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CHAPTER ONE

Introduction

Modern technology has made grest advances since the end
of World War II. The areas of plastics and medical science
have the greatest notice, but increasing suecess in thermo-
nuclear energy will be among the most significant in history.
Suddenly modern man hss made great accomplishmenta to im-
prove his own efficiency and increase his capasbilities on
earth, under the ssa, and in space.

The speed of modern advances in technology are a direct
result of the advances of mathematicas, The creation of new
abstract mathematical spaces that have been developed and
studied logically has provided the basis for the other scl-
ences and engineering to move on. As physiclsts and chemists
found new propertlies for existing materiasl end developed new
substances and principles, mathematics already had encoun-
tered spaces with the characteristics of meny of them. Mathe-
maticlians have created abatract, logical spaces and discovered
the characteristics of these spaces simply as a form of mental
exerclise or just to see what would result. Spaces have been
created, developed and studied without models. When applica-
tions did arigse, practical study wzs minimized with the under-
atanding of the abstract spsce. In no small sense, mathema=
tics can taske a great deal of credit for the modern techno-

logical boom,
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The evolution of msthematics into an abstract science
has covered centuries and volumes of seemingly unproductive
but useful work, The end result has been the beautiful logi-
cal world of mathematics defined by Bertrand Russell as "the
subject in which we never know what we are talking about, nor
whether what we are saying is true, "
The mathematical arsa of geometry has led in this evo-
lution, From the esrliest of times and civilizations, {t
seems that more interest has centered on geometry related
areas.2 A great many of the principles of plane goemetry
and other areas were discovered gnd assumed without logical
foundetion. FEuelid, finally, began the organization of geo-
3

metry into a logical science. He organized geometry into a
deductive system bassed on a few axioms {or postulates) which
he considered to be self-evident or unmistakably true pro=
positions, Following Euclid's work, other geometers began to
refine and simplify his system. The result was nearly twenty
centuries of work, some of which was shown to be incorrect,
and a sudden break-through for abatract geometry. This led
to the organization of all mathematlics into a purely abstract

logical science,

1Eric Temple Bell, Mathematics, Queen and Servant of
Science {New York: McGraw-Hill Book Company, inc., 19517,
Pe 17.

2David Bugene Smith, History of Msthematics, Vol, I:
Gensral Survey of the History of Elementary Mathematics
(New York: Dover Publications, Inc,, 1958), pp.4§u9-570.

3Howard Evesa, An Introduction to the History of
Mathematics {New York: Holt, Rinehart and Winston, 196l),
P. 21,
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The refinement nrocess on Euclid's system centered on
checking the list of self-evident ststements to determine
whether any of them could be loglically deduced from the others.
Those that could were removed from the list and called theo-
rems, The 1list was finally reduced to five statements,

The five statements that remained were sufficlent to
develop all of the theorem properties of geometry. But the
question remsined, were they 2ll necessary? To answer this
question, most mathematicians were satisfied that the first
four statements could be called axioms, but the fifth remain-
ing statement continued to be a puzzle. The statement, "If
a straight line fslling on two straight lines makes the in-
terior angles on the same side together less than two right
angles, the two straight lines, if produced infinitely, mest
on that side on which the sngles are together less than two
right angles,"h could have several possible attresctions, Pos-
8ibly, aimply, its length or the concept it communicated caused
it to be suspect. The concept was aceeptable, but mathema=-
ticians believed that it wes possible to resolve a proof of
this statement from the others.

In the effort to prove the fifth remsining ®Wuclidean
axlom, no acceptable proof wass found using only the first
four axioms, It was discovered that, using this axiom and
the other four, other properties could be proven. If one of

these other properties were substituted for the fifth axliom,

l'H'—Ia'_r'old. E, Wolfe, Introduction to Non~Euclidean
Geometry (New York: Holt, Rinehart an nston,
P. L.
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the property could not be proven. But if accepted, the sub-
stituted property would allow for the proof of the fifth ax-
iom, It was finally decided that the fifth axiom and the
other properties were, loglcally, equlvalent. Wlth the first
four accepted statements and elther the fifth axiom or one of
1ts equivalent statements, geometry was a complete system,

But without one of the statements the system was not complete.

The question could have easlly rested resclved at this
point. But, perhaps, out of splte and frustration at so much
time and effort spent wlthout significant results, a great ex-
periment occurred that caused the area of abatract, logical
mathematies to open up to discovery.

The first four axloms snd the fifth axiom or one of 1its
equlvalent statements could be, Intultively, accepted as being
true on a plane surfasce, One of these equivalent statements
has come to be called the parallel postulate. The parallel
postulate states that, "through a given point, not on a given
line, one, and only one line c&n be drawn that does not in-
tersect the given line."5

It wes apparent, at this polnt, that five axioms would
have to be accepted without proof. Whille the axioms were ob-
viously true, the notion grew that since they were accepted
wlthout proof, they might not actually have to be true., An
experiment was attempted,

At the beginning of the nineteenth century, after so

much frustrated effort around the fifth axiom, it is only

SG. Y. Rainich and S. M. Dowdy, Geometry for Teschers
(New York: John Wiley snd Sons, Inc., 1968), p. 3.
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natural that it received the force of the new venture. Since
the axioms had to be sccepted as true, perhaps by accevnting =
false statement as true there would be a bresk-down that could
then justify the truth of the axioms. This concept could be

an indireet proof of the truth of the axioma. Since it was an
effort to prove the fifth axiom or one of 1ts equivalent state-
ments, a false statement or negstion could be substituted which
would 1lead to a contradiction of one of the other axioms and
thus prove the desired statement. The parallel postulate be-
came the axiom that was to be contradicted.

The logical negation of through a given point, not on
8 given line, there is one, and only one, line that does not
intersect the given line would have to be, through a given
point, not on a given line, there is no line that does not in-
tersect the given line or there ias more than one line that
doss not intersect the given line., The structure of the ne-
gation of the perallel postulate made it necessary for the in-
direct proof to be done in two parts,

The stetementa would have to be separately substituted
for the parallel postulate to give two separate contradictions,
The first statement, through a given point, not on s given
line, there is more than one line that does not intersect the
given line, when resching a contrediection would prove that
there was at most one non-intersecting line. The second part
of the indirect proof would begln by substituting, through a
given polnt, not on a given line, there are no llnes that do
not intersect the given line. When s contrediction wzas reasched

using this ststement, thus proving it false, it would be shown
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that there was at least one non-intersecting line.

The two parts of the indirect proof would, sevparately,
show that there was at most one non-intersecting line and at
lesst one non-intersecting line, By putting the two together,
it would then be determined thet, with the given conditions,
there was one, and only one, non-intersecting line. The par-
allel postulate would hsve been proven,

The proof was outlined and was, logicaslly, correct. The
process of conatructing the sctual proof began, At this point,
the problem began to break-down again., In their efforts, the
mathemasticiasns were logically develoving and proving other
statements thaet were not true on the Euclidean plane, but they
could not get the desired contrsdiction. They began to rea-
lize that something more important had taken place. Two new
consistent spaces had been developed.

Several important decisions and realizations, now took
place. The result has been modern abstract mathematics. The
five axioms of KEuelid, that were left, were logically inde-
pendent. That is, one of them could not be proven from the
other four. The five remsining axioms were complete, By
using only the five independent axioms, all of the Tuclidesn
properties could be developed. Thus any set of axioms, dis-
criptive of an undefined set of elements, only had to be in-
devendent and complete to develop a logical space., Truth was
not a factor. The two sets of sxioms used to develop the in-
direct proof of the narallel postulate ware independent and
complete, since two consistent spaces had developed., Geo-

metry, now, hsd its first two non-Buclidean spaces. Abstract,
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logical mathematics was here without phyaical spplication.
Other abstract spaces were developsd and continue to come
into existence, without models, due to acceptsnce of these
facts.

The two new geometries were to be colled Hyperbelie
Geometry and %lliptic Geometry. Hyperbolic Geometry wes the
result of the first set of axioms ineluding, "through a given
point, not on a given line, there is more than one line that
does not intersect the given line,"6 Elliptic Geometry came
from the second set of axioms whose characteristic fifth pro-
perty was, "through a given point, not on s given line, there
are no linea that do not intersect the given line."7

With the creatlon of sbstract, logical spaces has come
a need for abstract models of the spaces. The models provide
a more practical understanding of the loglical system and an
earlier recognition of what syatem has application to a nhy-
sical or practical situation.

One model space thezt has been auggested by Lambert is
a sphere with an imasginary radius.8 The sphere or hemisphere
with a resl radius is known to be a model of ®Wlliptic Geo=-
metry.9 If the radius of a sphere 1s changed to sn imaginary
number, 8 new mocdel 1= developed that is suspected to be =

model of & hyperbolic syatem. The problem is to develop the

6Wolfe, Non-Fuclidean Geometry, p. 66.
TIbtd. p. 17%.

8Rainich and Dowdy, Geometry for Teachers, p. 1L1.

9‘N‘olfe, Non-Tuclidean Geometry, p. 178.
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study of the sphere of imaginary radius and demonstrate, di-
rectly, that 1t is a model for Hyperbolic Geometry., Can such
a space be defined and developed and a direct proof provided
that satisflies the characteristic postulate of Hyperbolie
Geometry?

