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Chapter 1 

INTRODUCTION 

The purpose of this paper is to examine the relationship between 

finite Abelian groups and rings associated with those groups. This pa­

per will consider only finite groups, and since rings by definition are 

commutative with respect to the additive binary operation the group must 

be Abelian. A group is a set of elements together with a binary oper­

ation that exhibits certain properties: closure, associativity, ident­

ity, and inverses. Every ring must exhibit all of those properties. 

Groups and rings are thus closely related. They are so closely related 

that a ring is often defined in part in terms of a commutative group. 

With respect to the additive binary operation the elements of a ring are 

isomorphic to some commutative group. It is in this manner that rings 

may be associated with Abelian groups. 

Looking at this association from the reverse point of view pre­

sents the problem. Given any finite Abelian group, are there rings 

associated with it? Is there one ring associated with the given group? 

If there is at least one, how many are there? How can we find them, and 

are we able to find all of them? 

The problem may be stated in this form. List all of the dis­

tinct finite rings whose elements, with respect to the additive binary 

operation, are isomorphic to a given finite Abelian group. A ring is 

distinct if it is not isomorphic to some previously listed ring. 

The thesis will be organized in this fashion. The remainder 
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of this chapter will identify part of the notation and define terms. The 

second chapter will state and prove the three basic theorems of the the­

sis. The theorems will be those concerning the zero ring, the ring of 

endomorphisms, and the specific ring isomorphism theorem. Chapter three 

will examine more closely finite Abelian groups. Chapter three also will 

define new notation to facilitate working with endomorphisms on commut­

ative groups. Chapter four will show the method for listing the rings 

and determining which are isomorphic. The fifth chapter will give a 

few more complicated examples, and the sixth chapter is a conclusion and 

summary. 

As a general rule the set of elements of the given group will 

be represented by an upper case letter G. Rings as sets will be rep­

resented by upper case letters R with various subscripts for additional 

identification. Elements of rings on groups will be represented by 

lower case letters. Endomorphisms will be represented by upper case 

letters other than G or R. The algebraic notation (G,
+
), and {R,

+.> 
will be adopted for use throughout this report. (R,+·) is an alge­

braic structure with a set of elements R and two binary operations 

on those elements denoted by + and·. Other notation may be generated 

in the course of this report and will be specifically identified. 

DEFINITION: A homomorphism is a mapping A: G~H from a group 

G to a group H that preserves the operation of G. That is, if * and· 

are the operations of G and H respectively, then A preserves the op­

eration of G if, for all a and b in G it is true that (a * b) A ~ 

(aA) • b(A). An isomorphism is a 1-1 homomorphism of G onto H. 

[1, p.33] 
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DEFINITION: A group (G,+> is a non-empty set G = (a,b,c, ••• ~ 

together \olith a binary operation (which will be referred to as the addi­

tive binary operation) such that: 

1.	 + is closed, i.e., for all a and b in G, a + b 1s in G. 

2.	 + is associative, i.e., for any a, b, c in G, a + (b + c) = 
(a + b) + c. 

3.	 There is an identity element 0 in G such that for all a in 
G, a + 0 = 0 + a = a. 

4.	 For each a in G, there exists an inverse element -a in G 
such that a + (-a) = (-a) + a = O. 

5.	 For all a, b in G, a + b = b + a. (1, p.l~ 

DEFINITION: A group <G,+) is cyclic if there is an element a 

in G such that for any b in G there is some integer n such that b = na 

(where na means the n-fold addition of a). Such an element is called a 

generator of the cyclic group. [1,p.2~ 

DEFINITION: A ring (R,+') is a non-empty set R, together with 

two	 binary operations, called addition and multiplication and written 

+ and'	 respectively, such that for any a, b, c in R: 

1.	 a + b is in R and a b is in R. 

2.	 a + (b + c) = (a + b) + c and a • (b • c) = (a • b) • c. 

3.	 lbere is an element 0 in R such that a + 0 = 0 + a = a. 

4.	 There is (-a) in R such that a + (-a) = (-a) + a = O. 

5.	 a + b = b + a. 

6. (b + c)a = ba + ca and a(b + c) = ab + ac. [}, p.77] 

DEFINITION: An endomorphism is a homomorphism of G into G. 

[1,	 p. 33] 

DEFINITION: An isomorphism of G onto G is called an auto­

morphism. [1, p. 33J 
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il]Tlf<IT10;,: L,~t r~ and S be rin[:5, i\ r.!a~)l)inL A J~~S of l~ 

i:~ c;]]lcd :1 rin,: ];omoJ1lor:>llism if, for any x anJ y in l~. 

ex + y)A = xA + yA (x ' y)A = (Xi\) , (YI\). 

If t'ol' :UI)' s in S. xA = s for some x in R, then /\. is said to he a 

horlO;.lOn;j,i'~J;; or l~ onto S, If also, sA = yA iT'iplics ~; = y, then A is 

~lll is()n:cir!)hi~;r.l of 1', onto S, [1, p. g~) 1 

The cOLi!:mtativc property in the definition of a !;rou]1 \~as 

inclu,]('(; intention;,lly, Wlcn this J1aJlcr now identifies a group, it 

h'i11 1)c cor;flutativc hy definition, Since it has already been stated 

thot only finitc r,roups are in consi<leratioll, any group mentioned \'I1i11 

he fillite ancl Abelian, 

In this thesis the rings associated with groups will be re­

stricted to only those rings that have one clement th:1t is not a zero 

divisor. TI,e need for this restriction will become clear in chapter 

t\'W, EVCT)' rin<; is nO\~ ;lSSUlilCd to h;lve one clement that is not a zero 

divisor. 



Chapter 2 

THE RING OF ENDOMORPHISMS 

Given an Abelian group (G,+> the most obvious question is, does 

there exist at least one ring associated with it? The term associated 

is now used to mean the isomorphism between the group and the ring with 

respect to addition. The proof that there is one ring associated with 

every Abelian group is given here. 

TIIEOREM 2.1. For any Abelian group (G,+), there exists a ring 

(G,+ .> with the second binary operation defined for any x and y in 

G as x • y = 0 where 0 is the additive identity in (G,+). This ring 

is called the zero ring. 

Proof: Given any Abelian gro~p (G,+). Define a binary oper­

ation . , as x . y = 0 for all x and y in G. Since (G,+) is a group 

it is not necessary to demonstrate those properties for addition. 

1.	 For any x and y in G, x • Y = 0 and 0 is in G. 
Therefore • is closed in G. 

2.	 For any x, y, and z in G 
x • (y . z) = x . 0 = 0 = 0 • z = (x • y) • z and • is 
associative. 

3.	 For any x, y, and z in G 
(y + z) • x = 0 = 0 + 0 = Y • x + z . x; also 
x • (y + z) = 0 ~ 0 + 0 = x . y + x • z and • distributes 
over +. 

(G,+) is a ring, thus for any Abelian group there always exists at least 

one	 ring, the zero ring. It should be noted that every zero ring is sim­

ilar, differing only in the number of elements and the additive nature 

of the group. In this respect it is a trivial exercise. 

Having shown that there is one ring associated with every group, 
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it now remains to list all others. If the given group is cyclic of 

order n, then it is isomorphic to the integers modulo n°. In this case 

the integers modulo n have a multiplicative binary operation already 

defined on them, and they form a ring. This method of arbitrarily 

searching for multiplicative operations is not in order since it would 

not be known whether all the rings had been listed. 

Turning to another method, it will be sho,~ that, given a group 

(c,+), the set R of endomorphisms on that group form a ring. Accomp­

lishing that, it must be demonstrated that this ring of endomorphisms 

generates all the rings in that group. 

THEOREM 2.2. The set R of endomorphisms on a finite Abelian 

group (0,+) with operations, 

x(A G> B) = xA + xB and 
x(A 0 B) = (xA)B for all x in G, where A and B are elements 

of R, forms a ring with unity, (R, G) 0). 

Proof: To prove this it is necessary to show the five group 

properties: closure, associativity, identity, commutativity and inverse 

hold for G). Closure is the most important since the other properties 

hinge on closure for E> and the corresponding properties of (G,+). In 

addition closure, associativity and identity for 0 , and that 0 

distributes over e> , must be proved. 

