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- Chapter I
INTRODUCTION

After having read and studied a text in mathematics,
many students find the approach similar to studying and
reading a‘foreign'language. Quite often there seems to be
little application or utilization of the material which is
to become an integral part of one's mathematical knowledge.
Proofs are so concise, it is difficult to understand their
actual meaning or implication.

The objective of this thesis is to survey a small
area of mathematies, prove the necessary lemmas, theorems,
and corollaries in detail, and present an applicatien of
these.

Group theory is the general area which is explored.
Specifically, Sylow's theorems are presented, each proved
in detail, and followed by an application‘of the theorems.

Ludwig Sylow (1832-1918) was a Scandanavian
mathematician from Friedrichshald, Norway. Although his
three theorems are very important in group theory, little
has been written about his life, or even his contribution
to the theory of groups. If one looks through history of
mathematies texts, only once in a great while does the name
Ludwig Sylow appear. In Smith's History of Mathematics,
when speaking of great Scandanavian mathematicians, Sylew's

1



2
name is found only in the footnetes indicating that he wrote

Discours in 1902, Also0, he wrote a book with Marius Sophus
Lie on the eontributions of Niels Henrick Abel entitled
Abel [3]. Of course, Abel is the man whom abelian groups
are named after., As the material in this thesis is presented,
one will have more insight as to Sylow's contribution to
mathematics,

| When writing in group theory, one must assume the
reader has a basic knowledge of groups, Even so, Chapter II
contains those definitions and theorems which are essential
in reading this theiis. A proof of Cayley's theorem appears
as a lemma, 80 that it may be used to prove an important
theorem about simple groups.

Chapter III contains basic definitions about the

structure of groups and proofs of Cauchy's theorems. This
leads to proefs of Sylow's theorems, which is the essence of

this thesis., An application of his theorems follow in
Chapter 1V,



Chapter II
BASIC DEFINITIONS AND CAYLEY'S THEOREM

The notation used in group theory varies widely from
text to text. This chapter contains the notation used in
this thesis, while stating the basic definitions which are
fundamental in the study of Sylow's theorems. Also, there is
an important theorem proved concerning simple groups, which
is used in conjunction with Sylow's theorems in Chapter IV,
The reader may refer to Ames [1] and Herstein [5] for

general reference texts.

DEFINITION 2.1. A set G of elements is a group
under the binary operation (¢) if for all a, b, ¢ €G,
a) a . beG (Closure)
b) a* (bec)=(ae+b) e c (Associative)
¢) There exist eeG such that a * e =¢e * a = a
(Identity)
d) There exist a~leG such that a ¢ a~l =

-1

a e a==¢e (Inverse)

The binary operation in all groups considered
(including abelian groups) is denoted multiplicatively.
Furthermore, G and G* usually denote groups while H, K, and
P denote subgroups. An agbelian group is a group which is

commutative,
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DEFINITION 2,2, If H 1is a subset of group G, and
H satisfies the properties of a group under the same binary

operation of G, them H 1is a subgroup of G.

DEFINITION 2.3, If S 1is a set with n elements,
then the symmetric group of degree n, denoted by Spe 18
the set of all bijective mappings on the set S wunder the

binary operation of map composition. The order of S, is

n! [}].

Coset is now defined. Once coset is defined, we
define normal subgroup; and subsequently, define a simple

group.

DEFINITION 2.4, Suppose H is a subgroup of G
and xe¢Ge A right coset of H in G is the set Hx of
all elements of the form hx, where h¢H., Similarly, a

left coset is the set xH.

Any two right (left) cosets are either identical or
disjoint, Alsoc, the coset xH and Hx need not be equal.
For abelian groups, xH must equal Hx. For non-abelian
groups, tﬁo following example shows that xH need net equal

Hxs

EXAMPLE 2.5. Consider the symmetriec group S3. By
Definition 2.3 there are 3! = 6 bijective mappings on set
S. Let S ={x,y, z) and fj, f2, f3, f4, f5, and f¢
represent the bijective mappings as indicated below:



fls X X fzs XX f3s X2z
Yoy y-»2 y—y
Z9EL Z—Yy Z-X
f,,,s XY f5: X2 f6z XYy
Yo>x y=-Xx y—32
292 zZ-y ZX

Now, under the binary operation of map compositien,

consider the following group table:

Consider the subgrewp H, = {£, fh} « To show
xH ¥ Hx for some X€ Syr let x = f,.

xH) = {£,2), £,0,] = [f,0 ] and Hjx = [f,f,, f,f3=
£2,, rs'g . Hence, for x = f, €S, xH, ¥ H;x,

Consider anether subgroup H, = Efl' fos f63 + xH, =
§2af1s f2f5s 1263 = [Tps fys £33 and Hpx = (111, f5f5,
T62] = %20 135 £33 + Hence xH, = Hyx.

DEFINITION 2.6, A subgroup H of a group G is a
normal subgroup if amd only if xH = Hx for all x€ G, eor

equivalently, xHx™l = H for all xeG. Denote that H is
normal in G by HdgG.



