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CHAPTER I

INTRODUCTICN

The theory of abelian groups is that branch of algebre which
deals with groups that have the additional property of commtativity.
Although this may not seem to be that striking a deviation from
general group theory, this added property almost completely changes
the metheds and baslc ideas of the study of these groups. Since
every abelian group is, of course, a group, al)l the results that can
be determined about general groups ._hold for absllian groups. However,
there 1s an immense amount of knowledge that has been added by simply
allowing the commutative property as part of the structure. This is
why the study of abelisn groups is such an interesting fileld,

One of the basic problems which confront group theorists is
determining the structure of a glven group and then classifying the
group with others which have the same or similar structure. Thus, it
can bes said that the classification of groups means a schems that
tells when two systems are essentiaslly the same. Thls idea manifests
itself in trying to set up isomorphisms between two groups so that
theorems that state when groups are lsomorphic are of extreme importanece.
Another problem concerning the structure of groups is 1in stating the
conditions which force a group to decompose intc familisr subgroups or,
hopefully, less complicated groupa, In other words, the group theorists
try to break down a group in hopes that it becomes a 1little more
famlliar,

It is the purpose of this paper to present the results that deal



specifically with classifying and decomposing abelian groups. In the
finite case, the problems have been resolved, where as for infinlte
abelian groups, the structure of only special cases has been determined,
Although there 1s an immense amount of material concerning the structure
of abellan groups, thls paper is intemded to provide a reasonable
comprehensive summary of the maln results concerning the stemcture of
abelian groups., It is assumed that the reader has had some exposure

to abstract algebra, set theory and use of transfinite tools, such ss,
Zorn's lewma and the Axiom of Choilce.

In Chapter 1II, a brief review of soms of the more common terms
and theorems in elementary group theory which will be used throughout
the paper is presented. Some of the terms are basic and are not
defined although a source is listed which explains the terms in depth,
Likewlse som® of the theorems are stated without proofs. Finally,
there are some definitions which may be new to the reader or are
presented becanse they have been defined differently aeccording to
various authors. The heart of the paper begins in Chapter III where
the theorems which ultimately classify all finite abelian groups are
presented. In Chapter IV attentlon is focused on infinite abelian
groups and a discussion of torsion and torsion free groups is presented
as well as the classiflcation theorems for the divisible, free and
finitely generated groups.

From this point on, whenever the term group is used, it is
understood that the group is abelian and, as is customary, that the
binary operation is addition (+). Also the identity is O and the
inverses of elemontas are the nogatives. Note that there will be no

distinction made in notation between the integer 0, the group identity



C ard the set containing only O. The context will provide the

distinetion,



CHAPTER IX
BASIC DEFINITIONS AND THEOREMS

Even though the term abelian group has been used a number of

times already, a precise definitlon is given to avoid confusion.

DEFINITION 2,1, 4An abelian group G 1s a non-empty set with a
binary operation + defined on the elemsnts in G such that

(1) the operation is elosed: a,b in G implies a+b is in Gy

(2) there is an identity O;

(3) each element has an inverse in Gy

(4) the operation is assoclative: (a+b)+e = a+(bte) for all a,b,c;

(5) the operation is commatativet a+b = b+a for all a,b,

The following table of notation is common and definitions or
explanations, if needed, can bte found in the book Infinite Abslian Groups

by Fuchs [2] .

na = atata+,,,ta (n times) multiple of a

| Gl order of a group G

B4A B 4s a subgroup of A

BCA B 13 a proper subgroup of A
a+B coset of a modulo B

| & B trdex of B in A

A/B quotient group

{a) cyelie group generated by a

s) = b fA ted
( ) (‘1\' i€l ;u.:gi:‘i{ c: a sﬁgzlt.aof Aby



i nyay  ny integers linear combinatlon of the a,'s
I (a}' order of an element a
~G HE is isomorphic to G
Cry eyclic group of order n
2, group of integers modulo n
Z group of integers
Q group of rationals
{31} 11 family of groups or subgroups

DEFINITICN 2,2 A homomorphism fi1 G-9H is a function from one
group G into another H with
f(a+b) = £(a)+f(b)  for all a,b in G.

f is a monomorphism if f is one to one and an epimorphism if f is onto,

DEFINITICN 2.,3. An isomorphism is a homomorphism which is also
& one-to-one and onte correspondence, An endomorphism is a homomorphism

from one group into itself,

DEFINITION 2.4, If f is a homomorphism from G into B, then the
kernel of f ia the set ker(f) = {xe Gi f(x) = 0}e.nd the image of f is

the set im(f) ={y€ Bi y = f(x) for some x€ G.}

The following theorems are presented without proofs which in most
cages are quite sasy and straightforward, If necessary, the reader may
refer to the book The Theory of Groups by Rotman [7 | for details of tne

proofs,

THEOREM 2,1, If S is a subset of a group G, then § is a subgroup
of G Af and only if

(1) o€s,



(2) s €5 implies -a€ S,
(3) a,b€S implies a+b€ S.

THEOREM 2,2, If S 1s a subget of a group G, then S 1s a
subgroup of G if and only if S 1s non-empty, and whenever a,b€ S,
then a-bE 3,

Using this eriterla, it is easy to check that ker(f) and im(f),

defined in Definition 2.4, are subgroups of G and H respectively.

THEOREM 2,3. The intersection of any family of subgroups of

G 1s a subgroup of G,

DEFINITICN 2,5. leat S and T be non-empty suhsets of a group G.

Then S+T =is+ts 8€S and teT.I

THEOREM 2,4, (Lagrange) If S is a subgroup of a finite group G,

then|c. s\= |al/|Sl that 1is, the order of S divides the order of G.

COROLLARY 2,5, If G is & finite group such that |G| = p for any

prime, p, then G 1s cyclic.

COROLLARY 2.6, If G is a finite group and a€G, then|{a)|divides

le] .

DEFINITION 2,6. A subgroup B of a group A 1s fully invariant

in case B 18 carried into itself under svery endomorphlsm of A,

THEOREM 2.7. (First Isomorphism Theorem) Let f: G-IH be a

homomorphism with ker(f) = K. Then G/E22im(f).

This theorem is extremely important and shows that there is no



significant difference bestween a quotlent group and the imsge of a group

under & homomorphism.

DEFINITICN 2.7. The function f1 G4G/K defined by f(a) = a+k is
called the natural homomorphism of G onto G/X, where K 1s any subgroup

of G.

THECREM 2.8, (Second Isomorphism Theorem) Let S and T be
subgroupe of G. Then S/\T is a subgroup of 5 and
S/(sAT) 22 (s+1)/1.

THEOREM 2,9, (Third Isomorphism Theorem) lLet K€ HEG where
K and H are subgroups of a group G. Then H/K 1s a subgroup of G/K and
(6/K) / (H/K) & o/H,

DEFINITICN 2.8, If H and K are subgroups of G such that
(1) H¥K =G and
(2) HAK =0,

then G is the (internal) direct sum of H and K and 1s denoted by

G = H®K,

DEFINITION 2.9. A subgroup H of G 1s called a direct summand
of G 15 there is a K& G such that G = H®K. In this case, K i3 a

complimentary direct summand or simply a compliment of H is G.

THEOREM 2,10, If G = H@K, then G/H=K, that is, the compliment

of H in G is unigue up to lsomorphism,

DEFINITICN 2,10, If H and K are groups, the (external) direct
sum of H and K, denoted by HOK, is the set of all ordered pairs (h,k),

where h€H and k€K, with the binary cperation



(h,k) + (h*,k') = (h+h?, k+k'),

Now 1t 1s clear that if G = H®K 1s an external direct sum, it
is also an internal direct sum of H®C and O®K, Thus there 4is no
distinetion in notation and since the two ideas yield isomorphic
groups, the use of direct sum usually does not include either adjective
internal or extermal. It is useful to extend the idea of direct sum

to a family of subgroups.

DEFINITION 2.11, Let{B} j¢r be a family of subgroups such that
(1) 4ey B+ = A (the By'a generate A)
(2) for every 1€ I, By N 1‘% By = O,

Then A is a direct sum of its subgroups By.

Finally this review is concluded with some elemsntary properties
of homomorphisms,

Ist ft G~ be a homomorphism, Then

(1) £(C) = 0

(2) f(na) = nt(a) for all integers n

(3) (£/A), the mapping f restricted to a subgroup

A of G, is a homomorphism from A into H.



CHAPTER III
FINITE ABELIAN GROUPS
1, THE BASIS THEOREM

DEFINITION 9.1, Let p be a prime., A group G is p-primary

(or 18 a p~group) in case every element in G has order a power of p.

THEOREM 3.1. (Primary Decomposition) Every finite abelian group
G 1z a direct sum of p-primary groups.

Proof:1 For any prime p, let Gp be the set of al) elemsnts in G
whose order is a power of p. Now 0€Gp i1s non-empty. Furthermore
if a,b are in Gp' then p®a = 0 and p™ = O for some integers m and n,
Thus p™{a-b) = 0 and so a-b is in Gp so that GTP is a subgroup, Now
it suffices to show that G = z Gp as p ranges over all primes p which
divide the order of G. The crliatizia of definition 2,11, is now used
to establish this faot,

(1) To show G EZGP' let x€G and assume x # O, Furthermore
assums that x has order n. By the fundamentsl theorem of arithmetic,
n = pie' P, %2 ..,pkek where the p, are distinct primes and eiél. Lot

n = n/pi°i- for eaoh i and observe that the greatest common divisor of

the ny 1s 1, Therefore there exists integers mi such that

mny +mn, +oot mn =: mny = 1 and hence (Elini)x = z(mini)x = x,
8¢ = =

For each 1, p, (ninix) mnx = O and 8o mynyx 1s in Gpa'. . Hence for

any x in G, x can be written as an element of ZGP so that G £ ZGP and

since Zpr-. G clearly, G = ZGP'

(2) let x€G nZGq. Since x€G,., p°x = 0 for some e; since
P m p
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x€ ZGq, x =qu, where each xqecrq. Then qe‘l» xq = 0 for each prims

g and some exponent e Set t =-'qu0, and then tx = tzxq = 0, Now

q.
(t, p®) has greatest common diviser 1 so that there exists integers
a and b with ap® + bt = 1, Hence x = ap®x + btx = 0 so that

Gpnp%l&q = 0, Thus, G =ZGP.

IEFINITION 3.2. The subgroups Gp of G are called the primary

component.s of G,

DEFINITION 13,9, Iet G be an abslian group and m a positive

integer. Then mG = {mu xeG}.

This section is directed toward establishing that every finite
group 1s a direct sum of cyclic groups (Basis Thecrem). Decause of
theorem 3.1., it is sufficient to consider only the special case of
finite p-primary groups, The proof is based on the following lemma which
is smuch more powarful than is needed since it will be stated in the
infinite version. However, it 1s quite useful to demonstrate an
application of Zorn's lemma and also will be referred to when the
infinite groups are considered,

LEMMA 13,2, Let G be a p-group and assume that a is an element
of maximal order pk (that 1s, there is no other element in G of larger
order than a). Then (a) is a direct susmand of G.

Proof: First Zorn's Lemms is used to obtain H, a subgroup of G,
maximal with respect to H n(n) = 0, Let ¢ be the collection of all
subgroups of G whose intersection with (a) is only O. Then 6 is
non-empty since 0 is in 6 + Partlally order the elements in z;by
set inclusion and lat {H._.S be any chain in c » It should be clear

ieI
that this chain has an upper bourd in t? s namely the set-theoretic
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union of the Hi's. Hence Zorn's Lemwa is applied teo Gto obtain H
ard let G' = H@(a) .

