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Chapter I 

INTRODUCTION 

While most texts in the area of matrix theory describe and 

classify various types of matrices, many of these texts fail to 

develop the relationships between specific classes of matrices. 

The obiective of this thesis is to compare certain classes of 

matrices. These matrices are compared according to characteristics 

inherent to particular classes of matrices and also according to the 

~eometricel interpretations that certain matrices represent. 

When ~riting in matrix theory, one must assume that the reader 

has a basic knowled~e of matrices. However, Chapter II contains 

basic and essential definitions of matrix theory as well as a 

clarification of the notation used in this thesis. 

Chapter III contains the definitions of the matrices that are 

discussed in this thesis with examples to illustrate the structures 

of these matrices. 

Chapter IV contains a comparison of the eigenvalues among the 

various classifications of matrices. 

Chapter V contains some Feometrical properties of three trans­

formations Fhile Chapter VI contains a more detailed study of one 

of these transformations. 
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Chapter II 

BASIC DEFINITIONS AND NOTATION 

The notation used in matrix theory varies from text to text. 

This chapter contains the notation used in this thesis as well as 

the definitions basic to matrix theory. 

DEFINITION 2.1. A system or ordered sextuplet 

V = (V, F, +, " 0, 0J is called a vector space ~ the field F if 

and only if: 

a) (F, +, .) is a field F whose identity elements are 

denoted by g and 1: 

b) (V, E9) is an abelian group whose identity element is 

denoted by 0; 

c) For alld- ,8 € F and v, wEi V where -< G) v E V, the 

follo~ing are true: 

i) ";"f)(vl!)w) ('" 0 v) @ ("" 0 w) 
ii) ('" +/3 ) 0 v ('" 0) v) Et> (fj €J v) 

iii) a.E)(PDv) (.... I3)€J v 
iv) 1 <:) v = v 

The above notation, while precise, is cumbersome. It is 

conventional to adopt the follo'·,in" abbreviated notation: 

i) d-(v +w) = ....v +0< .. 
ii) (",-+<3) v =~v +t3v 

iii) a< ~v) = ~O)v 

iv) lv = v 
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The followin? notation will be used consistently in this paper: 

a) F will be a field. 

b) Lower case Greek letters will be elements of F. These 

elements will be called scalars in this paper. 

c) Capital Latin letters will denote vector spaces over F. 

d) Lower case Latin letters will denote elements of vector 

spaces. These elements will be called vectors. 

DEFINITION 2.2. If V is a vector space and if S - (vI' .•• , v )n 

~V, then the set S is linearly dependent over F if there exist 

elements ).1' •••• An in F, not all of them 0, such that Arvl + ~v2 + 

... +,Anvn = 0. If the set S is not linearly dependent over F, then 

it is said to be linearly independent over F. 

DEF IN IT ION 2.3. A maximal linearly independen t subset of 

a vector space V is called a basis of V. 

NOTE: In this paper, only vector spaces containing 

finite maximal linearly independent sets are considered. Furthermore, 

it can be shown that all bases for a vector space contain the same 

number of elements. 

DEFINITION 2.4. The dimension n of a vector space is the 

number of elements in any basis of V over F. 

DEFINITION 2.5. A linear transformation T from a vector 

space V to a vector space W. both over the scalar field F, is a 

mappin!, of V into W such that for all v, w E V and for all~,13 EF, 

(oLv +13 w)T = ....( vI) +.tl (wI). 
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Let Vm be a vector space with an arbitrary but fixed basis 

(VI' ... , v ). Let T be a linear transformation of V into a vectorm m
 

space W and let (wI' ... , ) be any fixed basis for W • For each
n Wn n 

i - 1, 2, ... , m viT is a uniquely determined vector of Wn and hence
 

is uniquely represented as a linear combination of the Wj' j =
 

1, 2, .•. , n:
 

T
vl = o'-l1wl + ""12w2 + + o(lnwn 
v2T = d.. 2lwl + 0<. 22"'2 + + 0<.2nwn 

vmT = ""'mlwl + """m2w2 + .;. + "'-mnwn 

Notice the meanin~ of the subscripts. The first subscript i of 

O'-.ij means that o'.ii is one of the coefficients of the representative 

of the vector viT relative to the w-basis, and the second subscript 

j of ~ .. means that 0'. is the coefficient of w ' in that representation. 
. 11 1 i J 

Relative to the two bases, T is completely determined by the mn 

subscripts of the coefficient 01- i i together "ith this interpretation 

of the meenin~ of the coefficients. It is necessary to pay attention 

to the order of the basis vectors to avoid ambiguity. With this 

convention understood, T can be represented by the rectangular array 

of scalars, 

oLIn"'" 11 "'"12 
"'-'21 "'-22 <7'-- 2n 

"'-' ml oL m2 0<­ mn 

DEFINITION 2.6. A rectangular array containing m rows 

and n columns of elements of a field F is called an m x n matrix 

over F. 
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DEFINITION 2.7. The sum of t~o matrices is the matrix 

of the sum of the two corresponding linear mappings. 

DEFINITION 2.8. If A is an m x n matrix and B is a p x m 

matrix, then the product BA is the matrix of the composite of the 

linear mappings corresponding to Band A. 

All matrices used in this paper are assumed to be square matrices 

over the complex number field (F = ~). 

NOTATION USED IN THIS THESIS 

AT Transpose of A 
A* Conjugate transpose of A 
t Complex number field, End of proof 
I Identity matrix 
A-I Inverse of A 
I AI Determinant of A 

[a ij} The matrix with entries a 
ijV Denotes a vector space ofn 

dimension over an 
appropiate scalar field 
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Chapter III 

COMPARISON OF MATRICES BY STRUCTURE 

The foll~,ing classes of matrices .ere chosen because of their 

interestin~ relationships to one ?nother. 

DEFINITION 3.1. A matrix A is normal if and only if AA* - A*A. 

(~ ~) is normal. 

DEFINITION 3.2. A matrix A is unitary if and only if K 1 = A*. 

(~ ~) is unitary. 

DEFINITION 3.3. A matrix A is Hermitian if and only if A A*. 

(~ ~) is Hermitian. 

DEFINITION 3.4. A matrix A <eij) is diagonal if and only 

o ~henever i ~ j.if ai i 

(~ ~) is d iagona 1. 

DEFINITION 3.5. A matrix A is Gramian if and only if for 

some B, A = BB*. 

I 2 i) G-~ i).~i 5 is Gramian: B 
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DEFL'lITION 3.6. A matrix A is idempotent if and only if A2 = A. 

(4-2)
6 -3 is idempotent. 

DEFL'lITION 3.7. A matrix A is involutory if and only if A2 = 1. 

0 i)
( - i a is invol utory. 

DEFINITION 3.8. A matrix A is symmetric if and only if A = AT. 

is symmetric.a~) 

A-I.DEFINITION 3.9. A matrix A is orthogonal if and only if AT 

(i-If)J' i is orthogonal. 

DEFINITION 3.10. A matrix A is semi-normal if and only if 

AAT = ATA. 

is semi-norma 1. 

Before Definition 3.11 cpn be given, it is necessary to give a 

short explanation concerning the similarity of two matrices. The 

o~) 

matrix A is similar to the matrix B if there exists a nonsingular 

ma trix P such tha t A PBP- l . Geometrically, A is similar to B if 

A and B are the same tr~nsformations but represented by different 

bases. 
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DEFINITION 3.11. A matrix A is simple if and only if A 

is similar to a dia~onel matrix. 