Solving this problem requires the development of the
space and defining of points and lines in the sapace. The
points and lines must be shown to be well defined. This will
be done by demonstrating that they satisfy two axioms charsc-
teristic of points end lines in the hyperbolic system. A
demonstration thet two distinct points determine one and only
one line, and thast two distinet lines intersect in, at most,
one point will satisfy this requirement. Next, the direct
proof that this space satisfies the characteristic postu-
late of Hyperbolic Geometry: through a given point, not on
a given line, there is more than one line that does not in-
tersect the given line.

In the work to solve these problems are examples and
properties which illustrate methods of working on and with
the imaginary sphere. These examples snd proofs may be use-
ful in developing 2n understending of the sphere of imaginary

radius and make it more useful in non-Buclidean study.



CHAPTER TWO

The Sphere of Imeginary Radius

The equation of & real sphere in a three dimensional
real number 3pace has the form xa + ya + 22 = r2 where r is
a real number and the redius of the sphere. The set of sell
ordered triples, (x, v, z), that astisfy the equation for a
specified r form a sphere of radius r with its center at the
origin of the x, y, and z axesa. TRach ordered triple, (x, 7y,
z), satisfying the equation,‘represents a point on the sur-
face of a aphere for s given r (Fig, 1). Lines are restricted
to be grest circles on the surface of the sphere. Great cir-
cles on the sphere may be determined by the intersection of
the aphere with plenes passing through the origin.10

For a point P to be on e line, or great circle, it mast
satisfy two equations. It must setisfy the equation of the
gphere, to be on the surface, and it must setisfy the equation
of the plane, to be on the intersection. To determine if a
point iIs on 8 line, use may be made of vectors snd their pro-
perties. Let Q be a plane passing through the origin and let
P be a point (x, ¥y, z) on the surface of the sphere, If P is
on the line determined by plene Q, 1t 1s sufficient for it to
be in the plane since it is known to be on the sphere., Now
consider a vector V that is perpendicular to plane Q. Let‘v'=

(A, B, C) where A, B, and C are real numbers. Since V is

10Reinich and Dowdy, Geometry for Teachers, p. 142.

9
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The Real Sphere

Figure 1



1

perpendicular to plane Q, the plane contalns all standard
poaition vectors perpendicular to'V: P=(x, ¥y, 2) can be
considered 88 o standard vector (x, y, z). Therefore if
(x, v, 2) T = 0, the vector (x, ¥, z) is perpsndicular to
?'and is contained in plane Q, That would mean that P 1is
contained in plane Q and, thus, on the line that is deter-
mined by Q. If P = (x, ¥, z) on the surface, and V = (4,
B, C), then Ax + By + Cz = O indicates P is on the line de-
termined by Q@ (Fig. 2). In other words, & great circle, or
line, on a sphere in an x, ¥y, z coordinate spasce is the set
of points (x, y, z) that sstisfy x2 + y2 + 22 = 2 gnd Ax +
By + Cz = 0 at the same time for predetermined real numbers
r, A, B, and ¢,11

One characteristic of lines on a sphere, of course, is
that any two lines have two points of intersection diamet-
rically opposite sach other on the surface of the sphere (Fig.
3). All 1lines intersect ao there could be no non-intersecting
lines through a given point not on a given line.12 Since two
intersecting lines should determine one, and only one, point,
end lines and points as defined do not satisfy this, further
restriction of the surface 1s necessary. If the surface is
reduced, the lines and point descriptions can remain unchanged.
The points of intersection of 21l lines are dismetrically op-
posite so half of them could be teken out by reducing the sur-

face to a hemisphere., This 13 done by restricting one of the

111bid.
'21p1d4, p. 143.
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The Real Sphere and Intersecting Plane

Two Intersecting Lines

/

Figure 3
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variables x, ¥y, or z. For example, if 2z were limited to belng
a real number greater than zero, the number of solution points
{x, v, z) for %2 + y2 + z2 = p2 13 peduced leaving only the up-
per half of the sphere minus the greast circle edge of the half-
sphere (Fig. L4). Thus, if z > 0, x2 + y2 + 72 = p2 produces s
surface on which the defined lines intersect in, at most, one
place.13 On this redefined surface, it would be possible, how-
ever, to be given a line and a point not on the line and find
a line that would not interseet the given 1line (Fig. 5). To
keep this from happening, more refinement on x, y, and z is
necessary. If z 2 0 when x> 0, 2 > 0 when x < 0, z 2 0 when
x=0s8nd y20, and z > O when x = 0 end y € 0, Half of the
edge of the hemlisphere is inecluded in the surface. Now all
lines will intersect and they will intersect in only one point
(Fig. 6). The space is 3 model for Elliptic Geometry. With-
out including half of the edge of the hemisphers, the model
would be, in a sense, another space for Euclidean Geometry.

The concept of the sphere with imaginary radius will be
developed directly from the resl sphere. It is important %o
understand that no visual coneept or illustration of the sphere
is presented at this time to allow for an snalyticsal, abstract
approach to the problem. The sphere will be presented later
in a complex number space to ald in understanding. Hopefully,
such an approach will inhance the versatility and beauty of
abstract mathematics in any system and illustrate thet a model

1s not necessary for mathematical development.

131p1g.
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Non-Intersecting Lines

Figure 5

Hemisphere with Half-Edge

Pigure 6
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The development of the sphere of imaginary radius must
begin with an understanding of what 18 meant by an imaginary

radius. A real sphere is produced by the equation x2 + ya +

22 = r2 where X, ¥y, 2z, 8nd r are real numbers and r 1s the ra-
dius of the sphere about the x, y, z origin. The new sphere
is to have a purely imaginary radius, This 1s accomplished by
replacing r, in the original equatlon, with an imaglnary num-
ber. Let the radius be equal to ri where r 13 a fixed posi=-
tive real number.1u For example, 31 may be the radius of an

imaginary sphers.

At this point, replacing r in x2 + ya + 22 = p with ri

yields:
x2 + y2 + 22 = (5112
x2}+y2+22=r12
> xg'+ yg + zg = -rZ2 OR
x- + y& + 22 + p= = 0,

and the first difficulty in the new space has appeared. x2,
yg, 22, and r2 are sll real numbers. They are all non-nega-
tive as a result of the squarlng. Therefore, only 1f they all
equal zero doas x2 + y2 + 22 + r2 = 0 have solutlons for X, ¥»
and z. DBut r has been predetermined to be a poszitive resl num-
ber, Indicating that it 1s not zero. The equstion as 1t is,
then, has no solutions for x, y, or 2z slnce they are'still real
numbers.

To get around thls difficulty, two logical proposals
are offered., First, x, y, eand z could be changed frqm resl
to imaginary numbers, But thlis would accomplish nothing more

than a move backwarda to the equation of the real sphere, A

h1vid. p. 4.
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gsecond possibility would be to change one resl variable to an
imaginary variable. By changing one real variable x, y, or z
to an imaginary variable and letting the others remain real,
the effect of the imaginary radius could be off set and s sol-
ution could be found. Change z to zi where z is a reazl num-
ber. By subatituting zi for z in x2 + y2 + z2 + pe = 0, the

result 1is:

2+ y2 + (z3)2+p2 =0
x z r
xc + 32 + 2512 + p2 = 0:
x2 + ¥s - zg + p2 = 0, OR
x2+y +p2=zé
The imaginary sphere is determined by the equstion x2 +

2

y°2 + r2 = 22

where r is a fixed positive resl number.15 The
surface of the imsginary sphere 1is defined to be the set of
ordered triples, (x, ¥, z), of real numbers that are sol-
utions of the equation for 2 specified r. Just ss on the
real sphere where the ordered triple solutiona represented
points, the ordered triples, (x, y, 2z) satisfying x2 + y2 +
rf = 22 will represent points on the surface of the imagi-
nsry sphere of radius ri. For example, let ri = 31i. The
sphere is x2 + ya + 9= z2, The ordered triple (2, JE, 4)
names a point on the sphere because by substitution 22 +
(JE)E + 9 = he or L + 3+ 9 =16, This set of ordered tri-
ples could be used to determine sewveral more points on the
sphere. (-2,43, L), (-2, =43, L), (-2, =43, =), (2, =43, L),
(2, =43, L), (2, 43, =L}, (-2, 3, -4} would all be related
points on the surface of the sphers.