Clearly G'C G and to show GSG' an indirect proof is used. Suppose
G 1s not a subset of G', then there exlsts xg G such that xg’G'.
Furthermore, since x €G, for some 1, pg:EG'. (pjj: # 0); otherwise

( H,x)@{a} = 0 and this would contradict the maximality of H, Assume

- k-
pk 1 1

pxEG', then px = h+na where h€H and n€2, Also pk-i(PI) = na + h
= 0 by maximality of the order of a. Hence pk'lm = 0 go that pk"in
must be divisible by pk, that 48 n = pJ for some integer j. So
px = pja + h and p(x-3a) = h 1s in H, however, x-Ja is not in H,

Now (H,x—ja) N{a) # 0 since H is maximal in this property. Let
ra be in the intersection, Thus ra = h'+s(x-3a) where h'€ H and sxgHE@®{a).
Also (8,p) = 1 since p(x-3js)€H and HN(a)= 0. Since sx, px are in G'

and (s,p) = 1, then xEG', a contradiction., Thus GESG' and 80 G = H@(a).

THECREM 3.3. (Basis Theorem) Every finite group G is a direct
sum of cyélic groups.

Proof: DBacause of lemma 3.2., the proof is trivial, Assume G 1s
p-primary (thecrem 3.1.) and if in G an element of maximsl order, a,
ia choosen, then G = H@{a) where H 1is determined as in the proof of
the lemma, HNext, apply the same process to H which is of smaller order
than G, Continulng in this manner, G can be represented as a direct

sum of cyelle groups.

2, FUNDAMENTAL THECREM OF FINITE ABELIAN GRCUPS
It has been showun that every finite group is a direct sum of
p-primary groups and furthermore is a sum of primary cyclic groups. However,

the bamie question of when two finite groups are lsomorphie has still
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not been resolved. To do this a unique factorlization theorem,
analogous to the fundamental theorem of arithmetlie is needed, where
primary cyelie groups wonld correspond to prime rmumbers, This
theorem does exist and is called the fundamental theorem of finite
abelian groups., The following series of definitions and theorems

will lead te this theorem.

LEFINITION 3,3, Lst G be & group., Then the n-scole of G,

denoted by G}, is the set of all elements g in G such that ng = 0,

CORCLLARY 3.4, The n-socle of G is a fully invariant subgroup,

Prooft Let &,bGG[n]. Then na = nb = 0 and hence n(a-b) = 0
so that a-b&Gn] and G[n] 1s a subgroup of G, Also if £t G—4G is
a homomorphism end f(a)€ f(G[n}), then na = 0 and n(f(a)) = f(na) = £(0) = 0
by properties of homomorphisms, Hence f(a)g G[r] and thus f£{G{n]) &

G[n]so that G[n] is fully invariant.

The next definition is motivated by a desire to find a way to

count the rumber of cyelic subgroups of a fixed order p" of a finite

p~primery group,

DEFINITION 3.4. If G is a finite p-primary group and if nQ 0

is an integer, then U(n.G) =d {pNGN\G
S0 )

vwhere d(H) is the dimension of H as a vector space over Z-p. Notice for

H= I;ﬂwﬁrpg[ﬂ_  PH = 0 ard hence H 1s called an elementary p-primary
GnG[p']‘

group and it is easy to see that any two decompositions of H into a
direct sum of eyelle groups have the same number of summands, denoted

by d(H).
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Because of the technical nature of this definition, amn illustration
of its meaning l1s provided in the following example.

Lot G = cp@c p3zzP®zp3 and if p = 2, then G = 2,®z,,
Now G[2] = {(010)1 (110)9 (1|L")s (0,4)}

26 = 22,@224 = 0@2zg = 1(0,2), (0,4), (0,6), (0,03
4G = oBuzg = §(0,0), (0,42
86 = 0@8zg = {(0,0)3.

So uo,G)wd(zoG G ) =d(G )| ) =d( 0,00, (0,4}, (1,0), (1,
2G N G 2G NG[Z] (0,0), (0,4
Now if {(0,0), (0,4)} = H, then the cosets of the faector group are
(0,0) +H=H ; (O4)+H=H
(1,0) + H=(1,0) +H ; (1,4) + H = (1,0) + K,
Thus the quotient group has only two elements and hence is a2 vector

space over 22 of dimension 1 since every vecter space over a field has

dimension equal to the rumber of copies of the field,.

Now U(I,G)=d(216ﬂG ) -d( 0,0), (0,4 ):o
2%?[@[2% 0,00, (0,4
U(2,G)=d(22(iﬂG 21) =d( 0,0), (O J=1
236116[21 0.0
U(3.G)=d(23cme ) =d( 0,0 )no.
Z!FGﬂGEZ% !éo,o}é

and so on,.
In this example, U(n,G) gave the mimber of cyeclic summands of G

of order pn'"':l which is what wes desired,

THEOREM 3.5, Let G be a finite p-primary group. Any two
decompositions of G into direct sums of cyclic groups have the same
mmmber of summands of each order., In fact, the number of cyclic
summands of order 1:11'r+1 18 UJ(n,G).

Froof: 1laet G =ic1. where each €y is a cyelie subgroup of G.
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Tt is to be shown that the number of Cy of order p"*! 1s U(n,G) and
to do so the following notation is used
6= 26 =2cpD2cr?@...0 2 cpt.
If there are no sumsands of order pX, then 2 Cp¥ = O,
Now 6[5) = Zcpl5) ® 2 o’ [} @ ... © Zopt(sd.
«2cp®2 pep? ®...02 ptlept,
Also pRG = "2 Cp ® p"2.cp? ® ... 9p 2 cpt
= 0@0®... ®p" LCp™ @ ...0p" 2 Cpt, net.
Then for all n<t
6[F] o™ = ancpnﬂ @Z P2 @ |, @Zpt-icpt
- 5_ pncpnﬂ ® G[p] ﬂpn"'lG.
Thus 6[p) M\ 5"6/6 ] (p™6 2 2 pfcp™ by theoren 2,10, Therefore

U(n,GY =4df¢ G i1s the number of eyclic summands of order
GLp) NPT IG

pnﬂ. Furthermore, since UJ(n,G) is defined solely in terms of G and
does not depend on any particular decomposition of G, this number is

the same for any two decompositions,

COROLLARY 3,6, Let G and H be finite p~primary groups. Then
G®H if ard only if U(n,G)} = J(n,H) for a1l n 20,
Proofs Suppose fi1 G-#H 1is an isomorphism, Now G = Zci where
each C, 1s cyclic by theorem 3.3, By theorem 3.5., U(n,G) is the
number of cyclic summands of order p™*l, H = £(6) = f(z Ci) =Zf(ci) and
f(Ci)zci for all i under the isomorphism, So for each n, there are {J(n,G)

sunmends £(Cy) of H of order p™1. But this number is precisely \)(n,H).

Conversely; If U(n,G) = U(n,H) for all n20, then G is
igsomorphlc to H because they have the same types of direct sum

decomposition into ecyclie groups. Hence any decomposition of H s a
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decomposition of G and the groups are clearly isomcrphic.

IEMMA 3.7, Let G and H be finite groups and f: G-*E be a
homomorphism. Then for each prime p, f(Gp)CHp.

Proof: Let xEGp for a fixed prime p. Then p'x = O for some
integer n. Thern pPf(x) = £{p™x) = £(0) = O by properties of a
homomorphism, Henae f(::)(-:ﬂp so that f(Gp)C Hp.

The last two theorems are merely a restatement of theorem 3.5.
and the corollary 3.6. in terms of general finite groups instead of
p-primary groups. One can easily see that since every finite group
is a direct sum of p-primery groups (theorem 3.1,), the theorems are

essentially complete,

THEOREM 3,8, I1et G and H be finite abellian groups. Then G=H

if and only if Gp:'.Hp for all primes p.

THEOREM 13.9. (Fuandamental Theorem of Finite Abelian Groups)
let G be a finite group. Then any two decompositions of G into a
direoct sum of primary cyclis groups have the sams number of summands

of each order,

This thecrem concludes the presentation on finite groups. It is
interesting to note that much of the early studies of group theory
dealt almost exclusively with finite groups. In fact, the primary
decomposition theorem and basis theorem were known to be proven in the

19th century.
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CHAPTER IV
INFINITE ABELIAN GRQUFS
1, INTRODUCTION

In the early part of the 20%h century, the attention of researchers
in group theory was directed to infinite abelian groups. At this
time the structure of countable torsion groups was developed by
H, Prufer (1923), H. Ulwm (1933) and L. Zippin (1935) [2] In the
theory of torsion-free proups the structure problem has been resolved

only for spsclal cases of torsicn-free groups.

LEFINITION 4.,1. Let G be an arbitrary abelian group. Then

T denotes the set of all slements In G of finite order.

LEFINITION 4.,2. A group G is torsion in case G = T and torsion-
free in case T = 0, thet 1s, G contains no elements of finite order

other than 0.

THECREM 4,1, T is a fully invariant subgroup of G and the
faetor group G/T is torsion-free.

Proof:t T 1s a subgroup. Clearly T is non-empty since 0€T.
let o,bET, Then na = mb = 0 for some positive integers m and n.
Then mn(a-b) = 0 so that a-bET and T is a subgroup of G.

T is fully invariant. Let fi: GG be an emdomorphiem amd
suppose f(a)E f(T). Then na = O for soms integer n and nf(a) = f(na)
= £f{(0) = 0, Henee f(a)ET and £(T)ET.

G/T 1s torsion-free, It suffices to show that T is the only
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element of finite order in G/T, Let a+T be an elemsnt in G/T of finite
order m. Then m(a+T) = T and ma €T so that there exists an integer n
with n{ma) = 0, Hence 2 €T and a+T = T so T iz the only element of

finite order in G/T.

Now the study of abeslian groups can be split into three parts:
1) the classification of torsion groups, 2) the classification of
torsion-free groups, and 3) the study of how the two are put together
to form an arbitrary group.

As previcusly noted, much work has been done in the first of
these parts and the following two theorems have counterparts in the

theory of finite groups.

THECREM 4,2, Any torsion group is a direct sum of p-primary groups.
Prooft As in theorem 3.,1,, let Gp be the primary comporent of
a torsion group G. The proof of this theorem follows the proocf of
theorem 3.1, That is, the G_ generate G as p ranges over the primes

P
and the intersection of G and VG, for p # q is only O,

THECREM 4.3, let G and H be torsion groups, Then G%H if
and only if Gp‘-’u‘ﬂp for all primes p.

Proof:t (Since this was not proven for the finite case, a proof
is included here to take care of both situations,) Let ft G¥H be
an isomorphism, Then as in theorem 3.7., it is easy to show f(Gp)CI:{p
and g(HP)C.Gp where g1 H¥G is the inverse of f.

Then fp = (f/Gp) and gp = (g/Hp) are isomorphisms from Gp to Hp
and Hj to Gp respectively, Hence Gpﬁ"'a HP.

