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CHAPTER 1 

INTRODUCTION 

1.1. Preliminary Considerations. The objective 

of this paper is to stUdy the applications of the analysis 

of variance in experimental design and to develop the 

formula for missing values in the analysis of variance. 

According to Sir R.A. Fisher the analysis of variance is 

a convenient and powerful method of analysis for the 

research worker in the planning, design, and analysis of 

research in a variety of disciplines. l 

The other powerful technique is the analysis of 

co-variance which is now common in experimental design. 

Analysis of co-variance is a technique which combines the 

features of linear regression and the analysis of variance. 2 

Before stUdying the material of the following chap­

ters, a reader should refresh his background on t, X2 , 

and F distributions, testing of hypotheses, regression 

analysis, and the analysis of variance. 

1.2. Purposes and Assumptions of the Analysis of 

Variance. The main purposes of analysis of variance area 

1. To estimate certain treatment effects which are of 

interest. 

lA.L. Edwards, Experimental Design in Education and
 
PsycholoiY (New York, Holt, Rinehart and Winston, 1965),
 
pp. 117-18.
 

2G.W. Snedecor and W.G. Cochran. ¥tatistic91 Methods 
(Ames, Iowa State University Press, 1907 , pp. 41 
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2. To determine the accuracy of the estimates such that 

estimated variances are unbiased. 

3. To perform a test of significance by testing the null 

hypothesis that a treatment difference is zero or has 

some known value. 3 

In setting up an analysis of variance, one generally 

recognizes three types of effects, one is the treatments 

which are of interest, second is the experimental material 

in which one applies the treatments, and last is the experi­

mental errors which consider the variability during the 

experiments. 

The main assumptions of the analysis of variance area 

the treatment and environment effects must be additive, have 

common variances, and should be normally distributed. 4 

It is important before one applies the analysis of 

variance that one knows whether the assumptions required for 

the analysis of variance are satisfied or not. 

1.3. Analysis of Co-variance. The analysis of 

co-variance is another technique which may be used as an 

alternative or supplement to blocking devices of local 

control. 5 In considering a problem of 20 replicates and 

3M.G. Kendall and A. Stuart, The Advanced Theory of
 
Statistics (New York, Hafner Publishing Co. 1963-67),

vol. 3, pp. 88-118.
 

4W•G• Cochran, "Some Consequences When the Assumptions
for the Analysis of Variance Are Not Satisfied," Biometric III 
(1947), pp. 22-38. 

5E.F. Lindquist, nesifR and Analysis of Experiments

in Psychology and Education ~oston, Houghton Mifflin Co.,
 
1956), pp. 317-20.
 



3 

4 treatments, it is quite possible that after arranging 

blocking, variability may still exist, and such variability 

is not controlled by the experimental design. A remedy for 

such problems in an experiment is obtained by using the 

initial measurement (con-comitant-variable) to determine 

net value or effect of the treatment, and by using analysis 

of co-variance. 6 Another example is that of determining 

which of five teaching methods is "best", in which the 

criterion is the examination scores obtained by the students. 

However, before one jUdges the various teaching methods it 

might be well to consider the I-Q ratings of the individual 

students and thus to use the analysis of co-variance. There 

are some experimental situations, however, in which it is 

impossible or impracticable to control a con-comitant 

variable so in that situation it is good to use the analysis 

of co-variance. 

1.4. Definitions. 

Definition 1. The subject of "design of experiments" 

whether in Science, Agriculture, Industry, or sample surveys, 

tries to lay down the basic principles and design for 

collecting the data in the most economical and useful form. 

Definition 2. Random selection is a method of 

selecting sample units such that each possible sample has 

the probability of being drawn, that is, in the population 

each case has an equal chance of being included in a 

6D.B. Delury, "The Analysis of Co-variance,"
 
Biometrics (September, 1948), pp. 153-57.
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particular sample. Ready random tables, which are given in 

most of the statistics books may be used to select random 

samples. 

1.5. Organization of paper. Chapter II will repre­

sent the completely randomized design, and the problem which 

shows the idea of the homogeneity of variance, and the use 

of the analysis of variance. 

Chapter III represents the randomized block design. 

The illustrative problem shows how the assumptions of 

additivity and homogeneity of variance are satisfied. It 

also illustrates the methods for developing the formulas 

for missing observations and the analysis of variance. 

Finally, Chapter IV is most important because it 

covers the most important design, the Latin square design. 

It contains an example illustrating the method of Latin 

square design. It also illustrates how to develop formulas 

for missing values, and how to apply the analysis of 

variance. 

Chapter V is the conclusion and summation .of the 

three designs presented in this paper. 



CHAPTER II 

COMPLETELY RANDOMIZED DESIGN 

2.1. Description. The completely randomized design 

is the basic design, and all other randomized designs stem 

from it by placing restrictions upon the allocation of the 

treatments within the experimental area. The completely 

randomized design is suited only for small numbers of treat­

ments, and for homogeneous experimental material. The main 

advantage of the completely randomized design is that the 

analysis of variance remains simple with missing observa­

tions. When one can find a homogeneous experimental 

material and has a small number of treatments, the com­

pletely randomized design allows more degrees of freedom 

and so increases the sensitivity of the experiment. 

2.2. Randomization. One may be interested in the 

effect of medicine on the relief of headaches, say, Excedrin, 

Aspirin, Bufferin, and Anacin. It is assumed that a group 

of 20 people are approximately similar in average percentage 

of headaches. After selecting the 20 people four random 

samples of five people each would be drawn from the group 

of 20 people. The ready random tables may be "Used to 

select the random samples. Then the treatments are 

applied randomly to every group. Random numbers could bel 

9, 16,18,15. 12, 17, 14, 19. 6, 7, 3, 4. 10, 18, 15, 2. 

and 13, 11, 1, 5. 
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Similar procedures follow for any number of experi­

mental units and treatments. One should keep in mind that 

in the completely randomized design, different number of 

replicates can be used for the different treatments. 