3o far, san imaginary sphere has been developed and

151p1d.  p. 14l
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points on thia surface have been defined using the real sphere
as 8 guide, Lines will be defined, next, in the same manner.
The concept of the surfesce, points and lines may have to be
refined later as more characteristics are discovered to reach
the ultimete objective of creating s hyperbolic space,

On the real sphere, a line was determined by a plane
through the origin of the x, y, 2z coordinste space and was
the set of all points, (x, y, z) satisfying x2 + yz + g2 = p2
and Ax + By + Cz = 0, if (A, B, C) was a vector perpendicular
to the plane. On the imaginary sphere lines would be sets of

2 = z2 and a form of

points (x, y, z) satiafying x° + y2 + p
Ax + By + Cz = 0, Since on the imaginary sphere z wsas called
2i, the z in the egquation of the plane must have the same no-
tation. Now the equation of the plane appears as Ax + By +

Czi = 0. A close look at this new equation reveals an inter=-
esting fact. All of the varisbles are real numbers but the
imaginary term 1 18 present on the left side of the equation
and absent on the right side. The only way real numbers A, B,
and C could cause this to happen would be if C were to equal
Zero., Ax + By + Czl = 0 could be possible 1f C were zero, but
the problem would be limited to a single plane of vectors to
work with, (4, B, 0). This aingle plane of vectors would limit
the apace too much., To open the space up and allow for more
lines, a second plen is proposed and will be used, If C is not
zero, the problem remains to get the imaginary number, i,out of
the left hand term Czi. The way to do this is to let C be an
imaginary number also. Change the real number C to an imagi-

nary numbsr Ci where C is & real number, Substitution inteo
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the vector equation now produces:

Ax + By + (011z5 = 0,
Ax + By + Czi< = Q,
Ax + By - Cz2 = 0, OR
Ax + By = Cz
which could be czlled the equation of 3 plsne in the imacinary
apace.16

The development of the imaginsry sphere and the defi-
nition of points and lines has, to this point,ybeen an in-
tuitive venture using the resl sphere as a guide. It is un-
wise to assume, after looking at the real sphers, thst all is
in order at this time. A few examples could demonstrate that
problems exist and give s clue as to what can be done to cor-
rect them,

Consider the imaginary sphere of rsdius 31 determined
by xZ + y2 + 9 = ze, its intersection with the plane -9x +
2d3y = 6z where A = -9, B = 23, and C = 6, and the inter-
section with the line -5x + 2J/3y = Lz. The two plone equa-
tions together give Lz + Bx = 62 + 9x or =l4x = 22 or x = :% .
Substituting into the equstion of the second plsne for x pro-
duces %; + 2.3y = 4z, solving for y:

5z + L3y = 8z
43y = 3z

= 32

TTLB

y = JEE
-2 N3z .
Now, x = —5 end y = —ﬁ— js substituted into the eguation of

the sphere to find the points of intersection.

101pid. p. 144.
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(55)° + (2% o

2 2
RE L

hz2 + 322 + 14}
722 + 14 = 1622

i
[+ ]

1}
-
o~
[ ]

n

14 = 922

16 = 2°

I = z OR
= oz

If z =4, then x = =2 and y = d3or if z = -4, x = 2,
and ¥ = -J3, This means thaé there are two polints of inter-
section of these two lines on this sphere. That must not
happen, but it is easy to correct. Simply impose the con-
dition that z is greater than zero. Now only the point (-2,
{3, L) remains as the intersection of the two lines on the
surfece. The surface of the imaginary sphere will, of course,
have to be redefined with the new condition, z > 0.17

The surfece of the sphere and the points are now de-
fined in fairly good order., It is not known whether or not
all lines, as they are defined will produce points on the
sphere, The two lines used aarlier did interssct the sphere
to determine points of intersection. Using the same sphere,
try to find an intersection with y = 3z where A = 0, B =1,
and C = 3, Substituting into x2 + y2 + 9 = 22 for the set of

points in the intersection gives x2 + (3z)2 + g = 22, x2 +

922 + 9 =22, or x2 = -822 = 9, The left side is greater

171bid. p. 144.
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than zero and the right side is less than zero. No solgtion
can exist to'this situation, indicating thet not =211 planes
Ax + By = Cz intersect X% + y2 + pl = 22.
To determine the condition, thus far, not imposed on

the definition of a line, consider two planes Ax + By = Cz
and Bx - Ay = Cz and the sphere xa + y2 + p2 = 22. The two
lines result from the wvectors (A, B, Ci) and (B, -A, Ci},
Only under the condition A = B = 0 could these vectors be par-
allel or, otherwiss, not arbitrary. Suéh conditions will not
be a part of this presentation. Assuming that the three squa-
tions havs a common solution.(x, y, 2z) where z > 0, the em-
phasis of this demonstration is to determine the property of
A, B, and C necesssry for an intersection.

Ax + By = Cz and Bx - Ay = Cz produce

Ax + By = Bx - Ay, Squaring both sides yields:

(Ax + By\z = (Bx = Ay}z « Adding equal numbers to

both sides:

(Ax + By)2 + (Bx - Ay)2 = (Bx - Ay)2 + (Ax + By)z,

then expandivg and reducing the right side produces:

2x2+ 2aBxy + ByZ,

(Ax + By32 + (Bx - Ay)e = 4%x2 + B%x? + A2?2 + Bzya,

(Ax + By)? + (Bx - a7)° = (A% + B2)1x2 + (42 + BD1y2,

(Ax + By)2+ (Bx Ay)2= BZx2- 2ABxy + A2y2+ A

OR
(ax + By)2 + (Bx - ay)% = (A% + B%) (=2 + 3D) |

At this point, it should be noticed that from the equa-

tion of firat line (Ax + By)2 = 6222 and in the esquation of

2 2 2

the sphere x2 +y- =2 - r=, Making the proper substitution
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into the above statement results with:
c®z2 + (Bx - Ay)a = (A2 + B2) (22 - r2),
expanding the right side lesves:
c%z2 + (Bx - Ay)2 = (A2 + B2)z2 - (A2 + B9)p2,
and algebraic addition gives:
(Bx - Ay)2 + (A2 + B2)r2 = (a2 + B2)22 - 0222,
Factoring the right expression produces:
(Bx - Ay)2 + (A% + B2)r2 = (a2 + B2 - ¢2)22,

Careful examination of this last statement provides two
important pointa., The z is a squared factor of the right mem-
ber. This meana thst two poésible z solutions would work, al-
lowing for two points of intersection, (x, ¥, z}, and (x, 7y,
-z), To keep this from happening, the single solution, z > O,
concept 1s reinforced.

The most important point, at this time, however, is to
notice that the left member of the statement is the sum of
squares of real numbers, It is, therefore, greater than zero
while the right side 1s the product of z° and (A2 + B2 - ¢2),
For the right side to also be positive, A2 + B2 _ ¢ must be

2 + B2 - 2% 0, then A2 + B2 » 2,

greater than zero, If A
This condition, A2 + B2 > @2 13 a necessary condition

for Ax + By = Cz and Bx - Ay = Oz to intersect x2 + ye + re =

22. Now it must be shown that A2 + B2 » C2 assures that a

plene will intersect the sphere.
If A2 + B2 5 ¢2 and z > 0, are there solutions for x
and y in both x© + 32 + r = 22 and Ax + By = Cz? 1If 42 +

B2 > 02, then (A2 + B2)z2 > £222, 1In the eque tion of the
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sphere 32 = x2 + ya + r2, so by substitution:

(a2 + B2) (x2 + y2 + p2) > c222 OR
2%x2 + 2232 + 22p2 4+ B2x2 + B2y2 + BZp2 > 0252
c222 = (Ax + By)? so:
A2x2 + 2232 + 2252 + B2x2 + B2y2 + B2p2 > (Ax + By)2,
4222 + 2252 + 22p2 + B2x2 + B2y2 + B2p2 > A2x2 + 2ABxy + B2y2
2232 + B2x2 + 22p2 + B2p2 > 2aBxy
42¢2 . 2aBxy + B2x2 > -A2p2 _ B2p2

(Ay - Bx)Z > -r2(a2 + B2)

The left member of this inequality is greater than zero
gnd the right member is lesshthan zero. There will slways be
solutions for x and y in this situation. Thus, A2 + BZ > g2
is a necessary and sufficient condition for Ax + By = Cz to
intersect x2 + y2 + p2 = 22 for resl numbers A, B, C, and r.18

The imaginary sphere has now been developed and points
and lines in the spece have been defined. The sphere of ima-
ginery radius is the set of ordered real number triples, (x,
¥, 2), & > 0, satisfying the equation xZ + ¥2 + r2 = 22 yhere
r is a positive reel number, Lines are determined by the in-
tersection of the imaginary sphere with planes having equations

of the form Ax + By = Cz where A, B, and C are real numbers and

A2 + B2 > (2,

181p14, p. 145.



CEAPTER THREE

Points and Lines

The points of the sphere of imaginary radius are defined
as ordered triples of real numbers, (x, ¥, z), z > 0, satis~

fying the equstion x2 + y2 + r2 = 22

where r i3 a positive
real number, Lines in the space of the imaginary sphere are
defined as the set of points in the intersection of xC + y2 +
r2 = 22 and Ax + By = Cz where A, B, C, and r are real num=-
bers, r > 0, and a2 + B > 02.

The development of thias space has been intuitive and,
hopefully, thorough. However, inconsistenclies may still remain
in the definitiona. A check on the conditions imposed in the
definitions of points and lines, in the space of the imaginary
sphera, would bs to see if they are well defined lines and
points. A method proposed to do this is to determine whether
or not they satisfy two axioms characteristic of peoints and
lines in Hyperbolic Geometry.

The first axiom to be checked atates that two distinct
points determine one, and only one, lines. Along with the
proof that this axiom is satisfled will come a mathod of de-
termining the equation of a line between two arbitrary points.

The second axiom, that the points and lines will be
checked agalinst 1s, two lines intersect iIn, at most, one point.,
Exsmples are provided to 2id in understanding the problems and

the methods of the proofs,

2l
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As 8sn example that two distinct points on the imaginary
sphere determine onse, a2nd only one, line, consider the points
(2,43, 4) and (-342, 3, 6) on the surface of x2 + y2 + 9 = 22,
where r = 3, the radius is 31 end z > 0., There are, actually,
threse points in the space through which the plane containing
the line must pass, (2, #3, 4), (-342, 3, 6), and (0, 0, O).
Euclidean Geometry could state thzt three points determine one
and only one piane'and the demonstration would bs complete.
This property is still true, in the sense that lines are de-
fined as planes intersecting the sphere; but further Jjustifi-
cation is necessary with the absence of proof of this theorem
in the space of the imaginary sphere.