Conversely if fpl Gp-’ Hp is an isomorphism for each p; then define

f1 G*H by f(x_p) = fp(xp) ard f then 1s an isomerphism,
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Now the study of torsion groups reduces to the study of p-primary
groups. It may not be clear to the reader that infinite toraion
groups sxlst, however, they do since any direct sum of a finite group
over an infinite index set is toraion and clearly infinite, One of the
more interesting torsion infinite groups is Z(p9) which plays a very
important role in the next few sections. Z(p™®) = <°1‘p°1 = 0y
pc2 = ¢ 1: pe 3 = °,3 ...) is an ascending union of finite eyclie groups.
It is clearly torsion since some power of p will annihilate any element

and also is infinite since the generators c, are infinite,

2, DIVISIHLE GROUPS

Besides the groups that are direct sums of cyclic groups, another
important class of groups are the divigible groups. In an abelian
group, any element can be multiplied by an integer but “dividing" by an
integer is a different story. The result may not exist in the
particular structure or if it does, it may not be unique. The most
common examples of divisible groups are the ratlonals and the real
mumbers, Although it is not obvious, Z(pw) is also divisible, It
shall be shown that every group is a direct sum of a divisible group

and a reduced group,

DEFINITION 4.,3. A group G is divisible if nG = G for every integer
n#0or equivalently if for each x€ G and non-zero integer n, there

exists YEG with ny = x,

DEFINITION 4.4, A group G is reduced if it has no non-trivial

subgroupa which are divisible,

It should be clear thsat & subgroup of a divisible group is not
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necessarily divisible since the subgroup Z of Q 1s not divisible. To
better understand the concept of divisibility and to establish some
results that willl be helpful in the proofs of the theorems which follow,

the followlng elementary consequences of divisibility are presented.

LEMMA 4.4, A quotient or homomorphic image of a divisible group
is divisible.

Proof: Suppose f: G=*H is a homomorphism from a divisible group
G into H. Let x€ £f(G). Then x = f(a) for some afG. Let n be any
integer and since G is divisible, there exists b G with nb = a, Then
nf(b) = f(nb) = f(a) = x and since £(b)€ £(G), then x is divisible by

Ne

LEMMA 4,5, G is divisible if and only if G = pG for each p.
This should be clear since for any integer n, n can be written as

a product of primes and so nG = p{' pzr"-... PR*G = G.

LEMMA 4.6, If {G;} 1¢€1I is o family of divisible groups, then
their direct sum} G; is divisible.

Proof: For any integer n, it is clear that niGigiGi. To show
the reverse inclusion, let xgEGi. Then x 'Z‘i vwhere each a3 €Gy.
Now eince the Gy are divisible, there exists b €G; with nby = a4 for
each 1, Let b =Zb1. Then nb = n}-. by =2nbi =Zli = x and hence

xenZGi. Thus, nZGi =ZG!. and the direct sum is divisible.

LEMMA 4.,7. If G is divisible and H is a direct summand of G,
then H is divisible,
Proof: Let a G = H@K. Then a is divisible by n and hence

nb = a for some b€G. Thus n(h+k) = h'+k' where a = h'+k' and b = h+k.
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So nh-h* = k*'-nk = O since HNEK = 0, Hence h' = nh and H is divisible.

IEMMA 4.8, If G is torsion-free divisible, then nx = a has a
unilque solution.
Proof:t Suppose nx = a and ny = a for non-zero elements x and y in

G. Then n{x-y) = O and since G is torsion-free, x-y = 0 or x = y.

With these results, the goal of classifying divisible groups is

resumed,

DEFINITION 4.5, A group D is said to be injective if, given A a
subgroup of B and a homomorphism f from A to D, f can be extended to a

homomorphism F from B into D, and f = Foi where i is the inclusion map.

The following diagram 1llustrates thls definitlon:

D
0 > A = «)"B

The next theorem shows that divisible groups are exactly the groups

which have thls property,

THECREM 4.9, A group G 1s divisible if and only if G is injective.
Proof1 Suppose G is divisible and the above diagram is given,
Consider & = {(S,h) | 5 is a subgroup of B containing A and h: S-#G
extends f-}. Now eo is non-empty since (A,f) 1s 1n.e? . Partially order
of by decreeing (Si,hl)é(sz,hz) if S, is a subset of 3, and, h, restricted
to 84, (hz\Sl) = hl' Let {(Si, hi)} jer be a chain in ‘efnnd it is to
be shown that (S,h) where S = US, and ht S-%G defined by h(s) = h,(s)

where s€8 is in Si for some i, 1s an upper bound for the chain,
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Clearly S is a subgroup of B and contains A, Also h extends f
since each hy extends f. Then (5,h)E 3 and since S conteins each Si
of the chain and h restricted to each Si is exactly hi' (si’hi)
£ (3,h) for each 1, Thus the chain has an upper bound., Hence Zorn's
Lemma may be applied to obtain a maximsl pair (S, hO)’

It suffices to show that S, = B, Suppose there exists b €B such

0
that b¢SO‘ Define 8' = SO + (b). Ist k be the smallest positive
integer such that kbESo. Now, every element y in S' has a uniqgue
expression y = s, + tb where 04tk since if y = 55 + tb = 5o’ * t'h,
then sg-s,' = b(t‘—t)ESO. Thus b(t'-t) = 0 or t' = t and hence sy = sy
Iet ¢ = kb and since ¢ €Sq» h(e) is defined, and there exists
x €G with kx = h(c) sinee G is divisible, Define Wi &' G by
h’(so + tb) = h(so) + tx, Then n’ is a homomorphism and b’ exterds h.
Then (Sg,hy)&-(s’ ,b’), & contradiction of the maximal pair (Sgehy)-
Now if kb 5, except when k = O, then define b’: s'=»G by
b’ (s + tb) = h(sy) + rx for any fixed x€G and r20 and again b’ 1s a
homomorphism extending h., Thus the same contradictlion is demonstrated.
Hence S, = B,
Conversely, suppose G 1s infective, Cons@.‘:der the diagrami
£ 11
/s
O ———> L —T=L
where f(nz) = ng for g €G, arbitrary but fixed, Then clearly f is a

homomorphism.,

So by the injective property of G, there exists F: Z-#G such that
F extends f, that is Fo1 = f,

Hence n(F{1)) = F(n) = Foi(n) = f(n) = g and so g is divisible by

n, Therefore G is divisible.
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With this result it 1s possible to show that a divisible subgroup

of a group 1s a direct summand,

THECREM 4,10, If H is a divisible group, then H 1is a direct
summand of every group containing it.
Proof: Suppose G is any group containing H, Consider the diagram

iyl
/EF

where I i1s the identity mep, Now by theorem 4.9., there exists F: G-%H

which extends I, Hence Foil = I and so F(a) = a for each a EG, Then
the proof is simply to show that G = H@®ker(F),
(1) ENker(F) = 0. Let xe HMker(F). Then F(g) = x for some

g€G on one hand, while F(x)

0 on the other,

Then x = P(g) = F(F(g)) = F(x) = 0, Hence x = 0,
(11) Let x€G. Then x = F(x) + x-F(x) and F(x) is in H while
x-F(x) is in ker(F) since F(x-F(x)) = F(x) - P(F(x)) = F(x) - F(x) = 0.

Thus G = H@ker(F) and H is a direct summand,

THECREM 4,11, Every group G ls a direct sum of a divisible group
D and a reduced group R(G = DBR).

Froof: Given a group G, consider D the subgroup generated by all
divisible subgroups of G. Then D is divisible by lemma 4.6., and is
called the maximal divisible subgroup. Henee by theorem 4.10,, D is
a direct summand of G and the complimentary summand R of D is reduced

since 1t could not have any divisible subgroups.

Now theorem 4.11. reduces the c¢lassification of abelian groups to
that of the divisible and reduced cases, Furthermore in the case of

the divisible groups, the classification is completely known and
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presented in the following theorem., It shows that the only divisible
groups are direct sums of the rationals Q ard Z(pw) for various

primes p.

THEOREM 4.12, A divisible group G is a direect sum of groups
each isomorphic to the rational numbers G or Z(pw) for some prime p,
Proofi Iet T be the torsion subgroup of G and it will be shown
that T is divisible, ILet x&T and let n be an integer, 3inee G is
divisible, there exists y in G with ny = x, Since x €T, then kx = 0
for some X and hence k{ny) = kx = 0 and so y€T. Thus for any integer
n, there exists a molution in T to the equation ny = x so T is divisible,
Then by theorem 4,10,, T is a direct sumrand of G so that G = T @F
where F must be isomorphic to G/T by theorem 2.10,, and hence torsion-
free by theorem 4,1, Furthermore F is divisible by lemma 4,7. Now

the summands T and F will be studied separatsly.

The discussion of F will be carried out in standard wector space
theory. Let x be any element in F and n a non-gzero integer. 38ince F
is divisible and torsion-free, there is a unique element y in F with
ny = x, lemma 4,8, Thus the expression (1/n)x = y is meaningful, as is
(p/q)x where p/q is any rational mumber, that is, {(p/q)x = py, where
x = qy. With this definition of scalar wmultiplication of elements in
F by rational numbers, F becomes a vector space over the fileld Q. It
is a routine exercise to check the wector space axioms, Thus, from a
result in vector space theory, F is isomorphic to a direct sum of
ocoples of Q@ over an index set I whose cardinality is the number of

elements in a basis for F. Hence Fzzqi.
el

Now the divisible torsion group T, by theorem 4.2,, is a direct

sum of p-primary groups Tp ard each direct summand Tp must again be
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divisible, Lemma 4,7, So for the remainder of the proof, assume
that T itself is & p-primary group, Zorn's Lemma is used to show that
T is a direct sum of groups isomorphic to Z(pm).

Consider the collection of all subgroups of T which are isomorphic
to Z(p®), Since it is to be shown that T is a direct sum of such
subgroups, it is necessary to consider only independent smets of such
subgroups, Let B be the set of all collectlons of inmdependent sets
of subgroups of T isomorphic to Z(pm). Hence each element in B is &
collection of independent sets of subgroups which may be partially ordered
by set inclusion, The proof that every chain in B has an upper bound
in B is straightforward and so that Zorn's Lemma i3 applied to B to
obtain a2 maximal independent set of subgroups of T isomorphic to 2(p®),
sy {SJS 1€T*

let S = zsi and the proof is completed by showing that S = T, Now
S 1is divisible by lemme 4.6,, and so since S is a subgroup of T, T = S@R
by theorem 4,10, So it must be shown that R = 0, In an indirect manmer,
assume R #0 and let 11€R such that x; has order p.

Using the divisibility of R, there exists x, such that PX, = ::1 ard x

3
such that p:lt3 =%, ard 1n geneml x 1 with PXppy = Xy Then there is

nt+
an obvlious way of defining an isomorphism from the subgroup of R
generated by the x 's and Z(pm). that is, f(xi) = Cyy for each 1
where the Gi are the generators of Z(pm). Hence R contalns a subgroup

isomorphic to Z(pw), a contradiction, Thus R =0 and T = 8 so0 that

T = Z 2(pp.

kGK'
In the proof of the previous theorem, two sets of cardinal numbers
were used: one for the number of rational susmands and another for

every prime, p, giving the mamber of summands of Z(pm) for sach p-primary
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summand of T. These cardinal numbers are invariants and form a
completes set of invaflants from which the divisible group D can be
uniquely constructed. Hence, any divisible group D deccsposes as

follows:

D=20,02 2 2(:%),.
1EX ™ peP keX
The concept of a free group which has propertles that are in a

sense dusl to those of divisible groups, will be dlscussed in the

next section,
3. FREE ABELIAN GROUFS

DEFINITION 4.6, F is a free gbelian group on {"k}ktx in case F

is a direct sum of infinite cyclie groups Zx, where I, =<xk).

It should be clear that every non-gero element x of a free group
F on {xk] has a unique representation x -z-kxk for non-zero integers
®, since if x =2 m.x, and x -anxk. t.khEeEZ(qt-qt)xk = 0 and hence
mk = m, for each k, So each element doea have a unique expression,

this result is stated in the following theorem.