(~ ~) is simple; P = (~ -~), B = (~ -~). 
The next part of this chapter contains theorems which establish 

relationships between particular classes of the above defined matrices~ 

The last part of this chapter contains examples of matrices to 

illustrate these relationships with a diagram at the end of the 

chapter which shows explicitly the exact connections between the 

types of matrices. 

THEOREM 3.1. (a) Unitary matrices are normal. 
(b) Hermitian matrices are normal. 
(c) Dia~onal matrices are normal. 

Proof: To establish (a), assume A* = A-I and, hence, 

AA* - AA-l. Therefore, AA* = T. Similarly, A*A = T. Therefore 

AA* = A"A. 

To establish (b), assume A = A*. Therefore, 

AA* A*A* A*A. 

To este.blish (c), assume A ~ [a ij) where a i ; = 0 

whenever i of j. Hence [aij1* = taiJ. Therefore l Iaijl *-= 

bJ [ai j1= [aijJ~iJ = rai~" [ail. 
[a ij

THEOREM 3.2. A real unitary matrix is real orthogonal. 

Proof: Assume A-I = A*. Since A is real, A* = AT. 

Therefore A-I 
= A

T '1 
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THEOREM 3.3. A real Hermitian matrix is symmetric and 

~ real symmetric matrix is Hermitian. 

Proof: Assume A = A*. Since A is real A* - AT. 

Therefore, A = AT. The second statement of the theorem follows 

similarly by assuminp A = AT first., 

THEOREM 3.4. (a) If A is unitary and Hermitia~ then 
A is involutory. 

(b)	 If A is unitary and involutory, then 
A is Hermitian. 

(c)	 If A is Hermitian and involutory, then 
A is unitary. 

) .	 -1
Proof: To prove ( a , assume A* = A and A = A*. It 

follows that A = A- l . The proofs of (b) and (c) are similar •• 

THEOREM 3.5. A Gramian matrix is Hermitian. 

Proof: Assume A = BB*. Then, A* = (BB*)* (B*)*B* 

BB*, Therefore A = A* , 'I 

THEOREM 3.6. A real Gramian matrix is symmetric. 

Proof: Assume A - BB*. By Theorem 3.5, A = A*. 

TSince A is real, A* = AT. Therefore A = A " 

THEOREM 3,7, Any diaponal matrix is symmetric. 

Proof: The proof is clear •• 

THEOREM 3.8. A symmetric matrix is semi-normal. 

Proof: Assume A = AT. Then AAT - ATAT = ATA' 
1 

THEOREM 3.9, A normal matrix with real elements is semi-

norma 1. 
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Proof: The proof is clear .• 

THEOREM 3.10. (a) If a 
symm

(b) If a 
then 

(c) If a 
then 

matrix is both involutory and 
etric, then it is orthogonal. 
matrix is involutory and orthogonal, 
it is symmetric. 
matrix is symmetric and orthogonal, 
it is involutory. 

Proof: To establish (a), aSSume A = A-I and A = AT, 

Then it follows that A-I = AT, The proofs for (b) and (c) are similar •• 

THEOREM 3.11. A matrix that is both idempotent and unitary 

must be the identity. 

Proof: Assume A2 = A and AA* 1. Then A A • I 

A(AA*) (AA)A* = AA* 1..
 
THEOREM 3.12. Normal matrices are simple. 

Proof: Assume AA* = A*A. By the Schur triangularization 

theorem (page 67, t3]), T = UAU;' , "here T is upper triangul ar and 

.. * * ** ** * ** *U is unitary. So TT = UAU UA U = UAA U. Also, T T = UA U UAU 

UA;' AU. Since AA* - A*A, it follows that UAA*U* - UA*AU* and therefore 

TT* = T*T. This implies that T is diagonal •• 

THEOREM 3.13. Idempotent matrices are simple. 

Proof: Assume A2 = A. A is similar to a Jordan form; 

that is. A ~ pJp-l. Since A2 = A, this meanS that PJP-lpJp- l 

PJP- l so pJ2p-l .nd J2 = J. The Jordan form has submatrices along• 

the diagonal which take the form of, for example, either 

Ai 1 OJ [Ai 0 O~ \o -1.i 1 or 0 ~ O. Since.A is either 0 or 1 (Theorem 4.5), 
[ o 0 Iti 0 0 )..i 
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[

1 1 

[ ~.01OJ [1 o 0] [0these matrices become 0 1 o 0 1, 0 1 0 , or 0 00 
o 0 o 0 0 0 o 1 0 0~J' 

If all the diagonal blocks take the form of either one of the last 

two matrices, then J is diagonal. If one diagonal block takes the 

form of either of the first two matrices, then J2 i' J. Therefore 

J must be diagOnal.. 

THEOREM 3.14. A matrix that is both idempotent and normal 

is Hermitian. 

Proof: Since A ,s" no;mal, by Theorem 3.12 A = UDU* 

where U is unitary and D is diagonal. Hence since A2 = A, then 

* 2 * * 2UDU*UDU* UDU"; so UD U = UDU which meanS that D =D. Therefore 

each d ij 1 or O. Also A* - UD*U*. Therefore D - D* and A* = 

,. A 

UDU' ~ "' 

Not only do most texts in matrix theory fail to give examples, 

they do not always illustrate the relationships among the various 

kinds of matrices. In giving examples for the various relationships, 

it becomes necessary to show that while certain classes of matrices 

are related these classes are not equal. In fact, in many cases 

particular classes are proper subsets of other classes, or in some 

cases ere even the intersection between classes. This next section 

contains examples of the matrices which were defined at the beginning 

of this chapter, along with examples of relationships which have 

been stated in the theorems in this chapter. 
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Example 3.1. Ca) A matrix that is simple but not normal is 

(~ ;): p = (~ -~), = (; -~).B 

(b)	 A matrix that is simple, but not semi-normal is 

(~ ;). 
Cc)	 A matrix that is simple but not idempotent is 

(l~i 1) (1 1) (1+2 0)
1+i ; P = 1 -1 , 0 = 0 i. 

Example 3.2. (a) A matrix that is normal but not semi-normal is 

(~ ~) 
Cb)	 A matrix that is semi-normal but not normal is 

( 
i)1 

i i . 

(c)	 A matrix that is both semi-normal and normal is 

u-no 
Example 3.3. Ca) A matrix that is idempotent but not normal is 

/4 -2)
l6 -3 • 

Cb)	 A matrix that is normal but not idempotent is 

l+i 1 \ 
( 1 1+i). 

(c)	 A matrix that is both normal and idempotent 

(Hermit ian) is 

(~ ~J. 
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Example 3.4. A matrix that 

or orthogonal 

is normal 

is 

but not Hermitian, unitary, 

Ex.mple 3.5. (a) 

( 
Hi 1)

1 Hi. 

A matrix that 

(? 1)
1 0 • 

is unitary but not orthogonal is 

(b) 

(c) 

A matrix that is orthogonal but not unitary is 

(i -~ 
~~ ·i). 