If there is a line psasing through (2,J3, ) and (-3.2,
3, 6}, it is contained in a plane of the form Ax + By = Cz
where A2 + BZ > c2 and both points asatisfy the equstion, The
problem is to determine solutions for A, B, and C under these
conditions and show that the solutions are unique.

Substitution of the two points into the equation of the
plane provides two equations of planes to work with, 2A +W3B =
L,C and -3d2A + 3B = 60, The second equation gives a solution
of B in terms of A and €, B = 20 + J2A, Subatitution of this
solution for B into the first equation produces:

24 + J3(20 + W24) = )0,
24 + 2 3¢ + J6A = jC,

2a + 6A = 1€ - 2430,
(2 + dB)a = (4 - 243)C,

f

(5572

In terms of C, A
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Substitution of this solution for A into B = 2C + #2A
produces:

B = 2C +J'(%T',—éz)

o (2228, o
[2 * 24‘( )]

Now, A and B have parametric solutions in terms of C,

~ (%:_3%{510 and B =[2 + 2./5(2—:%:)]0.

W
1

B

This does not appear to resolve the question of a unique
line through (2, i3, 4), and_(-3J§, 3, 6), but remember that
Ax + By = Cz comes from a vector (A, B, C), in standerd posi-
tion, perpendicular to the plene through the origin containing
(xy v5 2)e The relation between A, B, and C is thus given

in the vector form:

([ '?,'FJC [2+2J‘(2T'E)]c c) :

Any real replacement of T would result in an acceptable
veector, but if two different substitutions would be made, one
would be a scalar multiple of the other. The result is that
one vector would be scalar multiple of the other and the two
vectors would be parallel. Since the vectors are parallel,
they are perpendicular to the ssme plane through the origin.
Any real substitution of C is acceptable but the solution plane
would be unique. Therefore, there is only one line containing
(2, 43, L) and (=342, 3, 6). Let C = 2 + d§ and the equation

of the plane is:

(y - 23)x +[2(2 +d8) + 242 (2 - ¥ ] ¥
(b - 2¥3)x + (4 + L)y

(2 +/6)z OR
(2 + ‘Jé-)z.
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The example illustrates the following proof that two
distinect, arbitrary, points on the sphere of imaginary ra-
dius determine one, and only one, line.

Assume that two points, Py and P2 are on the surface
of x2 + y2 + p2 = 22 where r is a vositive real number, z> 0.
Let Py = (x4, ¥4, 29} 2nd Pp = (x5, ¥p, 25). If there is a
line through P4 and P5, 1t is the intersection of the sphere
with a8 plene of the form Ax + By = Cz where A2“+ BZ > 02 and
P1 and P2 are both solutions to the equation. Substitution
P, end P, into the equetion for x, y, and z will provide two
equations to solve for A, B, and C. Such a substitution gives
Axy + By, = Czy and Ax, + By, = Cz,. When the first equation
is solved for A in terms of B and C,
)";1.
Replacement of A in the second equstion Ax, + Byp = Cz, with

1 1 -

Ax, = Czy - By, OR A = (Cz1 - By,

Expanding and solving this equation for B in terms of 7 pro-

duces: 1
((CZ1 - B‘y1) ‘i"‘l) X2 + BYZ = GZZ,

(CZ1 - B‘y1 ]f?_ + B‘yz = GZZ,
X1
szx - B y1x2 + By, = Cz
X1 2

y1X2 = Z1X
By, - B(_E;_) Cz, - c( le2) ,

B T1X2y _ 29 %2
yz %, =1%o - X1 c,

8 (y2x1 - ¥1Xo o ZoXy m Z.X%p & oR
X Xy ’
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CA\Toxy - %

Since A = (Jz4 - By1)% , substitution for B its solution in
1

terms of C gives:

s = (cz f(Fa ey o y)l ,
1 Yo%y - ¥1%o 1/ x,

(%1 3 (z5x, 21xp) ¥4 c
A C T Y R
R B A R

Ao (El (z2x1 - z1x2) 3, ) ;
x4 {yoxq - wyxp) x s
. (z1ygx1- Z1¥1%Xp = ZoX47, + z1x2y1) .
5’2"12 - N®%® ’
A= (21 21~ 2 )c OR
YaXr - Vi%i%p ’

Z4F¥s = ZAhY
=( 172 2*1)0
J2Xq4 - N1%x2

for A in terms of C.
Now, A end B have been solved for in terms of C. As s

vector, (A, B, C), the solution appears as:

Z - Z ZAX, - Z2,X
((1?2 23'1)0’ (__2__1______‘1__2_)0’0)’03

JoXq = V1¥2 JoXqy = 1%
(( Z9¥p ~ 2274 ( 2o%q - z1"2) 1) o
Yo% - ¥1%p Yo% = M%)’

Any real subastitution for C would produce an acceptable
vector sinee any two different substitutions would simply re-
sult in parallel vectors. The vector (A, B, C) 1s perpendic-

ular to the plsane passing through P1 and P2. Any two parallel
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vectors sre both perpendicular to the same plane thst passes
through the origin. Therefore, for any resl number C, the
solution is unique. There is one, and only one, line passing

through P1 and P2.

Let C = {y,x, - y4xp) 8nd the vector solution is:

(2152 = 2291 » 2% = 2% , YoXy = TyXp)e

This solution provides a formula for determining the equstion
of the plane passing through two given points, {(x;, y,, z,)
and (x5, ¥2, z2). The equation of the plane that determines
the unique line between these two points is:

(2,7, = zoyq)x + {zpx) = z4x0)y = (3y2x) = yyxp)z.

The next problem in showing that the points and lines
in the space of the imaginary sphere are well defined is to
show that two lines intersect in, at most, one point. One
example of the concopt wss developed in the last chapter in
the effort to refine the definition of the sphere of imagi-
nary radius. Another example, illustrating the method of
proof to be used, would be the sphere with radius 31 deter-
mined by xZ + y2 +9 =22, z >0, and plane 246x + Ly = Sz
and lx - 646y = =246z, The intersection of the sphere and
the two planes should be one point.

Solving the second plane equetion for x determines:

hx - 646y = =246z,
x = 66y - 246z, OR

Substitution of the solution for x into the first plane

fl
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equetion, 2J6x + Ly = 5z, and solving for y glves:

246 (2%5 ¥ - ig 2) + Ly = 5z,

18y - 62 + Ly = 5z,
22y = 11z, OR

i

v=3%

Now, by substituting this solution of y into the aclution of

X in terms of y and 2z produces:

x = 2é§.y - ig_z
== (8% -
x=lﬁ/;gz--2'[{;‘6—z

niN

x="] 2 and y

By substituting these solutions for x and y in terms of z into
the eguation of the sphere, the point of intersection {(x,y, z)

is determined:

1-66' 22+ Ez +9 = 22,
1‘2‘”2+T%22+9="‘2'
g% +9=22,

0=%

2h = 22,

2 =z,

246 = z, 2> 0, and
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y=3%,
y =46,

ma  xefa,
x = !%:(2461 ’
x = %,

x= 3, OR
(x, ¥, 2) = (3, /6, 246)

In this example, the two given lines are seen to inter-
sect on the sphere in exactly one point, The following ex-
ample will show that for some pairs of lines there 1s not even
one point of intersection on the sphere,

Consider the sphere of radius 31 again, with lines de-
termined by 12x - Ly = 122 and 4x - 2y = 4z, Both of the
equatlions sstiafy the conditlon A2 + B2 > ¢? and therefore
determine lines in the space. DBut thelr point of intersection
does not exist, To show this, solve the second equation for ¥y
in terms of x and z,.

Lx -~ 2y = Lz
bx - hz = 2y
2Xx = 22 =y

Substitution into the first equation, 12x - 4y = 12z, for y

vlelds:
12x - W(2x - 2z} = 12z,
12x - 8x + 8z =12z, OR
hx = Lz,
X =2
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Now y =22 ~« 2z or y =0 and x = z
Substitution on the equation of the sphere results in zZ +
02 + 9 = 22 or 9 =0, No resl numbers, z, exist that e¢an
produce this situation. Therefore, no intersection (x, 7y,
z) for these two lines, determined by 12x = L4y = 12z and Lx -
2y = l}z, exists.

The preceding examples indicate a fact which will now
be proven., HNamely, not all lines intersect in the space of
the imaginary sphere, but when they do, their intersection
must be one point., Assume that Ax + By = Cz and A x + B'y =
C’z, where A, B, C, A, B', and C’ are real numbers such that
32 + B2 >¢c2 ganda 4’2 + B’2 > 0’2, intersect on the sphere x2 +

2 + p2 = ze, 2z > 0 and r ia a positive real number. Their

¥
intersection will be the point(s), (x, y, z), that satisfy ell
the equations,

To begin finding the intersection, solve the first line
equation for x in terms of y and z.

Ax + By = Cz

Ax = Cz - By

x = Cz - By

Replacing X in the second line equation allows for a

solution of y in terms of z.