2.3. Problem and Computations. For example, the 

experimenter is interested to see the effect of four medi­

cines on the relief of headaches. The randomization pro­

cedure is that given in section 2.2. The artificial data 

given in Table 2.31, are the percentage of relief of 

headaches after taking the medicines. 

Table 2.31 The Problem of Testing the Medicines on 

Headache Relief (Percentage of relief of headaches). 

Medicines Excedrin Aspirin Bufferin Anacin 

Person 1 30 

40 

71 

82 

39 

22 

50 

23 

53 

61 

59 

63 

91 

67 

69 

91 

65 81 89 49 

Total Yi. 

-Yi. 

249 

49.8 

356 

71.2 

308 

61.6 

282 

50.4 

The statistical procedures are identical with the one 

way classification of analysis of variance. Here table 2.31 

is calculated in which Yij is the observation (pain release 

after taking the medicine) of ith medicine of the jth person, 

where i • 1, 2, 3, 4 and j = 1, 2, • • • 5. :1i. is the treat­

ment mean of the ith medicine (mean of the ith column). 
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From the analysis of variance of one way classifica­

tion, the total sum of squares (total S.S.) can be parti ­

tioned into treatment sum of squares and error sum of 

squares (error S.S.), 

Total SS = Treatment S.S. + Error S.S. 

This follows from the algebraic relation 

I i (Yij - y •• )2 = I I (Yij - Yi. + Yi. - -y•• )2 
i j 

( - 2I Yij - Yi.) +.• I 
j• i 

I I <Y'i. - y •• )2 + 
i j 

2. I I (Yij - Yi.) (Y"t. - y.. ) 
i j 

• I I (Yij - Yi.)2 + k I <Y'i. - -y•• )2 
i j i 

+ 2k I (Yi. - Yi.) (Yi. - y •• ) 
i 

= I I (Yij - Yi.)2 + k I C'Yi. - y •• )2 
i j i 

The sum of squares on the left hand side is called total S.S., 

and right hand side is the combination of the treatment S.S. 

and the error S.S. 

The computations and statistical analysis for all 

completely randomized designs are similar to those of this 

problem. From the table 2.31 the total S.S. and treatment 

S.S. can be obtained and the error S.S. can be calculated
 

by subtraction, from equation above,
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Total S.S. = Treatment S.S. + Error S.S. Hence, 

Error S.S. = Total S.S. - Treatment S.S. 

The computations of problem 2.31 ares 

Total S.S. = (30)2 + (40)2 + ••• + (49)2 - (1195)2
20 

=8797.75 

Treatment S.S. = (249)2 + (356)2 + ••• + (282)2 - {l195)2 
5 5 5 20 

= 1223.75 

. Error S.S.	 = Total S.S~ - Treatment S.S. 

= 8797.75 - 1223.75 

= 7574.00 

The analysis of variance table can be prepared similar 

to the analysis ot variance table of one way classification. 

Table 2.32 is the table of analysis of variance of the present 

problem. 

Table 2.32	 ANOVT for Data of Table 2.31 

Source of 
Variation d.f. S.S. M.S. F 

Among
medicines 3 1223.75 407.91 .8617 

- Among people
within each 
group of 
medicines 

16 7574.0 473.375 

Total	 19 11,097.75
 

Before pooling the individual within lot sums of 

squares into a sum ot squares and obtaining the error S.S. 
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such as 47J.J4, one should know about the homogeneity of 

the individual variances. Bartlett's test may be 'used to 

test the homogeneity of variance. 

The formula for Bartlett's test iSl 7 

v v2X (v-l)d.f. r dfi loges2 r dfi loges i 2 
:I 

i i 

where v is the total number of treatments, and s2 is from 

error S.S., while the si2 are the individual variances. 

si2 
:I 

J(Yij - Yit 

(n - 1) 

From the table 2.Jl the si2 is computed for 

i • 1, 2, ••• , 4, and the si2,s arel 213.7, 107.20, 

9JO.8 and 641.75. Hence, 

~(J d.f.) :I 2.J026 (16 log 47J.J75 - 4(log 21J.7 + 

log 107.20 + log 9JO.8 + log 641.75)} 

= 2.J026 (16(2.6749) - 4(2.J298 + 2.0J02 + 

2.9689 + 2.8074)} 

= 5.9867. 
8

The value of )(2(.95, 3df) is 7.81.

Hence the calculated value of X 2 (Jdf) is less than 

the tabulated Jr2(Jdf) at 5% significance level and so 

the variances are not different. 

7Snedecor and Cochran, ~ 2i!L, pp. 296-98. 

8w•J • Dixon and F.J. Massey, Introduction to 
Statistical AnalYsis (New York. McGraw-Hiii, 1967)-; 
p. 465. 
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As individual si2 ,s are considered to be estimates 

of the same population variance r 2 , the generalized error 

S.S. equal to 473.375 should be used to compare treatment 

means Yi •• 

Snedecor's F test can be used to test the hypothesis. 

all means are equal. 9 

407.91 = .8617F(3,16 df) = 
473.375 

The value .8617 is less than the tabulated value of 

(F. Ol , (3,16) df) which is 5.29 and so it is highly non­

significant. Hence one should accept the hypothesis that 

all medicines are equally effective on headaches. 10 

2.4. Conclusion and Further Applications. In the 

above problem the analysis of variance shows that all four 

medicines would give approximately the same relief on the 

headaches. This is not the specific conclusion abo'ut the 

medicines (four different tablets), on the contrary this 

conclusion was made from the assumed data. 

The best advantage of completely randomized design 

is that the analysis of variance remains the same even if 

some observations are missing. 

In Analysis of Variance for unequal replication of 

treatments, the computations are slightly different. Below 

is the symbolical table 2.33 of the analysis of variance 

9Ibid., pp. 150-84. 

10Ibid. 
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for a completely randomized design with unequal number of 

observations per treatment. 

Table 2.33 The Analysis of Variance with Unequal 

Number of Replications in Completely Randomized Design. 

Source of 
Variation d.f. S.S. 

