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Chapter 1
INTRODUCT TON

While most texts in the area of matrix theory describe and
classify various types of matrices, many of these texts fail to
develop the relationships between specific classes of matrices,

The objective of this thesis is to compare certain classes of
matrices. These matrices are compared acceording to characteristics
inherent to particular classes of matrices and also according to the
geometrical interpretations that c;rtain matrices represent,

When writing in matrix theory, one must assume that the reader
has a basic knowledge of matrices. However, Chapter II contains
basic and essential definitions of matrix theory as well as a
clarification of the notation used in this thesis.

Chapter III contains the definitions of the matrices that are
discussed in this thesis with examples to illustrate the structures
of these matrices.

Chapter IV contains a comparison of the eigenvalues among the
various classifications of matrices,

Chapter V contains some geometrical properties of three trans-
formations vhile Chapter VI contains a more detailed study of one

of these transformations.



Chapter II
BASTIC DEFINITIONS AND NOTATION

The notation used in matrix theory varies from text to text,
This chapter contains the notation used in this thesis as well as

the definitions basic to matrix theory.

DEFINITION 2.1. A system or ordered sextuplet

V= (,F, + °, @, () 1s called a vector space over the field F if

and only if:
a) (F, +, ¢) is a field F whose identity elements are
denoted by 8 and 1;
b) (V, ) is an abelian group whose identity element is
denoted by 0;
¢) For alle,B € F and v, w& V where = (2 v € V, the

following are true:

1) O (vOw)
ii) (=+8)YC v
iii) = @ (P © v)
iv) 1®v=1v

FOv)@ (= Ow)
(O VB oV
(u--@) © v

I

Il

The above notation, while precise, is cumbersome. It is
conventional to adept the following abbreviated notation:

i) v + w) =ov +tXy
ii) (A+8) v =ev +8v
1ii) = @v) = &H)v

iv) lv=v



The following notation will be used consistently in this paper:
a) F will be a field.
b) Lower case Greek letters will be elements of F. These
elements will be called scalars in this paper.
¢) Capital Latin letters will denote vector spaces over F.
d) Lower case Latin letters will denote elements of vector

spaces. These elements will be called vectors,

DEFINITION 2.2. 1If V is a vector space and if 5 = (vy, ..., v,)}
£V, then the set 5 is linearly dependent over F if there exist
elements ll, v e }n in F, not all of them 0, such that llvl +')2v2 -+
.. 4‘Anvn = 0. If the set S is not linearly dependent over F, then

it is said to be linearly independent over F,

DEFINITION 2,3, A maximal linearly independent subset of
a vector space V is called a basis of V,
NOTE: 1In this paper, only vector spaces containing
finite maximal linearly independent sets are considered. Furthermore,
it ean be shown that all bases for a vector space contain the same

number of elements.

DEFINITION 2.4. The dimension n of a vector space is the

number of elements in any basis of V over F.

DEFINITION 2.5, A linear transformation T from a vector
spece V to a vector space W, both over the scalar field I, is a
mapping of V inte W such that for all v, w € V and for all=,8 €F,

@v +28w)T = o(vT) +8(wl).



Let V, be a vector space with an arbitrary but fixed basis
(vl, ey vm). Let T be a linear transformation of V, into a vector
space Wp and let (wj, ..., w,) be any fixed basis for W . Tor each
i=1, 2, ..., m viT is a uniquely determined vector of W, and hence
is unigquely represented as a linear combination of the wj, j =
1, 2, ..., n:

vpT = 28wy Tokgguy P T sy

valT = A 91w T otggwy + ... + Agpwy

v T = ¥l a(mzwz + ... +*aknmwn

Notice the meaning of the subscripts., The first subscript 1 of
O&ij means that okii is one of the coefficients of the representative
of the vector v;T relative to the w-basis, and the second subscript
i of 0¢i1 means that 0*11 is the coefficient of wy in that representation.
Relative to the two bases, T is completely determined by the mn
subscripts of the coefficient 0‘11 together with this interpretation
of the mesning of the coefficlents. 1Tt is necessary to pay attention
to the order of the basis vectors to avoid ambiguity. With this

convention understood, T can be represented by the rectangular array

of scalars,

11 %19 "t TlIn
oi.,zl o(_,22 v en %n

< ml %“m?2 *** “m

DEFINITION 2.6. A rectangular array containing m rows

and n columns of elements of a field F is called an m X n matrix

over F.



DEFINITION 2.7. The sSum of tvo matrices is the matrix

of the sum of the two corresponding linear mappings.

DEFINITION 2.8. If A is an m x n matrix and B is a p x m
matrix, then the product BA is the matrix of the composite of the

linear mappings corresponding to B and A.

All matrices used in this paper are assumed to be square matrices

over the complex number field (F = ¢),

NOTATION USED IN THIS THESIS

Al Transpose of A
A% Conjugate transpose of A
¢ Complex number field
| End of proof
I Identity matrix
a~1 Inverse of A
| Al Determinant of A
[aiﬂ The matrix with entries a
n Denotes a vector space of

dimension over an
appropiate scalar field



Chapter III
COMPARISON OF MATRICES BY STRUCTURE

The following classes of matrices were chosen because of their

interesting relationships to one enother.
DEFINITION 3.1, A matrix A is normal if and only 1f AA* =
01)
i 0} is normal,
DEFINITION 3.2. A matrix A is unitary if and only if A"l =
01
1 0f is unitary,
DEFINITION 3.3. A matrix A is Hermitian 1f and only 1f A =
1 0)
0 0/ is Hermitian.

DEFINITION 3.4. A matrix A = (ay3j) is diaponal if and only

if ajj = 0 whenever i *+ j.
i 0)
01 is diagonal.

DEFINITION 3.5. A matrix A is Gramian if and only if for

2 i 11
-i 5) is Gramian: B = \i-2iJ.

some B, A = BB¥*,

A%xA,

A%,

A%,



DEFINITION

DEFINITION

DEFINITION

DEFINITION

DEFINITION

3.6,

A matrix A is idempotent if and only if A2 = A

4 -2)
6 -3) is idempotent.

3.

7.

01

i0

3.8.

¢

3.9.

&

i -

3,10.

(11

i1

A matrix A is involutory if and only if a2 =1

) is involutory.
A matrix A is symmetric if and only if A = AT,
0
0) is symmetric.

. . . i AT
A matrix A is orthogonal if and only if A" = A
7

i )is orthogonal,

A matrix A is semi-normal if and only if

) is semi-normal.

Before Definition 3.11 can be given, it is necessary to give a

short explanation concerning the similarity of two matrices. The

matrix A is similar to the matrix B if there exists a nonsingular

matrix P such that A = PBP~l, Geometrically, A is similar to B if

A and B are the same transformations but represented by different

bases.

-1



DEFINITION 3.11. A matrix A is simple if and only if A

is similar to a diaponal matrix.