A‘ (m) + B’y =02
A'C A'B . ,
A 2 - y+t+By=Cz
. A’ B . A'C
B - = -
y-—57v=0C= iz

(AB° « A'B)y = (C'A - A"C})z

]
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(C’A - A’c)
T = \ap’ - a8l %

Placing this solution for y into the previous solution

Cz =
forz,x:-g——BI

A gives a solution for x in terms of 2,
(2'_&__-__&’_9)
x = Cz = B\AB’ - A’ B/z
A
_c (BC’A - A'CB
XL 2= \4%8 _a'ml?® ¢

(g B2'A - A'CB
A = p°B’ - A'BA) 2

X = (CAB' - CA'B - BC'A + A CB

p . z OR
AB" . A Ba ) ’

(CB’ - Bc’)
=B oA’ BI%
Having solved for x and y in terms of 2z, substitutions can

now be made into x2 + y2 + r2 = 22 to aolve for z!

(CB’ - BC’),] 2 . (C'A - A’c) ] 2 L 2_.2
AB’ - & B/® AB’ - A'B/ 2 =20

(AB’ - A’ B)2

2. . (CB' - Bc’)a (C'A - A’c)2 >
r= “\aB -aB/ “\ap’ - a'B] ?

5 ((AB‘ - a'BY? . (0B - B2 . (ac’ - a'C)? ,
r = - )z

( 2 (ABY - A'B)2
(AB' - A'BY2 -~ (CB' - BC')2 - (ac’ - a'Q)2) T %

'V/ 2 (AB' - A‘B)°
= Zz
(AB' - A'B)Y2 - (0B’ - ¢'B)2 - (ac’ - a‘c)e
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This solution, since z > 0, is unigque if 1t exists,
This solution sxists if (AB’ - A°B)2 - (CB’ - C'B)® - (ac’ -
A’C)2:> 0., If this number is not greater than zero the lines
do not intersect., This could provide a relatively quick
check to see if two lines intersect. If (AB” - A“B)Z - (CB'-
c’'B)2 - (AC” - ch)Z € 0, the lines are non-intersscting.
Since (AB” - A"B) 1is a factor of z, the solution

(CB’..BC’) 4 _(C’A-A'C) "
- ABI - A"B z an Y - AB{ - A‘B Z, W eI"B

"
\

——

|/ r2 (AB" - A'B)?

z = rd r . 2 - r 2

(AB” = A°B}Z - (CB” = C’B)2 = (AC” = A°C)° can be
reduced, The result is:

x=(CB” - BC) 2z and 3= (C°A - A'C) z where

it

J
2= N(B’ - aA’B)2 - (¢B" - ¢"B)2 - (aC” - A" C)%
The solution of 2z 1s unique which mekes the solutions
of x and y unique. Therefore, if Ax + By = Cz and A'x + B’y =
C“z intersect, the intersection is, st most, one point,
It has been shown that on the sphere with imaginary ra-
dius, two distinet points determine one, and only one, line,
and two lines intersect in, at most, one ﬁoint. The points

end lines of the space are well defined,



CHAPTER FOUR

Non-Intersecting Lines

The sphsre of imaginary radius has been desveloped and
the points and lines have been shown to be well defined, Be-
sides the definiticns of points snd lines, two other proper-
tiea have been developed, One that will be useful at this
time is if two lines determined by Ax + By = Cz and Ax + By =
Cz intersect on the aphere x2 + y2 + 12 = 22, then (AB'- AB)°.
(cB' - ¢'B)® - (ac’ = 4’C)2 > 0. This condition is a fairly
eagy check to see if two lines intersect without actually try-
ing to find the point of intersection.

If the imaginary spheres, as defined, is a model of Hy-
perbolic Geometry, it must satisfy the characteristie property
of Hyperbolic Gecmetry. It must be shown that through a given
point, not on a given line, there i1s more than one line that
does not intersect the given line. To indicate that this
characteristic holds in this space, an example will be pre-
gented first, This will provide an intuitive acoeptance that
the proof is possible and an outline of the proof itself.

Consider the sphere of rasdius 2i given by x2 + y2 +l =
52, the line determined bvy x + y = -z where A =1, B =1, and
C = -1, and the point (1, 2, 3). The point {1, 2, 3) is on

the surface of the sphere since it sastiafies x2 + yz + L = 22,

The plane x + y = =z intersects the sphere of radius 21 since

it satisflesg A2 + BZ > ¢2,

35
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The point (1, 2, 3) is not on the line determined by x + y =
-z, If there is a line through (1, 2, 3) that does not inter-
sect the line x + y = -z on the surface of x2 + y2 + ) = zz,
let it have the form A‘'x + B'y = ¢'z, The point (1, 2, 3)
must satisfy the equetion of this line or A" +2B" = 3¢’, In
terms of B  and C’, A'= 3¢’ - 2B,

It has been shown that a necessery condition for two
lines Ax + By = Cz and A'x + B'y = C'z to intersect is that
(AB” - A°B)® - (CB' - ¢"B)2 - (AC” - A°C)2 > 0. If this con-
dition 1s not satisfied or if (AB' - A’B)® = (¢B’ - ¢’B)? -
(AC’ - A‘c)2 € 0, the lines will not intersect on the sphere.

Consider the case where (AB'= A'B)2 - (CB’- C‘B)? - (AC A'C)%=

0, A=1,B=1, C==1, and A" = 3¢’ = 2B°, Making the pro-
per substitutions produces:
[B°~(3¢"- 2B")]2 -[-B" - ¢']12 - [¢" - (3¢ - 2B") (-1)]® =0
(38" - 3¢72 - (-B" - ¢02 _ (¢’ - 2872
(9B"2- 18¢'B’+ 90°2)=(B’%+ 20°B’+ ¢"2)o (160" 2- 16¢°B + 1B 2) =0,
482 - yc'B° - 86°2 = o
This last equetion can be solved for B'in terms of C’

by applicstion of the quasdratic formula:

-b £ ¥ b° - Lac
x = 2a

. ue 2 4160°2 ) + ) « (<BC'Z)
8

tw
|

. ue’ x4160°2 + 128072
)

’ hc‘ 14/1u+c‘2

o)

ws)
]
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+ e’ x120° _c & 30
B = n: =3

i

B’ _._Z_LC’* c'=9%-'=2c'

OR

) ’ )
+_ C =36 _=20 _ s~
2 T2 = =C

Two golutions for B’ in terms of ¢’ have been deter-
Id rd
mined. Remembering that A" = 3¢ - 2B°, the following sol-

utions for A’ can be found in terms of C .

¥

A =30 - 2(20") =3¢ - yc = -C

u

A" =3¢ - 2(c’) =3¢ " +2¢  =5C"

With the corresponding psirs of solutions for 4”7 and B’

4

in terms of C’ the following two vectors (A", B’ ¢’) have
been found:
(«c’, 2¢’, ¢’) end (507, -¢’, ¢’).

It has been demonstrated that any real subsatitution of
CorC ’is acceptable in this situation of parametric vector
solutions. Let ¢’ = 1. Two vectors (=1, 2, 1) and (5, =1, 1)
have been determined which produce the two planes -x + 2y = 2
and 5x -« y = z which contain (1, 2, 3) and do not intersect
X +y = -z on the sphere of radius 2i, x° + y2 + 4 = 22,

A further demonstration of the fact that -x + 2y = g
and 5X - y = z do not intersect x + y = -z would be to try to
find the points of intersection on x> + y2 + L = z2, Consider
first -x + 2y = 2 and x + y = -z, Adding them together re-
veals 3y = 0 or y=0, If y=0, then x = -z, Substitution

of these values into the equation of the saphere produces:
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(=2)2 + (0)2 + i = 22,
22 + i = 22
L =0 .
No solution exists for the intersection of these two lines on
the sphere.
Next consider 5x = y = z and X + ¥y = -z and their point
of intersection on x° + yz + L = 22, Adding them together

glves 6x = 0 or x = 0, If x = 0, then y = =z which results

in:
(02 + (2)2 + ) = 22,
22+ =22,
h=0 .

‘Again, no solution exists.

It has been shown that on the sphere through the given
voint, {1, 2, 3) on the sphare %2 + y2 + 4 = z°, not on the
line determined by x + ¥ = =z there 1is more than one line that
does not intersect the gliven line.

The space of the imaginary sphere, 8s 1t has been devel-
oped, may therefore be a model of a Hyperbolic Geometry. Its
lines and points have been well defined and it seems to sat-
iafy the characteristic property of a hyperbolic space. This
last condition will be shown at this time. It will be shown
that through an arbitrary given point not on s given line
there is more than one line that does not intersect the given
line.

The proof of this characteristic will not be presented
fully et this time., Rather, the proof will be outlined for

the c¢ase when the given point (x1, ¥y» Zq) has s non-zero
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first coordinate, A full presentation is presented in Appen-

dix I.

Conaider the sphere of radius ri, r > 0, specified by

x2 + y2 + r2 = za, z > 0, and the 1line determined by Ax + By =

Cz, A% + B2 > 02. Let (x1, ¥y z1) be a point P on the aphere
but not on Ax + By = Cz, If there is a line that does not in-
tersect Ax + By = Cz, it 18 determined by a plene that has the

form A'x + B’y = 2“2z, By letting A‘x + B’y = 8’z contain

point P:
A X, + B Yy = c Zy
’ - i L4
cl'z - Bly
. 1 1 .
A = x 3 q# 0.