THEOREM 4.13. If F is a free group on {xk-.;keg. then every non-gzero
element x in F is a unique linear combination of the x 's, x ‘z’"kxk

for non-zerc integers =,

DEFINITION 4,7, The eet of {Ikzkel is oalled a free set of
generators of F and Fy will denote the free group of m free generators,

that 1s, Fy = zKZk and m is the cardinality of the get K.
ké

THEOREM L,1%, The free groups F, and F , are isomorphic if and

only if m = n for the cardinals m and n,
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Proof: Suppose m = n, Then F, and F,, are direct sums of the
same numbsr of infinite cyclic groups Z.k and are clearly isomorphic.

Conversely suppose F-"a‘ﬁF . Then let p be any prime and consider
the quotlent group Fn/pF . This group becomes a vector space over
Zp vhen a scalar multiplication is defined on Fo/PFp by n(x+pF,) =
nx+pFy where n is in Z.P and the coset x+pFy is in F,/me and, the
v:ector space axioms are verified, Hence Fl/p!'. has & basis which 1s
claimed to be the set { xi+pFl3whoro the x; are the generators of Fy.
It i1s clear that this set spans the wector space so it only needs to
be shown that the set is independent,

Iptzmi(xii"pl?,) be in pF,, the zero of Fp/pF,, vwhere each m; is
in Z, and not all myx4 are in pF,. Then myxy is in pF, and hence
mXy = p(nixi) where pnj = my for each i, that is, each my 1s divisible
by p. BHence, each myx; is in pF,, a contradiction, and so Fu/pFy has
a basis, {H*PF-.}- Thus, Fp/pF, bes dimension m and since the dimension

of isomorphic wector spaces is an invariant, m = n,

DEFINITION 4.8, The rank of a free group F iz the cardinal mumber

assocliated with the number of elements 1n the set of free genesrators of F.

THECREM 4,15, A setX = {‘1}16‘1 of generators of a free group F
is a free set of generators if and only if every mapping fi1 _X-*A where
A is any group can be extended to & unique homomorphism hi F—di.

Proof1 Let X = {x& i¢I be & set of free generators of F. If
ft xy;-¥24 1s any mapping from X into A, then define hi F—*A by
hix) = h(f nixi) = Zniai where x has the unigue representation as a
linear combination of the x4's, x ‘.g[nixi- by theorem 4.8, This

¢

unigue representation is precisely why h is well-defined. To show
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h is a homomorphism, if x = Znixi ard y = z‘f& are in F, then
h(x+ty) = h(znix.fznxixi)

=n(2 (ng+my )x, )

= > (ni-hli)gi = zniai + Z mya, .
Thus h is & homomorphism and since h is defined in terms of f, h is
unigue for a given mapping f.

Conversely, assume that __-i_C_F hag the property that every mapping

f: T-»A can be extended to a homomorphism h: F-PA., Then let A be a
free group with a free set of generators {yj}ﬁp where the index I
1s the same as that for X, Then the map fi1 X-PA defined by 2(x,) = 344
for each 1, can be extended to a homomorphism h: F—¥A and furthermore
h is obviously an lisomorphism, Thus F is isomorphie to A and hence the

set X is a free set of generstors of F,

THEOREM U4,16. Every abelian group G is a quotient of a free
abelian group,.

Prooft First it will be demonstrated that given any set X, there
exists a free group F withz as its basis, If X is a set centaining
a single element x, an infinite cyclic group Zx can be constructed that
hag x as its generator., In general, F = Z Zx and in particular for the
group G, F =Z Za. Then F 1s free and Gx:]: & bagls for F. The identity
function It Ga-fg can be extended to a homomorphism hi F-¥i by theorem

4.15. HNow h is eclearly onto so that G is a gquotient of F by theorem 2.7,

The next theorem shows that a free group F has the projective

property, which is the dual to the injective property.

DEFINITION 4.8, A group F is projective if to each diagram
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F
”
)‘// 9
B“’$ > = Yo)

there exists a homomorphism hi F-#B with foh = g, where f: B-*A 1s

a homomerphism onto A and g1 F—*A 1s alsoc a homomorphism,

THEOREM 4,17, If a group is free, then 1t is projective,

Proof: let f: B~*A be a homomorphism onte A and suppose F is
free and g1 F-*A is also a homomorphism. let X = {1.3 jeT be » basis
for F, 3ince f is onto, for each i, there exists an element l:>1 in
B with f(by) = g(x;). Then define & mapping h's X-#B by h'(x,) = b,.
Then by theorem 4.15., there exists h: F«#B where h iz a homomorphism
exterding h', that 1s, h(x) = h'(x,) = b,.
since on the set of generators {x& of F, foh(xi) = f(bi) = g(xi).

Farthermore foh = g

Hence F is projective,

COROLLARY 4,18, let G be a group and let f1 G-*F be onto,
where F is free, Then G = ker(f)®S, where S <F,
Prooft Consider the diagrl?.m
”~
h
n 1
e
] —f——aF ety O
whera I is the identity mep. Since F is free, it is projective by
theorem 4,17., and there exists a homomorphism ht F-$G with feh = I,
Now h is one-to-onme ard so S = im(h) is isomorphic to F, Claim that
G = ker(f)@®S. This is the same situation that wam present in
theorem 4,10., ard so the mechanies will not be repeated and the

proof is complete,

Another way of stating the above corollary is that G/X is free
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implies that K is a direct summand of G since quotients and homomorphie
images are similar,

One might suspect that the converse of thecrem 4.17. is true
bacause of its similarity to the injective property of divisible groups,
It cen be proven, However, te do so, it must first be established that

a subgroup of a free group is again free, the next theorem.

THECREM 4,19, Every subgroup H of a free group F is free.

Proof: let {x.j} €T be a basis of F, that is, F EZ(::’). Asgume
that the set K is well-ordered in scme way (that every non-empty set
can be well-ordered is an axiom of set theory called Zermele's version
of the axiom of choice and is equiﬁlent to Zorn's Lemma),

Por each k€K, lot F,_= 5‘_;(::3\ ard B = HAR. Thws F =UF

and H = YH.. Also B, = FL_NH , so that Hkﬂ/}lk = Hk+1/5\(+1an""
(K, +F)FEF /F=L

The first isomorphism is a result of theorem 2,8., where as the
second 1s set up by the mapping of Xty + Fk to 1, where ﬁ:ﬂ + Fk is
in Irk_,_illrk and 1 i3 the generator of Z. Since H.kﬂlﬂk is free, by
corollary 4,18,, H is a direct summand of Hk+1' So Hk+1 = Hk or
B Hk@(hl? where (hk\,ﬁz. Then for each k an hy is obtained which
may or may not be 0, Claim that H is free on the set of hk's.

Let H* be the set gensrated by the h, ‘s, Since F = UFk. each
h€H 15 in some F_,,. Define wi FK by u(h) = k where hGFlrl'i and
hgF , kakt, Assums H* # H and consider fu(r)s her am ngwey .
Then there is & lesast such element j of the set K, for X is well-ordsred,
Choose h* in H with w(h') = j and h*@H*,

Then h*€ HNF

fypn |
where a|.€li:J ard m is an integer.

so that h'E.Hm = HJ®<hj}. and h' = a + =h,
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CASE I Suppose m = 0 (that is, H = HJ)‘ Then h' = a and so

+1
h'€ HJ’ Thus U(h?'}< 3, & contrndictio:.
CASE IT Suppose m # 0. Then a = h'-th is in H, Also a is not
in H* since this would imply that h' is in H*, However U(a)<¢ J in
this case, again, a contradiction.
Hence H = H*, All that is needed now is to show that linear

combinations of the h.k's are unigque, that is, if Znihk = 0, then

i

each m, = 0, Assume m, # O for some i, Then myh, is in {h )0H ,,
a contradietion, So H is free on the hk's.

With this theorem the converse of theorem 4.17. will now be

established,

THEOREM 4.20, A group G that has the projective property lis free.

Prooft Consider the diagram &

h//I

”~
b/
FEr—t—>0
where I is the identity map and f1 F9G is a homomorphism of a free
group F onto G which exists by virtue of theorem %.16. Now by the
projective property of G, there exists a homomorphism hi1 G=PF with
foh = I, Now h is one-to-one and G is then lisomorphic to a subgroup
of ¥, Hence, by theorem 4.19., G is free,
With these results, attention is returned to divisible groups to

rresent two results which ultimately prove the converse of theorem 4,10,

THEOREM 4,21, Every group G can be imbedded in a divisible group.
Proofs It is clear that Z can be imbedded into a divisible group,
namely Q, Hence every free group F can be imbedded into a direct sum

of coples of Q since F is a direct sum of infinite cyclic groups which
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are isomorphie to Z. Now glven any group G, by theorem &#.16.,
GMF/N for some free group F and subgroup N of ¥. Hence GRF/N C ZQ/N

and the last group is divisible by lemma 4.4,

COROLLARY 4,22, A group G is divisible if and only if it is a
direct summend of every group containing it,

Proof:1 Necessity is precisely theorem 4,10,, &5 was noted earlier,
To prove the sufficiency, first imbed G into a divisible group D via
theorem 4,21, Then G is divigible since every direct summand of a

divisible group is divisible, lemma 4,7.

4, FINITELY GENERATED ABELIAN GROUES

DEFINITION 4,8, A group G is finitely generated in case there
is a finite subset X of G such that, the subgroup of G generatsd by
the set X is G.

It is clear that every finite group G is finitely generated, but
in this section, it will be shown that the theorems that were proven
in Chapter III concerning finite groups can now be proven for finltely
generated groups, In partioular, a Basis Theorem and a Fundamental

Theorem for finitely generated groups will be established,

THECREM 4,23, Every finitely generated torsion-free group G is
free,

Proofi The proof is shown by induotion on n, where G = <xl....,xn>.
that G is free, If n=1, then G = (x) and since G is torsion-free,
G is clearly an infinite cyelic group or 0 if x = 0, Thus G is free,

Induction hyvothesis: Assume that for any group G generated by

n~1 elemsnts and also torsion-free, G 1s fres, Define <xn7‘={yeﬁl
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myE(xn’ for some m # O, Then it is easy to check that (xn)*is a
subgroup of G and that G/(xn) y s torsion-free. Also G/{x,) o 18
generated t:ny{x1 +<xr>*. xz + <xn)*..... xn-l +(xn)’-f. that 1is,

n-1 elements and so by the induction hypothesis, G/(xn) g 15 free. By
corollary 4.18., G = <xn\*@E where X is isomorphic to G/{x)}}and
hence is free, Thus it only needs to be shown that (xns*is isomorphic
to Z.

If y 4s in (:Qﬁ, then my = kx_ for sowe m # 0, Define fi (xr?*-bQ
by f(y) = k/m where my = kx . Now f is well-defined since elements in
( x,}inre in G and hence have unigque repregentation. Also f iz a
homomorphism since if my = kx and m'y’ = k'x , then mt(y+y?) = (km'ﬂc'n)xn
ard so f(y+y') = (kn'+k'm)/mm’ = k/m + k*'/m* = £(y) + £(y*). Finelly
f is one-to-one, for if y is in ker(f), then my = lctn for some m # O
and 0 = f(y) = k/m. Hence my = 0 ard so y = 0, That is, ker(f) = 0,

Thus (xn»‘ is isomorphic to a subgroup H of Q. Let H =<n1/b1,...,
.t/bt) and 1et b = [[b,. Then define £*: H-¥Z by £*(h) = by, Again
f* ig a well-defined homomorphism which is one-to-one so that H and hence

< xn) ¥ is isomorphiec to a subgroup of Z. Thus <xl> * is free,

THEOREM 4,24, (Basis Theorem) Every finitely generated group G
is a direct sum of cyclic groups.