- ­

Among	 I Yf. -~ B-1	 t i t titreatments 

s s ti 

Within I ti-s I { I y2ij - y2i .} 
treatments i	 i j tT 

s :ei 
y2 _ y2 ••Total I ti-l	 I I ij 

i j sti 

For the other situation, where an experimental unit 

may be subsampled or several readings per experimental 

unit have been made, the Analysis of Variance is slightly 

different, and is discussed by Snedecorll , Cochran and 

Cox12 , and many authors. 

llG.W. Snedecor and W.G. Cochran, Stagtstical
Methods (Ames, Iowa State College Press, 195 pp. 14-127. 

l2Cochran and Cox, ~ ~, pp. 73-345. 



CHAPTER III 

RANDOMIZED BLOCK DESIGN 

J.l~ Description. The randomized block design has 

wider applications in agricultural field experiments. The 

randomized block design is useful whenever it is thought 

that a small set of trials under restricted conditions, 

believed to be uniform, will within the small set give 

better indications of differences due to treatments, than 

the completely randomized design because of great non­

·uniformity of uncontrolled or uncontrollable conditions. 

If the experimental material is not homogeneous 

(i.e. heterogeneous), then due to more variability in the 

experimental material one cannot apply the completely 

randomized design. It may be possible to group the material 

into homogeneous sUbgroups. If the treatments are applied 

to the relatively homogeneous material in each homogeneous 

subgro·up, the design is randomized block design. In 

completely randomized design no stratification of experi­

mental material is made. The treatments are randomly 

allotted to the experimental units. In randomized block 

design the treatments are randomly allotted within each 

stratum, i~e. randomization is restricted. Therefore, if 

it is desired to control one source of variation by 

stratification the experimenter should select a randomized 

block design rather than a completely randomized design. 
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3.2. Randomization. In an experiment with 25 

replicates to which one wishes to apply five treatments, if 

the replicates can be divided into five sUbgroups of five 

replicates each such that each subgroup is homogeneous, 

then one would use randomized block design. If one has the 

five blocks, 

Block I 10, 25, 1, 24, 23 

Block II 5, 7, 9, 13, 12 

Block III 16, 18, 22, 2, 5 

Block IV 3, 6, 8, 15, 19 

Block V 4, 11, 14, 17, 20 

then in each block one should randomly select one replicate 

for each of the treatments. The ready random tables may be 

used to select the replicates randomly for every block. 

3.3. Problem and Statistical Analysis. A problem 

has 25 replicates which are to be used in an experiment with 

5 replicates assigned to each of five treatments. For 

example, the firm in a particular town wants some students 

of mathematics in a field of research work. It is common 

that before they select the students from the university, 

the manager of the firm will want to perform an experiment 

which tests the general intellectual capacity of the 

students in the university. So the manager selects 25 

students randomly from the mathematics department, and he 

prepares five different tests to measure their intellectual 

capacities. In table 3.31 the score of each student is 

recorded, and the analysis of variance is performed on the 
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scores. The students are grouped according to their pre­

vious rank, so there are five groups of people (or if one 

prefers blocks of five different tests) to be applied. The 

computations are similar to the analysis of variance with 

two way classifications. 

From Table 3.31 the total S.S. and the treatment S.S. 

can be obtained similar to those for the completely 

randomized design. 

Tota~ S.S. = (25)2 + (10)2 + ••• + (13)2 - (332)2 
25= 575.04 

Treatment S.S. 
= I y2 • j 

j 
(I I YitL 

25 

= (60)2 + ••• + (86.0)2 - J332)2 
25 

== 161.06 

Block S.S. = 5 2 
y2 i • ­I - a I Yi j )

5i=l j 

25 

= (66)2 + ••• + (63)2 - (3~~12 

= 23.66 

Error S.S~	 can be obtained by subtraction. 

Error S.S.	 = Total S.S. - Treatment S.S. - Block S.S. 

= 575.04 - 161.06 - 23.66 

• 390.32 



Table 3.31 The Problem of the Randomized Block Design (Scores obtained out of 

25 maximum possible scores) 

Test I Test II Test III Test IV Test V I Yi. Yi. 

Block I 15 12 20 3 16 66 13.20 

Block II 10 1 13 19 17 60 12.00 

Block III 10 15 15 15 19 74 14.08 

Block IV 12 16 12 8 21 69 13.8 

Block V 13 17 13 7 13 I 63 12.6 

Y.j 60 61 73 52 86 

Y.j 12 '12.2 14.6 10.4 17.2 

.... 
\J\ 
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Table 3.32 is the table of analysis of variance for 

Table 3.31. 

Table 3.32 ANOVT Table for Table 3.31 

Source of Variation d. f. S.S. M.S. 

Treatment 4 161.06 35.25 

Blocks 4 23.66 5.86 

Error 16 390.32 24.40 

Total 24
 

Before one can use the t or F test, it is necessary 

to test the additivity and homogeneity of variance. If 

one has the additivity then the treatment effect will add 

a constant to the basic or control yield of each replicate. 

In the randomized block design with additivity, generally 

error variance will be constant for all normalized treat­

ment comparisons. It seems that the additivity is much 

more important than homogeneity of error, because non­

additivity will commonly produce heterogeneity of error 

and without additivity the estimates of treatment effects 

and differences is obscure. 13 

Tukey's non-additivity test can be used to see 

whether treatment effects are additive or not. 

130. Kempthorne and W.G. Barclay, "The partion of 
error in randomized blocks," American Statistical 
Association Journal, (September, 1953), pp. 610-15. 
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According to TUkey's test. the sum of squares tor 

non-additivity is given by14 

Non-additivity =0 - )f-~ Xij (xi' - x .. ) (x. j - x .. 

r (xi. - Xee)2 r (Xej - x•• )2 
i j 

With 10 degrees of freedom for this example. the computa­


tions are given in Table 3.33.
 

Non-additivity S.S. = (23.5168)2
 
(28.12)(4.69) 

= 4.18 

To test the significance. the remainder is obtained 

by subtraction. 

Remainder = Error S.S. - Non-additivity S.S. 