To show closure for G , it must be proven that for all ele­

ments of (G,+), the image of the sum of any two elements of (G,+) is 

equal to the sum of the images. 

By definition, for x, y in G and A, B in R, (x + y) (A @B) :z:: 

(x + y)A + (x + y)B, and by the properties of an endomorphism 

(x + y)A + (x + y)B = xA + yA + xB + yB. Since xA, yA, xB and yB are 
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all elements of (G,+), they are commutative and xA + yA + xB + yB = 

xA + xB + yA + yB. By definition xA + xB + yA + yB ::: x.(A@ B) + y(A(±)B). 

The image of the sum is equal to the sum of the images. A (±) B is an 

endomorphism and e is closed. 

For A, B, and C in R, x«A (f) B) <±> C) ::: x(A <D B) + xC and 

x(A <±) B) + xC ::: (xA + xB) + xC. The elements xA, xB, and xC belong to 

(G,+> thus (xA + xB) + xC ::: xA + (xB + xC) and xA + (xB + xC) ::: 

xA + x(B @ C) ::: x(A Ef) (B E)C» and EE> is associative. 

Consider a mapping E such that for all x in G, xE ::: 0 where 0 

is the identity in G. Then (x + y)E ::: 0 ::: 0 + 0 g xE + yE and E is an 

endomorphism. For AE.R, x(E @A) ::: xE + xA ::: 0 + xA and since 0 and xA 

are elements of (G, +), 0 + xA ::: xA. E is the identity for @. 

For A£R, let x(-A) ::: (-xA) for all x in G. Then (x + y)(-A) ::: 

(-(x + y)A) ::: «-x-y)A) = (-xA) + (-yA) by the properties of an endomor­

phism. (-xA) + (-yA) ::: x(-A) + y(-A) by definition, and -A is an endo­

morphism. Then x(A~(-A» ::: xA + x(-A) and xA + x(-A) ::: xA + (-xA) ::: 

xA + (-x)A ::: (x + (-x»A = OA ::: E and (-A) is an inverse for A. 

For all x in G, x(A @ B) ::: xA + xB. xA and xB are elements of 

<r,+) and are commutative, thus xA + xB ::: xB + xA and xB + xA ::: 

x(BeA). x(A(±)B)::: x(B$A) and @ is commutative. 

Consider the operation 0. (x + y) (A 0 B) ::: «x + y)A)B by 

definition and «x + y)A)B ::: (xA + yA)B by the properties of an endo­

morphism. (xA + yA)B ::: (xA)B + (yA)B by the properties of an endomorphism, 

and (xA)B + (yA)B::: x(A0B) + y(A0B) by definition. The image of the 

sum is equal to the sum of the images, A 0 B is an endomorphism, and 

o	 is closed.
 

For all xin G, x«AQB) 0c) ... (x(A0B»C" «xA)B)C by
 



8 

I 

definition. Also x(A0 (B 0C» = (xA)(B 0C) = ((xA)B)C by definition, 

thus x((A 0 B) 0 c) = x(A 0 (B 0 C» and 0 is associative. 

Consider a mapping I: G~G, such that for all x~G, xl = x. Then 

(x + y)I = x + Y = xl + y1 and I is an endomorphism. For A£R, x(A e I) = 

(xA)I and (xA)I = xA since xAeG. Also x(I~ A) = (xI)A = xA. Therefore 

is the unity element for R. 

Finally for all x in G, x(A e (B (±) C» = (xA) (B Ci> C) by the def­

inition of 0 and closure for <±> • By definition xA(B G) C) = (xA)B + 

(xA)C and (xA)B + (xA)C = x(A 0 B) + x(A <:) C), and x(A (;) B) + x(A 0 C) ,.. 

x ~A 0 B) (f)(A G C~. Also x((A(±)B) 0 C) = (x(A(±)B»C by definition, 

and (x(A~B»C = (xA + xB)C = (xA)C + (xB)C. Thus by definition (xA)C + 

(xB)C = x(A 0 C) + x(B 0 C) = x EA 0 C) ® (B 0 C)] and 0 distributes 

over @ . 

(R ,@ G> is a ring wi th unity. 

That the ring of endomorphisms is related to each of the rings 

associated with a given Abelian group must be proved. The next theorem 

shows that every ring is isomorphic to a ring of endomorphisms on its 

own elements. The importance of this is that if a ring is isomorphic to 

a set of endomorphisms of its own elements then it is a subring of the 

ring of endomorphisms generated by the additive group of its own ele­

ments. 

THEOREH 2.3. Every finite ring (R,+ ') is isomorphic to a ring 

of endomorphism on (R,+). 

Proof: Since the additive group (R,+)is part of the ring (R, + .), 

it is possible to define mappings from R to R and use cautiously the prop­

erties of (R,+)and (R,+ '). Having defined the mappings from R to R, it 

will be shown that these mappings are endomorphisms. 
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For each a in (R, + 7define a mapping Aa : R-+R by xA = x· aa 

for all x in (R,+). For x and y in (R,+), (x + y)Aa = -ex + y) ·a, but 

since x and yare in (R,+) they are also in (R,+ .). By the distrib­

utive property of (R,+ .), (x + y)·a = x·a + y·a, x·a + y·a == xAa + yAa , 

thus (x + y)Aa = xA + yAa , and the image of the sum of any two elementsa 

of (R,+) is equal to the sum of the images. Aa is an endomorphism. 

Let RI be the set of all endomorphisms of the above form. Then 

with operations (±) and 0 as defined in Theorem 2.2., if RI is closed 

with respect to (±) and (;) , then RI is a ring (RI,(f) G» • 

For all x in (R,+) and a, b in R, x(Aa (j;) Ab) == xA + xAb = a 

x·a + x·b by definition. But for all x in (R,+), x is also in (R,+ .) 

and (R,+ .) has the distributive property. x· a + x·b == x·(a + b) == 

+xAc where a + b == cE.~, "). E> is closed in RI • 

For all x in (R,+) and a, b in (R, + "), x(Aa (::> Ab) == (xAa)Ab = 

(x.a)Ab = (x·a)·b. But for all x in (R,+), x is also in (R,+ .) and 

(x·a)·b = x· (a·b) == xAd where a·b de¢,+ .). 0 is closed in RI.I: 

Thus (RI, EE> Q) is a ring. It remains to be proven that (R, + .) 

is isomorphic to ~ I, (P) G> >. 
Define a mapping 8: R""'RI by a8 = Aa for each a in (R, + ~. 

g is clearly one to one. Since a + b is closed in (R,+ .), let a + b == 

c as above. Then (a + b)S== c9 = Ac ' but from above Aa (E) Ab = Ac and 

Aa == as and Ab == be. Thus (a + b)S = a9 + b9. In the same manner (a·b) == 

de(R,+ .) from above, and (a·b)9 == d8 == Ad. Also from above, Ad == Aa C)Ab, 

but A = as and Ab = be. Thus (a·b)9 = as • b9. The operations are pre­a 

served, and S is an isomorphism that maps R to RI • 

Every ring then can be generated by the group associated with it 

by taking the set of all endomorphisms and listing each subring where the 
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SUl): roup ,;itl! respect to Clddition is isomorphic to the given f,roup. 

']';,C reason for the re,{ui remcnt in chapter one that every rin:~ 

have at least one clement that Joes not Jivide zero should no\\' be clear. 

I II tile l'roui' 0 i' Theorem 2.3 tho r.l:lppinf', R is elcin"I}' to 1 hccaw;" of 

t:~is requirement. Supposc x/l. :: x'\" then XJ\ - Xi\ == () :mG x'a - x·b == u.a 

"" / 1 ) ,~ 11 . {R + 0> fl' . (n + 0>J:1U~) X'l,l - ) :: (I LOr:l Xlii , • I. tlere eXIsts one x In ". 

t:I:1t 1~) not a zero divisor, then a - b :: 0: and a:: h. Ii CJen clCl,leIlt 

ai' (l~. + 0> \,;ere <1 zero Ji visor. then there \wuld be no justification for 

SUtti;1~~ a - 11 equal to zero; anti the proof ,vould not be valid. 