In Example 2,5, H2 is a normal subgroup.

DEFINITION 2.7, A simple group is a group which has

no proper normal subgroups.

It is easily determined that for a group G, G and fe3 ,
where e 1is the identity element, are normal subgroups of G.
The set of right (left) cosets of H in G is
represented by G/H. G/H forms a group in a natural way
if H4G., The binary operation on G/H is defined by
(xH) ¢ (yH) = xyH. The group G/H is called the guotient
group [1. '
The index of G/H, or the number of distinet right

(left) cosets of H in G, is denoted by [G:tH|.
LaGrange's theorem is fundamental in Group Theory.

In this thesis, the order of a group G is denoted by #G.

THEOREM 2.8. (LaGrange®'s Theorem). If H 1is a
subgroup of a finite group G, then |[GiH[ = ;% 1.

This Theorem implies that the order of a subgroup H
of a finite group G must divide the order of G, and the
quotient fill yield the number of distinct right (left)
cosets of H In G, or the index of H in G,

DEPINITION 2,9. A homomorphism is a mapping f from
a group G inte a group G* such that f preserves the

group operation. That is, if x, y€G, then f(x)f(y) = f(xy).

DEFINITION 2,10, An isomorphism is a homomorphism
which is bijective.
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DEFINITION 2.1l. The kernel of a homomorphism f from
G to G' is the set of elements in G that are mapped to the
identity element in G'« The kernel of f, denoted by ker(f),
is a nornﬁl subgroup ef G [1].

With the preceding terminology and background, the
first important theorem of this thesis is now established.
Two lemmas prepare the way.

Cayley observed that every finite group G could be
realized as é subgroup of Sn where n is the number of
elements in G. This actually states that every group is

isomorphic to a group of mappings.

LEMMA 2,12, (Cayley's Theorem). Every group G is
isomorphie to a subgroup of Sp» where n is the number of

elements in G,

Proof:s Suppose G 1is a group. For each g¢G
define a mapping og: GG by eg(x) = gx for every Xx€ G.

For ycG, y = ey = (gg71)y = &(g~ly) = 6.(g"1y).
Hence, 85 is surjective.

Let og(x) = eg(y), then gx = gy which implies x = y.
Thus, 6g is 1njective.

Hence, for each ge€G, Gg is bijective and thus,
0g € Spe

. Now, consider g, h ¢G where gh€ G and egh' Ggh(x) =

gh(x) = g(hx) = eg(hx) = eg(oh(x)) = egeh(x) or equivalently,
6gn = 8gBhe Define a mapping g1 GOS, by f(g) = 8,. £ is

£
a homomorphism because 6,y = 6,6, . That is, #(g)f(h) =

g
840y = 85 = #(zh).
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Let mecker(f). f(m) = 6, and 6, must be the identity
maps Thus 6y(e) = e. But 6,(e) = me = m. Hence, m = e,
Therefore, ker(f) = (e}, and thus, # is injeetive [1],
This implies that # is an isomorphism of G onto

some subgroup eof S,3 thus, proving our theorem.

In Cayley's theorem, the size of Sh in cemparison to
the size of G 1is quite large., If the order of G equals
n, then the order of Sn is n!. Thus, the problem new is to
find a set S, which is smaller than G, to reduce the size
of S,e The follewing lemma defines the appropriate set 5,
and also yields valuable 1nfornatign about normal subgroups

of G.

LEMMA 2.13., Suppose G is a group, H is a subgroup
of G, and S is the set of all left cosets ef H in G.
Then there is a homomorphism o of G Iinto Sn where
n is the number of distinet left cosets, é.nd the kernel of
< is the largest normal subgroup of G which is contained
in H.

Proof: Let G be a group, H a subgroup of G. Let
S denote the set of all left cosets of H in G, Define
a mapping 7T for each ge¢ G, Tgt S5 by ’Z’g(x}{) = gxHe.

Using the same argument as in Cayley's theorem, one can show
‘g
mapping % 3+ G-S, is defined by X(x) = Tys % is a

Ten -?gzh. and hence, T ¢ S for every gé¢ G. Thus, if a

homomorphism.



Now let K = ker(x ), If méK, then <X(m) = T,
Thus, 7, is the identity map. Hence, C,(xH) = xH for
every x €G. But Cp(xH) = mxH by the definition of Tae
This shows that xH = mxH for every x¢€¢ G, Therefore,

K = EmGG I xH = mxH for all xéG} « K 1is a normal
subgroup of G because the kernel of a homomorphism is a
normal subgroup of G [1].

To show that K is contained in H, suppose b €K,
Thus, xH = bxH for all x €G. In particular, H = eH = beH =
bH, whence bBEH and KcCcH,

To show that K 1is the largest normal subgroup of
G in H suppese J 1is a normal subgroup of G which is
contained in H, To verify JCK, let jeéJ and g¢ G and
since Ja G, g'ljg €J. But JcH, }so g~ljgH = H which
implies jgH = gH. And hence, by the above characterization
of K, JeK. Thus, JcK.