12 1 1 5 0
8 3/1is simple; P= (&4 -2J, B =10 -1/,

The next part of this chapter contains theorems which establish
relationships between particular classes of the above defined matrices.
The last part of this chapter contains examples of matrices to
illustrate these relationships with a diagram at the end of the
chapter which shows explicitly the exact connections between the
types of matrices,

THEOREM 3.1, (a) Unitary matrices are normal,
(b) Hermitian matrices are normal.
(¢) Diagonal matrices are normal.
Proof: To establish (a), assume A* = A~l and, hence,
AT = aa-l, Therefore, AA™ = I. Similarly, A*8 = 1., Therefore
AAT = A*a,
To establish (b), assume A = A*, Therefore,

AAT = ATA = ATA,

To establish (c), assume A = 1;} where ai =0

whenever i # j. Hence. ali] I 11] Therefore [ ] Iaii]
Py Tl = gl = Teal]” [ou |

THEOREM 3.2. A real unitary matrix is real orthogonal,

T

-

Proof: Assume A"l = A", Since A is real, A* = A

Therefore A-l = AT



THEOREM 3.3. A real Hermitian matrix 1is symmetric and

a real symmetric matrix is Hermitian.
Proof: Assume A = A*, 5Since A is real A% = AT.

T

Therefore, A = A", The second statement of the theorem follows

similarly by assuming A = aT first.'

THEOREM 3.4. (a) If A is unitary and Hermitian, then
A is involutory.
{b) If A is unitary and involutory, then
A is Hermitian.
(c) 1If A is Hermitian and involutory, then
A is unitary.
Proof: To prove {a), assume A% = a1l and A = a*, It

follows that A = A"l The proofs of (b) and (c) are similar.l

THEOREM 3.5. A Gramien matrix is Hermitian.
Proof: Assume A = BB*, Then, A* = (BB*)* = (B*)*B* =

BB*, Therefore, A = A*.‘

THEOREM 3.6. A repgl Gramian matrix is symmetric.
Proof: Assume A = BB*, By Theorem 3.5, A = A¥,

T T

Since A is real, A* = A-, Therefore A = A .'

THEQREM 3.7. Any diagonal matrix is symmetric,

Proof: The proof is clear.l

THEQREM 3.8. A symmetric matrix is semi-normal.

Proof: Assume A — AT. Then AAT = ATAT = ATA.I

THECREM 3,9. A normel matrix with real elements is semi-

normal.
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Proof: The proof is clear.'

THEOREM 3,10. (a) If a matrix is both involutory and
symmetric, then it 1s orthogonal.
(b) 1If a matrix is involutory and orthogonal,
then it is symmetric.
(c) 1f a matrix is symmetric and orthogonal,
then it is invelutory.

Proof: To establish (a), assume & = A~l and & = Al.

Then it follows that A~l = al, The proofs for (b) and (c) are similar.'

THEOREM 3.11, A matrix that is both idempotent and unitary
must be the identity,

Proof: Assume A2 = A and AA* = 1. Then A=A » I =

ACAAY) = (Aa)a™ = aa* = 1.

THEOREM 3,12, Normal matrices are simple.
Proof: Assume AA* = A*a, By the Schur triangularization
theorem (page 67, [3] ), T = UAU*, where T is upper triangular and
* 1
U is unitary. So TT* = UAU UAUY = Uaa*U*. Also, T'T = ua*y ual™ =
% o ¥ . * K do oK
UA"AU. Since AA" = A A, it follows that UAA'U = UA"AU and therefore

TT* = T"T. This implies that T is diagonal. 8

THEOREM 3,13, Idempotent matrices are simple.
Proof: Assume A2 = A, A is similar to a Jordan form;

that is. A — PJP-1. Since A2 = A, this means that PJP~lpjp-l =

1

PJP'l, so PJ2P~' end J2 = J. The Jordan form has submatrices along

the diagonal which take the form of, for example, either

Aj 10 A; 0 0 \
0 Ai 1 or 0 )i D1, Since is either 0 or 1 (Theorem 4.5),
0 0 g 0 0 A

1



L10 010 100 000
these matrices become |0 1 1}, 001}, {01 O], or (O O0O}.
001 000 001 000

If all the diagonzl blocks take the form of either cne of the last
two matrices, then J is diagonal. If one diagonal block takes the

form of either of the first two matrices, then Jz # J. Therefore

THECREM 3.14, A matrix that is both idempotent and normal

J must be diagonal.

is Hermitian.

Proof: Since A is normal, by Theorem 3.12 4 = DU”
where U is unitary and D is diaponal. Hence since A2 = A, then
DU*IDU* = WDU*; so UD2U" = UDU* which means that D2 = D, Therefore

each dij =1 or 0. Also A" = UD*U", Therefore D = D* and A" =

Not only do most texts in matrix theory fail to give examples,

U™ = A,

they do not always illustrate the relationships among the various
kinds of matrices. In giving examples for the various relatienships,
it becomes necessary to show that while certain classes of matrices
are related these classes are not equal. 1In fact, in many cases
particular classes are proper subsets of other classes, or in some
cases are even the intersection between classes. This next section
contains examples of the matrices which were defined at the beginning
of this chapter, along with examples of relationships which have

been stated in the theorems in this chapter,

11



Example 3,1.

Example 3.Z%.

Example 3.3.

12

(a) A matrix that is simple but not normal is

G )

(b)Y A matrix that is simple, but not semi-normal is

(c)

(a)

(b)

(e)

(a)

(b)

(c)

12
4 37,
A matrix that is
1+i 1
1 1+ij; P
A matrix that 1is
0 1}
i 0}f.
A matrix that is
1 i
iif.
A matrix that 1s
i 2
2 -1/.
A matrix that is
4 -2)
6 -3/,
A matrix that is
1+1 1
1 1+1i}.
A matrix that is

(Hermitian) is

(4 9).

simple but not idempotent is

1 1 i+2 0
=11 -1}, 0 = o il
normal but ncot semi-normal is
semi-normal but not normal 1is
both semi-normal and normal is
idempotent but not normal is

normal but not Idempotent is

both normal and idempotent



Example 3.4.

Exzmple 3.5.

Example 3.6,

Example 3.7.

A matrix that is normal but not Hermitian, unitary,

or orthoponal is

(a)

(b)

(e

(a)

(b)

(e)

(a)

(b)

1+i 1
1 1+iy,
A matrix that is unitary but not orthogonal is
(0 1)
i 0/,
A matrix that is orthogonal but not unitary is

1)

A matrix that is both unitary and orthogonal

(real orthogonal) is
(o 1)
1 0/.

A matrix that is symmetric but not unitary is

(59,

A matrix that is unitary but not symmetric is

(o a).

A matrix that is both unitary and symmetric is

(01
10/.
A matrix that is unitary but not Hermitian is

(28,

A matrix that is Hermitian but not unitary is

(59).



Example 3.8.