1f eac11 e Ielilent of (R. + 0) is a zero Jj visor, is <t. + -> iso:rroypilic 

to the zero rill,!:'? Consider tile set it:: to,2,4,eJ ,"itil the Oilerations 

o!' ordin:1TY nddition :mu multiplication moJ 0. The set II docs then fa 1'1;1 

. (, + 0)a rIll r: , IZ • , 

+ 

() 

2 
4 
0 

o 246 (J 2 ,I () 
U 240 lJ U () () U 
2 400 1 

~ o 4 0 4 
,1 G il 2 4 II U () () 
(, 0 2 4 G o 4 0 4 

I\S sllOh'n in tile tables each clef,lent of \l.z,+-) is a zero divisor, 

(i'and ~\ .+0) is not isomorphic to the zero ring. 

T:1eorclIl 2.:5 would bre~lk dmm in this ins t<lncc hhen generoting 

t;l~~ cnJolllor;,hisrns in accordance to Theorem 2.:5. Usinr the iLcthou in 

Theorem 2.3 there would only be ho'O endomorphisms: the :£:\.:1'0 cndoliIOrphis];l, 

.1fld tile .::-ndm,orj'hislll that r;laps the bcnerator, 2/ of \IZ, + 0> to 4. 1\ 

set 0; t,~o clc;"cnts cannot be iSOl:lOrphic to a set uf four clclllcnts. 

Given be 1m" arc three examples Jel'lonstrating tile tllCory just 

(;~;tab 1isilclI, 
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The rin::~ of order one are a trivial but consistent eXilj,l!-.]C. 'l':lC 

,~'rOt;i1 of ordcr onc call be rcpresented hy the 

+\ :1 or-
follO\vin~ tnblc. 

There is ol,ly one en(~o1ilorphi.sr~1 on the ::roup or order (,lie, tJw Ci,1C 

/::;It ::':1]'5 () to 0, Ca]] it A, P,y definition O(A + 1\) = tJi\ + 1J1\ = 0 + iJ = 

(I ;1111; !) (A /\) = (lIA) = (O)A = (), Therefore tile only rill:; of order one 

IS t!\C' zero rins:. 

<ti _J~_ ~ ;\1;\ .AfT 
() is r.wpDcd to A isor,lolvhically and the rinr, appears 

+10 .,Iu_
oro UfO, 

There exists only one -",roup of order two [3, ]1,31)]. and th:lt 

r;roup is represented by the inte(;crs modulo;:;, 

Addition for 1/2 is given by the table 

+ () 1 
o (j 1 
lIn 

There exists t\\O entlomorrhisl:lS on 1/2. (ke is C;1 1 led ti,e zero 

;;1:)1), As \>'oultl be expected, it In:lPS each clement of 1/2 to O. The ot:1er 

is callcli the identity map, and it In:ll's each elcr.,ent of 1/2 to itself. 

The r.l:ll 111in!,s, for convenience, can be reprcsenteu in the follmving Ii1anncr 

/\ H 
0-0 u--..u 
1~0 1.--+1
 

The rin~; of enJomorphisms has the operations
 

<D
 ;\ E 0 i\ B 
;\ /\ B A A A 

A [) ,B A I3G 
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() J:l:lpS to 1\, ~nd 1 rr.~P5 to B and the ring is 

() 1+ o 1 
0 U 1 0 o 0 

1 0 1 o 1 

There arc only two rin~s of order tHO J the alJove rill(~ nnd tho 

1 

:'0 ro ri ni; , 

There arc t\W groups of order four; one is eye] ic I and the other 

is not, The cyclic ;:roup <lffords a final sif.1p1e exalnple. The cyclic 

group of orJer four is isor.lOrphic to 1/<1, and the addition table is 

+ () 1 2 3
 
()
 

1 1 2 :5 0
 
2 2 3 0 1
 
:3 :3 0 1 2
 

There are four endomorphis~1s on 1/4 

A B C D 
O--+() O~O 0----+0 0--·,.0 
1---t'O 1~1 1---+2 1_3 
2---+0 2---..,2 2~) 2-2 
3~O 3_3 3-2 3--'1 

The ring of cndomorphisms is 

e 
i\ 
L 
C 
D 

i\ r. c: u o i\ j) C 11 
A [; C II A 
[) C D A E 
C j) 1\ B C 
I) 1\ II C D 

i\ l\ A A 
A I~ C j) 

A C 1\ C 
l\ ]) C B 

Thus thero arc only t\\'o rings on the cyclic Lroll]' of orJer four, 

the zero rin;; ;mJ the ring below \."hich is isomorphic to tho ring of 

on,:oraorphisns, 

+ 10 ] 2 :3 . 
() 

1 
2 
.) 

() 1 :2 3 0 
1 :2 3 () 1 
2 3 0 1 2 
3 U 1 2 3 

o 1 2 -: 
() 0 0 0 
o 1 2 3 
() 2 () 2 
032 1
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The other 5:1'O\IP of order four is neither simple r.or cyclic, It 

',,':11 he ::ivcn ;1S an cx,u;lplc after a discussion of the !HoblcI1ls of 

notatioll Qlld isomorphic subrinf,s. 



Chapter 3 

FUNDAHENTAL THEORY OF ABELIAN GROUPS 

The background of theory is now established for the solution of 

the problem. The more practical aspects of the elements of that theory 

should be studied more thoroughly. The definitions for the binary oper­

ations, although theoretically sound, leave much to be desired with re­

gard to application. The notation for the endomorphisms is extremely 

bulky when applied. There are other practical problems regarding the 

order of the ring of endomorphisms and the actual application of the 

binary operations. 

In chapter two we denoted the endomorphisms on 1/4 in the follow­

ing manner. 

A 
O~O 

1~0 

2~0 

3-400 

B 
O~ 

1~1 

2-+2 
3~3 

C 
0---..0 
1~2 

2----t0 
3---+2 

D 
0---t0 
1--+3 
2-+2 
3--.1 

Using the definition of (t) , to add elements C and D it was 

necessary to follow this procedure. 

x(C (f) D) = xC + xD for all x in (G,+>. 
OC + OD = 0 + 0 = 0 
Ie + ID = 2 + 3 = 1 
2e + 2D = 0 + 2 = 2 
3C + 3D = 2 + 1 = 3 

Thus C (±) D is equal to the element which maps 0 to 0, 1 to 1, 

2 to 2, and 3 to 3; that element of course is the identity element B. 

Using the definition for ~, to multiply B times D, this proced­

ure was necessary. 
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x(n <:) D) = (xC)D for all x in (c,+). 
(OB)D = OD = 0 
(lB)D = 1D = 3 
(2B)D = 2D = 2 
(3B)D = 3D = 1 

Thus B0 D equals D. 

This procedure, which is sufficiently bulky for simple examples 

such as 1/4, becomes completely unmanageable for groups that are of greater 

order or are not cyclic. In the examples up to this point, the number of 

endomorphisms generated by the group have been equal to the order of the 

group. This will be untrue of examples that are not cyclic. Knowing the 

order or being able to compute the order of the ring of endomorphisms is 

important. If the order of the ring of endomorphisms is known, then the 

generation of all distinct endomorphisms on the group may be completed 

with confidence. 

Since all of the groups used to generate these rings of endomorph­

isms are Abelian, the fundamental Theorem of Abelian groups will apply. 

This theorem states that every finite Abelian group is the direct sum of 

a finite number of cyclic groups of prime power order. ~,p.39:J This 

theorem and the fact that every finite cyclic group of order n is iso­

morphic to lIn will provide the basis for the solution of these two prob­

lems. 

The proof to the solution of these problems consists of three 

parts which are of independent interest and will be given as lemmas. 

The first two lemmas are fundamental properties of commutative 

groups and will not be proved here. 

Lemma 3.1. A finite cyclic group of order n is isomorphic to 

the additive group of residue classes of the rational integers mod n. 

[2, pp.22-23] 
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Lemma 3.2. A finite group is the direct sum of a finite number 

of cyclic groups of prime power order, ~' p.39:J 

Lemma 3.3. Every homomorphism from a cyclic group A to a cyclic 

group n, where A and B are of prime power order, can be represented by 

a single non-negative integer. 