= 390.32 - 4.18
 

= 386.14
 

The mean square for non-additivity may be tested for 

significance by dividing it by the mean square for remainder. 

Thus F = non-additivity with (1,15) d.f. 
remainder
 

= 4.18
 
24.40 

= ~1713 

Table 3.34 is the ANOVT for the non-additivity test 

for the example. 

14Snedecor and Cochran. ~~. pp. 330-33. 



Table 3.33 Calculations for the Test of Non-additivity for Table 3.31 

Test I Test II Test III Test IV Test V Yi· - y •• 

Block I 

Block II 

Block III 

Block IV 

15 

10 

10 

12 

12 

1 

15 

16 

20 

13 

15 

12 

3 

19 

15 

8 

11 

17 

19 

21 

- _08 

-1.28 

1.52 

.52 

Block V 13 17 13 7 13 - .68 

Y-j 

Y~j 

Y· j - y •• 

60 

12 

-1.28 

61 

12.2 

-1.08 

73 

14.6 

1~32 

52 

10.4 

-2.58 

86 

17.2 

3.92 

.... 
(X) 
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Table 3.34 ANOVT for Non-additivity 

Source of Variation d.f. S.S. M.S. 

Non-additivity 1 4.18 4.18 

Remainder 15 386.14 24.13 

Error S.S. 16 390~32 

For the present example, the calculation value of 

F(1,15) is less than the tabulated value of F(1,15)' which 

is equal to 4.54 at 5% significance level. So the con­

clusion is made that non-additivity is not effected in the 

experiment or there is additivity of treatments in the 

experiment. 

One may be interested to see if homogeneity of 

variance is also present in the experiment or not. The 

same Bartlet's Test as used in section 2.3 can be performed. • 

In the present example the calculated value of 

)(2(4df) shoUld be found less than the tabulated values at 

~(.95, 4df)' which is non-significant, and so the 

variances have the homogeneity of variance. 

Now one shoUld apply the F test. The value of F 

from 3~32 is 

F(4,16) = treatment M.S. 
error M.S. 

= 35.25 
24.40 

• 1.44 
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Here the calculated value of F(4,16) is less than 

the tabulated value of F(4,16) at 5% significance level 

(3.26), so one may accept the hypothesis that all 25 

s~udents have the same I.Q. or intellectual capacity. 

The manager may conclude that all 25 students are equally 

capable of work in five different branches of mathematics. 

3.4. Efficiency of Randomized Block Design as 

compared to Completely Randomized Design. Since the block 

mean square is less than the error mean square, the present 

design is less efficient than a completely randomized design 

would have been. The efficiency of randomized block design 

as compared to completely randomized design can be computed 

by using the formula given by Federer. 15 

Federer's formula is, 

E' = B (1)
 

Here v = total number of treatments and r = total number of 

replicates or blocks. E and B are the error mean sum of 

squares and block mean sum of squares respectively. 

The efficiency of the randomized block design to 

what it would be had a completely randomized design been 

used is the ratio 

(rv-r-v+2)(rv-v+J) E' (2) 
(rv-r-v+4)(rv-v+l) E 

where E' is defined in equation (1). In this example, 

15W.T. Federer, Experimental Design (New York, 
The Macmillan Company, 1955) pp. 116-17. 
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E' = 6 + 16 (24,40) + 4(5.86) 
24 

= 23.3433 

and the ratio equal to 

(25 - 5 - 5 + 2) (25 - 5 + 1) 23.3433 
(25 - 5 - 5 + 4) (25 - 5 + 1) 24.40 

= (17) (23) (21.3433) 
(19) (21) (24.40) 

a .9373 

The relative efficiency has been estimated to be 

.9373 or 93.73%. 

3.5. Missing Observations in Randomized Block Design. 

To illustrate the missing observations effect on analysis of 

variance, and how to minimize the error S.S., one may take 

the general form of randomized block design given in 

table 3.51. 

Table 3.51 Missing Values in Randomized Block Design 

1 2 • • • n Total 

• 

• 

m 

• 

1 

2 

Total 

'"Yll 

Y2l 

• 

• 

• 

Yml 

'"Y'l + Yll 

Y12 

Y22 

• 

• 

• 

Ym2 

Y'2 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Yln 

Y2n 

• 

• 

• 

Ymn 

Y' n 

Yl. 

Y2. 

• 

• 

• 

Ym. 

y•• 

+ '9'11 

'" + Yll 
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If one supposes in the example that the Yll observa­

tion is missing then there is no loss of generality in 

placing Yll in the first row and first column. 16 

If the analysis of variance on the above value is 

calculated, the error S.S. is [
 

Error S.S. = 9211 + rry2ij - (Yi' + 911)2 + r y2i"
 
=- i:;.,=_2:;...._== 

n 

A 2 n 2 ~ + (y••(Y'l + Yll) + r Y'j + 911 )2 (3)j=2 
m nm 

The best estimate value of the missing observation 

can be found by minimizing the error S.S., i.e. by taking a 

first derivative with respect to the missing observation and 

equating to zero. Hence, 

"Error S.S, = 2911 - 2(Yl' + 911) 2(1'1 + 911)
 
J Yii n m
 

+ 2(y•• + 911 ) = 0 (4) 
mn 

by solving equation (4) the value of 911 is 

'"Yll = mYl' + nY.l - y•• 
(n-l) (m-l) 

If more than one observation is missing a similar 

procedure proposed by Yates17 can be used. 