Note:

(¢) A matrix that is both Hermitian end unitary

(involutory) is

(22)

(a) A Gramien matrix that is neither idempotent

nor unitary is

21 i -1
1 3/; B=11+1i 1},

(b) A Gramian matrix that is idempotent is

(59), . -{3¢)

(c) A Hermitian matrix that is not Gramian 1is

(33).

To show that a matrix is not Gramian, assume that it

is. Thus A = BB* means that the entries in the identical positions

in the two matrices must be equal.

either in an inconsistent system of equations or in some other

methematical contradiction, then the matrix is not Gramian.

Example 3,9,

If equating these elements results

14

(a) A matrix that is semi-normal but not symmetric

is

0 -1
i 0/.
{b) A matrix that is both semi-normal and

symmetric is

(23)
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Exemple 3.10. (a) A matrix that is symmetric but not Hermitian is

()

{(b) A matrix that is Hermitian but not symmetric 1is

01
-i 0.

{¢) A matrix that is both Hermitian and Symmetric
(real) is
10
0 0/
Example 3.11. (a) A matrix that is symmetric but not diagonal is
21/,
(b) A matrix that is both symmetriec and diagonal {is
20
0 4/,
Example 3.12. (a) A matrix that is Gramian but not symmetric is

2 i 1 1
-i5): B=|1-21]).

(b) A matrix that is symmetric but not Gramian 1s

(39)

(¢) A matrix that is both symmetric and Gramian is

21 i -1
13, B=11+H 11}

On the last page of this chapter, there is a diagram which shows

the relationships which have been established in the theorems and
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illustrated by examples. An explanation of the diagram is as follows.
When there is a single line between two classes of matrices, with

one class above the other, the class that is listed above cont&ins

the class from which the line is leading upward. ¥For example, there
are single lines leading to simple from semi-normal, normal, and
idempotent. These lines indicate that the sets of all semi-normal,
normal, and idempotent matrices are subsets of the set of all simple
matrices. When there are two lines from two different sets of matrices
leading down to a single set, the single set is the intersection

of the other two sets, For examplé, there is a line leading to
idempotent and one leadinp to normal both of which lead from
Hermitian. This means thest when idempotent classes and normal

classes intersect, the class that is formed is Hermitian.
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A DIAGRAM SHOWING THE RELATIONSHIP

OF CLASSES OF MATRICES

5 IMP1L]
ORMAL IDEMPOTENT
ORTHOGCNAL UNITARY\ /HERMITIAN

SEM I-V ORMAL AL ORTHOGONAL INVOLUTQRY GRAMIAN
s ETRIC

DTAGONAL KEAL HERMITIAN

REAL GRAMIAN
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Chapter IV
EIGENVALUES AND EIGENVECTORS

This chapter contains a discussion of eigenvalues and eigenvectors,
It is necessary to first define the terms "elgenvalue'" and "eigenvector."
After these terms have been defined, it becomes particularly useful
to give specific examples of the geometric Interpretations of various
eigenvectors. Once the terms have been defined and the geometrical
interpretation has been given, it is possible to show the relationships
between the defined classes of matrices by using the sets of eigenvalues

which belong to each class.

DEFINITION 4.1. (a) An eigenvalue of a matrix A is a
scalar A.such that Ax = Ax for some vector x # 0.
(b) The vector x is called an eigenvector
of the matrix A,
DISCUSSION: If A 1is an eigenvalue of A, then Ax -Ax =0
and (A - AI)x = 0. Thus A is a scalar such that the above homogeneous
set of equations has a nontrivial solution; that is, a sclution other

than x = 0. Thus an eigenvalue 15 a scalar A such that IA —.lll = 0.

Many books describe the method for finding eigenvalues and
eigenvectors, but few books contain any additional explanation as
to their value. A fev examples can show some of the uses for
eigenvalues and eipenvectors. Before giving some specific problems,

it is necessary to give a geometric interpretation of eigenvectors.
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30
Let A= ( 0 2 ) The eigenvalues of A are 11 = 3 and 22 = 2.

Every eipenvector associated with ). is of the form (k, O)T, where
1

k is any nonzero scalar, since ‘3'3 0 (k) ={ 0. Furthermore,
0 2-3f\0 0

the set of vectors of the form (k, 0)' is such that A(k, T =
ik, 0OT: that is, ((3) g)( 15) = 3(15).

Hence the set of eigenvectors belonging to ll = 3 1s mapped
onto itself under the transformation represented by A, and the image
of each eigenvector is s fixed scalar multiple of that eigenvector.
This fixed scalear is precisely the eigenvalue with which the set of
eigenvectors is associated.

Similarly, every wvector associated with ).2 is of the form
(0, )T where k is any nonzero scalar., The set of vectors of the
form (0, k)T is such that A(O, k)T = AZ(O, k)T; that is,

(3 o)( 0)= 2( o).
0 2 k k

Hence, the set of eigenvectors associated with 12 = 2 is
mapped onto itself under the trensformation represented by A, and
the image of each eigenvector is a fixed scalar multiple of the
eipenvalue., The fixed scalar multiple is )2; that is, 2,

The sets of vectors of the forms (k, 0)T and (0, 1T 11e along

the x-axis and y-axis respectively. (See Figure 4.1)

Y.

(0,2k)

~— image vectors

(0,k)

o' (x;0) (3,0)
Figure 4.1
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Under a magnificetion of the plane represented by the matrix
A :(g g), the one-dimensional vector spaces containing the sets of
vectors of the forms (k, 0)T and (o, k)Y are mapped onto themselves,

respectively, and are called invariant vector spaces.

Problem 4,1, Determine the invariant vector spaces under
a shear parallel to the x-axis represented by the matrix A, where
2
a={l 4,
tH
The eigenvalues of A are )1 = 1 and )2 = 1. Associated

vith each eipgenvalue 1s the set of eigenvectors of the form (k, O)T,

vhere k is any nonzero scalar. Then ((]i i)( 15) = 1 (1(;) and the

one-dimensional vector space containing the set of vectors of the
form (k, O)T is an invariant vector sapace. Furthermore, since A =
Rz = 1, each vector in the vector spece 1is its own image under A,
Problem 4.2, Determine the invariant vector space under
a projection of the plane represented by the matrix A —(% 8).
The eigenvalues of A are Al = 1 and )2 = (. Associated
with the eigenvalue h]_ = 1 is the set of eigenvectors of the form
(k, k)T vhere k is any nonzero scalar; associated with the eigenvalue

)2 = 0 is the set of eigenvectors of the form (0, k)T where k is

0
any nonzerc scalar. Then, (} 8)( t) = 1({2}and (} @(k)z O(E)-_—

T
(g) Since the vectors of the form (0, k)  are mapped onto the zero
vector, the one-dimensional vector space containing these vectors is

mapped into but not onto itself and the space is not considered an

invariant vector space. However, the one-dimensional vector space
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containing the set of vectors of the form (k, k)T is an invariant
vector space. Note that these vectors lie along the line y =
and that the plane is mapped ontec this line under the projection
of the plane represented by the matrix A.