Proof: Let A be of order m and B be of order n. By Lemma 1 any 

cyclic group of order n is isomorphic to lIn; the homomorphism will be 

represented by the integer to which 1 is mapped. 

Let g be a homomorphism from A to B where 1 is mapped to b in B. 

Assume h is another homomorphism from A to B where 1 is mapped to b in B. 

Then g is the map g: l~b, 2~b2, 3~b3, • , • , n-+bn ; and h is the map 

h: l~b, 2-+b2 , 3~b3, ••• ,n~bn. Then g = h. Thus the number to 

which 1 is mapped determines the homomorphism and can be used to represent 

the homomorphism. 

If m and n in the proof of the above Lemma 3.3. are relatively 

prime, there exists only one homomorphism. That homomorphism is the 

one in which each element of A is mapped to the zero element in B. If 

m and n are not relatively prime, then they must be powers of the same 

prime by the uniqueness of prime factorization. This fact will be used 

in applying the next theorem. 

Theorem 3.1. Every endomorphism on a finite Abelian group G 

can be represented by an n-tuple of non-negative integers. 

Proof: The proof of this theorem hinges upon two facts. The 

first is that every endomorphism is dependent upon the elements to which 

the basis elements of G are mapped. The second is that each element of 

G must be mapped to an element whose order is equal to or is a divisor 

of the order of that element of G. 

Lemma 3.3. proves that each cyclic group of prime power order can 
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be represented by a one-tuple consisting of one non-negative integer. 

If G is not a cyclic group of prime power orde~, then Lemma 3.2. 

asserts that G = HI + "2 + . + H where each of the Hi for i = n 

1, Z, • • , n is a non-trivial cyclic group of prime power order. 

TllUS each Hi is a cyclic group of order mi' and by Lemma 3.1. it is 

isomorphic to I/mi' Each element of Hi is the isomorphic image of a 

non-negative integer. 

Every element g of G can be represented by an n-tuple, g = 

(hI, hZ' .•. , h ) where hi£Hi • Since Hi is isomorphic to some I/IDf,n

the integer 1 will generate each of the Hi for all i since the Hi are 

non-trivial. The set A = [p, 0, ••. , 0), (0, 1, 0, .•• , 0), 

• , (0, • • • 0, 1)] is a basis for G, that is, A generates G.• 

~, p.141] Let al = (1, 0, ••• , 0) be the generator of HI' aZ = 

(0, 1, 0, ••• , 0) be the generator of H2 , and in general ai will gen­

erate Hi and will indicate a 1 in the ith position of the n-tuple. 

TIle properties of an endomorphism guarantee that every endo­

morphism is determined by the element of G to which each element of 

the set A, the basis for G,is mapped. By showing to which element of 

G each ai is mapped, the endomorphisms can be represented by nZ-tuples 

of n sets of n integers. Each set of n integers will represent an ele­

ment to which an element of the set A is mapped. In particular the ith 

set of n integers will be the element to which ai is mapped. 

The question of the order of the element to which a i is mapped 

must be disposed of first. Each element ai of A must be mapped to an 

element of G whose order is equal to or is a divisor of the order of ai' 

If this were not the case, the result would be that the zero element of 

G would be mapped to an element other than zero. That is not acceptable 
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in an endomorphism. If ai' of order mi , is mapped to an element go = 

(gl' g2' ..• , gn)' then go must be of order mi or a divisor of mi' 

For go to be of order mi' the order of each of the gi in the n-tuple 

(gI' g2' . . . , gn) must be equal to or a divisor of mi. This is 

true since miai = 0 must imply that migo = 0, and for migo to equal 0 

the order of each of the gi must be equal to or a divisor of mi' 

A method for assuring the proper order of each of the gi must 

be provided. Consider the n2 sets of homomorphisms: H~HI' HI~H2' 

. • , HI ~llu, H2~HI' H2~12, • • • , HrHu, • , lI~III '• n 

1l~H2' • . . , P~l\t. Each homomorphism H~Hj can be represented 

by a single non-negative integer by Lemma 3.3. The n2-tuples of non­

negative integers representing the homomorphisms from Hi to Hj will 

represent the endomorphisms from G to G. These n2-tuples will be 

called ~ representations. Partition the n2-tuples into n sets of 

n integers having the same arrangement as that of the n2 sets of homo­

morphisms above. The order of the first n integers of the ~ n-tuple 

is equal to or a divisor of the order of HI' and consequently of aI' 

since they represent homomorphisms from HI to each of the Hi. Moreover 

the order of the ith set of n integers is equal to or is a divisor of 

the order of Hi' and consequently of ai' since they represent homo­

morphisms from Hi to each of the Hj • 

By the manner in which the n2 sets of homomorphisms were 

arranged, each ith set of n integers of S. is a representation of an 

element of G. Each ai in A is then mapped to the element represented 

by the ith set of n integers in Sc. Since the proper order is assured, 

each of the ~ is an endomorphism. 

Let X be any endomorphism on G, then each is mapped to ana i 
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element go = (gl' gz, ••• , gn) of G where the order of each gi is 

equal to or is a divisor of the order of ai' But each 'such gi is in 

one of the S~ representations. Thus each of the endomorphisms from 

G to G can be represented by an S~. 

When all of the qualifications concerning the order of each 

element in the S. representation and its relation to the nZ sets of 

homomorphisms are removed, Theorem 3.1. states that any endomorphism 

on a group G can be represented as an n2-tuple of elements of G to 

which the basis is mapped. This simplifies the notation by reducing 

the number of elements involved in representing the map and the use 

of integers from lIn provides a more consistent notation for all groups. 

Although the Set notation is more consistent for all examples, 

if it does not facilitate a handier method for using the binary op­

erations, it is of little value. 

Consider the S. representation of the endomorphism 

(al' • • • , an; an+1, • • • , a Z ; • • • a ( Z ,"" a 2)'n n -1)+1 n 

The first n integers represent the element to which (1, 0, ••• , 0) 

is mapped. The ith n integers represent the element to which the gen­

erator, that has a 1 in the ith position, is mapped. The operation ~ 

has been defined as x(A ID B) = xA + xB for all x in G. If the elements 

to \vhich the basis elements are mapped are known, then the endomorphic 

image of each element is known. The S4( representation provides exactly 

that information. Thus if xA is an endomorphism on (G,+), then it has 

an S~ representation, and the same is true for xB. By the manner in which 

they are arranged the elementwise addition of the S. representations in 

their relative modular settings is equivalent to xA + xB. Since xA + xB = 

x(A ® B), ID can be redefined as the elementwise addition of the S4I\ 
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representations of the endomorphisms. 

If the operation ~ can be redefined, a completely consistent 

method of dealing with the endomorphisms and the binary operations would 

be available. This would facilitate the application of any theory pre­

sented in this report. 

As before the ith n elements of the S~ representation is the 

element of (c,+) to which the generator, that has a 1 in the ith po­

sition, is mapped. The first n elements is the element of (C,+) to 

which (1, 0, ••• , 0) is mapped, but the first n elements of an S 

representation is equivalent to an element of (C,+). Thus the first 

n elements of an S~ representation can be broken down into the element­

wise multiple addition of the generators of (c,+). The first n ele­

ments of an S~ representation can be broken down in this manner, 

n1(1, 0, . ,0) +n2(0, 1,0, ••• ,0) + ••• +00(0, ••• ,0,1), 

where each of the ni represent multiple additions. But in a composite 

mapping elements of the form (1, 0, ••• , 0) must be mapped to the 

first n elements of the S representation, elements of the form 

(0, 1, 0, •.• , 0) must be mapped to the second n elements and so on 

in the general form already described. In a modular system repeated 

additions of the same element are equivalent to multiplicationin the 

modular setting. Thus composite mappings of S representations can be 

redefined in the following fashion: for Sand T elements of the ring of 

endomorphisms and S = (sl' ••• , sn; sn +1' • , s2n' 

s(n2-1) +1' • • • , S
n 

2), T = (t 1 ' • • t n ; t n + l' • • • , t 2n ; 
'l'\ 

••• , t(n2_1) + l' ••• , t 2). S 0 T = C,Lsi t(i-1)n + l' 
n 1=1 

f.Sit(i-On + 2, ••• »SitCi - l)n + n' ~sn + 1t (i-1)n + l' 
i"l "j';j i.", 
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"
, . 's "