A matrix that is both unitary and orthogonal 

(real orthogonal) is 

(~ ~). 
Example 3.6. (a) A matrix that is symmetric but not unitary is 

(~ ~). 
(b) A matrix that 

l~ ~), 

is unitary but not symmetric is 

(c) A matrix that is both unitary and symmetric is 

(~ ~). 
Example 3.7. (a) A matrix that 

(~ ~). 

is unitary but not Hermitian is 

(b) A matrix that is Hermitian but not unitary is 

(~ ~). 
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(c) A matrix that is both Hermitian and unitary 

(invo1 utory) is 

0 i)(- i 0 • 

Example 3.8. (a) A Gramian matrix that is neither idempotent 

nor unitary is 

(211 (i-~ 
1 3); B = 1+i 1) 

(b) A Gramian matrix that is idempotent is 

(~~\B=(~n 
(c) A Hermitian matrix that is not Gramian is 

(- ~ ~). 
Note: To show that	 a matrix is not Gramian, aSsume that it 

is. Thus A = BB" meanS tha t the en tr ies in the identica 1 pos it ions 

in the t"o matrices must be equal. If equating these elements results 

either in an inconsistent system of equations or in some other 

mathematical contradiction, then the matrix is not Gramian. 

Example 3.9. (a)	 A matrix that is semi-normal but not symmetric 

is 

(? -i)
1 O. 

(b) A matrix that is both semi-normal and 

synunetric is 

0 i)
( i 0 • 
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Exemple 3.10. (a) A matrix that is symmetric but not Hermitian is 

(~ ~), 
(b)	 A matrix that is Hermitian but not symmetric is 

0 i\ 
( -i 0/ 

(c)	 A matrix that is both Hermitian and sy~etric 

(real) is 

(~ g). 
Example 3.11. (a) A matrix that is symmetric but not diagonal is 

(~ i} 
(b)	 A matrix that is both symmetric and diagonal is 

(~ ~). 
Example 3.12. (a) A matrix that is Cramian but not symmetric is 

(2i)	 (1 1\ 
-i 5	 , B = i -2iJ. 

(b)	 A matrix that is sy~etric but not Cramian is 

i 0\ 
( o i). 

(c)	 A matrix that is both symmetric and Cramian is 

(21)	 (i -i\ 
1 3 ; B = l+i l). 

On the last page of this chapter, there is a diagram which shows 

the relationships which have been established in the theorems and 
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illustrated by examples. An explanation of the diagram is as follows. 

When there is a sin~le line between two classes of matrices, with 

one class above the other, the class that is listed above contains 

the class from which the line is leading upward. For example, there 

are single lines leading to simple from semi-normal, normal, and 

idempotent. These lines indicate that the sets of all semi-normal, 

normal, and idempotent matrices are subsets of the set of all simple 

matrices. When there are two lines from two different sets of matrices 

1eadin? down to a single set, the single set is the intersection 

of the other two sets. For example, there is a line leading to 

idempotent and one lead in? to normal both of which lead from 

Hermitian. This means thet when idempotent classes and normal 

classes intersect, the class that is formed is Hermitian. 
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Chapter IV 

EIGENVALUES AND EIGENVECTORS 

This chapter contains a discussion of eigenvalues and eigenvectors. 

It is necessary to first define the terms T' e igenvalue ll and tTeigenvector.!l 

After these terms have been defined, it becomes particularly useful 

to give specific examples of the geometric interpretations of various 

eigenvectors. Once the terms have been defined and the geometrical 

interpretation has been given, it is possible to show the relationships 

between the defined classes of matrices by using the sets of eigenvalues 

which belong to each class. 

DEFINITION 4.1. (a) An eigenvalue of a matrix A is a 

scalar Asuch that Ax =~x for some vector x f O. 

(b) The vector x is called an eigenvector 

of the matrix A. 

DISCUSSION: If A is an eigenvalue of A, then Ax - Ax = 0 

and (A - J-I)x = O. Thus)\ is a scalar such that the above homogeneous 

set of equations has a nontrivial solution; that is, a solution other 

than x = O. Thus an eigenvalue is a scalar Jl such that IA - ~II = O. 

Many books describe the method for finding eigenvalues and 

eigenvectors, but few books contain any additional explanation as 

to their value. A fev- examples can show some of the uses for 

eigenvalues and eigenvectors. Before giving Some specific problems, 

it is necessary to give a geometric interpretation of eigenvectors. 
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Let A = ( ~ ~ l. The eigenvalues of A are A1 = 3 and A2 = 2. 

Every eigenvector associated with )..1 is of the form (k, O)T, where 

k is any nOnzero sca 1ar, since (3~3 2~ 3) (~) =( ~ ). Furthermore, 

the set of vectors of the form (k, O)T is such that A(k, O)T = 

A1(k, O)T, that is, (6~)( t)= 3(~). 
Hence the set of eigenvectors belonging to ~1 3 is mapped 

onto itself under the trensformation represented by A, and the image 

of each eigenvector is a fixed scalar multiple of that eigenvector. 

This fixed scaler is precisely the eigenvalue with which the set of 

eigenvectors is associated. 

Similarly, every vector associated with). 2 is of the form 

(0, k)T where k is any nonzero scalar. The set of vectors of the 

T T \ T
form (0, k) is such that A(O, k) = 1\2(0, k) ; that is, 

(~ ~)( ~) = 2( ~). 
Hence, the set of eigenvectors associated with )..2 = 2 is 

mapped onto itself under the transformation represented by A, and 

the image of each eigenvector is a fixed scalar multiple of the 

eigenvalue. The fixed sce1ar multiple is )2; that is, 2. 

T T
The sets of vectors of the forms (k, 0) and (0, k) lie along 

the x-axis and y-exis respectively. (See Figure 4.1) 

y 

(0, 2k) 
l~e vectors 

(O,k)
 . x
 . )o (k;"O) ( ,0) 

Figure 4.1 
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Under a magnificption of the plane represen ted by the rna trix 

the one-dimensional vector spaces containing the sets of 

T T 

A =(6 ~), 
vectors of the forms (k, 0) and (0, k) are mapped onto themselves, 

respectively. and are called invariant vector spaces. 

Problem 4.1. Determine the invariant vector spaces under 

a shear parallel to the x-axis represented by the matrix A, where 

A (1 2\ 
\0 1)' 

The eigenvalues of A are ~ = 1 and ~ = 1. Associated
1 2 

,-ith each eigenvalue is the set of eigenvectors of the form (k, O)T, 

,-here k is any nonzero scalar. Then (~i)(~) = 1 (~) and the 

one-dimensionsl vector space containing the set of vectors of the 

form (k, O)T is an invariant vector space. Furthermore, since Al 
~ 2 = 1, each vec tor in the vec tor space is its mm image under A. 

Problem 4.2. Determine the invariant vector space under 

a projection of the plane represented by the matrix A =(t g). 
The eigenvalues of A are Al 1 and /1 2 O. Associated 

vi th the eigenvalue ~ 1 1 is the set of eigenvectors of the form 

(k, k)T .here k is any nonzero scalar; associated with the eigenvalue 

~2 = o is the set of eigenvectors of the form (0, k)T where k is 

any nonzero scalar. Then, (~ g)( n= l{t)and (~ ~ (n= 0 (~ )= 
(~). Since the vectors of the form (0, k)T are mapped onto the zero 

vector, the one-dimensional vector space containing these vectors is 

mapped into but not onto itself and the space is not considered an 

invariant vector space. However, the one-dimensional vector space 
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containing the set of vectors of the form (k, k)T is an invariant 

vector space. Note thet these vectors lie along the line y - x 

and that the plane is mapped onto this line under the projection 

of the plane represented by the matrix A. 