1
If Ax + By = Cz intersects A'x + B’y = C’z on the aphere,

it 1s known that (AB” - A°B)2 - (B” - ¢’B)? - (ac’ - A’C)2> 0,
But these two lines do not intersect on the sphere so the con-
aition (AB’ ~ A'B)° - (B - ¢’B)? - (a¢” - 4°C)2 € 0 15 in-
posed, More specificslly, consider the condition (AB” - A'B)e-
(6B - ¢'B)2 - (ac” - &°C)2 = 0.

By making the proper substitution for 4’ the equa tion

becomean: 5 5
’ ‘ . . 2 i a’ - !
[AB'- (C zy = B'yy B] - [GB -C B] - [AC - (” zy - By, c] = 0
X X4 )

where A, B, G, Xys Y1» and z, are all predetermined real num-

bers,
Expasnding and simplifying this equstion results in the
following quadratic equation involving B” and ¢’ as unknown

values:?
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pB'2 + 2mC B’ + nG'2 = 0 where!

(ax, + By1) (x1 - ¥] 2yc®
Bz, (-Ax, - By,) + Oy, (Cz, - Ax,) + CBxS
Bz(z1 - x1) - (Ax - Cz1)2

m

]

n

2 _ 0

If p # 0, the quadratic equation pB'2 + 2mC'B’ + nC
can be solved for B’ in terms of C’ using the quadratic form-

ula., The case where p = 0 is presented in the Appendix.

g’ = =amC’ t-Jgg?c - Lpnc’ 2

’ (-m + Vm? - pn)c'

B =
)

for p, m, and n as defined above,
This means that in terms of C’ there are two possible

solutions for B'.

‘ (-m + ng -~ pn)c'

P
OR

. (_m - me - pn)c,

P

B

C’'zy - B’ ,
Since A’ 1 = 91 » there are also two solutions for A
1

in terms of C, By gubstitution of the solutions of B’:

P ) (-m+ m2-pn)c
P

GZ1-

>
|

x1 ’

. (pz1 + my, - yyNm° = pn

PX,

)c' AND



y1

-my, - ¥ Y - pn\ .
A" =c’ (== ¢y,
= 2,1 - %) /
x1 »
A’ =(pz1 *myy oy Ao - =Y’ .
PX,

These solutions, put into parametric veetor form, gives:

((sz +my, -y, Am° - pn)c, (-m +am? - pn)c, c,)
4

PE4 P
AND
(oo (o d oy )
px1 2 p 2

For p, m, and n as defined be?ore'in terms of agpecified resl
numbers A, B, C, xq, yq, and Zye

As discussed in Chapter Three, these solutions are
unique., Although different real numbers could be suﬁstituted
for C° in e=ch veector solution, if different numbers were sub-
stituted in the same sclution, the result would be twc parel-
lel vectors whlech would both be perpendicualr to the same
plane passing through the origin. For this resasson any real
substitution for ¢’ will produce aceeptible solution vectors,
)2

Let C* = pXy, where p = (Ax1 + Byy - (x$ + y12)(.‘-2. The vec=-

tor solutions are then?
({pzy + my, - 2 ¥mZ - pn), (-mx, + X, Wm? - pn), PX,)
AND
((pzy + my; + ¥ Nme - pn), (-mx1 - x Am® - pnl, px.l}
These two direction vectors determine two dlstinet lines:
(pzq + my; - v ¥m® - pn)x + (-mxq + x; V2 - pn)y
AND

(pZ1 + my1 +‘.y1 {sz - pn)x + ("mx1 - x‘| Nmz = pn)y

(px1}z

(px4 )z,



L2
where!

(Axy + By.l)2 - (x$ - y¥)02

g
I

2
m = Bzy(-Axq - By,) + Cy,(Czq - Ax;) + OBxj

s}
1l

Bz(z$ - x?) - (Ax1 - Gz1)2.

Both of these distinct lines contain (x1, Tq» z,) end
neither of them intersects Ax + By = Cz, Therefore, in the

gspace of the sphere of radius ri determined by xa + yg + r2 =

22, through a given point, (xy, Ty 21), not on a given line,
there i1s more than one line that does not Intersect the given
line.

The sphere of imaginary‘radius has been developed and
points and lines have been defined, The polnts and lines have
been shown to be well defined and sastisfy the cheracteristics
of intersection and determining lines. A method of determin-
ing the line through two given polnts has been presented and
a necessary condition for two lines to intersect has been dis-
covered, It has been demonstrated that the sphere of imagi-
nary radius satisfles the charascteristic property of Hyperbolic
Geometry: through a given point, not on s given line, there
is more than one 1line thet does not intersect the gliven line.
At this point it may be presumed that the sphere of imaginary
radius is s model of a Hyperbolic Geometry.

Examples have been supplied to aid in understanding as
the work, thus far, has progressed, but no attempt has been

made to see what the imaginery sphere looks like,



CHAPTER FIVE

Illustrations

The sphsre of imaginary radius has been developed and
shown to satisfy the characteristic axiom of Hyperbolie Geo-
metry., All of the work to this point has been abstract and
without refsrence to illustrations,

At this time, a presentation is offered to aid in un-
deratanding the sphere, lines, and properties worked with esar=-
lier with the use of graphical illustrations. This presen-
tation 13 not intended as s proof but rather as a different
presentation of already proven properties,

The sphere of imaginary radius was, initially, defined

2 2

as the set of points satisfying x2 + y2 + r~ = 2~ where ri

was the radius., This equation c¢sn be transformed by subtracte

ing x? + y2 from both sides, r2 = 22 - x2 . ya, and dividing

2 2 2
2 z X Y
int = - - « This
c1 ;2 ;2 " equation has the

both sides by r

same form as a real hyperboloid with two branches in standard

2 2 2
4 X
form, :2 - ;2 - %2 = 1,19 whers 02 = a2 = b2 = r2. Since

the radius and one varlable are actually imaginary numbers,
the sphere can be illustrated in a complex number space., The
axes of this space sare x, y, z1 and the sphere appears as in
Figure 7.

Lines were defined as the set of points satisfying

19Richard E. Johnson and Fred L. Kiokemelster, Calcu-~
lus with Analytic Geometry (Boston: Allyn and Bacon, 1nc.,
19607, p. 496.
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The Sphare of Imaginary Radius
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xZ + yz + p2 = 22 gnd Ax + By = Cz. (A, B, Ci) was a vector
perpendicular to a plane intersecting the sphere. The Inter-
gection of this plsne and the sphere is the line of the space
(Fig. 8). The 1line is actually a hyperbola on the intersect-
1ng plane,

Two distinet planes intersecting the aphere determine
two distinct 1lines (Fig, 9}, But the intersection of the two
lines 1s two points., One is on the top branch and the other
is on the lower branch.

The two points of interseetion of two lines were not to
be allowsd, This problem was .resolvad by imposing the condi-
tion that z > 0. The affect 1s that the lower branch is cut
out of the space. Only the top branch was left and the inter-
gection of two distinet lines was then at most, one point,

Notice that this space slso has the Ruclidesn property
that three points determine one, and only one plane, and thus
cne line on the sphere. Two distinet points on the sphere and
the origin, then, determine & unigue line in the space,

The next problem to arise was the realization that not
all plenes intersect the sphere, A condition on the lines
that intersect the sphere was needed. The condition wa2a that
for a plene, Ax + By = Cz, to intersect the sphere AZ + B2:>
c2, .

Surrounding the hyperbcloid 1s an asymptotic cone, This
cone is determined by the equation x° + y2 = z2, Any vector,
(A, B, C) having the property that A2 + B2 < 0% w11l fell in-
side the cone, If A2 + B = 02, the vector is on the cone and

if A2 + 82 > 02, the vector is on the sxterior of the cone,
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The Imaginary Sphere and Intersecting Plane

Figure 9



L7

Since the plane containing the line is perpendicular to (A, B,

2 < 02 the vector is on the interior of the

2 2
cone and the plane falls on the exterior. When A2 + B° = ¢ ’

C), when A% + B

the vector is on the cone and the corresvonding plane is tan-
gent, in a sense, to the cone. This plane does not intersect
the sphere. Finally, when A% + B? > 02, (A, B, C) is on the
exterior of the cone and the plane is on the interior (Fig.
10). Since the cone acts asymptotically to the sphsrs, any
plane on the interior of the cone intersects the sphere. A2 +

2 > o2 1s a necesasary and sufficient condition for the plane

B
Ax + By = Cz to intersect the.imaglinary sphere.

The cone about the sphere of imaginary radius is impor-
tsnt iIn the discussion of non-intersecting lines., When two
planes intersect, a line is determined by thelr intersection
(Fig. 11). The 1line must interssect the sphere for thers to
exist a point of intersection of the lines determined by the
plenes and the imaginary sphere.