+ .t C· 1) + n ' , , .[Sn+i t Ci-1)n+2'· • L_ n ~ ~- n 
j.u 

~SCi-1)n + 1t Ci-1)n + n)' Although complicated to represent, the 
1:/ 

operation is handled quite easily in practice. For an example, the 

n-tuples C2, 0, 0, 3) and C1, 0, 0, 1) are endomorphisms on the group 

G = 1/3 x 1/4. A convenient method for applying the new definition for 

o is 

2 0 0 3 
, 
i 1 0 0 1 

2,1 2·0 0·1 0·0 
0·0 0'1 3·0 3·1 

2 0 0 3 

The number of endomorphisms on a group (G,+) is now easy to 

compute. In the S~ representation the first element represents the 

homomorphisms from HI to HI' and there are only a finite number x 

of them. The kth element, 1~kfn2, represents the homomorphisms from 

some Hi to some Hj and there are only a finite number Xk of them, 

The numbers of the endomorphisms then is simply the product of the Xk , 

As stated before if the order of Hi and Hj are relatively 

prime, there exists only one homomorphism from H. to R., the one that 
1 J 

maps each element of Hi to the zero element of Hj . In addition if Hi 

and H are not relatively prime, they are powers of the same prime.j 

Then if they are powers of the same prime the number of homomorphisms 

from Hi to Hj is a power of the same prime. Thus the order of (G, +) 

is a factor of the order of the ring of endomorphism by prime factor­

ization. 

As an example of the representation of endomorphisms and binary 

operations, the ring of endomorphisms on 1/6 will be given. Six is not 

a power of a prime, and therefore 1/6 is the direct sum of cyclic groups 

of prime power order, 1/6 = 1/2 + 1/3. Since 1/6 HI + H2' n is 2;I: 
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and n2 is 4. Using S~ one-tuples to represent the homomorphisms, the 

n2 sets of homomorphisms are as follows: 

IlrHl Hrt'H2 H2""H1 Hz-+H2 

(0), (1) (0) (0) (0), (1), (2). 

There are six endomorphisms on 1/6, and the S~ representations are as 

follows: (0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1), (1, 0, 0, 1), 

(0, 0, 0, 2), (1, 0, 0, 2). 

The table for the additive binary operation would appear as 

+ 
0000 
1001 
0002 
1000 
0001 
1002 

0000 1001 0002 1000 0001 1002 
0000 1001 0002 1000 0001 1002 
1001 0002 1000 0001 1002 0000 
0002 1000 0001 1002 0000 1001 
1000 0001 1002 0000 1001 0002 
0001 1002 0000 1001 0002 1000 
1002 0000 1001 0002 1000 0001 

The multiplication table would appear as 

000 1001 0002 1000 0001 1002 
0000 0000 0000 0000 0000 0000 0000 
1001 0000 1001 0002 1000 0001 1002 
0002 0000 0002 0001 0000 0002 0001 
1000 0000 1000 0000 1000 0000 1000 
0001 0000 0001 0002 0000 0001 0002 
1002 0000 1002 0001 1000 0002 1001 

The isomorphism between the ring (R,(f) G) and the ring 1/6 is: 

0-+(0, 0, 0, 0), 1---+(1, 0, 0, 1), 2~(0, 0, 0, 2), 3---+(1, 0, 0, 0), 

4-HO, 0, 0, 1),5-..+(1, 0, 0, 2). Chapter four will deal with those 

groups that are not cyclic. 



Chapter 4 

IDENTIFICATION 

The remaining problems are the identification of the subgroups 

of (R,(J;) G» that are isomorphic to the given group (G,+), and the class­

ification of the isomorphic subrings. The problem of finding all of the 

subgroups of a ring of endomorphisms isomorphic to the given group is a 

difficult one. There is a solution that can be generalized. It is more 

convenient to begin with an example. Let G = C2xC2xC4 where C2 is the 

cyclic group of order two and C4 is the cyclic group of order four. The 

elements (1, 0,0), (0, 1, 0), and (0,0, 1) generate G. (1, 0, 0) and 

(0, 1, 0) are of order two and (0, 0, 1) is of order four. For the sub­

group of endomorphisms to be isomorphic to G, (1, 0, 0) and (0, I, 0) 

must be mapped to different elements of order two, and (0, 0, 1) must be 

mapped to an element of order four. In looking at the S~ representations 

of the endomorphisms to which the generators of g must be mapped, the 

individual elements of the n-tuples must be of order, or a divisor of 

order, 2, and there must be at least one element of order 2 present. 

Returning to the method in which the S~ representations were 

originated, the homomorphisms of order 2 may be counted. 

C2xC 2 C2xC2 C2xC4 C2xC2 C2xC2 C2xC4 C4xC2 C4xC2 C4xC4 

2 2 2 2 2 2 2 2 x 

The C4xC4 may be discounted, since the element (a, 0, 1) must be mapped 

to an element of order four, and all such mappings are equivalent. There 

I are 28 - 1 ways an element of order 2 may be chosen as an image of 

(1,0,0), and there are (28 - 1) - 1 elements to which (0, 1, 0) may 
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be mapped. It is most convenient to map (0, 0, 1) to (0, 0, 0, 0, 0, 

0, 0, 0, 1) of the S~ representation. There are (2 8 - 1) «Z8 - 1) - 1) 

subgroups of C2xCZxC4 , but they are not all distinct. For example let 

(1, 0, 0) be mapped to (1, 0, 0, 0, 0, 0, 0, 0, 0) and (0, 1, 0) be 

mapped to (0, 1, 0, 0, 0, 0, 0, 0, 0) then (1, 1, 0) is mapped to 

(1, 1, 0, 0, 0, 0, 0, 0, 0). If (1, 0, 0) were mapped to (1, 1, 0, 0, 

0, 0, 0, 0, 0) and (0, 1, 0) were mapped to (1, 0, 0, 0, 0, 0, 0, 0, 0), 

then (1, 1, 0) would be mapped to (0, 1, 0, 0, 0, 0, 0, 0, 0) and the 

group would be isomorphic to the one obtained first. Anyone of the 

three endomorphisms could be chosen to be mapped to (1, 0, 0) and then 

either of the remaining two could be chosen to be mapped to (0, 1, 0). 

Thus for each subgroup there are six subgroups isomorphic to it. The 

number of distinct subgroups isomorphic to G would be (Z8 - 1)«28-1)-1)/6. 

The group G = CZxC2 will be used as an example in chapter five. 

The homomorphisms of order two can be generated like this: 

CZxCZ CZxCZ CzxCZ CZxCZ 

2 Z Z Z 

There are fifteen endomorphisms that (1,0) could be mapped to and 

fourteen to which (0,1) could be mapped. But again they are arranged 

in isomorphic groups of six. The number of distinct subgroups is 

Z10/6 or 35. 

In general it is easier to arrange G = HI + HZ + . . . + H n 

such that the order of the Hi Hi +1• The set of nZ maps of H~H1' 

, H--+H will identify all of the elements to which thelIrHz' . n n 

generator of each Hi is to be mapped. The product of the number of 

mappings for each IIi is adjusted to account for the isomorphic maps 

as in the examples above will give the number of subgroups that are 
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isomorphic to (G,+). 

Examples of non-cyclic groups using the S~ nota~ion seemed to 

point up very little difference between automorphisms of a group onto 

itself and endomorphism of a group into itself. The following theorem 

gives a method for determining whether an element of (R,@ 0) is an 

endomorphism or an automorphism. Each element of the given group 

(G,+) will generate a cyclic subgroup of <G,+). 

THEOREM 4.1. An endomorphism A on (R,G) <::» is an automorphism 

if and only if both of the following conditions are true: 

(1) The order of the ith set of n integers in the S~ represen­

tation of A is equal to the order of Hi where (R,+) = HI + H2 + 

+ H· + . . . + H 
1. n' 

(2) The ith set of n integers in the ~ representation is not 

an element of a subgroup of (R.+) generated by all other ith sets of 

n integers, 1~i. 