Proof:i G/T is a finitely generated torsion-free group by theorem
4.,1., ard hence G/T is free by theorem 4,23, So GXT®K where K is
again free by corellary 4,18., and theorem 2,10, Hence K is a direct
sum of infinite cyelic groups. Kow T is a finite group since it is
finitely generated and each generator has finite order., Therefore, T
is a direct sum of cyclic groups by the basis theorem for finite groups,

theorem 3,73,
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THEOREM 4.25. (Fundamental Theorem of Finitely Generated Groups)
Bvery finitely generated group G is a direct sum of primary and
infinitely cyclie greups, and the number of summands of each kind depends
only on G.

Proofi1 Now G®T®K where K ig free, The unigueness for T is
precisely the fundamental theorem for finits groups, theorem 3.,8,; the
uniqueness of the number of infinite cyclic summands in theorem 4.14,

Then the presentation on finitely generated groups is complete,
5, TORSICN GROUFS: FPURE SUBGROUFS

The main theorem in this section is & result known as Eulikov's
theoren, that every torsion group G contains a basic subgroup. To
establish this result, a very useful concept in abelian group theory,
that of pure subgroups must be investigated., This notion is generally
attribtuted to H, Prufer and is an intermediate step between subgroups
and direct summands, The value of these subgroups is their usefulness

in proving the existence of direct summands,

DEFINITION 4.9, A subgroup H of a group G is pure in G if h in
Harnd h = ny for some integer n and y in G, imply the exlstence of h'
in H with h = nh'. In other words, if an element of H is divisible by
n in G, it must be divisible by n in H also.

For example, the subgroup H = {0,2} of @ =1, = {0,1,2,3} is not
pure in G since Z is a multiple of 2 in G btat not in H. The following
consequences are presented to help the reader understand more fully

the concept of purlty,

LEMMA 4,26, Any direct summand is pure,
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This is clear since for H a subgroup of G to ba divisible, its
elements have to be divisible by every intsger n, Consequently, every
element in H is divisible by an integer n in H whenever they are

divigible by n in G.

LEMMA 4,28, A pure subgroup of a diviaible group is divisible.

Proof:1 Let x be in H & pure subgroup of a divisible group G.
Then x is divisible by every integer n in G since G is divisible and
hence for any n, there exists y in H with ny = x since H is pure in G.

Thus, H is divisible,

LEMMA 4,29, The torsion subgroup of a group is pure,

Froof: Let x be in the torsicn subgroup T of a group G and
suppese X is divisible by n in G, that 1s ny = x for some y in G,
Since x is in T, x has finite order, that is, mx = O for some integer

m, Now m(ny) = mx = 0 so that y is in T also, Thus, T is pure in G,

1EMMA 4,30, Every ascending union of pure subgroups is pure.
Proof1 let ESB €T bs an ascending chain of pure subgroups, that
is, 8,& Sk'+1 for all k in I, Consider 3 = US, and let x be in §
such that x is divislible by n in the group that contains the Si'a.
Then there exists y in G with ny = x, Llet j be the smallest such
index that x €8

and xg’sj_i. Now since 9, is pure in G, and x is

J
divisible by n in G, there exists y' in S

3

3 with ny' = x. Clearly then

y' is in 3 and s0 S 1s pure in G,

IEMMA 4,31, Purity is transitive, that is, if K is pure in H
and H is pure in G, then K is pure in G,

Proof:1 Suppose k €K is divisible by n in G, that is, there exists
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g€G with ng = k, Now since K&£H, k = h for some h€H and so h is
divisible by n in G. Furthermore, since H is pure in G, there exists
h'€H such that nh* = h = k, Hence K is divisible by n in H and
since K is pure in H, there exists k'€ K with nk® = k. Thus K is pure
in G,

Since many proofs to follow deal with quotient groups and cosets
as elements in these guetient groups, the following convention is
adopted: If G/S is a group and x is in G, then X is the corresponding

slement in G/S to x, that is, X represents the coset x + S.

LEMMA 4,32, Let S be pure in G and y be in G/S. Then there
exists an x in G corresponding to ¥ in G/8 having the same order as ¥.

Proof1 Suppose f1 GPG/S 1s any homomorphism onto G/S. Then if
¥ has infinite order, then any element z such that f(z) =y vild
suffice, If 7 has finite order n, then first choose any z in G with
£(z) =y,

Then ne i8 in 5 and sinoe S is pure in G, there exists h in 8
with ne = nh (that is, nz is divisible by n}), Llet x = g~h ard x has

the desirsd properties,

THECREM 4,33, let G be a group and H a pure subgroup of Gy
such that G/H is a direct sum of cyclic groups. Then H is a direct
sumend of G.

Proof: Suppose f1 G-»G/H is any homomorphism onto G/H, And
suppose G/H = Z.(?g. Then for each generator 'y"i, there exists
x, in G with f%:eti) = -_Fi for each 1 and the order of x, is the order
of ?1 by lemma 4,32, (An application of the axiom of choice is

employed in the selection of the x; for the index set I is taken to
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be well-ordered.) Let X be the subgroup of G generated by the x,'s.
It suffices to show that G = H@K,

(1) G = B#K, Let t be any element in G and suppose £(t) = t in
G/H, Then t = zaifri for integral coefficients a,. Then 7{(t - Z"ixi) =
t 'z"iii = 0 in G/H, Hence t -Znixi 48 in Hand t = (L -Znix,l) +
Z"ixi is in H+X,

(11) HNK = 0, et w be in HNK, Then w -'=Zb1:s:1 since w 1is in
K and further zbii = 0 since v 1s in H. If ¥, has infinits order,
this means that by = 0; ir ¥y has finlite order n

i

multiple of Ny . In either case, aixi =0amd sow=0,

s then '\‘.:’1 iz a

LEMMA 4,34, Let T be pure in G, If TCSCG, and S/T is pure in
G/T, then 3 is pure in G,

Proof: Lst s be in S and suppose 5 = nx where x is in G, It muat
be proven that s is divisible by nin S, Let & and x be the
corresponding cosets in G/T. Then g = nx, and by purity of 8/T in G/T,
8 = ny where y 38 in S/T, Let y be an element in S that maps to Y.
Then 8 = ny+t for some t in T, Hence t = ny-nx, so by purity of T in
G, there exists t' in T with t = ny-nx = nt!', Thus s = n(y-t') and

since TCS, y~t' is in S, s0 5 is pure in G,

IBMMA 4,35, A p-primary group G which is not divisible contains
a pure cyclic subgroup.

Proof: PMirst the fact that if the p-socle of G, G[p] , is not
divisible, then there exists a y in G, such that { y) is pure, 1s proven,

So lst x€G[p] and assune that x is divisitle by X and not p1, Let

pky = x and claim that (y) is pure, It is sufficient to only check

powers of p and multiples of y of the form piy gince if x in G has
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order n and (m,n) = 1, then x is divisible by n, Suppose pz = ply,
Then ¢ = pl~Py which is in(y) if i-nék+l, If i-nDk+, then & =0,
otherwise, x would be divisible by p™ where m is greater than k, a
contradiction, Hence ( y> is pure.

Next it is shown that if G[p] is divisible, then G is divisible,
and this contradiction completes the proof. Assume that every x in
G[p] is divisible by svery power of p, The proof is by induction on
kthatifpkxso, for any x in G, then x is divisible by p, If k =1,
then px = 0 and so x is in C-[p] and hence x is divisible by p.

The induction hypothesis states that if pkx = 0, then x is divisible
by p. Then suppose P lx = 0, If y = p’x, then y is in G[p] and
hence is divisible by p so that there exists z in G with pFtlz = y = p¥x,
Then p¥{pe-x) = 0 and by the induction hypothesis, there exists w in
G, with pw = pz-x., Therefore, x = p(e~w) and hence x in G is in pG.
Heree by lemma 4,5,, G is divisible. So by the above remarks, the proof

is eomplete,

DEFINITION 4,10, A subset X of non-gero elements of a group G
is independent in case S mxy = 0 implies each myxy = O, where x, 1s
in X and my is an integer,

DEFINITION 4.,11. A subset X of G is pure-independent if L is

independent. mi<1) is pure in G.

LEMMA 4,36, Let G be a p-primary group. If X is a maximal
pure-independent subset of G {that is, X is contained in no larger
such subset), then G/(x,) is divisible,

Prooft By lemma 4.35,, if it is assumed that G/(_z) is not

divisible, then it contains a pure cyclie subgroup,(?) » Now since
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<1>is pure in G, there exists y in G with the order of y and § the
same by lemma 4,32, Now J* =z.} will be pure-irdependent, First
of a11,{IYCEDCG clearly and so{ TYAT )1s 1somorphic to{F),
which is pure in G/(X). 'I'lma(I*) is pure in G by lemma 4.3,
Secondly, suppose mZmizi = 0, where 1161 and m4y, B are integers.
In G/{x) , this equation becomes my = O so my = o since y and ¥ have
the same order. Furthermore, since X is independent, each myxy = O,
and so X* is pure-independent, a contradiction of the maximelity of X.

Thus GAX) 1s divisitle.

DEFINITION 4,12, Let G be & torsion group., A subgroup B of G
is a baslic subgroup of G in case .

(1) B is a direct sum of cyclic groups,

(2) B is pure in G,

(3) G/B is divisible.
Now, by using the previocus lemmas, it can be shown that every torsion
group contains a basic subgroup, The basic subgroup, B, allowe the
study of torsion groups to reduoce to an extension problem of a direct
sum of eyelie groups by a divisible group since B is & direct sum of

eyclic groups and G/B is divisible.

THECREM &4.37. (Eulikov) Every torsion group contains a basic
subgroup.

Proofs If G is divisible, then B = 0 is a basic subgroup. If
G 18 not divisible, then G eontains pure-independent sets by lemma 4,735,
NHow purity is preserved in ascending unions and so ls indepsendence,
Thus pure-indepsndence is preserved, Therefore, a straightforward

application of Zorn's Lemma to the collection of 21l pure-independent
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subgets of G ylelds a maximal pure-indespendent subsetz of G. Then
B =(I)is a direct sum of cyclic groups sinoe< z>=z<xi\ where
x,€ X follows immediately from the independence of the set X. Thus by

lemma 4,36., B is a basic subgroup.

This section is concluded with another lemma concerning the

behzavior of purity with respect to homomorphlsms or quotlient groups.

LEMMA 4,38, Llet S be a pure subgroup of G with nS = 0, Then
(54nG)/nG is pure in G/nG.

Proof: Assume that x in (SnG)/nG is divisible by m in G/nG so
that X = my where ¥ is in G/nG. Then let x and y correspend to x and
¥ such that x 13 in S, Thus x and my differ by an element in nG, that is
x = myns, If r is the greatest common divisor of m and n, then dlvide
®ard n by r to obtaln m = rm’ amd n = rn', HNow the greatest common
divisor of m* and n' ig 1 so that there exists integers a and b with
am' + bn' =1, Since x =my + nz = r(m'n + n'z), x 1z a mltiple of r
in G. Thus there exists s in S with x = rs. Hence x = rs = r(am'+in')s =
mas + nbs = mas since nS = 0, Now converting back to slements in the

factor groups, there is x = m(a3) and so X is divisible by m in S+nG/nG,
6, Torsion Groups of Bounded Order

DEFINITION 4.13. A group G is of bounded order if it is torsion
and there is & fixed upper bound to the orders of the elements,

Thus there must exist a positive integer n such that nx = 0 for
211 x or more simply nG = 0, Of course, any finite group is of bounded
order, but an infinite torsion group can also be of beunded order,

Take, for example, the direct sum of an infinits rumber of finite cyclic
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groups each of which has order 2,

It will be proven that any grour of bounded order is a direct
sum of cyclie groups. This, in & way, 18 the most satisfactory
generalisation of theorems 3.4. and 4,25, The next lemma demonatrates
an esasy way to obtain a pure cycllic subgroup. Since it is not obvious
that a eyelic summand can be constructed in a given group of bounded
order, this will amply illustrate the advantage of a pure subgroup as

a substitute for a direct summand,

LEMMA 4,39, Let G be a p-primary group with p'G = 0 for some r.
Let x bs an element of order p’ in G. Then (x) is pure in G.