This proves that K 1is the largest normal subgroup
of G whieh is contained in H.

With the above two lemmas, the first theorem of great
importance in this thesis is now established.

THEOREM 2.,1%, If G 1is a finite group, and H ¥ G
is a subgreup of G such that #G does not divide |GiH] !
(or #G TlGsH] 1), then H must contain a nontrivial normal
subgroup of G. Hence G 1is not simple.

Proofs ©Suppose G is a group and H 1is a subgroup

of G such that G ¥ H. Consider the following three cases:
[Gar{ t = #a, [GiH| 1< #G, and [GiH| ! Y#G.



First, if |ciH|! =

which contradiets the hypot o
sH|1 < #G. I#% 8 be the
¢ as in Lemms 2.13. It
(x as deﬁnglih Lemma 2.13)
were an fsémorphism, then
ents. SineiﬁESh = |GiHl ! < #G,

Secondly, suppose t
set of all left cosets of
is now shown that the mappi
cannot be an isomorphism. /
*(G) would eontain #¢
(This 48 clear because

« (G) cannet be a subgr S

n®
x (G) would contain more . jlements than "1‘3;).

Therefore, o is ‘%f"“injective and, hence, ker (&)
must be larger than {cff. From Lemma 2.13, the kernel of
& is the largest normf%&bgroup of G which is contained
in H., Henee, H eenﬁins a nontrivial normal subgroup
of G. _ |

Finally, consider |GiH[!> #6. If #ct/csH[!,
then by LaGrange's theorem, Sp doee not contain a subgroup
of #G. This implies that S, has no subgroups isomorphic to
Go But «(G) 1is contained in S , and since < (G) cannot
be isomorphie to G, o is not an iéomorphism. Hence, as
above, H contains a nontrivial normal subgroup of G.

Therefore, G cannot be simple, for in all cases,

H contains a nontrivial normal subgroup of G.



Chapter III
SYLOW'S THEOREMS

The objective of this chapter is to prove Sylow's
three theorems. Although they will be designated as three
individual‘theorems in this thesis, many texts combine them
into a single theorem. Regardless, whether they are written
as one or three, the same conclusions are obtained.

Definitions concerning the structure of groups shall
be necessary in eséablishing Sylow's theorems. Proofs of
Cauchy's theorems follow these frequently used definitions.
Cauechy's theorems are the basis for the proof of Sylow's

first theorem.

DEFINITION 3.1. 2(G), the center of a group G, is
the set of all elements of G +that commute with every other

element of G,

LEMMA 3.2. 2(G) 1is an abelian nermal subgroup of

¢ [1].

Every group G has a center, because ec¢ Z(G) for

all G, If G 1is an abelian group, G = Z(G).

DEFINITION 3.3. The normalizer or centralizer of

ac€G, is the set of all elements of G that commute with a.

Thus, if a <G, the normalizer of a is the set N(a) = x| x¢G,
xa = ax3 .
11
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LEMMA 3.4, N(a) 1is a saubgroup of G [5].

DEFINITION 3.5 Two elements x and y eof a grouwp
G are conjugate if there exists 2z € G such that zyz'l = X,

Conjugac’y is an equivalence relation. This can be
shown in the following manner.

Write x~y to denote y 1is conjugate to x.

To show ~ 1is reflexive, consider z = e, Then
exe !l = x; and thus, x~x,

For symmetry, if x~y there exists 2z ¢€G such that
zyz'l = X, But thia; implies y = 2~ 1xz, Thus, y~x, and
hence, ~ is symmetric.

Finally, if x~y and y~gz, for some a, b€G,
aya.'l =x and bzb ! = y. Hence, a(bzb~1l)a~l = x =
ab(z)b'lo."l = ab(z)(ab)'l which implies x~z, Therefere,
~ is transitive,

Since conjugacy is an equivalence relation, it
partitions a growp G inte equivalence classes that are
called conjugate classes. A conjugate class containing

X € G, consist of all elements of G that are conjugate to x.

LEMMA 3.6, For x€G, x is the only member of its
conjugate elass if and only if x¢€¢2(G) [1] . |

One may conclude from the contrapositive of the abeve
lemma, that if x¢Z(G), then the conjugate class containing
x contains more than a single element.

If one selects a representative x from a conjugate
elass, then /GIN(I)I is the number of elements in that
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conjugate class., Thus, if a representative is seleected from
each distinet conjwgate class, then the total number of

elements in all conjugate classes is = [GiN(x)| , where
X €R

R is the set of representatives. Hence, #G = —= |GiN(x)|
xR

Now observe that if x€2(G), them N(x) = G, Thus,
the number of elements conjugate te x is [G:G| = 1.

An important equation is now derived frem #G = = /GiN(x)]
xc R

Since x €2(G) implies |GiN(x)[ = 1, ome may write #G = #Z(G) +

7 I)GsN(x)I This equation is called the class equation.
x¢ Z2(G

For simplicity in f&llowing proofs, the class equation may be

written as follows:

#G = #2(G) + ;L(—y

x ¢ Z(G)

LEMMA 3.7, If G is finite and has no nontrivial
subgroups H, then G is cyelic and of prime order.