Problem 4.3, Discuss the eigenvalues and eigenvectors

. 1 -1
of the matrix (1 1).

To find the eigenvalues,

llj"l‘ 13 = 0., Thus (1-))%2 - 1 =

0. So, 1-—2)+A2-1 = 0. Therefore /\(0\—2) = (Q and h = 0 and )l = 2,

Case 1. To find the mgenvectors for =0, let x ﬁ(xl).
1 2
Then Ax =A x is vritten - X . Thus,
1 -1 1 X,
X{ - X3 = 0and -x; + xp =0 whlch means that X = x2.

solution is the set of all [xl, xﬂ that is, the one-dimensional
subspace spanned by {l, 1}. Note that these eigenvectors are zall
the nonzero scalar multiples of [1, 1] . These eigenvectors
comprise the kernel of the mapping, except that 0 is in the kernel,
but is not an eigenvector.

Case 2, To find the eigenvectors for kz =2, let x =(;§1).

2
Then, Ax = hzx means that 1 -1 X1 y= 2! *1}. The solution
"]. 1 X2 x2

set is the set of all X1, -x]]; that is, the one-dimensional sub-
spaces spanned by [1. -1:’ .

Particular sets of eigenvalues are associated with certain
classes of matrices, These eigenvalues are related in the same
manner »s are the types of metrices. The folloving theorems deal
with the sets of eigenvalues which belong to the defined classes

of matrices.



THEOREM 4.1, The eipenvalues of a Hermitian matrix are

real numbers.

22

Proof: Assume A = A*, Let A be an eigenvalue of A, so

Ax = Ax; x # 0. Hence, x*Ax = Ax¥x. Then, (x*Ax)* = (Ax*x)*, It

follor s that x*A%x = Ax*x., Therefore x*A*x = x*Ax = Ax*x = Ax*x

rhich means that A= A; that is, Ais real..

THEOREM 4,2, The eigenvalues of a unitary matrix are
(real or) complex numbers of Modulus {absolute value) {.
Proof: Assume A"l = {n* (also expressed as AA* = 1),
Let A be & root of A so that Ax =2x; x # 0. Then, (Au}*x = (/1 x)*
+hich means theat x*A* = Xx*. Hence, x*A*Ax = Ex*/\x = XA x*x,

Thus, x*Ix = XAAx*x = x*x. Therefore AA= 1 so |1l= 1.

THEOREM 4,3. The eigenvalues of a real orthogonal matrix

are either 1 or -1,

1

Proof: Assume AT = Al (that is AT = I). Let A

T T T
be a root of A so thet Ax =lx. Then, (Ax) = (Ax) so that xTA =

)xT. Hence, xTATAx = /‘,xT Ax. So, X Ix = l) xTx = xTx. Therefore,

ll = 1 which means that /1 2 _ l and l: 1.
|

THEOREM 4.4. The eigenvalues of an involutory matrix are

either -1 or 1.
Proof: Assume AZ = I, Let X be a root of A so that
Ax =/\x; x # 0. Hence, Adx = Alx =AAx - Xl x. Hence, Ix A x = x

so that l).: l. Therefore bl 2 - 1, and l= tl.
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THEOREM 4,5, The eigenvalues of an idempotent matrix
are either 0 or 1,
Proof: Assume A2 — A, Let A be a root of A so that
Ax = Ax; x # 0. Then, Adx — A2x — AAx = Adx. So, Ax = Alx which
means that Ax = Dy Therefore, 0 = A2 cAx = O - Vx. It

follows that A2 -X = 0 since x # 0. So, J(A- 1) =0 and A = 0

or ;1= 1.
|

THEOREM 4.6. The eigenvalues of a Gramian matrix are real.
Proof: The proof is the same as the proof for Theorem

4.1,

THEOREM 4,7, The eigenvalues of a diagonal matrix A may
be any complex number.
Proof: Assume A is diagonal. Then the eigenvalues
for A are equal to the entries along the diagonal of A. 5Since these
entries may be either real, purely imaginary or complex, it follows

that the eigenvalues will be the same,

THEOREM 4.8. The eigenvalues of a normal matrix may be
any complex number.
Proof: Theorem 3.1 (c) states that all diagonal matrices
are normal. Therefore, the set of eigenvalues for disgonal matrices
must be included in the set of eigenvalues for normal matrices.

Theorem 4.7 states that these eigenvalues may be any complex number..
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THEOREM 4,9, The eigenvalues of a symmetric matrix may
be any complex number.
Proof: Theorem 3.7 states that all diagonal matrices

are symmetric. This proof is then similar to the proof of Theorem 4.8.

THEOREM 4,10, The eipenvalues of a simple matrix may be
any complex number.
Proof: Theorem 3.13 states that all normal matrices
are simple. This means thet the set of eigenvalues of normal matrices
must be included in the set of eiggnvalues for simple matrices.
This set of eigenvalues, as stated in Theorem 4.8, is real, purely

imaginary, or complex.
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Chapter V

SOME GEOMETRICAL INTERPRETATIONS

OF THREE TRANSFORMATIONS

Since matrices represent transformations, it would be remiss
to omit some geometrical consequences of some transformations in a
paper which deals with matrices. To describe all transformations
would be too ambitious; so teo give the reader a general idea of
transformations, three specific transformations have been selected.
The remainder of this chapter contains some interesting geometrical

interpretations of orthogonal, unitary, and similarity transformations.

DEFINITION 5.1. If U is an orthogonal matrix, then the

transformation ¥ = UX is called an orthogonal transformstion.

THEOREM 5.1. The determinant of an orthogonal matrix is
l or -1.
Proof: assume UT = U-l, Then UUT = 1. Hence 'U" Uﬂ =

1Ulz = 1. Therefore, |U| = £1.

DEFINITION 5.2. 1f U is an orthogonal matrix and |U| = +1,

the transformation ¥ = UX 1s proper orthogonal. 1If |U| = -1, then

the trensformation is improper orthogonal.

DEFINITION 5.3. If U is a unitary matrix, then the trans-

formation ¥ = UX is a unitary trensformation.




DEFINITION 5.4, The formation of a matrix U = B-lAB is

a similarity transformation of A,
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THEOREM 5.2, An orthogonal transformation preserves distance,.

x
1
Proof: Let X = ?2 be the Cartesian coordinates
in
(xl, Xgy wees xg of a point P in an Euclidean n-dimensional space.

T 2 2 )
Then, XX = Xy + x22 + ...t xn glves the square of the distance

the origin to P.
71
Let Y = AX (A is en nth order matrix) wvhere Y = ¥2 . The

. AP, | 2 2 In 2
distance of y from the origin is Y'Y = y;" +yy + ... + y“.
Hence YTY = (AX)TAX = XTATAX. If ATA = I, then YTY = XTX; that is,

T

distance is preserved. To say that A"TA = 1 is to say that A is

orthogonal, Therefore Y = AX is an orthogonal transformation that

preserves distance.'