Gonsider planes Ax + By = Cz and A'x + B‘y = C'2 deter-

L

mined by vectors (A, B, C) and (A", B, ¢'). It was deter-
mined, abstractly, that for these planes to have an intaraesc=-
tion on the sphere (AB” - A°B)Z - (CB' - G’'B) - (AC° - A C)%»
0. The line of intersection can be found by the firat solv-

ing the two equations for x and y in terms of =z,

Ax + By = Cz
A'x +B'y=C’z
for x for y
AB’x + BB’y = CB'x A'Ax + A'By = A" Cz
A'Bx + BB'y = C“Bg A'Ax + AB'y = AC 'z

,

(AB' = A"B)x = {CB" - C¢'B)z (AB” - A" B)y

(AC° - A’ C)z



18

) 4
igure 10

B
(
I ] B
-A

F
igure 11



b9

(CB” - C’'B) (AC” = A C)
= ‘ . = ’ ‘ Z
X = (AB' - A'B) % Y = (AB’ - A'B)

A veetor solution could ba used to indicate the diree=-

tion of this line of intersection:

(CB” - ¢‘B) (ac’ -~ a’Q)
((AB'-A"B) Zs (AB° - A'B) 2 z) ’
Let z = (AB - A'B) and the direction vector becomes:
((CB” - ¢'B), (aCc = A"C), (AB = a"B)),

For the 1line to intersect the sphere, this vector must
fall on the interior of the cone, x2 + yz = 22, that surrounds
the sphere. It has aslready been demonstrated that for (A, B,
C) to be on the interior of the cone A2 + B < 2, Applying
this to the vector above, only when (CB'- C'B)2 + (Ac’- A'c)2<
(AB°- A" B)2 or,

0 <(AB" = A'B)2 = (B < ¢'B)? . (aC” - 2"0)2
does the vector fall within the cone and produce an intersec-
tion with the sphere (Fig. 12). When (AB° - A"B)Z. (CB'- ¢‘B)%
(AC - A°C)? = 0, Ax + By = Cz and A'x + B'y = C 'y intersect on
the cone and no intersection exists with the sphere (Fig. 13).
Finally, when the line of intersection is on the exterior of
the cone, (AB® = A’B)2 = {CB” = C'B)2 - (a0" - A" 0)° < 0,
there will be no intersection on the imaginary sphere,

The proof that the sphere satisfied the hyperbolic pro-
perty, through a given point not on a given line there 1s more
than one line that does not intersect the given line, begsn

with the existence of Ax + By = Cz and (x,, Ty z,)} not on

Ax + By = Cz, BEffort was then applied to find A'x + B'y =c'g
such that (x, y,, 29) was on this line and (AB' - A‘B)2 .
(GB” = C°B)2 - (AC® = A’C)2 = 0. The effect was to find a
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2 Fi ’ r ’ 2
(AB‘-A"B) = (CB -C B)a- (ac¢’aA'C)™> 0

Figure 12

(AB'-A'B)E- (cB'-c'B)z- (Ac'-A'c)2 =0
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plane containing (x1, V1 zq) and intersecting Ax + By = Cz
on the asymptotic cone surrounding the imaginary sphere.
Notice, (Fig, 1}4), that Ax + By = Cz has two lines of inter-
section with the cone and that it is pcosaible to determine
two pleanes, containing (x1, Tys 21), thet intersect Ax + By =
Cz on the cone.

Any planea through (x1, ¥y z,) that intersect Ax + By =
Cz on the interior of the cone will Intersect on the surface
of the sphere. Their corresponding line will than intersect
Ax + By = Cz, Plenes through (x1, Yy 21) intersecting Ax +
By = Cz on the cone or ita exterior will determine non-inter-
secting lines. Moving from the interior of the cone outward,
it is, intuitively, acceptable that the planes through (x,,
Y15 %zq) intersecting Ax + By = Cz on the cone are the first
non-intersecting lines. These lines 2re called parsllel in

a given sense, or direction, to Ax + By = C=z,
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The Hyperbolic Characteristic

]
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Through a gliven point, P, not on a given line, deter=-

mined by Ax + By = Cz, there is more than one line that does

not intersect the given line.

Figure 14



CHAPTER SIX

Summa.rg

The sphere of imsginary radius has been shown, directly,
to be a model of Hyperbollc Geometry. The process to generate
the proof hss involved several concepts and resulted in the
discovery of several ideas that make working on the imaginary
sphere eaaisr,

The concept of the real sphere and some of its charscter-
istics were presented and devéloped in a very cursory manner to
provide gn analogy for the development of the imaginary sphere.
The intersection of lines and methods of changing these charac-
teristics were briefly discussed along with their effect on the
geometry of the sphere. The sphere of imaginary radius was de-
veloped using the resl sphere as a pattern., The sphere of ra-
dius ri, r > 0 was determined to be the set of ordered triples
of real numbers {(x, ¥y, z) satisfying x° + 7° + r2 = 22 where
2z > 0, Lines were defined as the set of points satisfying the
equation of the imaginary sphere and Ax + By = Cz where (A4, B,
C) was & vector such that A° + B2 > 02,

The points and lines were shown to be well defined by
proving that they satisfied two conditions., It was shown
that two points determine one, and only one line, and that two
distinct lines determine, at most, one point. PFrom these two
proofa came several important points of information., A method

of determining the equation of the plane containing points

53
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(x4, 795 zy) and (x5 Vo z5) on x° + y2 + v = 22 yas found
to be (2375 = z574)x + (22x1 - z1x2)y = (yzx1 - y1x2)z. A
condition for the intersection of two lines on the imaginary
sphere specified by Ax + By = Cz and A'x + B'y = C'z was that
(4B° - A°B)2 = (¢B” - ¢’B)® - (ac’ - A'C)2 > 0. A demonstra-
tion and formula, if desired, for finding the point of inter-
section of two lines on the sphere of radius ri was presented.
If the lines are determined by planes Ax + By = Cz and Alx +
B’y = C'2% the point of intersection (x, y, z) is:

x = (CB” = ¢'B)z, v = (C'A = A'C)z, where

2
Z =N (aB° = A°B)2 = (CB” = C’B)2 - (AC” - 4'C)?

The sphere of imasginary radius was shown to bes a model
of Hyperbolic Geometry by demonstrating that it satisfiled the
characteristic statement of that geometry. It was proven that
on the imaginary sphere there 1s, through a given point not on
a given line, more than one line that does not intersect the
given 1line.

All of the work thus far described, has been done with-
out the ald of 1llustrations other than numerical examples,
These examples were provided simply to ald in understanding
the concepts and proofs, This approach was to demonsatrate the
abstractness of methematical creation. Mathematics does not
depend on physical application fo— ¥ts creation. A mathemati-
cal space depends only on logic, not on truth. The abstract-
ness of mathematics 1a its real beauty, Its loglcal founda-

tion sets it apart from other sciences and allows it to be
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pure. The development of the imaginary sphere hes been a con-
scious attempt to work with the sphere of Imaginary radius
without the aid of s visual representation, This abstract
approach has shown that the work can be accomplished without
a physical model. The properties discussed were discovered
without the aid of any illustration of the sphere and perhaps
were easier to see in the analytical sense.

After the sphere of imaginary radius was developed and
proven to satisfy the hyperbolic characteristic of non«inter-
secting lines, a graphicsl presentation of what the imaginary
sphere looks like wes offered, Thia presentation attempted to
follow as closely as possible the astual development and work
with the sphere. Its purpose was to essist in accepting and
understending the analyticsl work and was not intended to be
a part of the formal development and proofs,

The direct appreoach of this presentation opened the way
for more work in the same line., The imeginary sphere has been
shown to be a model of a hyperbolic space without the use of
transformations of any other indirect method., Work could con=-
tinue on in a direct manner to demonstrate that other hyper-
bolic properties are exemplified on the imaginary sphere. In
this vein, a development of such concepts as what is meant by
acute and right angles, betwesness of polnts and measures could
be done and proof provided for such hyperbolic theorems on the
imaginary sphere as:

(1} If t is any line and P is sny point not on

t, then there are always two llnesa through

P which do not intersect t, which make equal
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acute angles with the pervendicular from
P to t, gnd which are such that every line
passing through P lying within the angle
containing thst perpendicular interssects t,

0
while every other line through P does not.2

(2} If a straight line is parallel through a
given point in a given sense to a given
line, it is, at each of its points, the
parallel in the given sense to the given

111’]8-21

{(3) In a trirectangular quadrilatersl, the

22
fourth angle is acute.

The proofs of these and other hyperbolie properties by

methods introduced in this thesis are left for further study.

20WOlfe, Non-Fuclidean Geometry, p. 67.

21Ibid. p. 68,
221p1d. p. 79.
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APPENDIX I
2 4 42 +
Prove: On the sphere of radius ri, determined by x ¥

r2 = 22, through a given point not on e given line

there is more than one line that does not intersect

the given line,

2 2 _

+ 1< = 22

Given: Sphere x2 + 5 y 2> 0,
line L, Ax + By = Cz end point P, (x, Ty 211 not
on line L, ‘

Let A'x + B'y = C’2 be a 1ine containing P, (x1, Ty z1).

Case I: Let x4 # 0, then A'x1 + B'y" = G'z.l,
f ’
A’x1 = z1 = B y1,

L r'd
Atzcz,]-B};".l

X .