Proofs As in the proof of lem‘m 4.35,, it is necessary to check
only powers of p and mmltiples of x of the form pix. Suppose, then,
that plx = ply for some y in G (that is, pix is divisible by pJ in G).
It muat bhe shown that pjx is divigible by p-'j in(x). It 344, then
y = pi=Jdx which is in (x). If J D1, we have 0 = pfy = p*=3(pix) amd
so x has order p™J", 4 contradiction that x has order p*, Thus (x)

iap'nrai.nG-

At this point, encugh informstion has been accumulated to show
that from a finite grour of bounded order, a cyelie direct summand
of the group can be constructed., Lemma 4.39. gives a pure cyclic
subgroup (X and by induction G/{Z)1s a direct sum of cyclic groups;
hence, by theorem 4.33.,(XMs a direct summand., However, this
procedure does not lend itself to the infinite case since no inductive
assumption can verify that G{X)is a direct sum of cyclic groups.
Instead Xulikov's Theorem will be used together with the basic subgroup

B, which was generated by a maximal independent-pure set,
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THEOREY 4,40, A group of bounded order is a direct sum of
eyclic groups.

Proof: Suppose G is of bounded order such that nG = O for some n,
Then theorem #,37. 1s applied to obtain B a basic subgroup of G. Thus,
G/B is divisible and hence G/B = n(G/B). This last group contains
the single coset O+B = B, so that G/B = B and hence G = B, Then by

definition of a basic subgroup, G = P is a direct sum of eyclic groups.

In the theory of finlte groups, it was determined when two finite
p-groups are isomorphic in terms of the mumber of cyclic summands of
order p“"' 1. The problem of when two infinite p-primary groups that
are direet sums of cyclic groups are‘ isomorphic will now be resolved,
It is interesting that the answer 1s essentizlly the same as for the

finite case.

DEFINITION 4.1k, 1If G is p-primary, consider the vector space

over 2,1 G {n} = 5¥EGIGIGEJ@]. Then |J(n,G) 4is the dimension of

G{n} as a veator space over Zp and is called the nl! Ulm invariant.
Then 1f G and H are p~primary groups, G arnd H have the same Ulm
invariants in case G%:} and H&l}h&“ the same dimension for each n20,

Notice that for infinite p-primary groups, U(n,G) may be infinite,

THECREM L .41, Let G be a p-primary group that is a direct sum
of cycllic groups. The mumber of summands of G lsomorphlc to the eyclic
group of order p""“"1 is the dimension of G{n}. More over, if H is
p-primary and a direct sum of eyclic groups, then GRH if and only if
they have the same Ulm invariants.

Note:1 The proof of this theorem i3 essentially the same as the
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proofs of theorem 3,4. and 3.5. since the allowsnce that {(n,G) msy
be infinite offers no obstacles.

Next it is shown that there does exist a situation when a pure
subgroup 1s necessarily a direct summand, Before this is shown, a

lemma will be presented whieh will aid in the proof of the theorem,

LEMMA 4,42, Let S and T be subgroups of G with ST = 0 and
suppose 3+T/T is a direct summand of G/T., Then S is a direct summand
of G.

Proof1 (This proof is set-theoretic.) Let R/T be the complimentary
summand to S+I/T in G/T. Then (S+T)¥R = G and RN(S+T) = T, It
suffices to show that G = S@R. Si;nce TCR, SR = 5+T+R = G and hence
S and R generate G. Also (RNS)CRMN(S+T) = T ard hence RflSCTANS = 0,
Thus G = R®S.

THEOREM 4,43, Let G be & group and 5 a pure subgroup of bounded
order, Then S lis a direct summand of G.

Proof: Suppose nS = 0 for some n. Then by lemma 4.38., (S+nG)/nG
is pure in G/nG, Also G/nG is olearly of bounded order since n(G/nG) = nG,
Hence G/nG is a direct sum of cyclic groups by theorem 4,40, Then by
theorem 4,33, (S+nG)/nG is a direct summand of G/nG, Next S{InG =nS = 0
so that we may now apply lemma 4.42,, with nG playing the role of T,
Hence S is a direct gummand of G.

As a speclal oase of this theorem, conslder the torsion subgroup
T of any group G. Now T is always pure by lemma 4,29,, and hence T
i5 a direct summand of G Af T 15 also of bounded order. Furthermore,
since every divisible subgroup is a direct summand, it can now be said

that T 15 a direct summand of G if T is a direct sum of a divisible
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group and a group of bounded order. These remarks are now stated in

the form of a theorem.

THECREM 4,44, Let G be a group and T its torsion subgroup. Then
T is a direct summand if (1) T is of bounded order or (1i) T is a direct
sum of a divisible group arnd a group of bounded order.

The final result in this section deals with groups which are
indecomposable, that is, they cannot be written as a direct sum

except in the trivial way, G=G({®O0.

THECREM L4 .45, An indecompesable group cannoct be mixed, that is,
it is either torsion or torsion-free,

Proof: Assume that G is an imdecomposable mixed greup, Then
the torsion subgroup T is not divisible since this would forees T to
bs a direct summand by thecrem 4,10, So by lemma 4#.34%., T contains
a pure cyclic subgroup, say {x). Now since x is in T, x has finite
order and thus {x) is of bounded order. Also{x) is pure in G by
lerma 4.31, Hence by theorem 4,43,, (x) is a direct summand, a

contradiction, Hence G is not mixed, so G is either torsion or torsion-free,

Recall that in theorem 4.12,, it was shown that the torsion subgroup
of a divisible group, G, is divisible and isomorphic to copies of Z(pm).
Thus if an indecomposable torsion group G is divisible, then it is
isomorphic to Z(pm); where as if it is reduced, it is a cyclie group and
so all indecomposable torsion groups have been determined. However,
the classificatlion of torsion-free indecomposable groups is quite a

different story and in fact, an unsolved problem.

7. TORSION-FREE GROUPS



DEFINITION 4,15, The rank of a torsion-free group G is the
mumber of slements in a maximal independent subset of G.

Note that a free abelian group is torsion-free and its rank is
the number of infinite cycllie summands, or the cardinglity of the
index set of the set of generators. It 1s easy to see that the two
notiens of rank agree for these groups. In this section, the torsion-
free groups of rank 1, that is groups such as the integers Z and
rationals Q will be classified, At the present time, there is not
even an adequate classificetion of groups of finite rank and so only

the groups of rank 1 will be considered,

LEMMA 4,46, Every torsion-free group G can be imbedded in a
vector space ¥ over Q.

First G 1s imbedded in a divisible group D by theorem 4,16,, and
then coensider the natural homomorphism from D onto D/T where T is the
torsion subgroup of D. KNew D/T is torsicn~free and is isomorphic to

copies of Q.

IEMMA 4,47, A torsion-free group G has rank at most r if and only

if G can be imbedded in an r-dimensional vector space over Q,

With these lemmas, the study of rank 1 torsion-free groups begins
by realizing that they are isomorphic to a subgroup of Q. The following
are non-isomorphic subgroups of 4.

Gil all rationals whose denominator is square-free,

Gyt all rationals of the form n/2X, that is, dysdic rationals,

Gg1  all rationals whose decimal expression if finite ( that is,
whose denominators are powers of 10 ), Together with Z and Q, these

groups are all non-isomorphic subgroups of Q and one might observe
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that they can all be expressed by the numbers allowed in the
denominators of elements of the groups,

Iat pl' %' aad pn' 'E N m the anuenca Of prmsp

DEFINITION 4.16, A characteristic is a sequence (ky, k3, .us kp, .sd)
whers each k, 1s a non-negative integer or 0.

If G is a subgroup of Q and if x is in G and x # 0, then x
determines a characteristic in the follewing way: in the nth component
of the characteristic of x, plaee the highest power of the prime p,
that divides x in G, that is, the largest non-negative integer k such
that there is an element y in G with pnky = x, If there is no largest
such k, set k =, Some more ldva;med studenta of group theory might
recognize that k, is the p,-helght of x, The concept of helght will
be discussed in greater detall in the next section.

It is convenient to write each non-zero integer as a formal
infinite product of primsTrpi‘& where py ranges over all primss p
ard a320, let m =—|Tpi"'» and n =Trpibi be given integers. If x in
G has characteristic (ki,kz.....kn....). then the definition of
characteristic states that there exists y in G satisfying my = na if
and only if aj&ky + by for all i,

It will now be demonstrated how to determine a characteristic
for the element x = 1 in G = Z2€Q. For py = 2, the largest non-negative
integer k, such that, thers exists y in G satisfying 2X(¥) = 1 is
k = 0, Likewise for p, = 3, the largest k satisfying 3k(y) =1 is
k = 0 and for py = 5, s°(y) = 1, has solution y = 1. Contiruing for
each prime py, kj 1s O and hence the characteristic of 1 in Z 1is
(0,0,0,.0¢,0y40.). The characterists of 2 in Z is (1,0,0,...,0,0,...)

and for 12 in Z 13 (2,1,0,0,000¢400004)
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If, however, G = Q, then for x =1 in Q, x has characteristic
(C0 ,00 ,00,...,00,...) since Q is a divisible group., Thus it is
clear that distinct non-zero elements of the same group G may give rise

to distinet characteristics. So the following definitlon is given;

DEFINITION 4,17, Two characteristics are equivalent if

(1) they have OO0 in the same coordinates and

(11) they differ in at most a finite rmumber of coordinates,

Then this definition of squivalence is an equivalence relation
(that is, it satisfies the reflexive, symmetric and transitive properties);
an squivalence class of characteristics is called a type. The next
theorem states that the charecteristics of distinct elements of a

subgroup of Q are equivalent.

LEMMA 448, let G be a subgroup of Q and let x and x' be non-gero
elements of G, Then the characteristics of x and x' are egquivalent.

Proof: First if x' = mx for some integer, then the characteristics
of x and x' are equivalent because:

(1) x* is divisible by every power of the prime p; that divides x
(plus only a finite number more) and

(11) x' is divisible by every power of py if and only if x is,
Honce their characteristics have OO in the same coordinates and differ
in at most a finite nmumber of coordinates.

Now for the more general case, since G is a subgroup of Q, there
are integers m and n with mx = nx'. The characteristic of x is
equivalent to the oharacteristie of mx = nx' which is egulvalent to

that of x'.

DEFINITION L4.18. As a result of this lemma, if G is a torsion-free
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group of rank 1, then define the typs of G, denoted by t(G), as the

type of any non-zero element of G.

TEEOREM 4,49, Iet G and G' be torsion-free groups of rank 1,
then G¥G' if and only if t(G) = t(G').

Procof: Suppose £1G-»G' is an lsomerphism., Then if x le in G,
the charaoteristic of x ard f(x) are equivalent, In fact, they are
the same for if €O is in the nth coordinate slot of the characteristic
of x, then there is no largest power of the prime Pp which éivides x
and so there could not be a largest power of P, that divides f(x) under

the lsomorphism, Likewlse, 1f k is any non-gero integer in the ith

th 1ot of the characteristic

slot of the characteristic of x, k is in the i
of £(x) due to the fact that divisibility is preserved under a
homomorphism, lemma 4.4, Hence t(G) = t(G*).