Proof: Suppose gc¢G, g ¥ e, and {g)> = fg, &2, 834 cees
g = 03 where n is the smallest power such that gn = e,
<g> is eyelic and a subgroup of G. But by the hypethesis,
G has no nentrivial snbgroups; thus, <g7” = G, and hence G
must be eyclic. If n is prime, then #G 1is prime. If n
is not prime, then g" = g®P = (gm)p = e, Thus, #eg®> = p.
But by the hypothesis, <g®)> = G, Henece, # (g™ = #G = p.

In 1844 A.L. Cauchy proved that if p divides the
order of a finite group G, then G contains an element of
order p. Although E, Galois first stated the theorem, Cauchy

was responsible for the first proef.
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p will denote a prime number hereafter,

LEMMA 3.8. (Cauchy's Theorem for Abelian Groups).
Suppose G is a finite abelian group and p divides
#G(p | #6). Then there is an element a¢G (a ¥ e) of erder
Pe

Proof: Proceed by using induction on the order of G.
For #G = 1, the theorem is vacuously true.

Assume the theorem is true for all abelian groups H
such that #H is less than #G. Consider two cases: G
does met centain a montrivial subgroup and G contains a
nontrivial subgroup.

First, suppose G does not contain a nontrivial
subgroup., Then by Lemma 3.7 G is of prime order and must
be cyelie, If this prime order is p, them G contains
P-1 elements of erder p.

Second, suppose H 1is a nontrivial subgroup of G.
Consider two cases: p |#H and p[#H. If p /| #H, by the
induetive hypothesis, there exists xc H (x ¥ e) such that
xP = e, Thus there exists bEG of order p, since H is
a subgroup of G. Now assume that p7 #H. All subgroups of
abelian groups are nmormal, thus H< G and G/H 1is a gqueotient
group. Sinece pT#H, p/ ﬁ% = |GiH| < #G. G/H 4is necessarily
abelian since G is abelian, and by the induective hypothesis,
there exists Hx ¢G/H (Hx ¥ H) such that (Hx)P = HxP = H.
Phus, xPé& H; and hence, (xlb)#H = @ = (x#H)p. Therefore, xH

is the desired element of order p, providing x#H ¥ e,
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If x#H = ¢, then (Hx)#H = Hx#H = H, And since
HxP = H, HX'D = HxP, Thus, #4 = p, or is a multiple of p.
Either way, p/ #1 which contradiets the assumptien of case
two., Thus, xH ¥ e, and x#H is the desired element of order

Pe

LEMMA 3.9. (Cauchy's Theorem)., Every finite group
whose order is divisible by a given prime p, must contain
an element of order p.

Preof: Proceed by induction on the order eof G,
For #G = 1, the theorem is trivially true. Assume the
theorem iz true for all groups H such that #H 1is less
than #G.

Consider two cases: p divides #H (H a proper subgroup
of G), and p does not divide #H (H a proper subgrouwp
of G).

FPirst, suppose H 1is a subgroup of G, H ¥ G. Let
P be a prime sueh that p |#H. By the indwctive hypothesis,
H contains an element of order p; thus, G also contains an
element of order p.

Secondly, consider the case where p does not divide
the order of any proper subgroup of G. Fer x€G, x¢2(G)
implies N(x) # G. Hence, p [ #N(x) which implies p '#E%%T .

It follows that p | ¢Z(-) ;ﬁ% . Phus, considering the
x€Z(G

class equation, since #G = #Z(G) + ;—%—y
x¢z(g) ™K

G
#G - xéz(c)ﬁz;y = #2(G). Hence, p'#G- 2 ﬁ%x—y

x¢Z (&)
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implies p| #2(G)e P I#Z(G) implies 2(G) is a subgroup
of G that is divisible by p. Since p dees not divide
any proper subgroup of G, Z(G) = G. Therefore, G is
abelian, If G 1is abelian, Lemma 3.8 may be applied; and

thus, G contains an element of order Po

Approximately thirty years after Cauchy's proofs,
Ludwig Sylow gave lectures on groups in Christiania, Norway.
He was actually extending the theorems of Cauchy. It was

here that he introduced his three theorems,

THEOREM 3.10. (Sylow's First Theerem). If p 1is
a prime number and p~ divides #G, then G has a subgroup
of order p“ .

Preof: Suppose G is a group of order n, Now
consider n = ﬁ“r. where r 1is not divisible by p. That
is, < is the highest power of p +that divides #G. G
contains a subgroup of order p for eaeh 0< B £ <,

To establish this, induction on the order of G 1is used.

If G has no proper subgroups, then G is either
trivial er of prime order. If G = fe3, there is nothing
to prove; If G 1is of prime order, the theorem is
satisfied,

Assume that every group of order less than #G has
the required subgroups as stated in the theorem. Now
consider two cases: p 1is prime to the index of some
proper subgroup of G or p divides the index of every

proper subgroup of G.
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Case Is Swuppese H 1is a proper subgroup of G
and pTIG:Hl. That is, #H = pds where pfs. Thus,X is
the highest power of p that divides #H. By the induetive
hypothesis, H has subgroups of order p” for each 0</F= %,
since #H is less than #G. Hence, if a subgroup of order
pp i_s a sibgroup of H, it is also a subgrouwp of G. There-
fore, the theorem is true in case 1I.