THEOREM 5.3. An orthogonal transformation leaves the

angle between any two vectors unchanged,

Proof: Assume X and X' are two vectors in n-dimensional

xl xl‘
space, Let X = ?2 be the coordinates of P and X' = ¥2: be the
Xn n

coordinates of Q (see Figure 5.1),

' ' 1
. (xl, Koy oo xn)

- ? (x1, Xgy aney xn)
Figure 5.1
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The angle between X and X' 1s defined as: X:X'= ,X' !ﬂ',cose.
T

1

]
- 0s 6 X)Xy + XoXg + ... 1 X X
us, c¢ =
’ 2 2 2)% 'y2 y2 YA R
(€ + x5+ ol +x %) ]:(x1 ) +(x2 st )
x'x'
In matrix form this hecomes . Let X be transformed

xTx)% (x'Tx "%

into ¥ by an orthogonal trensformation ¥ = AX, and X' transformed into

Y' so that Y' = aX', Then @ is the angle between Y and Y. Similarly,

vy’ (ax)Tax'
cos = = ‘
(YTy)% (x'Ty' )k ((AX)TA:X)% ((Axr)TAx)lg
XTATAX' xTxr

' L = = cos 8. Thus the angle
aTala¥ o TaTy Y aToE @'Tod

between the two vectors 1s invariant..

A SPECTAL RESULT OF THEOQREM 5.3.
Consider any rotation of axes in €2 and let the angle of
rotation be &. Then the unit vectors E, and E, of the y-coordinate
system are the unit vectors (cos@, siné® and (-s5in®, cos®) respectively

in the x-coordinate system. (See Figure 5.2)

Aa,

Jr

(-sm e,ww)‘ /]

Figure 5,2
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Hence the transformation is:
Xq cos B - sin v,
X,| = |siné@ cosBfya| (1)
the matrix of which is orthogonal and has determinant 1, Conversely, let
1l = {811 399] 171
%9 391 8551 |¥2 (2)
be any orthogonal transformation in ¢,. Here the unit vectors E, and

)

Es of the y-coordinate system are the orthogenal unit vectors (au,a21
and (ay2,a,,) respectively in the x-coordinate system.

Let £1in the trensformation of the type (1) be chosen in such
a way that the unit vector (all,azl) = (cos@ sin®) defines the
yl-axis. Then the y2-axis, being orthogonal to the y;-axis, is
defined either by the unit vector (-sinf, cosB) or by the unit vector
(sinf}, -cos®) in the opposite direction (see Figure 5.3). That is,
either (312’322) = (-sinf, cosB) or (ajj,any) = (8ind, -cos®. The
transformation as shown in Figure 3.2 is thus either a rotation or
a transformation of the form:

X cosf@ sinblly
=] s 8yl (@)
X, sin @ -cos Yo
which is an improper orthogonal transformation since the determinant is
- ; %1 = [cos® -sinb 1 0 y
1. Statement (3) may be written [xgl cinD cosGJ' [0 'l:ijﬂ

and hence be interpreted as the product of the proper orthogonal

trensformation | X1 | = C?se"sms Z1l and the transformation | %1{ =
Xy 5in® cosb|z 24

2
1 Qily .
0 -1 y]' which reverses the choice of positive direction on the
2

yo-axis. This latter transformation is called a reflection in the ¥q-&xis.
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*2
Y2 X9
: 1 7y
a b T =
12 a2 (811,821)= 11,&21)
{(-5ind,cosd) (cosg,sinﬁ) (cos®,sint)
p x
X1 v
(812085=
{81nf,-cos6)
Yo
Figure 5.3

This argument may be extended to 53. That is, in 53, the
proper orthogonal transformations represent rotations of axes and
the improper orthoponal transformations represent rotations combined

with a reflection in one of the coordinate planes.

THEOREM 5.4, The scalar product of tvo plane vectors is

a scalar invariant under an orthogonal transformation. That is,

- ! - 1 iy 1
2= gi‘i + Ea1j and b =1by i + by j are the image vectors of
i
:= in +'3;j and b==iﬂj,+-33j respectively under a rotation of

the plane about the origin or under a reflection of the plane with

respect to a line through the origin: then, albl + azb2 = alrbl' + a21b2'.

Proof: Let R be either a rotation matrix or a reflection
matrix. Then, (alv, az')T = R(al, a2)T and [kaly, azi)?]T =
!
[R(al, az)?}T. This means that (al . az') = (al, az)RT. Similarly,
'
R(bq, b2)T = (by bz')T. Then multiplying equals by equals:
( RTR(by, )T = (ay by, by )T, Si R 1s orth 1
ag, a, 1» b» = {ay . ap 1+ b2 . ince o ogonal,

T v T
(al, az)(bl, b2) = (alr, azf)(bl‘, by )" and a;b, + a,b

1 ]
1 Vahp =2 by +

ag by .
2 2 '



THEOREM 5.5  An orthogonal transformation preserves the
separation of two vectors; that is, the distance between two vectors.
Proof: ’x - y’is the separation of x and y. Let A

be #n orthoponal transformation. Then, !Ax - Ay’T ]Ax - Ay’—

[,AX’T ’Ay’ ]DAx - Ayn [[ -y ATU”Ax AyU

X A Ax - TA Ay - yTATAx + vy ATAy = h X - x y - y Xty y,

S TR R

THEOREM 5.6, A unitary transformation leaves distance

xT(x - y) - yi(x - y)l =

invariant.
Proof: Let X*X = xy*x; + xo%x, + ... + X Fx, =
!2 ,2 2 . .
X1 +Ixgf”™ + ...+ [x,]7. Consider a unitary transformation
Y = AX (A is an nth order matri®. Then Y*Y = (AX)*AX) = X¥A%AX =

X*X. Therefore distance is preserved wvhen A is a unitary matrix.'

THEOREM 5,7, A unitary transformation leaves the angle
between two vectors invariant.
Proof: Parts of this proof are similgr to the proof

of Theorem 5.3, and have been omitted here. Let X' and X be two
!

X
vectors with & the angle between them. Then, cos@ = (G K)E (X *X )%
Consider the unitary transformation Y = AX and Y' = AX' with @ as
Y*Y1

the angle between Y and Y'. Therefore, cos ¢= ' =
(Y*v)%5(y ' *y )%

(AX)*(AX ) X*A%AX | X*X

[(AX)*AX]%[(AK')*AX'T% o) B(x akax ) (o) E(x "xx )%

cosf.

30



NOTE: A special result of this theorem is that orthogonal

vectors are invariant under a unitary transformation.

