,’(),()] (1,()J(‘))-——+(l,(!,())
(0,1,0)—(1,1,0) (U,1,0)——(0,1,0)
(0,0, }._-p(u,l,k)) ((),L),i)—»((},(l,])
[1,},())-———)(0,],0] (1,1,0)-———»(1,1,0)
(1,0,1)—(1,1,0) (1,0, 1)—(1,0,1)
(”,],1]——)(1,("‘.()) ((),],1)—-@{\’),1,1)
(11111)_’(.“))”)”) (],l,l)—-}(l}l,l)

In the Ux Topresentation of the endowmorphism A, the sccond sct

L} i ! 3
of three dntegers is an cloment of the subgroun generated by the First
and third sets of thrce integers, VWhen the cendomorpuism A is written

out for all x in 6, A is clearly scen to be a two to onc cnuonorpiilsii,

Coth conditions (1) and (2) hold for the cendomorphism L, and it is, as
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shown above, an automorphism.

All that remains is to find the isomorphic subrings. The multi-
plicative operatj.on on the ring of endomorphisms is the common operation
of composite mapping. The set of automorphisms of a group with an oper-
ation defined as composite mapping is a group.D, p.1093 The identity
of the group of automorphisms is the identity mapping, which is also the
unity mapping of the ring of endomorphisms. The fact that each element
of a group commutes with its inverse precipitates the following theorem
which provides a sufficient condition for two subrings to be isomorphic.

THEOREM 4.2. Given a subring (S ,e Q) of the ring of endomorphisms
<R,®®> , the set T =¥_X: @9 and x = AOYOA! for all Y in
(s S ©) | where A is a fixed automorphism in <R,®OZ} is a subring <T,®O>
of <R,®®> and is isomorphic to(S,eG).

Proof: It is important to the proof of this theor'em to note
that the composite mapping of an automorphism on a group (G,+> and any
endomorphism on (G,+> is distinct. Thus each AQY OA“I gives a dis-
tinct element of T for each element Y of <S,®®> .

The remainder of the proof is to demonstrate that the set T with
the operations ® and © is isomorphic to (S,®G> .

Define a mapping 6: S—T by 8Y = A OY®a-l for all Y in
<S ,®O> where A is a fixed automorphism in (R,®o> . AQ Y @A'l = Xl
where X1 is a distinct element of T, and Y, is a distinct element of
(s.90).

Then 6(Y, ®Y,) = A0 (1; @Y Oal = ((aOY) @ (40 1)) Ot
by the distributive property of <R, ®). Also by the distributive prop-
erty (AQOY) @ OY,)H Ol = Oy, O h@uoy, osh =

X] @X,.
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Also 8(Y; OY) =AQ(Y; 0Y,) Oal =40 (1;0107,)04s7! =
A (1,04 10401 0al=a0Y,04H0O LWOY,Oa]) by the
associative property and the properties of the unity element I. Thus
A, 0AHO wOY, 04 = x, Ox,.
8 is a ring isomorphism and <T,® Q)g (S,®G> .
Every set of elements T that is related to a subring <S,ED G) by a

fixed automorphism and its inverse is a subring of the ring of endomorph-

isms and is isomorphic to <S,® G> .



Chapter 5
EXAMPLES

In concurrence with the notation and theory presented in the
first four chapters, this chapter will give as examples all groups and
rings associated with them through order eight except the groups
G = CyxC3, G = CyrxCyxC2, and C7. Some of these groups have been used
in previous chapters but will be shown in the S, notation.

The group of order one has one element and one endomorphism.
The ring of endomorphisms is

@D |0 © 1)
(0)](0) (0) | (0)

There is only one group of order two, and it is isomorphie to

the integers modulo two. The ring of endomorphisms is

@ lo W
ORIOBES)
m [m .

The zero rings will not be shown in each case since they are all
similar in structure.