Case II: Suppose p divides the index of every
proper subgrouwp of G. For g€ G, N(g) is either a proper
subgroup ef G or N(g) =G, If N(g) is a proper subgroup
6f G, the number ef elements conjugate to g is [GiN(g)/ .
But ]Gm(g)f = pt since p divides every proper subgroup
of G If NK(x) =G, then x€2Z(G).

Now, uzing the class equation, #G = #Z2(G) + ¢2( )lG:N(g)l,
g€ Z2(G
make the follewing substitutions. Let m = #2(G), and since

l6iN(g)| = pt, let Z|GiN(g)]= pt'. Thus, by substitutien,
p*r = m+ pt's Therefore, p must divide m,

Hence, Z(G) is an abelian groaup whose order is
divisible by p. Thus, by Cauchy's theorem, Z(G) has an
element of order p. Let x Dbe the element of order p.
The cyeclic group (x) generated by x is a subgrowp of G
of order pes It is also a normal subgroup of G, since
x €Z(G),

Let <x” = N, Consider the group G/N. The order
of G/N is px-lr; hence, we may apply the inductive
hypothesis. That is, G/N has subgroups of order pﬂ -1

for each 0< A< X, This produces the necessary subgroups
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for each A such that 0< #<«_], Let the subgroups of
G/N be of the ferm A/N for some abelian subgroup A of
G that contains N, If the order of A/N is pB'l then
#A 1is A, Thus, since there is a subgroup of order p< I,
there is a subgroup of order p“&

Hence, the theorem is true in case II.

Another series of definitions and lemmas are required

to prove Sylow's secend and third theorems.

DEFINITION 3.11. A p-group is a group in which the

order of every element is some power of po.

LEMMA 3,12, A finite group G 1is a p-group if and
oenly if its order is a power of p.

Proef1 If G 1is a p-group, then for a prime q ¥ p,
q cannot divide the order of G. (That is, if gq | #G, then
G must contain an element of order q by Cauehy's theorenm,
But since G 1is a p-group, the order of all of its elements
must be some power of p.) Thus, the order of G 1is a power
of p.

Conversely, if the order of G 1is a power of p,
then G must be a p-group, because the order of all elements
of G must divide the order of G. Hence, the order of the

elements ef G must be a power of p.

DEFINITION 3.13. A p-subgroup of a group G 1is a
subgroup which is a p-group.
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DEFINITION 3.1%. A p-subgroup of G is a Sylow
p-subgroup if its order is the higheat power of p that
divides #G.

For example, if #G = 72 = 23 « 32, then G has
p-subgroups of erder 2, 22, 23, 3 and 32. But only the
2-subgroups of order 23 and 3-subgroups of order 32 are

Sylow p-subgroups.

DEPINITION 3.15. Two subgroups H and K of G
are conjugate subgroups if K = g'ng for some géG. It
can also be sald that K 1is conjugate to H in G.

If H and K are subgrenps.af G, then the set
KH of subgroups conjugate to H in K, are those subgroups
X such that X = kHk™l for some ké€K. Ky =£X | x 1is
conjugate to H in K3 ={Xx[X = kHx"1, kek3 .

A gself-conjugate subgroup H in G 1is a subgroup
where xHx~l = H for some x¢ G, Hence, all normal sub-

groups are self-conjugate,

DEFINITION 3.16. The normalizer N(H) of a subgroup
H of G are those elements of G +that commute setwise
with H. That is, N(H) = {x€G [xH = Hx] . (xh does not

necessarily equal hx.)

The normalizer of a subgroup H contains H; there-
fore, it always contains the identity element. Also, N(H)
is a subgroup of G [1].
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LEMMA 3417 If H and K are subgroups of a group
G, then the number of distinet subgroups conjugate to H
in K is [K: KNN(H)| .

Proof: Consider K/NN(H). K and N(H) are subgroups;
thus, KN N(H) is a subgrowp of K. Let f# be the mapping
that takes each conjugate subgroup of H in K inte the
set of cosets of K/IN(H) imn K. That is, for each k¢K,
#(xHx™1) = x(KNN(H)).

Suppese #(k,Hk]') = f(k,Hk3%). Thus k (K/AN(H)) =

ky(KNN(H)) which implies that k11k26N(H). But kil
1

k2 EN(H)
implies klﬁki = szkgl. Therefore, # is injective. Also,
the mapping is obviously surjective; hence, # is bijective.
Since # is bijective, the number of distinet subgroups

conjugate te¢ H in K is IK: xnn(n){ .

LEMMA 3.18, If H 1is a p-subgroup of G and P
is a Sylew p-subgroup ef G, then HNN(P) = HNP,

Proof: Since P 1is contained in its nermalizer
N(P), HNP< HN N(P).