Cenversely, assume t(G) = t(G') where G and G' are torsion-free
groups of rank 1 and hence are subgroups of Q, If g and g' are non-zereo
elements in G and G* respectively, then their characteristics
(kgokpoevaskysons) and (k% )k’ 00es )k’ 00s) differ in only a finite
numbsr of coordinates, Set the notation C0- Q0 = 0 and define the

’

rations) number 1 by 1 =T|.pik¢ k¢ . FNotice that k,-k', = O for almost

all 1,
Define f1G9PQ by f(x) = ux where = lg/g® and note that f is a
homomorphism since f(xty) = u(x+y) = uxt uy = f(x)+f(y). FNow any
rational rumber x is in G if and only if there are integers m =1Tpia£
and n = mibiwhero mx = ng and aiﬁ'. by+k, for all iy likewise a
rational mamber y is in G if and eonly 1f there are integers m and n
with my = ng' and ai!.-.. biﬂc'i

Claim that f(G)CG*', let x be in G, then mx = ng and aig-_biﬂci;

for all 1.
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hence m(ux) = n(kg) = nlg'. Since aié.(bi+ki-k'i)+k'i. it follows
that gx = £f(x) 12 in G', In a similar manner, if hiG'~®Q is defined
by h(x') = w~lx?, then it can be shown that h(G')CG. Therefore, f
and h are inverses so that G R G*,

The final theorem of this section shows that for any type, t,
there is a group of rank 1 whose type is exactly t. By takling any
representative characteristic from t, say (ki'kz""'kn"")' define
G to be the subgroup of Q generated by all rationals of the form 1/m,
where, for all n, pﬁt divides m if and only if t&k . It is clear
that G is torsion-free as a subgroup of Q and that the maximsl independent
sets of elemsnts in Q are the singleton sets so that G has renk 1, Also
the element 1 in G has the given characteristie for the largest power
of p, that divides 1 1s exactly k, for each n, by definition of m

above. Hence, the following theorem has been proven.

THEOREM 4,50, If t is a type, then there exists a group G of

rank 1 with t(G)} = t.

S50 for torsion-free groups of rank 1, the importance of the
characteristic has been demonstrated as well as the fact that all

torsion-free groups of rank 1 are subgroups of Q.
8, ULM*S THEOREM

The main theorem presentad in this section is Ulm's Theorem and
it aceomplishes the complete classification of countable reduced torsion
groups. The theorem does not state that a countable reduced torsion
group looks like a particular group as 1s the case of the divisible

groups where theorem 4,12, classifies the divisible groups as a direct
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sum of coples of Q@ and Z(pw). Rather, a complete set of imvariants
is defined so that it is pessible to determine when two such groups
are isomorphic. Again, by theorem 4.2,, any torsion greup decomposes
into its p-primary components and so throughout this sectien, assume
that G and H are countable reduced p-primary groups.

The theorem uses both the cardinal and ordinel numbers in a very
essentisl way., Definition 4,14, of the n'® Nm invariant used only

the natural mmbers and so the nth

Ulm invariant, U(n,G), 18 a function
from the natural numbers to the cardinal numbers. This definition cen
be externded to the transfinite ordinals in the following manner,
let G, = PG (n =0,1,2,9,...)+ Then Go4q = PGy 3 Gy = nQ'Gn
where w is a 1limit ordinal and again, G“+1 = pGw, Thus, for any ordinal
Ay Guyq = PGg s and if A is a 1imit ordinal Gy = ’Qfﬁ + Hence the
chain G = GODGIDGZD "':GU:Gwﬂ-i"' 1s a decreasing chain of subgroups.
DEFINITION 4.19. The first ordimal A such that G = 0 is
called the length of G (Nete: There doss exist such a A for every
p-primary countable reduced group.).
Now, in order to emphasige the use of the ordinal numbers, definition

L.1%, 1s stated in slightly different notation.

DEFINITION 4,20, For each ordinal € , define fG(du) =d
Gat1 [P
th

Then fg(ch) is called the A" Ulm invariant and f, is a function from

the ordinals to the cardinals.

It has already been shown that if G is a direct sum of cyclic groups,
then f. (n) 1s the rumber of cyclic summands of G isomorphic to the
cyelic group of order pnﬂ. Thus direct sums of cyclic groups are

completely characterized by the Ulm invarients (theorem 4.41,).
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DEFINITION 4,21, Let x be in G, The height of x in G, ht(x),
1s A if x is in Gd but not in Gd+1'

Thus this definitlion assigns to each non-gzero element x in G a
well-defined ordinal less thsn R. the length of G. As for the slement
0, it is desirable to write ht(0) = @ with the understanding that QO
exceeds any ordinal. The following lemma states some fundamental
inequalities concerning helight which follow immediately from the

definition,

LEMMA 4,51, Let x,y be in G axd p be a fixed prime,
(a) If ht(x){ht(y), then ht(xty) = ht(x).

(b) If ht(x) = ht(y), then ht{m).-!ht(x).

(c) If x# 0, then ht(px) ) ht(x).

The proof of the lemma is not difficult and 1s left toc the reader.

THECREM 4,52, (Ulm's Theorem) Two countable reduced p~-primary
groups G and H are isomorphic if and enly if fG(dt) = fH(d\) for each
ordinal¢h, that is, they have the same Ulm invariants,

The proof that the condition is necessary, that is, if G and H are
isomorphic, then they have the same Ulm invariants, is the easy
direction since the dimension of isomorphic veetor spaces is an invariant,
The other direction is gquite compllicated so a brief eutline will be
given and then additional definitions and important lemmas will be
presented in order to make the proof as clear as pessible,

The idea of the proof is roughly this: Choose two sequences in
G and H, say {0 = Xge Xy1 Xy xa....?and {0 = Yoo yl. Yo yj....} whare
G = (Xj) and H =(yi) » This can be dons since G and H are countable,

Now suppose U4G and V£H are finite subgroups with $:1U~#V a height
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preserving isomorphism. Tims for any x in U, htg(x) = htH(ﬁ(x)).
The heart of the proof then lies in being able to extend § to larger

subgroups U* and V* of G and H respectively.

DEFINITION 4,22, Let S be a subgroup of G and x be an element
in G. Then x is proper with respect to S if ht(x) 2 ht(xts) for all
s in 3, that 1g, x has maximal height in the coset x+5,

It is easy to see that in this case, ht(x+s) = min {ht(x), ht(s)}

for each s in S since ht(x) 2 ht(x+s).

LEMMA &.52, Let $1U-sV be a height preserving isomorphism
between subgroups U and V of G and H respectively. Suppose that x and ¥
are proper with respect to U and V reaspectively, and also that px is
in U and py is in V with ht(x) = ht(y). Then the map 0:U+Zx —¥V+Zy
defined by 8(U+nx) = @(U)my is a height preserving isomorphism
that extends @,

Proof:1 To show that @ is well-defined suppose W4nx = «'+mx or
U~ ' = (m-n)x which is in Uf]Zx., Now p is the order of x+U since
px is in U and so (m-n) = sp for some integer s, Thus (U -w') =
38(px) = spy = (m-n)y. Hence #( W)my = (' )4my, that is 8(w+mx) =
8¢ « *+mx),

Now @ is onto since § is onto and 8(x) = y.

6 is one-to-onei Suppose Winx is in ker®, that is, 8(+mx) =
f()4ny = 0. Thus ny = -P(& ) which is in V. Thus p divides n so
U4nx is in U, Hence w«+nx is in Uflker® = ker § = 0. Hence ker® = 0
and @ is one-to-one,

Finally to show @ 1s height pressrving: consider 6(U +nx) =

$(U)4my, If p divides n, then ({+mx is in U and so ht(&+nx) =
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ht(f(winx)) = ht(8(w +nx)) since § is height preserving. Thersfore
assume that p and n are relatively prime where 1 = tnt+up and t and p
are relatively prime. Then let Up = t«-upx, which is in U, ‘a.nd
hence t(i+nx) =Ugtx. Now ht{ U +nx) = ht(t{«w +nx)) = min iht(u.), ht(x)}
gince t and p are relatively prime and x is proper with respect to U,
Similarly ht{@( W)4my) = ht(t(#(w)mny)) = min {ht(sb( Uy)), ht(y)} .
Now since ht(#( Uy)) = ht( Uy) and ht(x) = ht(y), it is clear that
ht{& +nx) = ht(8(« +nx)) so that 8 is height preserving.

If it were not for the fact that x in G-U may not be proper with
respect to U, lemma 4.52, would be quite valuable in the proof of
Ulm's Theorem almost immediately. Thls problem can be easily solved
since in the extension process, U will be finite at each step and so
it will be possible to find x' = x+i in x¥ with x* proper in U and
px in U, KNow the problem 1a to find a y in H-V which haa the desired
properties stated in the lemms, that im, y is proper with respect to
V, py = $(px) and ht{x) = ht(y). The next iwo lemmas show that such
a y can be fourd,

Before lemma 4,53, can be stated, the following notation is needed,
Let U£G. Then Uy = UNG, ; p'lqu.g ={x I px is in Gd.+2}3
U“c‘x = 'E&ﬂ p-iGd+2. So for any x in Uy , px is in Uy 4y Usurlly
this iz all that can be said, however, there are some elements that
are carried "past" Uy 44 and this set 1z called U*, , Now for any x
in T%; , px may be written as px' where x' is in Gg4q and thus px = px’,
Since x is in Gy and x' i in Ger4y, then x-x* iz in G4 {p] and 1s
used to define the homomorphism Ti0%; — G ir] /G*ﬂ[p] , that is,
T(x) = (x-x*")+Gg 41 [p] is the mapping that takes x in U%, to x-x' in

Gy [p] followed by the natural homomorphism from G c.\[p‘.] into G l=k[p] /G I+l [p
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Now ker(T) is exactly Ug 44 8o that T*; Uty fUgy + —-’DGd[p]/Gﬁﬂ[p]

is & monomorphism,

LEMMA 4,53, The statements (a) T* is not onte and (b) there
exists w in G [p] such that ht{w) = o4 and w is proper with respect
to U, are equivalent,

Proof: (a) implies (b). Suppose wiG g4 4q [15] 15 not in the
range of T, Then w is not in Gd"'i [p] and so ht{w) =&k since w
is in Gy [p] « To show w 15 proper with respect to U, suppose the
contrary. Then there exists ¢ in U with ht(wu -w) D&l. Since W -w
is in aﬂ' U-w = pt where t 1s in G4 . Since pw = 0, pu = p{w -w)
= p°t which 1s in Gg4p 80 that & 1s in U, . Now, applying the
definition of T* to the coset U+ g i, T*(UH 449) = wiGg4y [p] '
a contradiction since wiGg 41 [p] was assumed to be not in the range
of T*, Thus w is proper with respect to U,

(b) implies (a). Suppose w is in Gy [p] s ht(w) =chand w 1s
proper with respect to U, Then wiGg 4 [p] is not in the range
of T* since, if 1t were, there would exist x in U and y in Gy 44 such
that p(x-y) = 0 and wGo 4y [B) = (x-¥) + Gguy [p] . Hence ht(x-w) > @&,
a contradiction that w is proper with respect to U,

The following situation is set up to help the reader understand
the proef of Ulm's Theorem and to demenstrate the need of the next
lemms,

Suppose U and V are finite subgroups of G and H respectively and
x 18 in G-U, Assume that px is in U (if px is not in U, but p(p™x) is
in U, then redefine x as p™x). Consider the elements in x+U and
suppose that {rkui. r&-uz.....ﬁuk3 are the elements in xHi with

maximal height ¢4 , These elements can be found since U iz finitse,
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Among these, find one, say x+y¢, such that ht(p(xtuy)) is maximal,
Now redefine x as x+ U,.