If Ax + By = Cz intersects A"x + B’y = C'z then
(AB” = A’BY2 = (0B - ¢’BY? . (ac” - A7C)%> 0. If the con-
dition (AB’ - £B)2 - (cB” - ¢’B2 - (ac” - )2 € 0 s im-
posed, Ax + By = Cz and A'x + B’y = C“2 will not intersect on
the sphere of radius ri; consider, specifically, the case
where (ABY - #’B)2 _ (0B’ - ¢’B)2 - (aC’ - #°C)2 = 0, Substi-

C ,21
tution of

B’ .
Y1 for A gives:
x4

ot . 2 ) ‘. 2
AB ‘((c % = B ¥1M]"- [on’- ¢"B|? -[Ac’-((c 2y - Py ‘c] =0
Xy X /

58
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Az B'- (Bz4C’- BY1B‘T|2- CB’ - Bc{la -‘?X1c‘- (240 - cy15'ﬂa= 0
X, x4 l

At this point, let d = Ax,, e = Bz1, f = By1, g = Cz1 and h =

Cy,. Proper substitution gives:

. ’ 2 ’ ’ ’ 2
dB’ - (o€’ - rB") . - ac’ - (g€’ - hB ))
( X, ) - (cB” - BC™) © - ( x, = D,
((d + £)B’ - oC’ 2 , H"2 (QE - gic’ 4+ hB'z
x, ) - (c’ - Bc)?- %, ) =0
Now let Jj=d + f, and k = d « g, The result is:
# 02 ’ 12
(JB - BC) _ (CB z Bc)z _ ,(kc + hB) = 0,
S I : X
/ a2 ’ t 2
- 4 P - + B
(1B 2 )" _ (8" - o2 . AxC . 1°_ o,
x1 ) x1

-

(38 - 6¢12 - (cB” - BC)2 22 - (k¢” + mB)Z = 0,
Expanding this equation results in:
§2B'2 _ 21eC’B + 202 _
(628°2 - 2Bcc’B’ + B0 )22 -
(k2C“2 + 2xknC’B’+ n2B'%) = o0,
12B‘2 _ 23eC'B’ + o2¢’2 -
2 2n°2 ‘R’ _ p2e2n’ 2
c“x{B'2 + 2BCxfC'B’ - BOxEC'C -
n®B’'2 - 2unc’'B’ - x¥2¢'2 = o OR

(3%- 0%xf - n2)B’2+ 2(-Je + BCxZ - kh)C B + (62- BZZ - x2)c’%= 0

Let p = 32 - 02x% - n?

m = -je + BGx$ - kh

2 2.2

n=oe k2, and the equation 1is:

pB‘2 + 2m‘'B° + nc’'? = p
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if p # 0, this equation ¢en bs solved for B’ in terms of C’

-b + ¥b2 -
using the quadratlice formula, X = 2 2: hac . Proper sub-

stitution ylelds:

¢ = =2mC” # Jlim?c’2 - pno’Z

2p

g’ = =2mC” 3 26° ¥'m® - pn
- 2p

B’ =(—m F 4 m2 - pn)c’
P

’ -Mm + mz - pn 4
B =( a )c
P
OR
B (M- Am? - pn)c'
\
P .
There are now, two solutions of B’ in terms of C .
s clz - BI
Since A = 1 A s there are, also, two solutions of

. X1
A" in terms of C’ ;

Y m® - pn) ’

’ -m +
A =c¢'z ( ) ¢y,
11 s
N . o - Y o
pI.1 ’
OR
; -m.-Mmz-:Qn)cf
AJ = c 21 - ( p 1
S
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r 'l Fd
In terms of C , two ordered triples, (A, B, C ), have

been determined:

((p21 +tmyy - Ty sz - pn) ¢’ ('-m + sz - pn) G' G')
4 ’

PX,

pzy + my, + y1ﬂ/m2 - pn p -m -,?ma - pn s .
( — Je’, ( )c , ¢
1
Let ¢’ = pXy, and the two vectors bescome:
((pz, + my, - 74 Jmé - pn), (-m +#m2 - pn), px,) AND
((pzy + myy + y4 Jme - pn), (-m - J - pn), px1) .

These two vectors determine two distinct lines in the

space of the sphere of radius ri.

(pzq + my, - 3, Am® - pnlx + (-m +Ame - pnly (px1)z , and
(pzq + my, + 7y JmZ - pn)x + (-m -me2 - pn)y = (px1)z .

The two lines contain the point (x,, y,, z,) and do not

intersect Ax + By = Cz,
If p =0 and n +# 0, the equation becomes 2mC B’ + nC’ = 0,

Solving for C produces:

¢’ =0 or ¢’ = :§E B’
AI - -y1 B’ or Af = -m1 - ny1 B,
X9 nx
1
Let B ' = X4 or let B = nx,
produeing vectors
(=34, X9, 0) and «-2m31 - ny1), nx, , -2mx1)

or lines

(«y4)x + (x))y = 0 end (-2mz, - ny,)x + (nx)y = (-2mx, )z
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If P =0, and n = O, the equation is 2mC'B’ = 0. Solv-

ing this equation gives:

Fl L4

C =0 or B =0

A’ = ilB‘ or A' = ﬁ c'

X 1

’ ’
let B = xq or let cC = %,
two vectors result
determining

(=34)=x + (x1)y =0 snd (51)x = (x1)c

In each of the parts of Case I, two lines have been de-
termined thaet contain (x4, ¥y, 2y) and do not intersect Ax +
By = Cz

Case II: Let xy = 0 and T4 # 0 and A'x, + B'y1 =0z

1

becomes B'y1 =C'z
¢

B’ - c z,

¥

Substituting for B’ in (AB’- A°B)2 - (0B’- ¢’B)Z - (AC'- A’C)2

0 glves:
AC'z , \2 cc’ , \ 2 , , 2
( 1 _a B) - ( 1.¢ B) - (ac” -4’0 =0
RE | bA |
Az C’ - By,a’ ® a0 By, G’ \2
( 1 L ) -( 1 1° ) | (ac’ - a2 = 0
71 ¥4 /
Let 4 = Az1, e = By1, r =Czy and
(dc’ - 8a’12 (£ - 9)2 ¢’2 . ;.2
- - (A" = CA" )T =
Y12 742 0

Let £ = 0 = ]

(dc’ - ea”)2 - 55’2 . Y12(AC' -CA" )" =0
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028’2 _ 2deC’A’ + 20’2 - 32’2 .
(02y$A’2 - zAcyfc‘A‘ + A2y$0'2) = 0
Let p = o - Czy?
m = de - ACy?
n=a%-32-a%2
pA”°2 _ 2mC‘A” +nc’2 =0
If p# 0, then 5
K =(2m:I: gg -hpn)c.
and
A = (m +Mga - pn)04 op A = (m —'V'l;2 - pn)c,

Let C' = Py,
and vectors
((m‘y',l *7 m2 - pn), PZ,, py,l'i and
((m:r1 -7 /m2 - pn), PZ;, PYy) are determined producing
(my, + ¥, Vm? - pn)x + (pzy)y = (psr,| Vz
(my, - 74 n/m"2 - pn)x + (pz,| )y = (pyq )z
Ifp =0 2and n# 0, the equation becomes -2mC’A” + nc’?

’ v cmo L
C =0 or c = =5 A
B’ =0 or B = M
ny,
A" = any real number
s ¥
Let A" = s # 0 Let A = ny,
producing vectors
(s, 0, 0) and (ny,, 2mz,, 2my,)
and lines
8x = 0 and (ny, )x + (2mz,)y = (2my, )z

If p =0 and n = 0, then
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-2mG'A' has aolutions

C =20 or A =0
B’ =0 or B'=—z-10'
71
A= 5#0 ¢’ =y,
giving vectors
(s, 0, 0) and (0, z,, ¥,)
or lines
sx = 0 and (21)y = (y,)z

In each part of Case II, two lines have been deter-
mined that contain (x,, y,, z;) end do not intersect Ax +

By = Cz.

Case III: Let x; =y, =0 and

A‘x1 + B'y1 = G‘z1 becomes O = G'z1

Since 2, > 0, C =0
Substitution for G’ in (AB'- A°B)2- (CB'= C'B)%. (AC’- A'C)2 =0
glves:

(aB’ - 4°BY2 - (6B )2 - (A" ¢)'% = 0

422 _ aaBa'B” + 8242 . %32 - &% =0
(a2 - ¢®)B'2 - 2ama’B’ + (B2 - c®a' 2= 0
Lot p = A% - ¢2
m = AB
n=p8 -0 and

pB°2 - 2mA’B’ + a2 = 0

If p# 0 then J_E—_
B’ = (2m t‘—%ﬁ - hpn) A" and




B' - (m +.Jm2 - pn)AJ Bt (m - nlmz - pn)A'

Let A" = p
Determining vectors
{p, (m +/m® - pn), O and (p, (m - JmZ - pn), 0)
or lines
(p)x + (m + Vm® - pn)y = 0 and (p)x + (m - Aam? - pnly = 0
If p =0 and n # 0, then
-2mA’B° + nA’2 = 0 has solutions

’ ’ 2m 4
A =0 or A = = B
Let B'’=38#0 B’ =n

and vectors
{o, s, 0) and {2m, n, 0)
determine lines
sy =0 and (2m)x + {nly =0

If p =0 and n = 0, the equation -2mA’ B’ = 0 has solutions:

L4

A =0 or B’ =Q
Let B=8 # 0 or A =3s#0
determining vectors
(o, s, 0) and (s, 0, 0}
and lines
sy =0 and s8x = 0

In each of the three parts of Case III, two distinet
lines have been determined that contain (x,, yy, 24} and do
not Intersect Ax + By = Cz,

By Case I, II, and III in the space of the sphere of

radius ri, through a given point not on a given line there
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i3 more than one line that does not intersect the given line.

The valuss of p, m, and n were:

Case I: p = (Ax, + By1)2 - (x$ + y$)02
- 2
m = Bz, {(-Ax, - By1) + Cy1(Cz1 - Ax,) + CBxy
n = Bz(z$ - x?) - (Axy - Cz1)2
Cage II: p = (32 - 02)y$

m = Ay,(Bzq - Cy1)

Case III: p = A2 - ¢°
m = AB
2 2

n=B =0