For example, if in table 3.51 the two values, Y22 

and Y44 are missing, then the computed error S.S. is 

l6Ibid , pp. 133-34. 

l7F. Yates, "The analysis of replicated experiments
when the field results are incomplete, tt Empire Journal of 
Experimental Agriculture, I (1933), 129-42. . 
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Error s.s.· f ~ Yij + y222 +y244 - j1Y2· + 922 )2 + 

(Y4. + 944)2 + Ly2i.J - GY'2 + 922 )2 + 
n 

(Y'4 + 944)2 + r y2.] (y•• + 9 22 + 944)2
j~ ,4 :J + _ 

m nm 

A first derivative with respect to AY22 is 

II Error S,S, III 2Y22 - 2(Y2. + Y22) - 2(y. 2 + '922 ) 
J 922 

+ 2(y•• + 922 + 944) 
nm 

= 0 (5) 

By solving equation (5) the value of Y22 is 
A

Y22 =my2. + nY'2 - y•• -
A
Y44 (6) 

(nm - n - m + 1) 

Similarly by taking the derivative with respect to 
A
Y44 the equation (7) can be obtained, 

AY44 = mY4. + nY'4 - y•• - '"Y22 (7)
(nm - n - m + 1) 

By solving equations 6 and 7 simultaneously the value of 

Y44 and 922 can be obtained as given in equations (8) and 

(9) which area 

Y22 = (n-l) (m-l) (nY'2 + mY2') - mY4' - nY'4 - (nm-n-m)y" (8) 

(nm - m - n) (nm - n - m + 2) 

944 = (n-l) (m-l) (nY'4 + mY4') - mY2' - nY'2 - (nm-n-m)y•• (9) 
(nm - n - m) (nm - n - m + 2) 

By using equations (8) and (9) the missing value from the 

table 3.31 can be calculated, 
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A
Y22 = 16(59 x 5 + 5 x 60)	 - (5 x 61) -(5 x 44) - 55 x 323) 

255 

= 9520 - 5370 

255 

• 16.278 

Similarly Y44 can be obtained. 
~ 

Y44 = 16(5 x 61 x 5 x 44) - (5 x 60) - (5 x 59) - (15 x )2) 
255 

= 11.6078 

So the 
~ 
Y22 and 

A
Y44 can be replaced by the values 

16.2 and 11.6 respectively. 

Computations can be made after replacing the missing 

values by 16.2 and 11.6. The analysis of variance should be 

done similarly to the randomized block design, except the 

degrees of freedom for total and error each being reduced 

to two less than in the original design. 

If one lost the data, one should also lose the degree 

of freedom and indirectly the sensitivity of the experiment. 

3.6. Further Applications. It is not necessary 

that one must have equal number of observations per treat­

ment. If in experiments where the observations are more 

than one, or readings more than one the analysis of variance 

differs, and would be appropriate like table ).61. 
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Table 3.61. Analysis for More-than-one Observation 

per Experimental Unit. 

Source of
 
Variation d.f. S.s.
 

s 

Blocks s - 1 I y~ j. _ y2 ••• 

j tu stu 

t 2 2I y i·· - Y •••Treatments t - 1 
i su stu 

2 2 I 2
I I y ij· - I y i·· - !-:j. + 
i j u i su tu 

Error (s-l) (t-l) 

Y2••• 
stu 

u 

Sampling st(u-l) L L ~ (y2ijk - y~j.) 
Error i j 

Total stu - 1 2 2
L L L Y ijk - ~. 

stui j k 

where s is equal to the total number of blocks, t equals the 

total number of treatments and u equals the total number of 

observations per experimental unit. 

The use of sampling error is dependent upon the 

hypothesis tested and upon the assumptions made about the 

data. More detailed description and an example is given by 

Federer. 18 

18pederer, ~ £11L, pp. 120-25. 
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The method of analysis of variance when the results 

consist of data classified into two classes, has been given 

by Cochran and Cox. 19 

19Cochran and Cox, ~ cit., pp. 115-17. 



CHAPTER IV 

LATIN SQUARE DESIGN 

4.1. Description. The Latin square design has 

applications in industry, biological sciences, agriculture, 

medicine and a variety of other experimentations. By two 

way stratification the Latin square design controls more 

of the variation than the completely randomized design, 

and the randomized block design. The experiment in which 

variability cannot be controlled by randomized block design, 

like the agriculture experiment in which the gradient of 

fertility may run from either side or in different direction 

the most useful design for such an experiment is the Latin 

square design. 

4.2. Construction and Model of Latin Square. To 

construct the Latin square for Latin square design one must 

have the number of rows equal to number of columns equal to 

number of treatments. To construct the Latin square the 

first step is to write down a systematic arrangement of 

letters, then arrange rows and columns at random, and 

assign treatments at random to the letters. There are 

many methods developed for randomization of Latin squares, 

Fisher and Yates20 has given a detailed description of how 

to construct a Latin square. 

Tables for 
rNew York, 
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For a 5 x 5 Latin square one may select the Latin 

square according to Fisher and Yates. 21 In agriculture 

one may be interested to see the effects of five fertilizers 

on the production of wheat. As one does not know the 

gradient of fertility of land, the best design is the Latin 

square. It may be constructed like table 4.21. 

Table 4.21 5 x 5 Latin Square 

B 

C 

D 

E 

A 

E
 

A
 

B 

C 

o 

o 

B
 

C
 

A
 

E
 

C
 

E
 

A
 

D
 

B 

A
 

D
 

E 

B 

C 

In table 4.21 it may be noticed that a treatment 

occurs once in each row and column. 

The model of Latin square iSI 

Yijk = ,A+ ri + Bj +Tk + [ijk 

where i, j, k = 1, 2, ••• , n, is the general effect for 

all observations, Yijk is the observed value of the ith 

row, jth column and kth treatment. ri' OJ' andTk are the 

row effect or the ith observation, column effect of jth 

observation, and treatment effect of kth treatment respec­

tively. It is assumed that all assumptions of analysis of 

variance are satisfied. 

4.3. Problem and Statistical Analysis. The problem 

of an agriculture experiment in which one is interested 

21Ibid. 
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actually in finding the effects of the five fertilizers by 

looking at the effects on wheat production may be used as 

an illustration. 

It is a fact that sometimes the gradient in fertility 

may run in different directions in an agricultural field. 

One should keep this in mind, and if he does not know 

whether the agricultural field is homogeneous or not, he 

may use a Latin square design. One may construct the Latin 

square according to section 4.2. With five fertilizers. 

A, B. C. D, and B, it may be like this. 

B B D C A 

C A B E D 

D B C A E 

E C A D B 

A D E B C 

In the experiment described, the observations corres­

ponding to all entries are assumed to be those shown in 

the table 4.31. 