Problem 4.3. Discuss the eigenvalues and eigenvectors 

of the matrix ~~ - n. 
1-'\ - 1 I ). 2

To find the eigenvalues, -1 l-XI = O. Thus (1-/1) - 11 
O. So. l_2,A+1\2_ l = O. Therefore 1.('\-2) = 0 and ~l = 0 and A = 2. 

2 

Case 1. To find the eigenvectors for Al = 0, let x =(~~)" 

Then Ax =\x is ·ritten p -n(:;)= Al(:~)~ O(~~). Thus, 

xl - x2 o and -xl + x2 o which means that xl = x2" The 

solution is the set of all [xl' xJ that is, the one-dimensional 

subspace spanned by (t, 11. Note thet these eigenvectors are all 

the nonzero scalar multiples of [1, These eigenvectors11. 
comprise the kernel of the mapping, except that 0 is in the kernel, 

but is not an ei~envector. 

Case 2. To find the eigenvectors for A2 ~ 2, let x =(~~). 
Then, Ax =~2X means that (1 -l)(Xl)= 2(X l). The solution 

-1 1 x2 x2 

set is the set of all [Xl' -xl); that is, the one-dimensional sub­

spaces spanned by [1. - 0 . 
Particular sets of eipenvalues are associated with certain 

classes of matrices. These ei~envalues are related in the same 

manner 85 are the types of matrices. The folioving theorems deal 

with the sets of eigenvalues .hich belong to the defined classes 

of matrices. 
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THEOREM 4.1. The eigenvalues of a Hermitian matrix are 

res 1 numbers. 

Proof: Assume A = A*. Let A be an eigenvalue of A, so 

Ax = :Xx; x of- O. Hence. x*Ax = Ax*x. Then. (x*Ax)* = (Ax*x)*. It 

follo's that x*A*x = ,;fx*x. Therefore x*A*x = x*Ax =,.tx*x = Xx*x 

,·hich meanS thpt A = ;l:; that is, A is reaL. 

THEOREM 4.2. The eigenvalues of a unitary matrix are 

(real or) complex numbers of Modulus (absolute value) 1. 

Proof: Assume A-I = A* (also expressed as AA* = I). 

Let A. be a root of A so thet Ax =A.x; x t O. Then, (Ax)* = <A x)* 

Thich means th~t x+A* = ~x*. Hence, x*A*Ax Jx*A.x = Mx*x. 

Thus. xi<Ix = ).Ax',x = x*x. Therefore 1.A. = 1 so P..I= 1., 
THEOREM 4.3. The eigenvalues of a real orthogonal matrix 

are either 1 or -1. 

Proof: Assume A-I = AT (that is ATA = I). Let A 
TAT T T be a root of A so the t Ax = .Ax. Then, (Ax) = (x) so that x A 

~xT. Hence. xTATAx = AxT ;x. So, xTIx --)J x Tx = xTx. Therefore, 

.tl = 1 ..h ich means tha t "l 2 = 1 and .A. = ±l.. 

THEOREM 4.4. The eigenvalues of an involutory matrix are 

either -lor 1. 

Proof: Assume A2 = I. Let). be a root of A so that 

Ax =Ax; x t O. Hence. AAx = A).x =).Ax =:u.x. Hence, Ix =:Ux~" x 

so tha t :U.= 1. Therefore 1 2 = I, and).. = ±1. • 
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THEOREM 4.5. The eigenvalues of an idempotent matrix 

are either 0 or 1. 

Proof: Assume A2 = A. Let Abe a root of A so that 

Ax = Ax; x l' O. Then, AAx = A2x = ~Ax = Xlx. So, Ax = U.X which 

means that Ax = ;l).x. Therefore, 0 = )2x -.Ax = 0,2 - ).)x. It 

follows that).2 -). = 0 since x l' O. So, ;«A- 1) = 0 and A = 0 

or ). = 1. I 

THEOREM 4.6. The eigenvalues of a Gramian matrix are real. 

Proof: The proof is ~he same as the proof for Theorem 

4.1. I 

THEOREM 4.7. The eigenvalues of a diagonal matrix A may 

be any complex number. 

Proof: Assume A is diagonal. Then the eigenvalues 

for A are equal to the entries along the diagonal of A. Since these 

entries may be either real, purely imaginary or complex, it follows 

that the eigenvalues will be the same. I 

THEOREM 4.8. The eigenvalues of a normal matrix may be 

~ny complex number. 

Proof: Theorem 3.1 <c) states that all diagonal matrices 

are normal. Therefore, the set of eigenvalues for diagonal matrices 

must be included in the set of eigenvalues for normal matrices. 

Theorem 4.7 states that these eigenvalues may be any complex number., 
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THEOREM 4.9. The eigenvalues of a symmetric matrix may 

be any complex number. 

Proof: Theorem 3.7 states that all diagonal matrices 

are symmetric. This proof is then similar to the proof of Theorem 4,8" 

THEOREM 4.10. The eigenvalues of a simple matrix may be 

any complex number. 

Proof: Theorem 3.13 states that all normal matrices 

are simple. This means thet the set of eigenvalues of normal matrices 

must be included in the set of eig~nvalues for simple matrices, 

This set of ei~envalues, as stated in Theorem 4.8, is real, purely 

imaginary. or complex. I 
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Chapter V 

SOME GEOMETRICAL INTERPRETATIONS 

OF THREE TRANSFORMATIONS 

Since matrices represent transformations, it would be remiss 

to omit some geometricpl consequences of some transformations in a 

paper which deals with matrices. To describe all transformations 

would be too ambitious; so to give the reader a general idea of 

transformations, three specific transformations have been selected. 

The remainder of this chapter contains some interesting geometrical 

interpretations of orthogonal, unitary, and similarity transformations. 

DEF INITION 5.1. If u is an orthogonal rna trix, then the 

transformation Y UX is called an orthogonal transformation. 

THEOREM 5.1. The determinant of an orthogonal matrix is 

1 or - 1. 

Proof: Assume UT U-l. Then UUT 1. Hence Iul I U~ = 

lu]2 = 1. Therefore, lui = ±l .• 

DEFINITION 5.2. If U is an orthogonal matrix and lui = +1, 

the transformation Y = UX is proper orthogonal. If lui = -1, then 

the transformation is improper orthogonal. 

DEFINITION 5.3. If U is a unitary matriX, then the trans­

formation Y = UX is a unitary transformation. 
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DEFINITION 5.4. The formation of a matrix U B-lAB is 

a similarity trans forma tion of A. 

THEOREM 5.2.	 An ortho~onal transformation preserves distance. 

Proof:	 be the Cartesian coordinates
Let X =(~~1 

(Xl, x2' ... ,	 ~1 of a point P in an Euclidean n-dimensional space. 

T 2 22.
Then, X X = xl + x2 + ... + x ~ives the Square of the distancen 

the ori~in to P. 

Let Y =AX (A is an nth order tpatrix) "'here Y =(r~). The 

2 2dis tance of y	 from the ori~in is yTy = y12 + Y2 + .:~ + Yn 

Hence yTy = (AX)TAX = XTATAX. If ATA = I, then yTy = XTX; that is, 

distance is preserved. To say that ATA = I is to say that A is 

ortho~onal. Therefore Y = AX is an orthogonal transformation that 

preserves distance •• 

THEOREM 5.3. An ortho~onal transformation leaves the 

angle between	 any two vectors unchanged. 