Let K* = H/IN(P)e H* is a p-subgroup of p-greup
H and also a p-subgroup of N(P). P is a normal subgroup
of its normalizer N(P). Thus, by the second isemorphism
theorem {1], H*/H*N P is isomorphic to H#*P/P.

Therefore, since the order of H*/H*NP is a power
of p, H*P/P 1is a power of p. Hence H*P is a p-subgroup.
This implies PCH#*P, but since P is the maximal p-subgroup
of G, P = H*P,
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H*P = P implies H*C P, and since H*CH, it follows

that H*C HNP. But H/PCH*, Therefore, H* = HNP; and
hence, HNP = HNN(P),

COROLLARY 3.19. If H 1is a p-subgroup of G and P
is a Sylow p-subgroup of G, then the number of distinct
subgroups ecenjugate to P in H, is [H: HANP|.

Proof: This follows directly from Lemma 3.17 and
Lemma 3.18,

LEMMA 3.20. If P 1is a Sylow p-subgroup of G, then
every p-subgreup of G is contained in some subgroup con-
jugate to P in G.

Proofs Suppose H 1is a fixed p-subgroup of a group
G whose order is divisible by the prime p, and P is a
Sylow p-subgroup of G. Gp = fx|X is conjugate to P in G} =
(X)x = gPg~l for seme gcGJ.

Define an equivalence relation on GP as follows:
X;~X, if X, = hX,h™' for some h¢H. For e = h,
X, = eX,e”l, thus, X;~X,. If X;~X,, then X; = hX;h”’
for some h¢ H, but this implies h'lxlh = X. Hence, X,*~X;.
If X)~X and X,~X,, then for some h;, hy €H, X; = hjXph)
and X, = hyXjar'. Thus X; = hy(hpX;hzhingl = nyn xsnilait
Hence, x1~x3. Therefore, ™~ is an equivalenece relation.

Now, ~ partitions GP into "H-conjugate classes”,
For any particular X éGP, the number of subgroups conjugate
to X in H is [Ht HNN(X)| = [Hi HAX/. Also, the

number of subgroups cenjugate to P in G is [Gi1 GN N(P)l =
|cs N(P)] .
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But, the number of subgreoups conjugate to P in
G may also be represemted by >|HiHN x] where the summation
is taken over the distinet "H-econjugate" (equivalence)
classes, Henee, [GiN(P)| = 5 |HsHNX| . Each entry in
the summation must be a power of p eor one., (That is,
since H 1is a p-subgrowp, [}mmx} is a power of p
unless H = X +then |[HsHNX| = |HsH[ = 1.) Sinee P 1is a
Sylow p-subgroup and p does not divide }'G:N(P)[ , at
least ome of the entries in the summation must be one. Hence,
HNX = H for some X¢E Gpe

Therefore, HEX = ng'l for some g€ G,

THEOREM 3.21. (Sylow's Second Theorem). Any two
Sylow p-subgroups are conjugate,

Proofs If P 1is a Sylow p-subgreup of G and H
is a p-subgroup of G, then by Lemma 3.20, H is contained in
some subgroup cenjugate to P in G. That is, HC X where
X€Gp = {Xl X = gPg~!l for some gecG3. Now let H be
an arbitrary Sylow p-subgroup. Hence, #H = #X sinece H
and X are both Sylow p-subgroups. Thus, H = X = ng"l for
some g€G. Therefore, if H 1is a Sylow p-subgroup, it is

conjugate to P,

" T"HEOREM 3.22., (Sylow's Third Theorem). The number,
Ry, » of distinet Sylow p-subgreups of a finite group G is
= 1 + kp where k20 and n_ divides #G.

P
Preof: Suppose P 1is a Sylow p-subgroup of G.

By

The number np of subgroups conjugate to P in G 1is
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|G|N(P)| e If H 1is a p-subgroup ef G, then as in Lemma
3.20, ny = [@N(P)| = Z[HsHNX[ . Set H=P. Thus,

n, = [GiN(P)| =S [PsPNX]

Since Gp = {x | x = ng"l for seme g €G3 , if
g¢ N(P), then X ¥ P, Therefore |PiPNX| is a power of p.

If g&<N(P), them X = P, Thus, |PiPNX| becomes
|PsPNP| = [PsP| = 1, But geN(P) only when g = e
hence, one will oeccur only once in the summatioen.

Therefore, n = |GiN(P)| = S|ppnx| = 1+ xp,
where k 20, Furthermore, 1 + kp divides #G by LaGrange's
theorem, (That is, n, = ]GuN(P)I== ;ﬁ%%j which implies

(1 + kp) * (#N(P)) = #G.)

This concludes the proof of Sylow's theorems. About
twenty years after Sylow proved his theorems, they were
extended further by George Frobenius at the University of
Berlin, He showed not only the distinct number of Sylow
p~-subgroups is of the form 1 + kp, k 20, but that the
distinet number of p-subgroups is of the form 1 + kp,
k20, Thus, even if ™| #G and p®'1| #G, the number
of distinect p-subgreups of order p® is of the form 1 + kp,
k20.