Table 4.31	 The Experiment of Five Fertilizers 
(Quantities in Tons) 

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 

Row 1 B (7) E (17) D (26) C (7) A (18) 

Row 2 C (27) A (27) B (5) E (9) D (13) 
Row 3 D (5) B (15) C (16) A (39) E (10) 
Row 4 E (30) C (14) A (13) D (22) B (9) 
Row 5 A (9) D (10) B (15) B (24) C (8) 
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The computations are similar to that of randomized 

block design, to compute row S.S. and column S.S., while 

treatment S.S. is slightly different. Error S.S. can be 

obtained by Bubtraction. 

Error S.S. = Total S.S. - Row S.S. - Column S.S. ­

Treatment S.S. 

As one assumed that the assumptions of analysis of 

variance are satisfied, it may be of ihterest to check that 

the non-additivity is affected or not. 

The presence of correlation between the variances 

and means of the treatments is one indication of departure 

from normality and this is likely associated with hetro­

geneity of variance. 22 

One should keep this in mind before he starts his 

computations and then apply the analysis of variance. In 

the present table 4.31 the means and standard deviations 

are computed and are equal tOI 

Means I 21.2, 12.00, 14.04, 15.2, 16.2 

S.D.·sl 10.74, 6.87, 7.17, 7.73, 7.52 

which seems, approximately, the means are proportional to 

the standard deviations. There are mathematical reasons 

why this type of relation between standard deviations and 

mean is likely to be found when the treatment effects are 

proportional rather than additive. For such a situation 

22M•S• Bartlett, "The Use of Transformations,"
 
Biometrics, 0, ··1947), pp. 39-52.
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the logarithm transformation can be used to make the 

effect additive rather than proportiona1. 23 

Table 4.32 is the "transformed to logs" of table 

4.31. 

Table 4.32 The Transformation to Logs of Table 4.31 

1 2 3 4 5 Yi •• 
Rows 

1 .85 1.23 1.42 .85 1.25 5.60 

2 I 1.43 1.43 .70 .95 1.11 5.62 

3 I .70 1.18 1.20 1.51 1.00 5.70 

4 1.47 1.15 1.11 1.37 .95 6.10 

5 I .95 1.00 1.18 1.38 .90 5.41 

Y.j. , 5.40 5.99 5.61 6.14 5.21 y••• 
28.35 

y. ·k , 6.33 5.06 5.53 5.60 5.83 

According to Tukey's equation the non-additivity test 

is performed. The Table 4.33 is computed according to 

Snedecor and Cochran, and the test is applied to see that 

the non-additivity is effected on experiment or not. 24 

The computation can be made according to table 4.33. 
A ~ - ­In that table Yijk is calculated by, Yijk = Yi •• + Y.j. + 

Y•• k - 2y.... The residual dijk = Yijk - Yljk as shown, 

23Ibid.
 

24Snedecor and Cochran, ~ cit., pp. 330-37.
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adjusting such that the sums are zero over row, column and 

treatment. In the present problem the sums are zero over 

row and column while A, 0, and E are slightly different 

which can be adjusted by trial and error methods. Adjust­

ing ) values by .03 would effect the total terms of non­

additivity little, but if the effect is considerably high 

the adjustment is necessary. For the 25 values of Vijk 

equal to ml(9ijk - m2)2 where ml and m2 are any two 

convenient constants, one may take m2 = y••• =1.33 and ml 

equal 1000 so that the values are between 1 and 100. 

Now the value of N is calculated by the equation (A) 

N = rdijk Vijk (A) 

= (-.09)(37) + ••• + (-.07)(26) 

= -2.7 

Now non-additivity is tested by. N2 
D 

where D is the error sum of squares of the Vijk which in 

the present problem is equal to 3041.67. Hence, 

N2 = (-2.7~2 
D 3041. 

= .002) 

To perform the non-additivity test the remainder terms can 

be obtained by subtracting error S.S. of transformed data 

and non-additivity. Hence. 

Remainder = Error S.S. - Non-additivity 

= 1.03 - .002) 
= 1.0277 

The error S.S. is found to be 1.0) as is shown in the next 

few pages. 
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Table 4.33 Test of Additivity in a Latin Square 

Design 

Row~
 
1 Yi Ok

A J 
Yijk
 

. dijk
 
Vijk
 

2 

3 

4 

5 

y. j. 

-Y··k 

1 

.85 

.94 
-.09 

(37) 

1.43 

-1.05 
.38 
(7) 

.70 
1.06 
-.36 

(5) 

1.47 
1.18 - .29 

(2) 

• 95 
1.17 
-.22 
(1.3) 

1.08 

1.27 
(A) 

2 

1.23 
1.21 

.02 
(6) 

1.43 

-1.33 
.10 

(39) 

1.18 
1.08 
--:TO 

(3) 

1.15 

-1.25 
-.10 
(14) 

1.00 
1.12 
-.12 

(0) 

1.20 

1.01 
(B) 

3 

1.42 
1.09 

.33 
(2) 

.70 

.99 
-.29 

(20) 

1.20 
1.10 

.10 
(1) 

1.11 
1.33 
-.22 
(39) 

1.18 
1.10 
--:oa
 

(1) 

1.12 

1.11 
(0) 

4 

.85 
1.19 -
-.34 

(3) 

.95 
1.24--.29 

(11) 

1.59 
1.36 
---:2J 
(52) 

1.37 

-1.27 
.07 

(19) 

1.38 
1.05 

.33 
(7) 

1.22 

1.11 
(D) 

5 Yi· • 

1.25 1.12 

-1.17 
-.08 

(1) 

1.11 1.12 
1.01 

.10 
(15) 

1.00 1.13 
1.07 
-.07 

(4) 

.95 1.20 

.99 
-.04 
(20) 

.90 1.08 

.97 
-.07 
(26) 

1.04 y... 
1.33 

1.16 
(E) 

jI~!' 
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The analysis of variance is performed which is 

given in Table 4.34. 