Proof: Assume X and X
r 

are two vectors in n-dimensional 

, Xl')x, 
space. Let X = (i~) be the coordinates of P and X = ( i~' be the 

coordinates of Q (see Figure 5.1). 

Q I ') 
1 (x{, x 2 ' ... , X 

n 

/X	 • (Xl, X2' •.• , x )
n

X P 

Figure 5.1 



27 

x, 

The angle between X and X' is defined as: X'X'= Ix! ~llcose. 
, 

xlx l + x 2x 2 + ." + xnxn 
Thus, cos 9 = 

(x 2 + x 2 + + xn2)~ [(x ')2 +(x ')2 + '" + (x ')2-l \
1 2 l 2 n 

XTX' 

In matrix form this becomes Let X be transformed 
(XTX)\ (X'TX')\ 

• 1
1nto Y by an orthogonal tr.nsformation Y = AX, and X transformed into 

1 1 I ,
Y so tha t Y = AX. Then 4' is the angle between Y and Y • S imllarly, 

T , 
y Y (AX)TAX ' 

cos¢- = = = 
(yTy):]; (y'Ty')~ (AX)T~):]; (AX')TAX1~ 

T T I TX AAX X X ' 
cos e. Thus the angle

(XTATAX)\ (X'TATAX')~ (XTX):]; (X'TX):]; 

between the two vectors is invariant .• 

A SPECIAL RESULT OF THEOREM 5.3. 

Consider any rotation of axes in £2 and let the angle of 

rotation be e. Then the unit vectors El and E of the y-coordinate
2 

system are the unit vectors (cos&, sinG» and (-Sine, cose) respectively 

in the x- coord ina te sys tern. (See Figure 5.2) 

)/:>. 

~.1. 

~\ 

Figure 5.2 
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Hence the transformation is: 

= [cos e _ sin ~[Y1J
sin e cos 121 Y2 (1) 

the rna trix of '"hich is orthogona 1 and has determinant 1. Conversely. let 

[:~1 

all al~ fYl]
[ (2)r:~l = a2l a 2;1 1:2 

be any orthogonal transformation in (2' Here the unit vectors El and 

E2 of the y-coordinate system are the orthogonal unit vectors (a ll ,a )
21 

and (a12,a2 2 ) respectively in the x-coordinate system. 

Let t1in the transformation of the type (1) be chosen in such 

a way that the unit vector (all,a ' = (cos~ sinO) defines the
21 

Yl-axis. Then the Y2-axis, being orthogonal to the Yl-axis, is 

defined either by the unit vector (-sine, cos~ or by the unit vector 

(sin£!, -cos&) in the opposite direction (see Figure 5.3). That is, 

either (a12,a ) = (-sinO, cose) or (a12,a22) = (sine, -cose). The
22 

transformation as shown in Figure 5.2 is thus either a rotation or 

a transformation of the form: 

Xl] = [cosO sinltlfyl]
[ sin&-cosOJLY2 (3)x 2 

which is an improper orthogona 1 transforma tion since the determinant is 

-1. Statement (3) may be written [~~1 = rc~se -sinG? [1 6][Y ll 
l:',nfJ cosltl 0 -1 Y:iJ 

and hence be interpreted as the product of the proper orthogonal 

transformation [Xl] = rc~s ~ -sin~lr.ll and the transformation [ZlJ 
x2 Ls In''' cosdJbJ z2 

[~ _6r~D wh ich reverses the choice of pos i tive direction on the 

Y2-axis. This latter transformation is called a reflection in the ~l-axis. 



Proof: Let R be either a rotation matrix or a reflection 

the improper ortho~ona1 transforma t ions represen t rota t ions combined 

Similarly, 

Y2 

x
2 

1 

Yl 
'(all ,a

21 
)= 

(cose, sine) 
____....:~e xl 

("l2,a 22 )= 

(sinB,-cose) 

= R(al' a2)T and Fal" a2')T]T 

, I _ T 
(al ' a2 ) - (a 

1
, a 2 )R • 

Fi"ure 5.3 

Yl 

"(a ll ,a21 
)= 

(cose, slntl) 

xl 

, 'T
(al ' a 2 ) 

x2 

Then, 

Y2 

THEOREM 5.4. The scalar product of tvo plane vectors is 

the plane about the ori"in or under a reflection of the plane with 

29 

respect to a line throu"h the origin: then, albl + a2b2 - al'b l ' + a2 'b2 ' 

rna trix. 

Th is ar"umen t may be extended to f 3' Tha t is, in [3' the 

proper orthogonal tr~nsformations represent rotations of axes and 

a scalar invariant under an orthogonal transformation. That is, 

with a reflection in one of the coordinate planes. 

-. .............,.....
t = ali + B"2j and b = bli + b2j respectively under a rotation of 

[R(al' a2)TJT. This meanS that 

R(bl' b2)T = (b l ', b2')T. Then multiplying equals by equals: 

(al' a 2)RTR(b l , b2 )T = (al', a2')(b l ', b2')T. Since R is orthogonal, 

T I I I , T 1 I 
(a l , a 2 )(b l , b

2
) = (al ' a2 )(b l ' b2 ) and alb l + a2b2 = a 1 b l + 

, , 
a2 b2 '. 

..,., .... ' -41 .... r~' ....... , 
a = a1 i + a2 j and b = bl i + b2 j are the image vectors of 
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THEOREM 5.5 An ortho?onal transformation preserves the 

separation of two vectors; that is, the distance between two vectors. 

Proof: Jx - yl is the separa tion of x and y. Let A 

be en orthogonal transformation. Then, lAx - Ay/T / Ax - AY/= 

T 

I
[IAx/T - IAyIT] UAx'- AyO= UXTA - yTATU VAx - Ayl]=
 

TT TT TT TT I IT T TTl
x A Ax - x A Ay - Y A Ax + Y A Ay = x x - x y - y x + Y Y
 

T

IxT(x - y) _ yT(x _ y)/ = Ix _ yT// x _ yl-IX _ y/Tlx _ y/ .• 

THEOREM 5.6. A unitary transformation leaves distance 

invariant. 

Proof: Let X*X xl*xI + x2*x2 + •. , + xn*~ = 

2IXI/ + IX212 + ... + 1~12. Consider a unitary transformation 

y = AX (A is an nth order matri,.). Then y*y = (AX)"AX) = X*A*AX 

X*X. Therefore distance is preserved when A is a unitary matrix., 

THEOREM 5.7. A unitary transformation leaves the angle 

between two vectors invariant. 

Proof: Parts of this proof are similar to the proof 

,
of Theorem 5.3, and have been omitted here. Let X and X be two 

X;X I 
~en them. Then, cas(J = /v.J,..v~ 

,
y*y,

the angle beCWeen Y and Y • = Therefore, cos ¢= (Y*Y)"(y'*Y')" 

, , ,
(AX)*(AX ) X*A*AX x*x 

= 
~AX)*AXP [<AX' )*AX j" (X*A*AX)"(X'*A*AX')" (X*X)"(X'*X')"
 

cose.• 
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NOTE: A special result of this theorem is that orthogonal 

vectors are invariant under a unitary transformation. 

THEOREM 5.8. In Vn , the inner product X*Y is invariant 

under a unitary transformation of coordinates. 