There is only one group of order three, and it is isomorphic to
1/3. There are three endomorphisms, but there are only two rings, the

ring of endomorphisms and the zero ring. The ring of endomorphisms is

® |l @ @ 0l w @
O T (D © 1 (0 (0
W [ @ 0 M| @ @
@ @ © 2 | @ (1)

All of the cyclic groups are isomorphic to I/n where n is the
order of the cyclic group. That being true it would be inconsistent

with the properties of the integers for the ring of endomorphisms to
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generate a ring that is not isomorphic to I/n with multiplication defined
as usual. In addition I/3 is a field, and the ring of endomorphisms as
expected has preserved that property.

There are two groups of order four, and both are commutative.
The first is isomorphic to 1/4. There are four endomorphisms on I/4,

and the resulting ring is

RoRIOINOIONE) Qlom M @
0 [ (1) @ @3) (0) [ (0) (0)y (0) (0)
(1) [ (1) (2 (3) (0) (1| (0 (1) (2) (3)
(2) | (2 (3) (0 (1) 2| @ 0 @
MG O QO @ | 3) @ @) .

The Sy representations of cyclic groups of prime power order, as
simple as they are, are consistent with Theorem 4.2, Since in the ring
of endomorphisms on I/4 the elements (2) and (0) are not of order equal
to the order of the group they are endomorphisms and not automorphisms.

The other group of order four is G = CyxC, and is called the
"four-group'" or '"quadratic group'" or more commonly the "Klein group.'

[3, p.49:] The n? sets of homomorphisms as Sq one-tuples are

H—Hy Hr—H, Hy—rH, Hz——)HZ

(0) (1) (0) (1) (0) (1) o) .

There are sixteen endomorphisms on G. They will be listed below
and then given an alphabetic representation to preserve space. The Sy

representations are:

0-(0, 0, 0, 0) e-(0, O, 1, 1) g-(0, 1, O, 0) k-(l, 1, O, 0)
I-(1, 0, 0, 1) d-(1, 0, 0, 0) h-(0, 1, 1, 0) 1-(1, 1, 1, 0)
a-(0, 0, 1, 0) e-(l, O, 1, 0) i-¢0, 1, 0, 1) m-(l, 1, O, 1)
b-(0, 0, 0, 1) f-(1, 0, 1, 1) j-(0, 1, 1, 1) =n-(l, 1, 1, 1) .
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The tables for the ring of endomorphisms are

glec EA 8 mH DU H OD UAO QO glosvvoxcxM e E O UUO
glE g A A "TCHHWTD U OUVO W Elo E v g O mH S THH O
<X g EQ A ITHH IO U0 o~ uUuag.aoXMd A E YW OH 0m.OA
Ml HAEa Vo MTIHWO .00 Mloxrx vo v grOoUvo UM Mo
A S 0 B8 00 BOWH O o mo Ul A CMESHTHY O
Al X het o ECcH 00O dHWT O o H.0.00 0 B BOH A HO 800
e g WM HHAX EdO VO TV HH Slocog ubdHdrnOH OWXEAHAHH
o EC AN XA 2O .0 UTY UHWY o W00 .0 A HO 00 .0 80 0
Wt @ H 0D 000 8 EA X Mt < 80 How g u.0D UH M & B 0.8 el
JjgvowHwHdO oA X g E . 0m Vo 0 W WO TV OUTVUTUUTO d ©O
I[o.o 0HHO B UXHE g 0.8 ™ douvudosvw oo o WV OV O
JJuoodowHTD M H CcBta B X vYJovouvuuoouxxMM e A
LDloovo dHW O H MO E &8 Nloomoos oo .0 tdedH e b0 B0 H
Sl W o uU.n YUTH.CmHAMa B Slo o OO TT U UTY U
HHCwWT Jd.c OB E 2 A ™0 HoH s vD 0w NE A2~ E &
CcloHd oo UuDUH O E AN~ E & olococoocoocoocococoococoocoOo0
m_W%OIabcdefghi.Jklmn @Olabcdefghijklmn

Using the method given in chapter four there are thirty-five

subgroups of the ring of endomorphisms that are isomorphic to (G,'*').