THEOREM 5.8, In v, the inner preoduct X*Y is invariant
under a unitary transformation of coordinates,
Proof: Let U be a unitary matrix so that X = UW and
Y = UZ, Then X*Y = (UWW)*UZ = W*U*UZ = W*Z which is also an inner

product.

THEOREM 5.9, Similar matrices have equal determinants,
Proof: Let A and B b; similar matrices. Then a

nonsingular square matrix C of the same order as A and B such that

Lo ’ ’Alz

clac =3 exists, Then |B| = ‘C-lllAilcl = ‘C-IIICJ|A[=

!IHAl = IA

1
THEOREM 5.10. OSimilar matrices have equal eipenvalues,
Proof: Let A and B be similar matrices. Then a

nonsingular square matrix C of the same order as A and B such that

c-lAC = B exists. Then, lA - XI, =

lB - ).Il.l

¢ la - )I)C| = ]c'lAc - lc'llc

As stated previously, it would be impossible to describe all
transformations thoroughly. However, a deeper study of one
transformation is practical and perhaps desirable. 5uch a study

of orthogonal transformations is presented in Chapter VI,

31
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Chapter VI
A STUDY OF ORTHOGONAL TRANSFORMATIONS

One of the transformations which is often discussed in texts
on matrix theory is the orthogonal transformation. Much of the
material which is presented in this chapter may be found in {73.

In this presentation only real, 3 x 3 matrices will be considered.

Case 6.1. Euler's Theorem,

Euler implied in his theorem that, given the initial and final
positions of a rigid body any one of +hose points takes up the position
from which it started, then it would have been possible to reach

the final position by some one rotation about one fixed axis.,

DEFINITION 6.1. A rigid body is composed of any number
of points whose separations remain unchanged, not only after a
displacement of the body, but at all times during the process of
taking the body from its initial to its final pesition.
NOTE: Excluded will be the case of a thin rod, in

which all of the peoints are cellinear.

Let P (Figure 6.1) be any general point of a rigid body with
coordinates x,y,z referred to a fixed system of rectangular axes
vith origin at 0. Let the rigid body be displaced so that P moves
to B' (coordinates xr,y',zr) the point at the origin (0,0,0) remaining

fixed. Let the change in the coordinatee of F as a result of the



displacement be given by p' = f(p) rhere p, pr are the column vectors
of the coordinates of P and P' respectively. Since the point at

the origin remains fixed £{(0) = 0.
f

~J y

Figpure 6.1

THEOREM 6.1. The separation }x - yl of two vectors X and
y is preserved if and only if the transformation is orthogonal.
Proof: That an orthogonal transformation preserves
separation has already been proved in Theorem 5.5. It is now
necessary to sho that if x' = f(x) describes a transformation of
the total space that preserves separation and if £(0) = 0, then
f(x) = Ax where A is orthogonal.
Since the transformation preserves separation, If(x) - f(y)|=
|x - y'. But this is true for all y, in particular y = 0. Hence

f(x) - f(O)l = lx| . But £(0) = 0 and hence lf(x)‘ = \x . That

1
is, < Tx' = x'x. Apain, if y = f(y), the preservation of separation

T
implies that (x' - y')T(x1 - y')=1(x-7y)(x - y). Thus putting

| 1T 1
x' Ix' = xTx and y'Ty = yTy the result is y x = yTx and the

transformation f(x) preserves inner products. In particular, if

th

j
e; is the 1 column of the unit matrix and e; 1is its transform,

1

1T T .. T T .
then ey ej = ey ej = 1 when 1 = j and e, ey = eje; = 0 when 1 # j.

33
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/
The vectors e, (i =1,2,...,n) thus form an orthonormal set and

i
i
s matrix A whose ith column A+1 = e, is orthogonal. Moreover,

f

ei = AEi.

Suppose that u sUgsenssyll form an orthonormal set, then they

n

1

are linearly iIndependent and it is possible to find scalars dl,dz,...,wh

such that any vector V can be expressed V = dlul thou, + ... +n<nun.

Premultiplying both sides by u_T, then ﬁiTV :‘#&' Hence V = ulTV “u
i

T T
u, V. VL. +tu Vo ou . Putting V = f(x) = x' and U = e;'s
TT1 L 'T t J TT1 !

the result is f(x) = e x " e tey, x ey t...te x ey,

1+

But 1inner products are preserved by the transformation, hence

'T.p__ T _ T . '
e; x = e 'x. Hence, f(x) = e x ' e

T, . t T
1 + e2 x € + ...+ e, X . e .

thus f{x) = elTx . Ael + e

But ei = Ae T *

i Ty » Aez + ... + e, X

2
XAy Xohkg + ..t ox Ay =—Ax.'

Thus the displacement of a body such that one point remains
fixed and separations are preserved is algebraically represented
by the linear transformation p1 = Ap vhere A is orthogonal.

Separation must also be preserved at all stages of the continuous
process of taking P to P'. Consider the continuous displacement
of P' back to P in the opposite sense, The elements of A must
continuously approach those of an orthogonal matrix representing no
displacement. This matrix is the identity matrix I, for if A = I,
then p' = Ip = p. But an orthogonal matrix has a determinant which

is either +1 or -1 {(Theorem 5.1) while lIl = +1, It is impossible
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that A can continuously approach 1 if ites determinant is -1. Therefore,
all displacements of a rigid body with the origin fixed are represented
by proper orthogonal transformations. (Definition 5.2).

Since the determinant of a matrix is the product of its
characteristic roots, it is possible for the characteristic roots
of A to be (1,-1,-1), (1,1,1), (-1,-1,-1), or (1,1,-1). Considering
only the case | A' = +1, the latter two possibilities may be eliminated,
Since A is a real orthogonal matrix and all real orthogonal matrices
are unitary (Theorem 3.2) and, in turn, all unitary matrices are
normal (Theorem 3.1), then it follows that A is normal. This means
that A = PDP* where P is a unitary matrix and D is a diagonal matrix
which consists of the eigenvalues of A. (Theorem 3.12).
Considering the two possibilities that remain, D either looks like

1 0 0

100
010} or|0 -1 0|. Both of these matrices have invariant sub-
001 0 0 -~1

spaces of dimension ome. A subspace of dimension one is a line
which passes through the origin.

Consider Figure 6.2, any two points A, B on the fixed line
through 0. Let P be any other point not on the line. Since the
transformation leaves AP, BP invariant and A and B fixed, the locus
of P is a circle normal to AB, Similarly the locus of Q is also
a circle normal to AB., But PQ is invariant end hence the planes
ABQ end ABP rotate around AB through the same angle. Since this
argument applies to all pairs of peints of the body not on AB, the

transformation p' = Ap induces a rotation of the body about AB.



The fixed line through the origin is known as the Axis of Rotation.

Therefore, all continuocus displacements of a rigid body with one
point fixed can be represented by orthogonal transformations and

these transformations are rotations.

v Q

Figure 6.2

Case 6,2, The Resultant of Several Rotations.