Proof: Let A be an automorphism on (R,E£» • A is a 1 to 1 

mapping from (R,+) onto (R,+). Suppose 1 is not true. Let Hi be of 

order n, and let the ith set of n integers of A be of order k<n. The 

generator Hi generates n elements of (R,+) and thus generates n elements 

of the mapping from (R,+) to~,+>. 0 is mapped to 0 and the element of 

the endomorphism that is the ith set of n integers added k times since 

k(n is also mapped to 0 thus A is not an automorphism and that is con­

tradictory to the given condition. 

Suppose (2) is not true. Let the ith set of n integers be an 

element of the subgroup of (R,+) generated by all other ith sets of n 

integers. Since it is a group, each element of this subgroup must have 

an inverse. Since the ith set of n integers is an element of the subgroup 
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generated by all other ith sets of n integers, an clement of this sul)group 

La!S t he its invcrse, i\duin~ the i th set of n intcecrs rlnd its inverse 

1::USt equal (), Then l\ is not an <1utomorphism which is again a contra­

diction, Thus both (J) and (2) must holJ, 

Let 1\ be an endomorphisr.l and let (1) and (2) be true, Then 

C:lcll i th set of n integers of the Sit representation of 1\ generates n
i 

e lencnts of A where n. is the order of the 11., Suppose 1\ is as n to 1 
1 1 

enuol:lOTpJ1ism, Consider the kcrne 1 of the endomorphism, Some J:1uI tiple 

of the ith sct of n integers and an clement of the subgroup gencrateu 

],v ~ 11 other i til sets of n integers must lJe laappcd to zero which inui­

cates that those sets of n integers arc from the same subgroup of (R,+), 

Tl.at contradicts (2) and 1\ must bc an automorphism. 

As an example of Theorem 4,1 conshler the entlomorl'hisll1s A = 

(l,lJ,lJ,l,I,O,O,l,(J) and e = (l,u,O,U,l,O,O,O,l) on the ;roup G = 

1/2 x 1/2 x 1/2. '"ri ttcn out for all x in C; the cIH.lor,lOrphislas arc 

1\ 
,. 
I' 

(0 ,n ,(J}--.,(U,U ,0) ((I ,() , U)~ C() , U /)) 
(l,ll .0)_(1 ,D,O) (l , () I ())---(l, (I ,(J) 
((\ , 1 ,I) )__( 1 , 1 , () ) (() ,1 ,0 )--.( () , 1 : 0) 
(r),o,])~(U,l,U) (0, U, 1) --+( () ,() I 1) 
(l, 1 ,1))~(U,1 ,0) (1 • I, () )~( 1 ,1 : U) 
(l ,0, 1)~(l,1,0) (l /1, 1)----+(1 ,() ,1 ) 
(11,1 11)~(l,n:()J (D ,1 , 1)~C() ,l, 1) 
(1 J 1,1 )-.....(0 ,l) ,I») (l ,1, 1)--+(1, 1 , 1) 

In the ~,:O( ncprescnt::ltion of the c11C~or.lOrrhisJ;~ (\: tLc sccolill set 

o [ ti. -ere i ntc,r:ers is :Ii; C lcpwnt of the su1J!:rou;i r;cncl'ntecl :)y the First 

,i11(! -:::,1 ]'(: sets of t:I1'ce integers, ',!hcn the ellt:oTilorri,isn A is ':iritteii 

OliL 1'01' <111 x in (;, A is clearly seen to he a tI-:o to one clIl;o;::orjillisJ:l. 

: ot:1 eDj',.: t i OilS (l) anu en hold [or til(; elHlomorjlLisr.: ];: "nli it is., as 
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shmo111 above, an automorphism. 

All that remains is to find the isomorphic subrings. The multi­

plicative operation on the ring of endomorphisms is the common operation 

of composite mapping. The set of automorphisms of a group with an oper­

ation defined as composite mapping is a group. [3, p.109:J The identity 

of the group of automorphisms is the identity mapping, which is also the 

unity mapping of the ring of endomorphisms. The fact that each element 

of a group commutes with its inverse precipitates the following theorem 

which provides a sufficient condition for two subrings to be isomorphic. 

THEOREM 4.Z. Given a subring (S,$0) of the ring of endomorphisms 

(R,GH:» , the set T =IX: XE.~,(j) G) and X = A Q Y 0 A- l for all Y in 

(S ,GH~) , where A is a fixed automorphism in (R,G;) 0~ is a subring (T ,6;)(:» 

of (R,8)O) and is isomorphic to(S ,ID0). 

Proof: It is important to the proof of this theorem to note 

that the composite mapping of an automorphism on a group (G,+> and any 

endomorphism on (G,+) is distinct. Thus each A <::> Y <::) A- l gives a dis­

tinct element of T for each element Y of (S ,GJ 0) . 

The remainder of the proof is to demonstrate that the set T with 

the operations <±> and 0 is isomorphic to (S ,ID0) . 

Define a mapping 9: S ....T by BY = A <:) Y0 A- l for all Y in 

(S ,€f>0) where A is a fixed automorphism in (R,@0). A0 Yl 0 A- l = Xl 

where Xl is a distinct element of T, and Yl is a distinct element of 

(S ,ID0) . 

Then Q(Y l (f)yZ) = A0 (Yl(±)YZ) 0A-l = «A0Yl) (j) (A0YZ»0A­

by the distributive property of (R,(!i)0>. Also by the distributive prop­

erty «A 0 Yl ) <±) (A 0 Y z» <::) A- l = (A 0 Yl 0 A- l ) ® (A 0 Yz 0 A- l ) = 

Xl (±) XZ· 

l 
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Also 8(YI 0 Y2) = A 0 (Y I 0Y2) 0A-I = A 0 (YI 0 10 Y z) 0A-I ... 

A0 (Y I 0 A-I 0 A0y2) 0 A-I = (A 0 YI 0 A-I) (;> (A 0Y2 0A- I ) by the 

associative property and the properties of the unity element I. Thus 

(A (;) Y 0 A-I) Q (A 0 Y 0 A-I) - X 0 XI 2 - I 2· 

8 is a ring isomorphism and (T ,(J) Q) ~ ~ ,ff) Q) . 

Every set of elements T that is related to a subring (s,fJ) Q) by a 

fixed automorphism and its inverse is a sub ring of the ring of endomorph­

isms and is isomorphic to (S,f]) G) • 



Chapter 5 

EXAMPLES 

In concurrence with the notation and theory presented in the 

first four chapters, this chapter will give as examples all groups and 

rings associated with them through order eight except the groups 

G = C2xC3, G = C2xC2xC2, and C7. Some of these groups have been used 

in previous chapters but will be shown in the S~ notation. 

The group of order one has one element and one endomorphism. 

The ring of endomorphisms is 

0 (0) 
(0)~(0) (0) (0) 

There is only one group of order two, and it is isomorphic to 

the integers modulo two. The ring of endomorphisms is 

ffi (0) (1) 
(0) (0) (1) 
(1) (1) (0) (1) 

The zero rings will not be shown in each case since they are all 

similar in structure. 

There is only one group of order three, and it is isomorphic to 

1/3. There are three endomorphisms, but there are only two rings, the 

ring of endomorphisms and the zero ring. The ring of endomorphisms is 

G> (0) (1) (2) G (0) (1) (2) 
(0) (0) (1) (2) (0) (0) (0) (0) 
(1) (1) (2) (0) (1) (0) (1) (2) 
(2) (2) (0) (1) (2) (0) (2) (1) 

All of the cyclic groups are isomorphic to lIn where n is the 

order of the cyclic group. TIlat being true it would be inconsistent 

with the properties of the integers for the ring of endomorphisms to 
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generate a ring that is not isomorphic to l/n with multiplication defined 

as usual. In addition 1/3 is a field, and the ring of endomorphisms as 

expected has preserved that property. 

TIlere are two groups of order four, and both are commutative. 