Of these thirty-five only thirteen are closed witi'x respect to the

Using the automorphisms to check for isomorphic sub-

operation ©® .

rings, those that are isomorphic are:



(0,
(0,

(0,

(0,
(0,

(0,

(0,
(0,

(0,

(0,
(0,

(0,

(0,

The

and it is a field.
There is only

1/5.[3, p.51 ) There

morphisms is

0, 0,

last ring

0),
0),

0),

0),
0),

0),

0),
0),

0),

0),

0),

0),

0),

listed

is

1,
L,

L,

D,
L,

L,

0),
1,

1,

0),
0),

0),

n,

not

0),
0,

0),

b,
1,

1),

0),
0),

0,

1),
1,

0),

0, 1, 1, 1),

isomorphic to

(1,

any

one group of order five, and it

are five endomorphisms on I/5.

@) (1) (2) (3) (4
(0) ] (0) (1) (2) (3) (&)
(1| (1) (2) (3) (4) (0)
(2) ] (2> (3) (&) (0) (1)
(3] (3 ) (© (1) (2)
[ ) © (1) (@ (3)

(1)

is isomorphic to

The ring of endo-

1)
1)
1)

0)
0)

0)

0)
1)
1)

1)

1)

0)

0)

n

ne

f

ne

e

e

e

(]
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ring listed,

© | (0) (2) (3) (4
(0) 1 (0) (0) (0) (0) (0)
(1} 0y (1) (2) (3) (&)
(2) [ (0) (2) (4) (1) (3)
(3) 1) (3) (L) (4 (2)
(4) | 0 () (3) (2) (D
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There are two groups of order six. Only one is commutative, and

that group was used as an example in chapter three with the Sy notation.
The two groups are G = szC3 and the permutation group of three elements.
There is only one group of order seven. It is isomorphic to I/7,
and it is very similar to 1/5. For that reason the ring of endomorphisms

on I/7 will be omitted here.

There are five groups of order eight, and three of them are com-
mutative.[ﬁ, p.Sl:} The commutative groups are G = C8, G = CyxC4, and
G = CoxCpxC2. Cg is isomorphic to I/8, and the ring of endomorphisms is

@] 0 ) @ @G G 5 6, (D
O O O @ 3 & 6 B D
(| (1) 2 3 W) ) 6) (D (0)
()| (2 3) ) (5 (6) (7 (0 (D
(M| (3) ) (5 (6) (D () (1) (2)
(W] @) (5 (6) (1) (0) (1) (2) (3)
()| (5) (6) (7) (0) (1) (2) (3) (&)
)| (6 (I (0) (1) (2) (3) (&) (5)
(D] (D © (1) (2 3) ) (5) (6)

Q1@ ) (2) (3) (4 (5 (6) (7)
(0) | (0) (0) (0) (0) (0) (0) (0) (0)
(| (0 (1) (@2 (3) &) B 6) (N
()| (0 (2) (4 (6 (0 (2) (4 (6)
(3] O 3 6y (1) (4 (1 (2 (5
()| (0 & () (&) (o) (&) () (4)
5)] (0 (5) (2 (M) (b @) (6) (3)
(6)[ (0 (6) (&) (2) (0) (6) (4) (2)
(O @ @ 6 & 4 3) (@) (D)

The group G = CoxC, 1is the last example. There are thirty-two
endomorphisms on G, and they will be listed below. Since there are
only seven subgroups of the ring of endomorphisms that are isomorphic
to G, it will be more convenient to look only at the subgroups and not
the entire ring of endomorphisms. Of the seven subgroups only three
are closed under the operation © . These three will be listed below.