Table 4.34 The ANOVT Table for Non-additivity Test 

Source of
 
Variation d.f. S.S. M.S.
 

Error S.S. 12 1.03 

Non-additivity 1 .0023 .0023 

Remainder 11 1.0277 .0938
 

From the above table the value of F(l,ll) is eq'ual 

to .0245J which is less than the tabulated value of F(l,ll) 

equal to 4.84 at 5% significance level. The non-additivity 

should not affect the experiments. 

The analysis of variance should apply to the trans­

formed data, i.e. all computations of Latin square design 

is made from the Table 4.31. 

Total S.S. = (.85)2 + (1.43)2 + ••• + (.90)2 - (28.35)2 
25 

:I 33.61 - 32.15 

.. 1.44 

Column S.S~ :I (5.40)2 + ••• (5.21)2 - (28.35)2 
5 5 25 

:I .13 

RoW' S.S. •.(5.60)2 + • • + J5.4l)2 - (28.35)2• 
5 5 25 

II .14 
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Treatment S.S. • (6.33)2 + J5.06)2 + j5.53)2 + (5.60)2 
555 5 

+	 (5.83)2 - J28.35)2 
5 25 

• .14 

Hence, error S.S. is equal tOI 1.44 - .13 - .14 - .14 

= 1.03 

The analysis of variance is given in table 4.35. 

Table	 4.35 The ANOVT Table for the data given in 
Table 4.31. 

Source of 
Variation d.f. S.S. M.S. 

Row 4 .14 .035 

Column 4 .13 .033 

Treatment 4 .14 .035 

Error 12 1.03 .086 
-

Total	 24 1.44
 

The value of F(4,12) from table 4.35 is .41 and is 

less than the F(4,12) at 5% significance level and so the 

conclusion is that all fertilizers are equally good in 

quality in wheat production. 

4.4. Efficiency of Latin Sg"uare Design. Since the 

row S.S. and column S.S. are smaller than the error S.S. 

the Latin square design is less efficient than the completely 

randomized design or the randomized block design. The 
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efficiency of Latin square design as oompared to oompletely 

randomized design iSl 25 

!(k-l) (k-2) + 1\ ~(k-l) + 3\ fR + C + (k-l)~ 
\(k-l) (k-2) + ~ ~(k-l) + il \ (k + l)E / 

where k is equal to the total number of treatments, R, C, 

and E are the total mean sums of squares of row, column 

and error respeotively. In this problem it iSI 

(5-1)(5-2) + i\ 6(5-1) + 3\ 1.035 + .033 + (5-l).08~ 
\(5-1)(5-2) + )1"(5-1) + 1) \ (6 x .086) / 

= (11) (~) (.035 + .033 + (5-1).086\ 
15 21 (6 x .086) ) 

= .7578 or 75.78% 

As row S.S. is higher than column S.S. the efficienoy of 

Latin square design as compared to randomized block design 

(row as block) iSI 

(k-l) (k-2) + 1\ (k-l)2 + J) (R + (k-l)E) 
\(k-l)(k-2) + 3j \(k-l)2 + 1 \ kE 

which for this problem iSI 

(5-1) (5-2) + 1:\ [(5-1)2 + 3) /.035 + (5-1).086\ 
\(5-1)(5-2) + j) \(5-1)2 + 1 '\ 5 x .086 I 

= (13) (l~' (.035 + 4(.086), 
15 17/ 5(.086») 

= .86 or 86.1 

Approximately 4 replicates of the completely 

randomized design or the randomized block design is 

equivalent to the 5 replicates of Latin square design. 

25Pederer, ~ siiL, p. 163. 
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4.5. Development of Formula for Missing Experi­

mental Units. Accidents often result in the damage of an 

experiment, by loss of data. Animals may die, crops may 

be destroyed or one may miss the reading. The missing 

data destroy the sensitivity and simplicity of the 

analysis_ Fortunately, missing observations can be deter­

mined by least square methods and replaced. 

The 5 x 5 Latin square design as given in table 

4_51 may be considered. If one supposes that the obser­

vation is missing in the first row, in the first column, 

and for treatment one, there is no loss of generality if 

it is replaced by "Ylll. 

Table	 4.51 Latin Square Design (5 x 5) to Develop
the Missing Values 

Col. 1 Col_ 2 Col_ J Col. 4 Col. 5 Total 

Row 1 (A) 
1\ 

(E) (D) (C) (B) Yl·· 
" 

+ 
Ylll Y125 YIJ4 Y14J Y152 Ylll 

Row 2 (C) (B) (A) (E) (D) 
Y21J Y222 Y2Jl Y245 Y254 . Y2--

RoW' J (D) (A) (C) (B) (E) 
YJ14 YJ21 Y3JJ YJ42 Y355 YJ-­

Row 4 (E) (C) (B) (D) (A) 

Y415 Y423 Y432 Y444 Y451 Y4· -

RoW' 5 (B) (D) (E) (A) (C) 

Y512 Y524 Y5J5 Y541 Y55J Y5·· 

Total Y-l-
A 

+ Y-2· Y.J­ Y·4­ Y·5· y •• -

Ylll 
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If Ylll is missing, then residual S.S. is equal tOI 
5 

R III 92
111 + ijk y2ijk - 1 (Y1•• + Ylll)2 + I y2i •• + 

5 5 t 2 5 
(Y.l. + Ylll)2 + L y2. j • + (Y·.l + Yl11)2 + L y2.· kl + 

2 2 j 

2(y••• + Ylll)2 
(10)

(S)2 

Now, according to the least square method, one can 

take the partial derivative of r with respect to Y111 and 

equate to zero to obtain the value of Ylll. From 

equation (10) 

cI R III - ~29111 Yl·· + 
A

Ylll + Y·l· + 
A

Ylll + Y··1 
\ AJ(Ylll) + ~ 

Ylll
I

+ 
5 4(y••• + Ylll) 0 (11)III 

(5)2 

Hence by solving equation (11) 
A 
Ylll S(Yl.· + Y.l. + Y•• l) - 2y•••III 

(5-1) (5-2) 

One may generalize the formula for any missing value 

aSI 
A
Yijk =k(Yi·· + Y.j. + Y••k) - 2y••• 

(k-l) (k-2) 

where k is the total number of treatments. 