The first is isomorphic to 1/4. There are four endomorphisms on 1/4, 

and the resulting ring is 

Q (0) (1) (2) (3) 
(0) (0) (0) (0) (0) 
(1) (0) (1) (2) (3) 
(2) (0) (2) (0) (2) 
(3) (0) (3) (2) (1) 

The S~ representations of cyclic groups of prime power order, as 

simple as they are, are consistent with Theorem 4.2. Since in the ring 

of endomorphisms on 1/4 the elements (2) and (0) are not of order equal 

to the order of the group they are endomorphisms and not automorphisms. 

The other group of order four is G = C2xC2 and is called the 

"four-group" or "quadratic group" or more commonly the "Klein groupo" 

[3, p.49~ The n2 sets of homomorphisms as S~ one-tuples are 

HrH1 Hr"H2 llrtH1 HrH2
 

(0)(1) (0) (1) (0)( 1) (0) (1)
 

Ibere are sixteen endomorphisms on G. They will be listed below 

and then given an alphabetic representation to preserve space. The S-, 

representations are: 

0-(0, 0, 0, 0) c-(O, 0, 1, 1) g-(O, 1, 0, 0) k-(1, 1, 0, 0) 
1-(1, 0, 0, 1) d-(1, 0, 0, 0) h-(O, 1, 1, 0) 1-(1, 1, 1, 0) 
a-CO, 0, 1, 0) e-(1, 0, 1, 0) i-CO, 1, 0, 1) m-(1, 1, 0, 1) 
b-(O, 0, 0, 1) f- (1, 0, 1, 1) j-(O, 1, 1, 1) n-(1, 1, 1, 1) . 
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The tables for the ring of endomorphisms are 

(0 0 I a b c d e f g h i j k 1 m n 
0 0 I a b c d e f g h i j k 1 m n 
I I 0 f d e b c a m n k 1 i j g h 
a a f 0 c b e d I h g j i 1 k n m 
b b d c 0 a I f e i j g h m n k 1 
c c e b a 0 f I d j i h g n m 1 k 
d d b e I f 0 a c k 1 m n g h i j 
e e c d f I a 0 b 1 k n m h g j i 
f f a I e d c b 0 n m 1 k j i h g 
g g m h i j k 1 n 0 a b c d e I f 
h h n g j i 1 k m a 0 c b e d f I 
i i k j g h m n 1 b c 0 a I f d e 
j j 1 i h g n m k c b a 0 f I e d 
k k i 1 m n g h j d e I f 0 a b c 
1 1 j k n m h g i e d f I a 0 c b 
m m g n k 1 i j h I f d e b c 0 a 
n n h m 1 k j i g f I e d c b a 0 

0 I a b c d e f k 1 m n 
0 
0 

0 0 0 0 0 0 0 0 0 0 0 0 0 
I 0 I a b c d e f g i k 1 m n 
a 0 a 0 0 0 a a a b b c c c c 
b 0 b a b c 0 a c 0 a b c 0 a b c 
c 0 c a b c a 0 b b c 0 a c b a 0 
d 0 d 0 0 0 d d d g g g g k k k k 
e 0 e 0 0 0 e e e i i i i n n n n 
f 0 f a b c e d I i j g h n m 1 k 
g 0 g d g k 0 d k 0 d g k 0 d g k 
h 0 h d g k a e 1 b I i m c f j n 
i 0 i e i n 0 e n 0 e i n 0 e i n 
j 0 j e i n a d m b f g 1 c I h k 
k 0 k d g k d 0 g g k 0 d k g d 0 
1 0 1 d g k e a h i 1 b I n j f c 
m 0 m e i n d a j g 1 b f k h I c 
n 0 n e i n e 0 i i n 0 e n i e 0 

Using the method given in chapter four there are thirty-five 

subgroups of the ring of endomorphisms that are isomorphic to (G,+). 

Of these thirty-five only thirteen are closed with respect to the 

operation 0 . Using the automorphisms to check for isomorphic sub­

rings, those that are isomorphic are: 
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(0, 0, 0,0), (1, 0, 0, 1), (0, 0, 1,0), (1,0, 1, 1) ~ 

N
(0, °, 0, 0), ( 1, 0, °, 1), (0, 1, °, 0), ( 1, 1', 0, 1) 

(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), (1, 1. 1, 1) 

(0, 0, 0, 0), (1, 0, 0, 1), (0, 0, 0, 1), (1, 0, 0. 0) 
nI 

(0, 0, 0, 0), (1, 0, 0, 1), (0, 0, 1, 1), (1, 0, 1,0) 
N 

(0,0,0,0), (1,0,0, 1), (0, 1,0, 1), (1, 1,0,0) 

(0, 0, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0), (1, 0, 1, 0) 
N 
= 

(0, 0, 0, 0), (0, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0, 1) AI= 

(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1) 

(0,0,0,0), (0,0, 1,0), (0,0,0, 1), (0,0, 1, 1) 
N 

(0,0,0,0), (1,0, 1,0), (0, 1,0, 1), (1, 1, 1, 1) 
N 

(0,0,0,0). (1,0,0,0), (0, 1,0,0), (1, 1,0,0) 

(0,0,0,0), (1,0,0, 1), (0, 1, 1, 1), (1, 1, 1,0) 

The last ring listed is not isomorphic to any other ring listed, 

and it is a field. 

There is only one group of order five. and it is isomorphic to 

1/5.[3, p.S1~ There are five endomorphisms on 1/5. The ring of endo­

morphisms is 

_ 
J. t 

I ,. , 
, - , 

, - , 
'- , 

, - , 
, - , 

, - , 
, - , 

( 4) 
, 4) 

0 
( 0 ) 

(°) (1 ) ( 2) 
( 0 ) (°) (° 

(0) (1) (0) (1) (2) 
(1) (2) (0) (2) (4) 
(2) (3) (0) (3) (1) 
(3) (4) (0) (4) (3) 
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There are two groups of order six. Only one is commutative, and 

that group was used as an example in chapter three with the S~ notation. 

The two groups are G = C2xC3 and the permutation group of three elements. 

There is only one group of order seven. It is isomorphic to 1/7, 

and it is very similar to 1/5. For that reason the ring of endomorphisms 

on 1/7 will be omitted here. 

There are five groups of order eight, and three of them are com­

mutative. [3, p.51 ] The commutative groups are G = CS ' G = C2xC4, and 

G = C2xC2xC2. Ca is isomorphic to I/a, and the ring of endomorphisms is 

+ (0) (1) (2) (3) (4) (5) (6) (7) 
(0) (0) (1) (2) (3) (4) (5) 6 7 
(1) (1) (2) (3) (4) (5) (6) (7) (0) 
(2) (2) (3) (4) (5) (6) (7) (0) (1) 
(3) (3) (4) (5) (6) (7) (0) ( 1) (2) 
(4) (4) (5) (6) (7) (0) (1) (2) (3) 
(5) (5) (6) (7) (0) ( 1) (2) (3) (4) 
(6) (6) (7) (0) (1) (2) (3) , (4) (5) 
(7) (7) (0) (1) (2) (3) (4) (5) (6) 

1) (2) (3) (4) (5) (6) (7) 
(0) (0) (0) (0) (0) (0) 
(2) (3) (4) (5) (6) (7) 

(2) (0) (2) (4) (6) (0) (2) (4) (6) 
(3) (0) (3) (6) (1) (4) (7) (2) (5) 
(4) (0) (4) (0) (4) (0) (4) (0) (4) 
(5) (0) (5) (2) (7) (4) (1) (6) (3) 
(6) (0) (6) (4) (2) (0) (6) (4) (2) 
(7) (0) (7) (6) (5) (4) (3) (2) (1) 

The group G = C2xC4 is the last example. There are thirty-two 

endomorphisms on G, and they will be listed below. Since there are 

only seven subgroups of the ring of endomorphisms that are isomorphic 

to G, it will be more convenient to look only at the subgroups and not 

the entire ring of endomorphisms. Of the seven subgroups only three 

are closed under the operation (:) • These three will be listed below. 