Proof: Let U be a unitary matrix so that X = UW and 

Y - UZ. Then X*Y = (UW)*UZ = W*U*UZ = W*Z which is also an inner 

produc t. • 

THEOREM 5.9. Similar matrices have equal determinants.
 

Proof: Let A and B be similar matrices. Then a
 

nonsingular square matrix C of the same order as A and B such that 

e-lAe = Bexists. Then IBI ~ le-lllAllcl = Ic-llleJ IA(= Ic-lC/rAI= 

IIIIAI : H'I 
THEOREM 5.10. Similar matrices have equal eigenvalues. 

Proof: Let A and B be similar matrices. Then a 

nonsingular square matrix e of the same order as A and B such that 

e-lAe = B exists. Then, IA - ).,11 = le-l(A - ).I)el = Je-lAC _ ).e-lIel 

IB - ).11·, 
As stated previously, it would be impossible to describe all 

transformations thoroughly, However, a deeper study of one 

transformation is practical and perhaps desirable. Such a study 

of orthogonal transformations is presented in Chapter VI. 
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Chapter VI 

A STUDY OF ORTHOGONAL TRANSFORMATIONS 

One of the transformations ~hich is often discussed in texts 

on matrix theory is the orthogonal transformation. Much of the 

material which is presented in this chapter may be found in f7}. 

In this presentation only real, 3 x 3 matrices will be considered. 

Case 6.1. Euler's Theorem. 

Euler implied in his theorem t~at, given the initial and final 

positions of a rigid body anyone of vhose points takes up the position 

from vhich it started, then it would have been possible to reach 

the final position by some one rotation about one fixed axis. 

DEFINITION 6.1. A rigid body is composed of any number 

of points whose separations remain unchanged, not only after a 

displacement of the body, but at all times during the process of 

taking the body from its initial to its final position. 

NOTE: Excluded will be the case of a thin rod, in 

which all of the points are collinear. 

Let P (Figure 6.1) be any general point of a rigid body with 

coordinates x,y,z referred to a fixed system of rectangular axes 

., ith origin at O. Let the rigid body be displaced so that P moves 

to p' (coordinates x' oY' ,.') the point at the origin (0,0,0) remaining 

fixed. Let the change in the coordinates of P as a result of the 
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') ,displacement be given by p = f(p "here p, p are the column vectors 

of the coordinates of P and P' respectively. Since the point at 

the origin remains fixed f(O) = o. 
p'z 

'-..J' y 

x 

Figure 6.1 

THEOREM 6.1. The separation Ix - yj of t~o vectors x and 

Y is preserved if and only if the transformation is orthogonal. 

Proof: That an orthogonal transformation preserves 

separation has already been proved in Theorem 5.5. It is now 

necessary to sho'· that if x' = f(x) describes a transformation of 

the total space that preserves separation and if f(O) = 0, then 

f(x) = Ax where A is orthogonal. 

Since the transformation preserves separation, If(x) - f(y)l= 

But this is true for all y, in particular y = O. HenceIx ­ y I· 
If(x) - f(0)1 = Ixl . But f(0) = 0 and hence If(x)\ = \x\. That 

is, X,TX' = xTx. Again, if y' = f(y), the preservation of separation 

implies that (x' - y' )T(x' - y') = (x - y)\x - y). Thus putting 

'T r T ,T t T IT I T 
x x = x x and y y = y y the result is y x y x and the 

transformation f(x) preserves inner products. In particular, if 

i th I 

ei is the column of the un i t rna trix and ei is its transform, 

T . . d ,T Ithen ei 
,T

e.
, 

= ei e. = 1 wh en 1 = J an e i e j e.Te. = 0 when if j.
1 JJ ] 
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The vectors e~ (i = 1,2, •.• ,n) thus form an orthonormal set and 

~ matrix A whose i 
th column A i = e~ is orthogonal~ Moreover,

* 1 

e i = Aei o 

Suppose that u ,u2, ... ,un form an orthonormal set, then they
l 

are linearly independent and it is possible to find scalars ~l'~""'~n 

such tha t any vec tor V can be expressed V = "'1 u + ""2 u2 + ••• t "'n un'
l 

Premultiplying both sides by u/' then lliTv =""i' Hence V = ulTv • ul + 

T T . , I 
u V . V + ••. + u V· u. Puttlng V = f(x) = x and Vi = e. ,2 n n 1 ,

IT 1 I 'T I I 'T 1
theresultisf(x)=el x 'e l +e2 x 'e2 + ••• +e x en •n 

But inner products are preserved by the transformation, hence 

IT , T T I T e. x = e i x. Hence, f(x) = e x . e ' + e Tx . e2 + ••• + en x • e 
1 l 1 2 n 

But ei = Aei' thus f(x) = elTx • Ae + e Tx • Ae2 + .•• + enTx • Ae = 1 2 n 

x14l + x2 A*2 + •.. + ~~n = Ax., 

Thus the displacement of a body such that one point remains 

fixed and separations are preserved is algebraically represented 

by the 1 inear transformation p' = Ap ,-here A is orthogonal. 

Separation must also be preserved at all stages of the continuous 

process of taking P to p'. Consider the continuous displacement 

of p' back to P in the opposite sense. The elements of A must 

continuously approach those of an orthogonal matrix representing no 

displacement. This matrix is the identity matrix I, for if A = I, 

then p' = Ip = p. But an orthogonal matrix has a determinant which 

is either +1 or -1 (Theorem 5.0 while \11 = +1. It is impossible 
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that A can continuously approach I if ita determinant is -1. Therefore, 

,11 displacements of a ri~id body with the origin fixed are represented 

by proper ortho~onal transformations. (Definition 5.2). 

Since the determinant of a matrix is the product of its 

characteristic roots, it is possible for the characteristic roots 

of A to be (l, -1, -1), (l, 1. 1), (-1, -1, -1), or (l, 1, -1). Cons idering 

only the case I A I +1, the latter two possibilities may be eliminated. 

Since A is a real ortho~onal matrix and all real orthogonal matrices 

are unitary (Theorem 3.2) and, in turn, all unitary matrices are 

normal (Theorem 3.1), then it follOws that A is normal. This means 

that A = PDP* where P is a unitary matrix and D is a diagonal matrix 

which consists of the eigenvalues of A, (Theorem 3.12). 

Considering the two possibilities that remain, D either looks like 

[10OJ [1 0 O~o 1 0 or 0 -1 O. Both of these matrices have invariant sub­
o 0 1 0 0-1 

spaces of dimension one. A subspace of dimension one is a line 

which passes throu~h the origin. 

Consider Figure 6,2, any two points A, B on the fixed line 

through O. Le t P be any other poin t not on the 1ine. Since the 

transformation leaves AP, BP invariant and A and B fixed, the locus 

of P is a circle normal to AB. Similarly the locus of Q is also 

a circle normal to AB, But PQ is invariant and hence the planes 

ABQ end ABP rotate around AB through the same an~le. Since this 

ar~ument applies to all pairs of points of the body not on AB, the 

transformation p' = Ap induces a rotation of the body about AB. 
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The fixed line through the origin is known as the Axis of Rotation. 

Therefore, all continuous displacements of a rigid body with one 

point fixed can be represented by orthogonal transformations and 

these transformations are rotations. 