The thirty-two endomorphisms are as follows:
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0-(0, 0, 0, 0)  8-(0, 2, 0, 3) 16-(l, 2, 0, 0) 24-(1, 0, 1, 0)
1-(1, 0, 0, 0) 9-(0, 0, 1, 0) 17-(1, 2, 0, 1) 25-(1, 0, 1, 1)
2-(1, 0, 0, 1) 10-(¢0, 0, 1, 1) 18-(1, 2, 0, 2)° 26-(1, 0, 1, 2)
3-(1, 0, 0, 2) 11-(0, 0, 1, 2) 19-(1, 2, 0, 3) 27-(1, 0, 1, 3)
4-(1, 0, 0, 3) 12-(0, 0, 1, 3) 20-(0, 2, 1, O) 28-(1, 2, 1, 0)
5~-(0, 2, 0, 0) 13-(0, 0, 0, 1) 21-(0, 2,1, 1) 29-(1, 2, 1, 1)
6-(0, 2, 0, 1) 14-(0, 0, 0, 2) 22-(0, 2, 1, 2) 30-(1, 2, 1, 2)
7-(0, 2, 0, 2) 15-(0, 0, 0, 3) 23-(0, 2, 1, 3) 31-(1, 2, 1, 3)

The additive group is given once as elements of <§,+>.

+ (0.0 (1.0 (0,1) (0,2) (0,3) (,1) (1,2) (1,3)
(0,0) | (0,0) (1,0) (0,1) (0,2) (0,3) (l,1) (1,2) (1,3)
(1,0) | (1,0) (0,00 (1,1) (1,2) (1,3) (0,1) (0,2) (0,3)
(0,1) | (0,1) (1,1) (0,2) (0,3) (0,0) (L,2) (1,3) (1,0)
(0,2) | (0,2) (1,2) (0,3) (0,0) (0,1) (1,3) (1,0) (1,1)
(0,3) | (0,3) (1,3) (0,0) (0,1) (0,2) (1,00 (1,1) (1,2)
(1,1 | 1,1 (o,1) (1,2) (1,3) (1,0) (0,2) (0,3) (0,0)
(1,2) | (1,2) (0,2) (1,3) (1,00 (1,1) (0,3) (0,0) (1,1)
(1,3) | (1,3) (0,3 1,00 @1, (1,2)  (0,0) (1,1) (0,2)

The isomorphisms between the three subgroups and the group (G,+>

will be given instead of displaying three similar tables for the operation

@ .

The tables for the operation O]

0—(0,0)
1—(1,0)
13—(0,1)
14—(0,2)
15—(0,3)
2—x1,1)
3—(1,2)
4—(1,3)

0-—>(0,0)
5—(1,0)
13—(0,1)
14—(0,2)
15—(0,3)
16 —-1,1)
7—(1,2)
8—(1,3)

0—(0,0)
9—(1,0)
13—(0, 1)
14—(0,2)
15—(0,3)
10—(1,1)
11——(1,2)
12—(1,3)

for the three subrings are

Glo 1 13 14 15 2 3 4
00 0O 0 0 0 0 0 0
1{0 1 0 0 0 1 1 1
13/ 0 o0 13 14 15 13 14 15
14| 0 0 14 0 14 14 0 14
15| 0 0 15 14 13 15 14 13
2|0 1 13 14 15 2 3 &4
3o 1 1 o0 14 3 1 3
4o 1 15 4 14 & 3 2




©|l 0 5 13 14 15 6 7 8
0l 0 0 0 0 0 0 0 0
500 0 5 0 5 5 0 5
13/ 0 0 13 14 15 13 14 15
141 0 0 14 0 14 14 0 14
15| 0 0 15 14 13 15 14 13
6] 0 0O 6 14 8 6 14 8
710 o 72 o 7 7 0 7
8 0 0 8 14 6 8 14 6
Ql 0 9 13 14 15 10 11 12
o[ o 0 0 0 0 0 o0 o
9!/ 0 O O O O O 0 O
13/ 0 9 13 14 15 10 11 12
141 0 0 14 0 14 14 0 14
1s| 0 9 15 14 13 12 11 10
10/ 0 9 13 14 15 10 11 12
11 0 0 14 0 14 14 0 14
12| 0 9 15 14 13 12 11 10