Let the rotations be represented by proper orthogonal matrices

R),R,,...R, and let them take place in that order. Let the coordinate

vector of a point P be p, Then after the first rotation py = Rlp
and a2fter the second Py = R2p1 = RoRyp. The resultant is then
Pn = Rp -..RoRyp.

The displacement of P from p to p, Is equivalent to a single
rotation (the end result is the same) whose representative matrix
R is given by R = R ...RyR;. This is the geometrical equivalent
of the property of orthogonal matrices that the product of any
number of them is orthogonal.

Orthogonal matrices are, in general, non-commutative in
multiplication, The ripht-hand matrix factor corresponds to the
first rotation and so on, 1f p = Rp then p = R'lp1 = RTpr since
R is orthogonal. The matrix RT thus represents the inverse rotation

to R,

36
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Case 6,3, Given two arbitrary, fixed, distinct points and
two arbitrary, fixed, distinct axes, is it possible to find a
transformation which is a composition of tuwo rotations, one about
each of the lines, so that P is displaced to P'?

Take as three points the origin O and any two distinect points
A and B a unit distance from the origin. If a and b are the
coordinate vectors of the points A and B respectively, then they

must be unit vectors, (Figure 6.3).

Figure 6.3

If all displacements are possible, then select any point a unit
distance from O and move it to coincide with an arbitrarily chosen
point also a unit distance from the origin.

Let 0A and OB (Figure 6.3) be two fixed axes of rotation. The
question arises: Is it possible to achieve all possible displacements
by one, properly chosen, rotation ahout OA followed by one rotation
about OB? The answer is no. Consider a point of the body initially
coincident with A, then the rotation about OA leaves the point fixed
at A, and the rotation about OB cannot then move the point to B.

If the required rotetions about OA and OB are represented by proper
orthogonal matrices A and B, then for the first rotation Az = a

and the second rotation gives Ba = a'. 1Is it possible that a' and
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'
b are the same unlt vector? If so, then bla = 1 that is, bTar =

blBa = 1. Since Bb = b, then pIeT — pT, Hence, bTB-l

T

= b (since
. T_ T T T _ .

B is orthogonal). So, b® = b B and b'a = b"Ba = 1 which is true

if and only if a and b are the same unit vector, but this is contrary

to the hypothesis that A and B are distinct points.

Case 6.4. Rotations about Three Fixed Axes.

Consider one rotation about each of three fixed axes in a given
sequence. Let the chosen axes be 0A, OB, and OC represented
respectively by the unit vectors 8, b, ¢ end let the rotation take

place around these axes in the sequence of the letters. (Figure 6.4)

B

Figure 6.4
If all displacements are possible, then OB must necessarily

be perpendicular to both OA and OC, To show this, it is necessary

to try to take a point initially at A to C. After the first rotation

A, Aa = a, After the second rotation B, Ba = and after the third

t
a
T
rotation C, Ca = ¢ and a' = CTc = c¢. Hence ch = bTa = b Ba = bTa
and OB is equally inclined to OA and OC,

It is also necessary to be able to take the point initially
f
1
at A to C where C 1lies on CO produced a unit length beyond O,

t
The coordinate vector of C is -¢. By the same argument, ble = -bTa

and 2bTa = 0 (bTe = bla = -bTa = 0). OB is thus perpendicular to OA
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T

b a

and also to 0C (cose = =2 = -0

L 0 so @ = 90°; similarly for cosf =

_Ezﬂ S O — an®
2 == 0 so @ =19°.

To show that this perpendicularity condition is sufficlent,
it becomes necessary to show that rotatlons about 0A, OB, and OC
cen take twWo points initielly coincident with A and B into any
general position consistent with their remaining the same (unit)
distance from the origin and the same distance apart. Starting
with two points P, Q arbitrarily placed, but subject te the require-
ment that OP and OQ are of unit length and such that PQ = AR, it

is possible by reversing the rotations and sequence of rotation, to

bring P and Q into coincidence vith A and B respectively. (Figure 6.5).

Figure 6.5
Plane AOC divides the space into two parts. Consilder any point

of the rigid body, say P: it either lies in the plane AOC, or a

rotation around OC rhich lies in the plane will carry it from one

half-space to the other taking it through the plane in doing so.

When it lies in AOC, OP will be perpendicular to OB which is normal

to the plane. A rotation about OB will then carry P into coincidence

with A; and a third rotation about OA will then carry Q into coincidence

with B without disturbing the coincidence of P and A. Carrying out

these rotations in reversed order, it is possible to take two points

initially in coincidence with A and B into a general position P, Q.
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Case 6.5, The Forms of Orthogonal Matrices that Represent
Rotations about a Fixed Coordinate Axis.

It is necessary to first derive the forms of the orthogonal
matrices R, Ry, and Rz that represent rotations about the (fixed)
coordinate axes O, Oy’ and Oz respectively.

Consider first a rotation &, about 0O, (Figure 6.6a) under
vhich a point P, coordinates x,y,z is carried to P', coordinates
x'.y',z'. A projection of the space points to the yz-plane {g az¢

shown in Figure 6.6b.

0 2 ¥

Figure 6.6a Figure 6.6b
If the projection OP makes an angle & with Oy, and the projected
1
length OP (=OP ) is s, then x = x; y'= s cos{C+ O,), vy =28 cosP;
z' =5 sin(® 18,), z = s sin® where y'= & cosf cos®, - s sing sin@x =
y cosg, - z sinB,  and z' = 5 sin® cos®y t+ s coﬂ@siné& = z cos@, +
1 .
v s nax
The above relationships may be expressed as:
x: 1 0 0 X
y,J=10 cosf, -sinék y |
z 0 sinex cosf z

The matrix 1s proper orthogonal and may be expresses as Rx'
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cos 0 sinB
0 ﬁ§ 1 Q when xl =
-sin@y 4 cosey

Similarly Ry (rotations about Oy) =
s sin(6+6y), x = s sinf; y1 =y; and z' = s cos(O +9y)’ z =8 cost.
coef? -sinEL 0
Finally, R, (rotations about 0Qp) = sind, coa@z 0 Jwhen x' =
0 o 1
s cos(@+6,), x =8 cosd; y' = s sin(6+@z), y =8 sin®; and z' = z.

The three rotations can be combined in six possible ways

corresponding to the six possible rotation sequences. (Table 6.1).

SEQUENCE OF ROTATION BESULTANT MATRIX
FIRST SECOND THIRD

4] 0 C R_R._Rx
X z z_ ¥

Ox OZ Oy RszRx
Oy Oy O, RszRy
Oy 0, 0y RszRy
Oz 0, Oy RnyRz
0, Oy 0x RnyRz

Table 6.1

The intermediate rotation takes place about an axis perpendicular
to the other two:; and any of the six permutations of the three matrices
can be selected to simulate all rotations of a rigid body by

rotations about three fixed axes.