Chapter IV
AN APPLICATION OF SYLOW'S THEOREMS

One application of Sylow's theoremsis to show that
all simple groups G of order less than 60 have prime order,

Before beginning on this problem a restatement of
the four theorems which are of primary importance to this
thesis is given, |

Theorem 2,11; If G is a finite groupand H 1is a
subgroup of G such that G ¥ H and G does not divide
[GuH[!. then H contains a nontrivial subgroup of G.
‘Hence G cannot be ﬁimple.

‘Theerem 3.10. (Sylow I)e If p 4is a prime and p"
divides #G, then G centains a subgroup H of order pm.

Theorem 3.21, (Sylow II). Any two Sylow p-subgroups
of G are conjugate,

Theorem 3,22, (Sylow III). The number n_ of dis-

p

tinet Sylow p-subgroups of a finite group G is n_,h = 1 + kp,

P
k 203 and furthermore, n,. divides #G.

p
Also, a simple group is a group containing no proper
normal subgroups.
Now, consider all groups of prime order less than 60,
Let #G‘- P By LaGrange's theorem, the order of a
subgroup of G must diiide the order of G. Since #G = p,
the only possibilities are 1 and p. But these are trivial

24
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subgroups; hence, there are no proper normal subgroups.
Therefore, G 1is simple.

Thus, when the order of G 1is 59, 53, 47, 43, 41,
3?7, 31, 29, 23, 19, 17, 13, 11, 7, 5, 3 and 2, G 1is
simple,

Now consider groups of order less than 60 such that
the order is a composite number, with the exception of 56,
40 and 30,

Suppose #G = 58 = 290 « 2, G has a subgroup H
where #H = 29 by Sylow I. By LaGrange®s theorem, if
#H = 29, |GiH| = 2, Now apply the test of Theorem 2.11.
(Does #G | [Gi}[1?) 29 does not divide 2! = 2, Therefore,
H contains a nontrivial normal subgroup of G; and hence, G
is not simple.

In the following table, one can see that the above
argument holds for all the composites less than 60 except
for 56, 40, and 30. (See pages 26 and 27).

It remains to eonsider groups of composite order 56,
k0o, and 30,

To show why the above argument does not hold in these
cases consider the following.

If #G = 56 = 23 + 7, then the possibilities for the
#H, such that #i 1is a power of p, are 2, 22, 23, and 7.

If #H = 23, then JGiH| = 7. But 56 divides 71 = 5040, If
#H = 22, then |GiH] = 1h., But 56 divides 14!, If #H = 2,
then [GiH| = 28, But 56 divides 28!. If #H = 7, then [GiH[ =
8. But 56 divides 8!, Hence, for all possibilities, nowhere
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TABLE 4,1,
Let the G contains The order The order of
order of a subgroup of lGsH| G does not
G equal H of order equals divide |GiH|!
58 = 29 ¢ 2 29 2 581 21 = 2
57 = 19 ¢ 3 19 3 57131 =6
55 =11 ¢ 5 11 5 551 50 = 120
54 = 33 . 2 27 2 stf 21 = 2
52 = 22 + 13 13 b 521 &t = 2k
51=17 * 3 17 3 51131 =6
50 = 52 . 2 25 2 s0f21 =2
49 = 72 v 7 49 171 = 5040
58 = 2% . 3 16 3 48 131 = 6
b6 = 23 » 2 23 2 6 T2y = 2
45 = 32 + 5 9 5 45 1 51 = 120
by = 11 « 22 11 i iy Thy = 24
42 = 2 ¢ 3 ¢ 7 7 6 b2 T 61 = 720
39 =13 « 3 13 3 3913t =6
38 =19 « 2 19 2 38tat =2
36 = 22 . 32 9 I 361 41 = 24
35 =7 ¢ 5 7 5 351 50 = 120
34 =2 .17 17 2 wtar =2
33=11"°3 11 3 33131 =6
32 = 25 16 2 32f21 = 2
28 = 22 . 7 7 " 28T 4y = 24
27 = 33 9 3 27131 = 6
26 = 13 « 2 13 2 26121 =2
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TABLE &,1, (Continued)

Let the G contains The order The order of
order of a subgroup of [GiH| G does net
G equal H of order equals divide |G:H|!
25 = 52 5 251 51 = 120
24 = 23 . 3 8 3 26131 = 6
22 =11 ¢ 2 11 2 22121 = 2
21 =3 ¢ 7 7 3 21131 = 6
20 = 22 + 5 5 b 201 b1 = 2k
18 = 32 « 2 9 2 18121 = 2
16 = 2% 8 2 16f21 =2
15=5¢3 5 3 15131 = 6
1 =7 2 ? 2 14 f21 =2
12 = 22 . 3 b 3 12131 =6
10 = 5 o 2 5 2 10121 =2
9 = 32 3 3 9131 =6
8 = 23 b 2 gf21 =2
6=2+3 3 2 6121 =2
b = 22 2 2 k{2t =2
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does #G not divide |G:H|!. Thus, theorem 2,11 does not verify
that G 1is not simple. Similar results are obtained when
considering groups of order 40 and 30, Therefore, another
argument must be used to verify that groups of order 56, 40
and 30 are not simple,

It is necessary to interject one more theorem at this

time,

THEOREM 4.2, Let G be a group and P a Sylow p-
subgroup of G. If P 1is the only Sylow p-subgroup of G,
then P is nermal in G.