The thirty-two endomorphisms are as follows: 

(0) (0) (0) 
(1) (0) (1) 



will be given instead of displaying three similar tables for the operation 

The isomorphisms between the three subgroups and the group (C,+> 

(l,3) 
(0,3) 
(l,0) 
(1,1) 
(1,2) 
(0,0) 
(l,I) 
(0,2) 

(l,3) 
(l,2) 
(0,2) 
(1,3) 
(l,0) 
(l,I) 
(0,3) 
(0,0) 
(1,1) 

(l,2) 

24-0,0,1,0) 
25- (1, 0, 1, 1) 
26-(l, 0, 1, 2) 
27-(1, 0, 1, 3) 
28-(1, 2, 1, 0) 
29-(l, 2, 1, 1) 
30- (1, 2, 1, 2) 
31-(1, 2, 1, 3) 
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(1,1) 
(0,1) 
(l,2) 
(1,3) 
(1,0) 
(0,2) 
(0,3) 
(0,0) 

(1,1)0.3) 
(0,3) 
0,3) 
(0,0) 
(0,1) 
(0,2) 
(l,0) 
(l ,1) 
(1,2) 

O~(O,O) 

9--+(1,0) 
13--+(0,1) 
14--+(0,2) 
15--+(0,3) 
10--+(1,1) 
11~(l ,2) 
12.-...+(1,3) 

16-(1, 2, 0, 0) 
17-(1, 2, 0, 1) 
18- (1, 2, 0, 2) . 
19-(1, 2, 0, 3) 
20- (0, 2, 1, 0) 
21-(0, 2, 1, 1) 
22-(0, 2, 1, 2) 
23-(0, 2, 1, 3) 

(0,2) 
(1,2) 
(0,3) 
(0,0) 
(0,1) 
(l,3) 
(1,0) 
(1,1) 

(0,1) 
(1,1) 
(0,2) 
(0,3) 
(0,0) 
(1,2) 
(l,3) 
(1,0) 

0-+(0,0) 
5~(1 ,0) 
13~(0,1) 
14--HO,2) 
15 -+(0,3) 
16-.(1,1) 
7~(l,2) 

8~1 ,3) 

8- (0, 2, 0, 3) 
9-(0, 0, 1, 0) 

10- (0, 0, 1, 1) 
11-(0, 0, 1, 2) 
12-(0, 0, 1, 3) 
13- (0, 0, 0, 1) 
14-(0, 0, 0, 2) 
15- (0, 0, 0, 3) 

(1,0) 
(0,0) 
(l, 1) 
(l,2) 
(l,3) 
(0,1) 
(0,2) 
(0,3) 

1 13 14 15 2 3 4 

° ° ° ° ° 
1 ° ° ° 1 1 1° 13 14 15 13 14 15° 14 ° 14 14 ° 14° 15 14 13 15 14 13 
1 13 14 15 2 3 4 
1 14 ° 14 3 1 3 
1 15 4 14 4 3 2 

O~(O ,0) 
1-+(1,0) 

13--t(0,1) 
14-t(0,2) 
15-HO,3) 
2-}(1,1) 
3-4(1,2) 
4"(1,3) 

0.0 
(0,0) 
(l,0) 
(0,1) 
(0,2) 
(0,3) 
(1,1) 
(1,2) 
(1,3) 

01 0 

° ° 
1 ° 

13 ° 
14 ° 
15 ° 

2 ° 
3 ° 
II ° 

The tables for the operation 0 for the three subrings are 

The additive group is given once as elements of (C,+>. 

+ 
(0,0) 
(l,0) 
(0,1) 
(0,2) 
(0,3) 
(1,1) 
(l,2) 
(l,3) 

0-(0, 0, 0, 0) 
1-(1, 0, 0, 0) 
2-(l, 0, 0, 1) 
3- (l, 0, 0, 2) 
ll-(l, 0, 0,3) 
5-(0, 2, 0, 0) 
6- (0, 2, 0, 1) 
7-(0, 2, 0, 2) 

Ei). 
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0 0 5 13 14 15 6 7 8 
0 0 0 0 0 0 0 0 0 
5 0 0 5 0 5 5 0 5 

13 0 0 13 14 15 13 14 15 
III 0 0 ll. 0 14 ll. 0 14 
15 0 0 15 14 13 15 14 13 

6 0 0 6 14 8 6 14 8 
7 0 0 7 0 7 7 0 7 
8 0 0 8 14 6 8 14 6 

Q 0 9 13 14 15 10 11 12 
0 0 0 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 0 

13 0 9 13 14 15 10 11 12 
14 0 0 14 0 14 14 0 14 
15 0 9 15 14 13 12 11 10 
10 0 9 13 14 15 10 11 12 
11 0 0 14 0 14 14 0 14 
12 0 9 15 14 13 12 11 10 

All three of these subrings are distinct. 

The last group of order eight is the group G = C2xC2xC2. This 

example will be omitted due to its bulk. There are five hundred twelve 

endomorphisrns on C2xC2xC2, and there are 1241 distinct subgroups of the 

ring of endomorphisrns as well. There would be nearly one and one half 

million individual arithmetic steps to find out how many of the 1241 

subgroups were closed with respect to the multiplicative operation. This 

completes the work to be done with examples. 



Chapter 6 

SUMMARY 

Given any finite Abelian group there is always a ring, the zero 

ring, associated with it. If there are more rings associated with the 

group, they are sub rings of a ring of endomorphisms and can be isolated 

provided they are not the direct product or sum of the zero ring and 

some other ring. 

Notation has been introduced to facilitate the representation 

of the endomorphisms on the group. A method for identifying automorphisms 

among the endomorphisms has been provided. One method of identifying 

the subrings that are isomorphic has also been developed. 

There are some avenues of further study that are immediately 

apparent. The ring of endomorphisms on the group G = C2xC2 had some 

characteristics that the ring of endomorphisms on G C2XC4 did not 

have. All of the right ideals of the ring of endomorphisms on G = 

C2xC2 were isomorphic subrings associated with G. The left ideals had 

the same property. There was also a field of four elements associated 

with G. It could be fruitful to see if the rings of endomorphisms on 

a group G = C3xC3 or a group G = C2xC2xC2 or any group G = CpxCpx • . . Cp ' 

where p is a prime, had the same properties. 

It would be an interesting problem to write a program to let a 

computer do all the arithmetic on large groups. Since it can all be re­

duced to working with positive integers, it should be suitable to computer 

application. 

In chapter four a sufficient condition was given for two subrings 
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of the ring of endomorphisms to be isomorphic. One further problem would 

be to show that given two isomorphic subrings, there exists an auto­

morphism in (R,(1,) Q) that relates the two subrings as in Theorem 4.2. 



}.Hd~90I1gHl 
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Appendix 

In chapter one it was required that every ring have at least one 

clelllent that did not divide zero t The reason for that requirement and 

a simple example of the problem if that requirement were not made was 

set forth in chapter t\"o. 

The example in charter two brings out two interesting points. 

Given a ring \.;here each clement is a zero divisor; it is not necessarily 

isomorphic to the zero ring, and it is not necessarily the direct 

product of the zero ring and some other ring. It can be proved however 

that if a ring is of prime order and each element is a zero divisor, 

then that ring is isomorphic to the zero ring, 

Theorem 7,1. I f a ring, (R,+ "), is of prime order and if every 

clement of (R,+o> is a zero divisor, then (R,+t> is a zero ring. 

Proof: To prove this it must be shown that XtY = 0 for any x 

and y in R. Since (R,+t) is of prime order, each element of R generates 

(R,+). Let x be any clement of R. Since every element of R is a zero 

di visor, there must exist a nonzero element a in R such that x- a = O. 

Therefore xtna:: nex-a) = 0 for each integer n; anu since a is a generator 

of (R,+), XtY = 0 for each element y in (R,+-). Since x was chosen 

arbitrarily, this completes the proof. 

The following corollary is a direct result of 11lCorem 2.3. 

Corollary 7.2. Every ring (R,+'), with unity, is isomorphic 

to a ring of endomorph isms on (R,+). 

It can be shown that any ring (R, +-> is isomorphic to a subring 

(ll.*,+-)of a ring (B,+") that has unity. This is done by extending 
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J +') (+ ') <. +") ........R, to];, \~here I), has an ldcntlty. The ring (It, + t) is a 

subring of (1\,+") isomorphic to (R,+"), If it could be 5hO\17n that any 

ring could be imbedded in a finite ring with unity. then the material 

in chapters three and four could be useu to associate all rings with 

finite groups. 
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