Thus. (1) x is in G-U, (2) px is in U, (3) ht({x) =&, (&) x—is
proper with respect to U, (5) ht(px) is meximal, and finally (6)
$(px) = 2 where §10-PV i3 a height preserving isomorphism. Now, with
this situation given, it is necessary to find y in H-V with py = 2,
ht(y) = and y is proper with respect to V so that lemma 4,52, can

be applied to extend §,

LEMMA 4,54, Given the situation just described, it is possible
to find y in H-V with py = & = #(px), ht(y) =cA and y is proper with
respect to V. ‘

Proof1 Two cases must be considered,

Case I ht(z) = AA+1l. Now neither z nor px are zero since ht(0)
= OO which 1s larger than any cardinal, In this case, any element y
in Hy with py = 2z will suffice to prove the theoren,

First ht(y) = A since if ht(y) > A , then ht(py) = ht(x) > d+1,

a contradiction,

Second, y 1s not in V since if it were, then $(w) = y where w is in
U, Thus px = pw since $(pw) = py = #(px). Also x-w is not in U lest x
be in U, PFurthermors, ht(x-w) =ch since ht(w) = A and x is proper
with respect to U. But ht(px-pw) = ht(0) = 0O which 1s greater than
o\ +1. This is a contradiction of the maximality of ht(px). So y is
not In V, Finally to show y is proper with respect to V, assume that
it is not, that is, suppose ht(y+v) 2 A+l where v is in V and (W) =
v for some u in U, Since y is not in V, then y#v ¥ 0 and so ht(py+pv) =
ol +2, Therefore ht{pxtpu ) 2ch+2, Now v must have height at least o

and so does L since § 1s height preserving. Then ht(xtu) = ¢ which
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again contradicts the maximality of ht(px). Hence y is proper with
respact to V.,

Case II ht(z) > A +1, ht(px))> ck+l means that px = pw for some
¥ in Gg 41+ Then x-w is in CH[I;J and ht(x-w) = &, so0 that x-w is
proper with respect to U since ht(x) = ch and ht(w) 2 &+li, Now part
b of lemma 4,53., 1s satisfled by x-w so that part a is also true.
Since U%, /Ud.-bl is finite and T* is not onto, part a of lemma 4,53,,
then the dimension of Uy /Ug 4y as a vector space over Zp is strictly
less than the Ulm invariant fe {(ch). Since § is a height preserving
isomorphism, Uy is mapped on V¥, , likewise U*y 1s mapped onto V%,
and U%, /Uy 4y is mapped onto V%y /Vi4q. Therefore the dimension of
V%, / Vo4 15 less than fg (cA) which equals £g(ek) by hypothesis.

Applying lemma 4.53. again, there exists an element yi in H with
pyy = O, ht(yi) = ok and y; is proper with respect to V. Next noting
that ht(z) ) A+, z = py, where yp 1s in Hg 4y« Taking y = yy#y5, ¥
has the properties that py = z, ht(y) =ch and y is proper with respect
to V.,

Now the proof of the sufficient condition of Ulm's Theorem can
be glven. Thus, if G and H are countable reduced p-primary groups
such that they have the same Ulm invariants, then they are isomorphic.

Proof: Since both G and H are countable, let G = {0 = xo.xl,xz....}
and H ={0 = yo.yi,ya....} .

Step 11 lat U=V =0 and §1 UV be a height preserving isomorphism.
Asgume x, satisfies the hypothesis of lemma 4.54. Then there exists
Y, in H with the properties described in the conclusion of lemma 4,%%,

Now by lemma %.52., § can be extended to a height preserving isomorphism

¢1| Ui—bvi where Uj =<O,x1> and Vi = <°’Yk,> '
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Step 21 Assume that ykz is the first element in H not in Vl

and satisfies the hypothesis of lemma 4,54 where the height presorving

isomorphism is the inverse of ¢1 obtained in step 1, thet is, ¢1 1-*'01

By lemma 4,5%,., there exists in G with the propertles stated in
e,

1"1 can bs extended to

§,1¥,>U, where V, ={v,, yk) and U, "<Ui' xk2> .

Step 3t Assume xk is the first element in G not in 02 and satigfies

the hypothesis of lemma ’-lv .5%., where #,” IUZ—PVZ is the height preserving

-1
isomorphism, Then there exists Ty in K and so again §,  can be

the conclusion of the lerma, By lemma %.52,, §

33
Step 41 Assume y]q‘ is the first element in H not in V3 and proceed

extended to $31U PV, where U, = ( U, xk3) and V, =(V2-rk3) .

as 1ln step 2,

Using this altermation between G and H, that is, in the 2n-1 step,
consider the nt'h alement of G and in the 21':th step consider the nt‘h
element in H, the lsomorphlsm between G and H can be established in the
following manner,

First of all, recall that ¢1 1s a function from a subset, U, of
G onto a subset, V,, of H so that ¢1 418 a subset of the cartesian
product of G and H, GXH, Also ¢2 is a function from a subset, V,, of
H onto a subset, Uy, of G so that ¢2 is a subset of the cartesian product,
HXG, HNow the inverse of ¢2. ¢2-1, is a subset of GXH and contains ¢1
becange U2 contains U, and Vz contains Vi. ¢3 is a subset of GXH which

i
contains §, -1 ond ¢,+"1 1s a subset of GXH which contains ¢3. Thus, ¢ C¢2-1
C¢3C¢ “le... Cﬂzn 1C¢ e +ss 13 an increasing chain of subsets of
GXH, Now in order to obtain the isomorphism between G and H, define
the mapping #* from G into H as the union of the set of all #, _,'s

with the set of all §, “leg, that is g% = (U¢2n 1)U( U¢ 1.
neN ney n
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Now any element X in G is a member of some subset Uk of G
by induction and thus is in the domsin of some function ¢k Henace
the domain of #* is 211 of G, Furthermore, because of the alternation
between G and H in the steps of the proof, any element yt in H 35 a
member of some subset V, of H and thus is in the domain of some
function §;. Hence ¥i 15 in the range of ¢t-1 and so the range of #*

1s all of H.
9. EXTENSIONS OF UILM'S THEOREM

At the time it first appeared, Ulm's Theorem was considered to
be the most striking result yet obtained in the theory of abelian groups.
Since that time much work has been done in extending Ulm's Theorem te
larger classes of reduced p-primary groups, This sectlon will state
some of the more lmportant generalizations of Ulm's Theorem, No
attempt will be made at proving these extensions since the proofe are
in general quite difficuit, however, a reference is given where the
detalls can be found,

Kolettlia [5] externded Ulm's Theorem to direct sums of ccuntable
reduced p-primary groups. The general idea of the proof of Ulm's Theorem
for direct sums of such groups was to get a canonical decompesition of
such a group that is uniquely determined hLy the Ulm invariants of the

greup. More specifically, Kolettis proved the following.

THEOREM 4,55, Let the reduced primary group G be an uncountable
direct sum of eountatle groups and let f(cA) be the o> Ulm invariant
of Go Then G =ZK£ where the summation is over those ordinsls ﬁ such
that fo(B8) # 0 and for such a 4, the group Kg is the unique reduced

countable primary group whose Ulm invariants are given hys
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%, (A) =04f A>Bor if A¢Band fe(ANXK N o1 rK‘ () = N g 1r

The next extension of Ulm's Theorem that will be mentioned invelves
a class of groups called totally projective groups. First the concept

of nice subgroups willl be defined and then the totally projective groups.

DEFINITION 4,23, A subgroup A of G is nice if every coset of A
has a representative of the same height, that is, for each g in G,
ht(g+A) = ht(g+a) for some a in A, where the two heights are computed

in G/A and in G respectively,

DEFINITIOR 4,24, A reduced p-group G is totally projective if
it has a system L of nice subgroups such that

(a) O 4sin L

(b) the subgroup generated by any subset of L is in L

(¢) if S is in L and A/S ia countable, then there exists B in L
with B2A and B/A countable,

Now countabls reduced p-groups are totally projective, since if
G is such a group, simply let L = {O,G} » More generally if G =Z Gi
with each Gi countable, then L = EJGi. JEI Y is a nice system :fe t
subgroups satisfying the conditions that make G totally projective.

Thus totally projective groups contain the two classes of groups
for which Ulm's Theorem has been proven. Next, Ulm's Theorem was
extended to totally projective groups of length less thanfyw by Parker
and Walker [6] and then to all totelly projective groups by HAll [3] .
Walker [9] presentsd a proof that simplifies Hil11's proof for totally
projective groups by giving one that is in essence the same as the proof

of Ulm's Theorem for the countable case presented in the previocus
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section, After some preliminary lemmas and definitions, Walker
defined the Gl Ulm invariant of G relative to A and then proved

the main theorem which is essentially the same as lemma 4.52,

DEFINITION 4,25, let A be a subgroup of G and ¢\ be an ordinal.
The A™ Ulm invariant of G relative to A is

16 4(%) = ain((p* G)[g]/A(24)).

THECREM 4,56, Let G/A and H/B be totally projective with A and

B nice subgroups such that fG

height preserving isomorphism $i1A-®B extends to an isomorphism G-PH,

= ch (-
,A(d) fH.B( ) for each Then any

With this theorem, Ulm®s Theorem for totally projective groups
becomes quite gimple. Notiee that this theorem 1s gulite a bit more
powerful than lemma 4,52, in the previous section, however, the very

same approach was used in the proof to obtain this result,

THEOREM 4,57, Two totally projective groups are isomerphic

if and only if they have the same Ulm invariants,

The most recent extension of Ulm's Theorem was completed by
Warfield [1@ » ¥ho extended Ulm's Theorem to a class of mixed modules

callsd the KT-module.

DEFINITION 4,26, If Ais a 1imit ordinal, then M is a A-
elsmentary KT-module if pa M%R, where R 1s a discrete valuation ring,
regarded as a module over itself, amd H/pﬁ M 1s a reduced torsion
totally projective meodule.

The theorem thet Warfield proved is the followlng.

THECOREM 4,58, If A and B are KT-modules, then A and B are
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isomorphic if and only if for all ordinals &k and A, fk(d-) = IB(d)
and hy (A} = hy(A) where by ( A) = din (V 3(4)) where V, (A) =
pAA/pAHA4T,  where T, 1s the torsion submoedule of p? A.

It is easy to see that this last extension of Ulm's Theorem takes
the rezder clearly beyond the scops of this paper but was presented
to give a more completes picture of the work that has resulted from

the study of abellan groups.
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SUMMARY AND SUGGESTIONS FOR FURTHER STUDY

As stated in the introduction, this paper is by no means an
exhaustive treatment of the theory of abelian groups, However, it is
falirly complete in the study of the general classification snd decomposition
of theorems without being too technical or abstract, The material
covered was intended to convey a considerable amount of information
concerning the basic ideas, mwethods and fundamental results of abelian
group thaory. There are as many unanswered and unsolved problems in
this area as one might expect.

The interestsd reader has many airections of further study, One
might be in following the progress of Ulm's Theorem and examining the
different proofs of the same theorem., There 1s room for a very
detalled exploretion in this area. The final theorem in section 9,
Chapter IV, was concerned with an algebralic structure other than the
group structure, It might be interesting to see which results or
theorems presented in this paper could be extended to other structures
such as the modulez or commutative rings, Also there are many results
dealing specifically again with abelian groups which have not been
presented in this paper, as well as whole new concepts, For example,
nice subgroups were defined in section 9, Chapter IV, however very
1ittle was established about them. It mlight be interesting to try to
prove whether direct summands are nice or if finite subgroups are nice,
and so on,

Thus it 45 easy to see that there is as much to consider for the

interested resder as has been covered in this paper.
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