A ,<. ' \ 'op 

o 

Figure 6.2 

Case 6.2. The Resultant of Several Rotations. 

Let the rotations be represented by proper orthogonal matrices 

Rl,R2 , ..• R and let them take place in that order. Let the coordinaten 

vector of a point P be p. Then after the first rotation Pi = RIP 

and after the second P2 = R2Pl = R2RI P' The resultant is then 

Pn = Rn •.. R2RI P· 

The displacement of P from p to Pn is equivalent to a single 

rotation (the end result is the same) whose representative matrix 

R is given by R = ~ ... R2RI' This is the geometrical equivalent 

of the property of orthogonal matrices that the product of any 

number of them is orthogonal. 

Orthogonal matrices ere, in general, non-commutative in 

multiplication. The right-hand matrix factor corresponds to the 

first rotation and so on. If p' = Rp then p = R-lp' = RTp' since 

R is orthogonal. The matrix RT thus represents the inverse rotation 

to R. 
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Case 6.3. Given two arbitrary, fixed, distinct points and 

CWo arbitrary, fixed, distinct axes, is it possible to find a 

transformation which is a composition of two rotations, one about 
, 

each of the lines, so that P is displaced to P ? 

Take as three points the origin D and any two distinct points 

A and B a unit distance from the origin. If a and b are the 

coordinate vectors of the points A and B respectively, then they 

must be unit vectors. (Figure 6.3). 

A 
1 

1D 

Figure 6.3 

If all displacements are possible, then select any point a unit 

distance from D and move it to coincide with an arbitrarily chosen 

point also a unit distance from the origin4 

Let DA and DB (Figure 6.3) be two fixed axes of rotation. The 

question arises: Is it possible to achieve all possible displacements 

by one, properly chosen, rotation about DA followed by one rotation 

about DB? The an",'er is no. Consider a point of the body initially 

coincident with A, then the rotation about DA leaves the point fixed 

at A, and the rotation about DB cannot then move the point to B. 

If the required rotations about DA and DB are represented by proper 

orthogonal matrices A and B, then for the first rotation Aa = a 

and the second rotation gives Ba = a'. Is it possible that a 
I 

and 
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I I I I
b are the same unit vector? If so, then b a = 1 that is, b a = 

I I I T -1 IbIBa = 1. Since Bb b, then b B = b. Hence, b B = b (since 

I I I I .B is orthogonal). So, b = b Band b a = b Ba = 1 whlch is true 

if and only if a and b are the same unit vector, but this is contrary 

to the hypothesis that A and B are distinct points. 

Case 6.4. Rotations about Ihree Fixed Axes. 

Consider one rotation about each of three fixed axes in a given 

sequence. Let the chosen axes be OA, OB, and OC represented 

respectively by the unit vectors a, b, c and let the rotation take 

place around these axes in the sequence of the letters. (Figure 6.4) 

B 

C ' .... -
-
CA 

If all displacements are possible, then OB must necessarily 

be perpendicular to both OA and OC. 10 show this, it is necessary 

to try to take a point initially at A to C. After the first rotation 

A, Aa = a. After the second rotation B, Ba - a 
I 

and after the third 

I , I I II I I
rotation C, C~ = c and a C c = c. Hence b c = b a = b Ba = b a 

and OB is equally inclined to OA and OC. 

It is also necessary to be able to take the point initially 
,, 

a t A to C where C lies on CO produced a unit length beyond O. 

Ihe coordinate vector of C' is -c. By the same argument, bIc = _bIa 

and 2bI a = 0 (bIc = bla = _bIa = 0). OB is thus perpendicular to OA 



with A; and a third rotation about OA will then carry Q into coincidence 

bring P and Q into coincidence "ith A and B respectively. (Figure 6.5). 

B 
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P 

90 0 
; similarly for cos¢= 

C 

Q 

o so e 

0, 

Figure 6.5 

=-JL 
1 

T 
(cose = .!?....!. 

1 

= ?= a so ¢ = 90 0 
). 

is possible by reversin~ the rotations and sequence of rotation, to 

To show that this perpendicularity condition is sufficient, 

of the rigid body, say P: it either lies in the plane AOC, or a 

with B without disturbing the coincidence of P and A. Carrying out 

Plane AOC divides the space into two parts. Consider any point 

rotation around OC 'hich lies in the plane will carry it from one 

initially in coincidence '<ith A and B into a general position P, Q. 

distance from the origin and the same distance apart. Starting 

to the plane. A rotation sbout OB will then carry P into coincidence 

these rotations in reversed order, it is possible to take two points 

it becomes necessary to ShOM that rotations about OA, OB, and DC 

general position consistent with their remaining the same (unit) 

half-space to the other taking it through the plane in doing so. 

with two points P, Q arbitrarily placed, but subject to the require-

can take two points initially coincident 'dth A and B into any 

ment that OP and OQ pre of unit length and such that PQ = AB, it 

When it lies in AOC, OP will be perpendicular to OB which is normal 

and e1so to OC 

JG. 
1 
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Case 6.5. The Forms of Orthogonal Matrices that Represent 

Rotations about a Fixed Coordinate Axis. 

It is necessary to first derive the forms of the orthogonal 

matrices ~, Ry , and R that represent rotations about the (fixed)z 

coordinate axes Ox' ny' and Oz respectively. 

Consider first a rotation ex about Ox (Figure 6.6a) under 

~hich a point P, coordinates x,y,z is carried to pI, coordinates 

x',y' ,z'. A projection of the space points to the yz-plane il as 

shown in Figure 6.6b. 

z z 
pi 

p 

x 6j, Oll/B Y 
,y 

Figure 6. 6a Figure 6.6b 

If the projection OP makes an angle e with 0y' and the projected 

, ,r 
length OP (=OP ) is s, then x = x; y = a tos(O + ex)' y = s cos ~ ; 

z' = s since +0x ), z = s sine where y'= s cose cose - s sin9sin6>x x 

y cos6 - z sin8 and z' = s sine cO~x + s cosesin9 = z cose +x x x x 

y sinb • 
x
 

The above relationships may be expressed aa:
 

(~:) (; co~ex -s~n8) (~).= 
z 0 sinex cose;! z 

The matrix is proper orthogonal and may be expresses as R • 
x 
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cosa", o SinE\) ,
Similarly Ry (rotations about o ) = 0 1 o when x 

(y -sin&y o COSey 

s sin (9 + 9 )' x = s s inl:l; y I = y; and z' = s cos<e +e )' z = s cose. y 

0) 
y 

cose -sinO . z z ,
Finally, Rz (rotations about Oz) = S ~n()z co~ 0 when x = 

( o z 1 

s cos(f?+ez )' x = s cose; y' = s sin(G+Gz )' y = s sinG; and z' = z. 

The three rotations can be combined in six possible ways 

corresponding to the six possible rotation sequences. (Table 6.1). 

SEQUENCE OF ROTATION RESULTANT MATRIX 

FIRST SECOND THIRD
 
Ox Oy Oz RZRyRx
 
Ox Oz Oy RyRzRx
 
Oy Ox Oz RzRxRy
 
Oy Oz Ox RxRzRy
 
Oz Ox Oy RyRxRz
 
Oz Oy Ox ~RyRz
 

Table 6.1 

The intermediate rotation takes place about an axis perpendicular 

to the other two; and any of the six permutations of the three matrices 

can be selected to simulate all rotations of a rigid body by 

rotations about three fixed axes. 