Case 6.6. A Rotation of Coordinate Axes (Transformation of
Coordinates).

Consider the problem of a fixed body whose coordinates are
referred to a rotated system of axes. Congsider a rotation (of a

rigid body) represented by an orthogonal matrix R,



Let P, @, K be three points of the body iInitially unit distances
along the coordinate axes (Figure 6.7). Their initial coordinate

vectors will be eq, €ys 53 the colums of the unit matrix, After

! f
the rotation the points will move to P, Q', R' where OP , OQ', OR'

! 1 !
are all unity, the coordinate unit vectors p , q , r defining

three mutually perpendicular directions ox', Oy', oz'. Then, p' =

t

Re; = R*l’ q = Re, = R*E’ r' = Req = Ryq. The coordinate vectors

p', q', r' are the colums of R and the elements of R are the rotated
coordinates of poilnts initially situated at points unit distances
along the axes. Since p', q', r' or (R*l, Rios Rxq) are unit vectors,

they are the direction cosines of Ox', Oy', Oz' respectively with

respect to Ox, Oy, Oz, (Figure 6.7)

Figure 6.7

Regard the three mutually perpendicular lines Ox', Oy', Oz’

as the axes of a second coordinate eystem with origin at O, Let

a be the coordinate vector of a point A fixed with respect to Ox, Oy,

t

1
Oz and let a' be its coordinate vector with respect to ox'. Oy , oz'.

A could be a fixed point (which it is) relative to which Ox',

t
Oy , Oz' have been rotated from their initial positions of coincidence

42
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with Ox, Oy, Oz or A could have formed part of the rigid body containing
ox ', Oy', 0z'. 1In this latter case the coordinate vector a' of A
relative to Ox', Oy', 0z' would have remained fixed, but its coordinate
vector a, relative to Ox, Oy, Oz would have changed as the hody

was rotated into its final position. The problem is reduced from

one of transformation of coordinates to one of rigid body rotation.

It is now possible to write a = Re' or a' = RTa which tells how its
coordinates change with the axes as A is held fixed. Thus, if the
rotation of a new set of axes with respect to an old set is represented
by an orthogonal matrix R (columns of R are the direction cosines

of the new axes with respect to the old) then the new and old

coordinate vectors of a fixed point are related by the equation

a' = Rla,

Case 6.7. A Transformation of Orthogonal Matrices,

An orthogonal matrix A represents a certain rotation of a rigid
body, but with respect to a chosen rectangular system of coordinates.
In the equation p, = Ap; the coordinate vectors p; and p, together
with A are referred to a given system of coordinates, It is possible
to say that a point is displaced from P1 to P2 such that P1 is
transformed to P2 or it is possible to refer coordinates to a new
{accented) system and the same displacement would be represented
as a transformation of Pl' to Pz' and the same rotation would be
effected by an orthogonal matrix A' vhich would not usually have
the same form as A, It is desirable to find the relationship between

A' and A vhen the accented coordinate system 1s obtained by a rotation

R about the origin of the unaccented system. (Figure 6.8),



Figure 6.8

With reference to Ox, Oy, 0z a rotation represented by the

matrix A carries a point P1 of a rigid body to Pz. With reference

to Ox', Oy', Oz’ the same rotation is represented by A", So Py =

44

Ap1 and pz' = A‘pll where Pa and p2' are coordinate vectors representing

the same points Py and Py respectively but with reference to two

systems of coordinates. Thus p "= RTp and p,' = RT (see Case 6.5},
1 1 2 Py

S0 Rsz = A'RTpl; that is. py = RA'RTpl and py = py = RA'RTp1 -~ Apy,
so 0 = (RA'RT - A)pl. Since this is to hold for all points, py is
arbitrary and A = RA'RT or o' = RTAR, A very important property

of the transformation of A to A' is that the eigenvalues of A' are
the same as those of A, The proof of this is as follows: l AI - A| =

}RT ;LI-AI :llRTR-RTAR'=|)1-A'

Case 6.7, Improper Orthogonal Matrices - Transformations that

R

Represent Reflections.
Let E be a real 3 x 3 diagonal matrix such that 1ts diagonal

elements are Xl with en odd number of negative signs. Hence E = -1



and the inverse of an E-type matrix is also an E-type matrix.
Every E-type matrix 1s improper orthogonal.

Let A be an improper orthogonal matrix, then AE is proper
orthogonal for IAEI = ’AI ,El =-1+-1=+1, If B= AE, then
A = BE~1l and any improper orthogonal matrix may be factorized into
a proper orthogonal matrix and an E-type matrix. Moreover, the
kind of E-type matrix is arbitrarily chosen. An Improper orthogonsal
transformation is then equivalent to & proper orthogonal matrix

(rotation) preceded or followed by a type-E transformation, Consider

r

X, 10 0\/x . .
the E-type transformation |y | = [0 1 0 |ly] sox =x,y =y,
z 00 -1/|z

and z' = -=z.

This is a reflection in the xy-plane. The three E-type matrices
with one negative sign thus represent reflections in the coordinate
planes; when all three elements are negative, the transformation
is a reflection in the origin: that is, & point is translated into
the opposite octant. Thus every improper orthogonal matrix is
equivalent to a rotation preceded or followed by a reflection of
one of the given types,

Consider any plane through the origin normal to the wnit vector
n. Take this normal as the x' -axis of a new (accented) coordinate
system. If R represents the rotation of this new system with respect

to the old, then n ill be the first column of R'.
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With respect to this new system, the improper orthogonal matrix

T

A will become A' = R AR: A' 1s improper and may be factorized into

a rotation B and a reflection in the plane (the y'z'-plane of the

new coordinate system) the normal to vhich is n, Thus A' = B'E
! -loo T e 15T
where E. =§ 0 1 0{. Then A= RA K" = RB E R", Transforming back
001

I
to the unaccented system putting B' = RTBR, then A = RRYBRE RT =

t
BRE RT. But RE'RT is the matrix representing the reflection in
the given plane with reference to the unaccented system. Hence
an improper matrix can be factorized into a rotation and a*teflection

in any plane through the origin.

To summarize Chapter VI, an orthogonal matrix represents a

transformation that is either a rotation or a reflection.
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Chapter VII
CONCLUSTION

The main objective of this thesis has been to expose the
relationships between specific classes of matrices which are often
alluded to, but seldom discussed in detail in books on matrix theory.

A second objective has been to present the reader with a discussion
of what certain transformations accomplish.

There are many possibilities for further study in this area
of matrix theory. There are other gpecial classes of matrices which
vere not defined in this paper. How these matrices are related to
each other and to those presented in this thesis would be an interesting
area of study.

The trangformations thet matrices represent lend themselves
very readily to a more thorough research. 4 discussion of what
orthogonal transformations represent peometrically was presented in
this paper. Other classes of matrices also represent particular
transformations. What these transformations do geometrically and
how these transformations compare to each other would also be excellent

areas for study,
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