=1 3

Proofs for each ge¢c G, let Xg -£gpg l PEPS .

For py, P, €P, if gpe!

= gng-l’ Py = Ppe Thus, #X =

#P. Hence, X, is a Sylow p-subgroup of G. But P 1is the
only Sylow p-subgroup of G. Thus, P = xg. By the construc-
tion of Xg. xs is normal. Therefore, P is a normal
subgroup of G.

Let #G = 56 = 27 + 7, By theorem 3.21 (Sylow III),
there exist Sylow 2-subgroups of order 8 and Sylow 7-subgroups
of order 7.

The number of Sylow 2-subgroups, np, is 1 + 2k, k 20,
where 1 + 2k | 56, Thus, n, = l.or 7, when k = 0 and 3,
respectively.

The number of Sylow 7-subgroups, n,, is 1 + 7k, k20,
where 1 + 7k | 56, Thus, n, = 1 or 8, when k = 0 and 1,
respectively.

There must be at least one Sylow 7-subgroup, so consider

n, = 1, and then, n, = 8.



29
it N, = 1, by theorem k.2, that subgroup would be
nermal,
it Ny = 8, then there exist only one Sylow 2-subgroeup
as can be seen in the following diagram. Hence, by theorem

k.2, this Sylew 2-subgroup is normal.

DIAGRAM &,3,
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One can see that the eight Sylow 7-subgroups account
for 48 elements and if the identity element is counted, the
total is 49. Now, since the order of G is 56, that leaves
only 7 elements unaccounted for., There must be either 1 or
7 Sylow 2 subgreups of order 8; therefore, sinece only 7
elements are available, there can be only one Sylow 2-sub-
group of order 8. That subgroup would contain the 7 elements
plus the identity element, Hence, by Theorem 4.2, it is a
normal subgroup.

All possibilities for the number of distinct Sylow
7-subgroups, Ny, has been considered. n, = 1l or 8. 1In
either case, there exist a nontrivial normal subgroup.
Therefore, if #G = 56, G is not simple.

Let #G = 40 = 23 . 5, By Sylow III, there exist
Sylow 2-subgreups of order 8 and Sylow 5-subgroups of order
5, ny =1+ 2k, k20, where 1 + 2k | 40, Thus, n, = 1 or 5
when k = 0 and 2, respectively. ng = l + 5, k20, where
1+ 5k |46, Thus, ng = 1 when k = 0,

There is only one Sylow 5-subgroup regardless of n,.
Hence, by Theorem 4,2, the Sylow 5-subgroup is normal.
Therefore, if #G = 40, G is not simple.

Finally, to conclude the problem, let #G = 30 =
2 « 3¢5, Applying Sylow III, n, = 1, 3, 5, or 15 when
k is 0, 1, 2 and 7, respectively. ny = 1l or 10 when k is
0 and 3, respectively. ng = 1l or 6 when k is 0 and 1,

respectively.
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Assume G is simple (np>1). If np> 1, then n,
would be at least 3, n, would be 10, and ng would be 6,
This is the minimal case.
The following diagram shows that this minimal case
yields 48 elements.

DIAGRAM 4.4
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G eannot contain 48 elements since #G = 30. Thus,
if #G = 30, G is not simple,

If #G = 1, then #H = 1, This is a trivial subgroup;
thus, G is simple.

This eoncludes the problem of showing that all simple
groups of order less than 60 have prime order,

Consideration is now given to a group 6f order 60,

A symmetric group has been previously defined
(Definition 2.3). The order of S, = nl,

DEFINITION 4,5, The alternating group A, is the
subgroup of S, which consists of all even permutations

on n elements. The order of A, |is int,

THEOREM 4.6, The altermating group A, 1is a simple
group except when n equals & [2].

Henee, the order of A5 = 4(5!) = 60, and by Theorem
o3, Ag 1is simple.

It has been shown that a group of order 60 may be
simple. Therefore, 60 is the first order in which a group
may be simple. (In faet, A5 is simple).



Chapter V
CONCLUSION

The purpose of this thesis has been to present
Sylow's theorems in such a way that a student with a
basic knowledge of group theory might understand them.

As the reader now realizes, there is more prepara-
tion involved in preparing to prove the theorems, than there
is in the actual proofs., This preparation is what many
texts often omit when proving a theorem, and also what is
eluded to in the intreduction; that is, proofs are often
too cemcise to understand them.

After having read the first three chapters, the
ultimate test to see if this thesis has accomplished its
goal, is whether or not ohe understands the application
in Chapter IV, If so, the thesis has succeeded in

presenting Sylow's theorems in an uwnderstandable manner.
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