If more than one value is missing the same method of 

least square has been used. If Y333 and Y221 are missing 

in table 4.51, the error sum of squares is equal tOI 

Error S.S. =92
333 + ~221 + y2ijk - ~ {(Y3 •• A )2 ++ Y333 

A )2 2 22 ( " )2(Y22· + Y221 + Y 1·· + Y 4·· + Y S·· + Y·3· + Y333 + 
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A )2 2 2 2( Y'2' + Y221 + Y '1' + Y '4' + Y '5' + (Y"J + YJJJ)2 + 

. ( A)2 2 2 2)Y"l + Y221 + Y "2 + Y "4 + Y "5 + 
2 A A 2

---2 (y", + YJJJ + Y221) 
(5) 

By taking partial derivative with respeot to AYJJJ 

and 
A
Y221 the equations (lJ) and (14) would be obtained, 

tJ Error S,S. 2YJJJ - 2 tYJ " + y, J' + y•• J + JyJJJ + Y2211 
d(~JJJ) 

:I 

5 ~ 

+(~}2 {Y'" + YJJJ + Y221} (lJ) 

clError S,S. 2" 2 t + + + + 
~ :I Y221 - _ Y2" Y'2' Y"J YJJJ JY22~

~(Y221) 5 

(14)+ (~)2 {Y'" + YJJJ + '9221J 
The equations (lJ) and (14) are equated to zero, By 

solving equations (lJ) and (14) simUltaneously for ~JJ and 

'9221 the equations (15) and (16) have been obtained, 

""YJJJ =5(YJ" + Y'J' + Y"J) - 2y,.. + 

5'5-1)2
5-1
 

5(Y2" + Y'2' + Y"l - 2(y",)
 
(15)

5(5-1)2 
A
Y221 = 5(Y2" + Y'2' + Y"l) - 2y". + 

~25-1 

5(YJ'. + Y'J' +Y"J) - 2y", (16) 
5(5-1)2 
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Similarly the formula can be developed for any
 

missing observations by the least square methods.
 

Bartlett26 suggests the procedure of inserting one for
 

the missing values and zeros, otherwise, and performing a
 

. covariance analysis with the zeros and one as an inde­

pendent variate. If more than one observation is missing 

the same procedure is followed except a multiple co­

variance is performed. Yates27 has given the iterative 

method for estimating the yields for several missing 

values in any Latin square design. 

Analysis of variance is performed similar to Latin 

square design except for each missing datum computed, one 

degree of freedom is subtracted from errors degree of 

freedom. 

Now it one assumed that the Y22l and Y333 were
 

missing in the table 4.33, the missing values could be
 

computed from the developed formulas (15) and (16).
 

Y333 • 5(5.61	 + 5.53 + 5.70) - 2(28.35) + 
i~5-l~2

5-1 

5(5,99 + 5.62	 + 6.33~ - 2(28,35)
 
5(5-1)
 

.~+1.1 
20 80
 

= 1.78
 

26M,S, Bartlett, "Some Examples of Statistical 
Methods of Research in Agriculture and Applied Biology,"
Journal of Psycological Statistical Society, Suppl, IV, 

(1937), pp. 137-83, 

21F. Yates, "The Analysis of Replicated Experiments 
When the Field Results Are Incomplete," Empire Journal of 
Experimental Agriculture, 1,(1933), pp. 129-42. 
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Y22l = 5(5.61 + 5.53 + 5.70) - 2(28.35) + 
5(5-1)2 

5(5.99 + 5.62 + 6.33) - 2(28.35)
 
5'5-1)2


5-1
 

=.1l+~
20 ----go 

= 1.99 

The missing values YJJJ and Y22l sho'uld be replaced 

by 1.78 and 1.99, and the analysis of variance is performed 

similar to Latin square design except two degrees of 

freedoms are subtracted from total and error degrees of 

freedom. 

4.6. Summary. In the Latin square design sometimes 

experiments present more than one observation per experi­

mental unit. Federer has given an example and the analysis 

of variance for such a problem. 28 A typical problem of 

the "Bliss and Rose" experiment in Latin square has been 

given by Edward29 in his psychological research work. 

1 



CHAPTER V 

CONCLUSION 

5.1. Summary. This paper has dealt with the 

applications of the analysis of variance in three major 

randomized designs. It was shown that the Latin square 

design and the randomized block design were less efficient, 

but in some experiments they controlled more variability 

and so reduced the error variance. For example Cochran 

and Cox found the efficiency of the Latin square design 

for a specific example, relative to the completely ran­

domized design was 222% and relative to the randomized 

block design was 137%. This implies that 10 replicates of 

a completely randomized design or 6 replicates of a ran­

domized block design are rOUghly equivalent to 4 or 5 

replicates of a Latin square. 

It seems that the completely randomized design is 

the simplest one and the analysis of variance remains the 

same with unequal number of replicates for different 

treatments~ So if observations are missing, one does not 

worry about it. 

It was shown in Chapter III and IV, how to use the 

analysis of variance and select the appropriate experi­

mental design when experimental materials are not homo­

geneous. It was also shown how to develop the missing 

values and to carry the analysis of variance. The 
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problem of the Latin square design i11ustrates that the 

experiment has proportional treatment effects rather than 

additive, and so log transformation was used on the 

original data and the analysis of variance was performed 

on transformed data. 

5~ 2. S·uggestions for Further Study. Statistical 

procedures and concepts are useful in the analysis of data 

and in the interpretation of the results from an experi­

ment. A number of useful statistical tools--test of 

significance for comparisons among a set of ranked means, 

transformations for experimental data might merit further 

study. 

Also the use of the analysis of variance in other 

randomized group designs might p~ove to be an interesting 

research~ 

Also the other powerful technique, the analysis of. 

co-variance has been more popular in psychological research 

work, and the further study of its applications can lead to 

an interesting research. 
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