All three of these subrings are distinct.
The last group of order eight is the group G = C,xCyxCjy.
example will be omitted due to its bulk.

endomorphisms on C2xC2xCy, and there are 1241 distinct subgroups of the

ring of endomorphisms as well.

million individual arithmetic steps to find out how many of the 1241
subgroups were closed with respect to the multiplicative operation.

completes the work to be done with examples.

There would be nearly one and one half

There are five hundred twelve
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Chapter 6
SUMMARY

Given any finite Abelian group there is always a ring, the zero
ring, associated with it. 1If there are more rings associated with the
group, they are subrings of a ring of endomorphisms and can be isolated
provided they are not the direct product or sum of the zero ring and
some other ring.

Notation has been introduced to facilitate the representation
of the endomorphisms on the group. A method for identifying automorphisms
among the endomorphisms has been provided. One method of identifying
the subrings that are isomorphic has also been developed.

There are some avenues of further study that are immediately
apparent. The ring of endomorphisms on the group G = C,xCy; had some
characteristics that the ring of endomorphisms on G = CyxC; did not
have. All of the right ideals of the ring of endomorphisms on G =
CoxC, were isomorphic subrings associated with G. The left ideals had
the same property. There was also a field of four elements assoclated
with G. It could be fruitful to see if the rings of endomorphisms on
a group G = C3xC3 or a group G = CyxCyxCy or any group G = CpxCpx AL Cp’
where p is a prime, had the same properties.

It would be an interesting problem to write a program to let a
computer do all the arithmetic on large groups. Since it can all be re-
duced to working with positive integers, it should be suitable to computer

application.

In chapter four a sufficient condition was given for two subrings
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of the ring of endomorphisms to be isomorphic. One further problem would
be to show that given two isomorphic subrings, there exists an auto-

morphism in (R,®Q> that relates the two subrings as in Theorem 4.2.
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Appendix

In chapter one it was required that every ring have at lcast one
clement that did not divide zero, The reason for that requirement and
a simplé example of the problem if that requirement werc not made was
set forth in chapter two.

The example in chapter two brings out two intercesting points,
Given a ring wherc cach clement is a zero divisory it is not necessarily
isomorphic to the zero ring, and it is not necessarily the direct
product of the zero ring and some other ring, It can be proved however
that if a ring is of prime order and each element is a zcro divisor,
then that ring is isomorphic to the zero ring,

Theorem 7,1. If a ring, <ﬁ,+‘>, is of prime order and if every
clement of <R,+j> is a zero divisor, then'<R,+'> is a zero ring.

Proof: To prove this it must be shown that x¢y = 0 for any x
and y in R, Since (R,+'> is of prime order, each element of R generates
(R,+>. Let x be any eclement of R, Since every element of R is a zero
divisor, there must exist a nonzero element a in R such that xea = 0,
Therefore xena = n(xea) = 0 for cach integer n; and since a is a generator
of <R,+>, xey = 0 for cach element y in (R,+.>, Since x was chosen
arbitrarily, this completes the proof.

The following corollary is a direct result of Theorem 2.3,

Corollary 7.2. Every ring {R,*'), with unity, is isomorphic
to a ring of endomorphisms on {R,*).

It can be shown that any ring (R,+.> is isomorphic to a subring

<R*,+'> of a ring €8," ") that has unity, This is done by extending
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L, to 4,77Y where €B,%7) has an identity, The ring (R*,+‘> is a
subring of (p,+'> isomorphic to (R,+'>, If it could be shown that any
ring could be imbedded in a finite ring with unity, then the material

in chapters threc and four could be used to associate all rings with

finite groups.
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