Case 6.6. A Rotation of Coordinate Axes (Transformation of 

Coord ina tes). 

Consider the problem of a fixed body whose coordinates are 

referred to a rotated system of axes. Consider a rotation (of a 

rigid body) represented by an orthogonal matrix R. 
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Let P, Q, R be three points of the body initially unit distances 

along the coordinate axes (Figure 6.7). Their initial coordinate 

vectors "ill be el_ e
2

, 8 3 ; the colunms of the unit matrix. After 

r I I 'I I
the rotation the points will move to P , Q ,R ~here OF , OQ , OR 

, , ' 
are all unity, the coordinate unit vectors p , q , r defining 

, I r I
three mutually perpendicular directions Ox , Oy , Oz. Then, p = 

r ,
Rel R*l' q = Re2 = ~2' r Re3 - ~'3' The coordinate vectors 

, , , 
p , q , r are the columns of R and the elements of R are the rotated 

coordinates of points initially situated at points unit distances 

, , '( )along the axes. Since p , q , r or R*l' ~2' R*3 are unit vectors, 

they are the direction cosines of Ox', Oy', Oz' respectively with 

respect to Ox, Oy, Oz. 

y' 
R' Q' 

pI X r 

(Figure 6.7) , 

x Q 
y 

Figure 6.7 

Regard the three mutually perpendicular lines Ox', Oy', Oz' 

as the axes of a second coordinate system vith origin at O. Let 

a be the coordinate vector of a point A fixed with respect to Ox, Oy, 

Oz and let a' be its coordinate vector with respect to Ox'. Oy', Oz'. 

A could be a fixed point (which it is) relative to which Ox', 
, ,

Oy , Oz have been rotated from their initial positions of coincidence 
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with Ox, Oy, Oz or A could have formed part of the rigid body containing 

Ox', Oyr, Oz'. In this latter case the coordinate vector a' of A 

relative to Ox', Oy', Oz' would have remained fixed, but its coordinate 

vector a, relative to Ox, Oy, Oz would have changed as the body 

was rotated into its final position. The problem is reduced from 

one of transformation of coordinates to one of rigid body rotation. 

It is now possible to write a = Ra' or a' = RTa which tells how its 

coordinates change with the axes as A is held fixed. Thus, if the 

rotation of a new set of axes with respect to an old set is represented 

by an orthogonal matrix R (columns of R are the direction cosines 

of the ne" axes with respect to the old) then the ne'" and old 

coordinate vectors of a fixed point are related by the equation 

a' = RTa • 

Case 6.7. A Transformation of Orthogonal Matrices. 

An orthogonal matrix A represents a certain rotation of a rigid 

body, but with respect to a chosen rectangular system of coordinates. 

In the equation P2 = APl the coordinate vectors PI and P2 together 

with A are referred to a given system of coordinates. It is possible 

to say that a point is displaced from PI to Pz such that PI is 

transformed to P2 or it is possible to refer coordinates to a new 

(accented) system and the same displacement ~ould be represented 
, , 

as a transformation of PI to P2 and the same rotation would be 

effected by an orthogonal matrix A' '··hich ,'ould not usually have 

the s~me form as A. It is desirable to find the relationship between 

A' and A '·hen the accented coordinate system is obtained by a rotation 

R about the origin of the unaccented system. (Figure 6.8). 
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Figure 6.8 

With reference to Ox, Oy, Oz a rotation represented by the 

matrix A carries e point P of a rigid body to P2" With referencel 

to Ox', Oy'. Oz' the same rotation is represented by A'" So P2 = 

Apl and P2' = A'Pl' where P2 and P2' are coordinate vectors representing 

the same points P2 and Pl respectively but with reference to two 

'T ,Tsystems of coordinates. Thus Pl = R Pl and P2 = R P2 (see Case 6.5), 

so RTP2 = A'RTpl; that is. P2 = RA'RTpl and P2 - P2 = RA'RTpl - AP1' 

T so 0 = (RA'R - A)Pl' Since this is to hold for all points, Pl is 

arbitrary and A = RA'RT or A' = RTAR. A very important property 

of the transformation of A to A' is that the eigenvalues of A' are 

the same as those of A. The proof of this is as follows: I.A I - AI 

IRT 11).1 - = IARTR =IN -AllRj - RTARI A'I· 

Case 6.7. Improper Orthogonal Matrices - Transformations that 

Represent Reflections. 

Let E be a real 3 x 3 diagonal matrix such that its diagonal 

elements are ±l with en odd number of negative signs. Hence E =-1 
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and the inverse of an E-type matrix is also an E-type matrix. 

Every E-type matrix is improper orthogonal. 

Let A be an improper orthogonal matrix, then AE is proper 

orthogonal for jAEI = IAI lEI = -1 • -1 = +1. If B = AE, then 

A = BE-l and any improper orthogonal matrix may be factorized into 

a proper orthogonal matrix and an E-type matrix. Moreover, the 

kind of E-type matrix is arbitrarily chosen. An improper orthogonal 

transformation is then equivalent to a proper orthogonal matrix 

(rotation) preceded or followed by a type-E transformation. Consider 

, , 
so x x, y y,", ,- '''' """',.~"'0 (::) " a1.:)r~ 

and z I = -: z;. 

This is a reflection in the xy-plane. The three E-type matrices 

with one negative sign thus represent reflections in the coordinate 

planes; when all three elements are negative, the transformation 

is a reflection in the origin, that is, a point is translated into 

the opposite octant. Thus every improper orthogonal matrix is 

equivalent to a rotation preceded or followed by a reflection of 

one of the given types. 

Consider any plane through the origin normal to the unit vector 

n. Take this normal as the x'-axis of a new (accented) coordinate 

system. If R represents the rotation of this new system with respect 

to the old, then n , ill be the first column of R'. 
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With respect to this new system, the improper orthogonal matrix 

A will become A' = RTAR: A' is improper and may be factorized into 

a rotation B and a reflection in the plane (the y'z'_plane of the 

new coord ina te sys tern) the norma 1 to ,'h ich is n. Thus A' = B'E' 

-1 00)
where E' = 0 1 O. Then A RA'RT RB'E'RT• Transforming back(o 0 1 

'TT 'Tto the unaccented system putting B = R BR, then A = RR BRE R = 

BRE'RT• But RE'RT is the matrix representing the reflection in 

the given plane with reference to the unaccented system. Hence 

an improper matrix can be fActorized into arotlition and a"f"eflection 

in sny plane through the origin. 

To summarize Chapter VI, an orthogonal matrix represents a 

transformation that is either a rotation or a reflection. 
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Chapter VII 

CONCLUSION 

The main objective of this thesis has been to expose the 

relationships between specific classes of matrices which are often 

alluded to, but seldom discussed in detail in books On matrix theory. 

A second objective has been to present the reader with a discussion 

of what certain transformations accomplish. 

There are many possibilities for further study in this area 

of matrix theory. There are other special classes of matrices which 

,'ere not defined in this paper. How these matrices are related to 

each other and to those presented in this thesis would be an interesting 

area of study. 

The transformations that matrices represent lend themselves 

very readily to a more thorou~h research. A discussion of what 

orthogonal transformations represent geometrically was presented in 

this paper. Other classes of matrices also represent particular 

transformationSa What these transformations do geometrically and 

how these transformations compare to each other would also be excellent 

areas for study. 
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