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CHAPTER 1 

INTRODUCTION 

The main purpose of this paper is to find a best 

approximating polynomial of a given degree for a continuous 

function defined on the interval la, b]. In order to 

do this, one needs to understand metric spaces, normed 

linear spaces and inner product spaces. 

Chapter 2 illustrates the construction of linear 

spaces and its subspaces. In Chapter 3, normed linear 

spaces are introduced. It is also shown that every metric 

space has a unique completion. Chapter 4 introduces 

Hilbert spaces and the Gram-Schmidt process. A normed 

linear space may be complete with respect to one norm 

but not complete with respect to another one. This 

concept is illustrated by an example in Chapter 5. 

Orthogonal sets are introduced in Chapter 6, and some 

special cases constructed in Chapter 7. In Chapter 8, 

it is shown that the best approximating polynomial of a 

given degree to a continuous function on a closed interval 

does exist and is unique. The application of min-max 

approximation is also given in Chapter 8. 



CHAPTER 2
 

LINEAR SPACES
 

In this chapter, the concepts of a linear space
 

and a basis for a linear space are discussed. 

2.1 LINEAR SPACES 

DEFINITION. A linear space V is a nonempty 

additive abelian group together with a function F x V~V, 

where F is a field, defined by (~,x)~~x; satisfying the 

following properties, for all eX.. , ~ E F, x, Y E V. 

(i) o«x + y) =cXX +o<.y; 

(ii) (0(+ (.3 )x =o(x + f3x; 

(iii) (o((3)x = 0« ~x); 

(iv) Ix = x. 

EXAMPLE 1.1. The set of all real numbers, with 

addition and mUltiplication taken as the operations, is a 

linear space. 

EXAMPLE 1.2. The set Rn of all n-tuples of real 

numbers is a linear space under the following operations . 

Let x = (xl' x2' ..• , xn ) and y = (Yl' Y2' •.. , Yn)' 

and define x + y = (xl + Yl' x2 + Y2' ..• , xn + Yn) , 

o(x = (0( xl' o(x2' ••• , 01... xn ) • 

EXAMPLE 1.3. The set C2 La, b] of all bounded 

continuous real functions defined on Ca, b] is a linear 

space over R if the sum h = f + g and the scalar product 
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hi =d' f are the functions defined for each x E [a, b] 

by the equations 

(f + g)(x) = f(x) + g(x), 

(o(f)(x) =o<.f(x). 

This space will be discussed in some detail in Chapter 5. 

EXAMPLE 1.4. Let P be the set of all polynomials, 

with real coefficients, defined on the interval (-1, IJ. 

P is a linear space over R, the real numbers, by the 

usual addition of two polynomials and the mUltiplication of 

a polynomial by a real number. 

DEFINITION. Let V be a linear space over F. Let 

vI' v2' .•• , v n belong to V and cl' c2' ••• , cn be 

elements in F. Then the vector clvl + c2v 2 + ••• + cnvn 

is said to be a linear combination of the vectors vI, ... , v n . 

DEFINITION. Let S be a subset of V and 

vI' v2, ••. , v n be vectors in V. The collection 

vI' v2, .•. , Vn is said to span S provided every vector 

in S can be written as a linear combination of the 

vectors vI' v2' ••• , v n • 

2.2 LINEAR DEPENDENCE AND LINEAR INDEPENDENCE 

DEFINITION. A set of vectors vI' v2' .•• , vn in 

V is said to be linearly dependent provided there exist 

scalars cl' c2' •.• , cn in F, not all zero, such that 

clvl + c2v 2 + ••• + cnvn = O. 

DEFINITION. A collection of vectors in a linear 

space V are linearly independent provided they are not 

linearly dependent. 
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EXAMPLE 2.1. The three vectors (1, 2, 3), 

(4, 1, 6), and (6, 5, 12) are linearly dependent in 

R3. 

EXAMPLE 2. 2 . (1, 0, 0), (0, 1 , 0), and (0, 0, 1 ) 

are linearly independent in R3 . 

EXAMPLE 2.3. In the linear space P of example 

1.4, let TO(x) = 1, Tl(x) = x, T2(x) = 2x2 - 1, 

T3 (x) = 4x3 - 3x. Then these vectors are linearly 

independent. 

DEFINITION. A collection of vectors vI' v 2 ' •.• , 

vn in V are said to form a basis for the linear space 

V provided they span V and are linearly independent. 

EXAMPLE 2.4. (1, 0, 0), (0, 1, 0), and (0, 0, 1) 

form a basis for the linear space R3 . 

EXAMPLE 2.5. (-1, 1) and (1, 1) form a basis for 

R2 • 

THEOREM 2.1. The non-zero vectors vI' v 2 ' .•. , vn 

in a linear space V are linearly dependent if and only 

if at least one of the vectors vk is a linear combination 

of the preceding ones. 

PROOF. Suppose the vector vk is a linear combination 

vk = alvl + a2v 2 + ••• + ak-lvk_l of the preceding ones. 

Thus 

alvl + a2v 2 + ••• + ak-lvk_l + (-l)vk = 0. 

Hence vectors are linearly dependent. 

Conversely, suppose that the vectors are linearly 
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dependent. Then there exist scalars b i , not all zero 

such that blvl + b2v2 + ... + bnvn = 0. Choose the 

last subscript k for which bk I 0. One can solve for 

vk as the linear combination 

vk = (-bk-lbl)Vl + (-bk - l b 2 )v2 + •.. + (-bk-lbk_l)vk_l. 

Thus vk is a linear combination of the preceding vectors, 

except in the case where k = 1. In this case blvl = 0, 

with b l I 0, so vl = 0, contrary to the hypothesis that 

none of the given vectors are zero. 

THEOREM 2.2. Let S = {vl' v2' ••• , Vk} be a 

linearly independent subset of a linear space V. If S 

is a basis for V, then every subset of V which properly 

contains S is linearly dependent. 

PROOF. Let A be a subset of V which properly 

contains S. That is, A contains at least one vector 

contained in V but not in S. Since S is avk+l 

basis for V, then there exist scalars ... , suchal' ak 

that can be written asvk+l 
" 

vk+l = alvl + a2v2 + ••• + akvk' 

Therefore, A is linearly dependent by theorem 2.1. 

THEOREM 2.3. Let n vectors span a linear space 

V containing m linearly independent vectors. Then n ~ m. 

PROOF. Let S = fVl' v2' •.• , v n } be a set of 

n vectors spanning V, and X = {xl' x2' ••• , xm} be 

a subset of m linearly independent vectors in V. Since 

S spans V, is a linear combination of thexl vi' 
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so that the set Al = {Xl' vl' v2, ••• , vnJ still spans 

V and is linearly dependent. By theorem 2.1, some 

vector of Al must be a linear combination of its 

predecessors. This element cannot be xl since X is 

linearly independent. Hence some vector v·1 is dependent 

on its predecessors xl' v l , ••• , vi-l' Deleting this 

vector, the set Sl = {Xl;l , ••• , vi-l' vi+l' ••. , v n } 

still spans V. 

Repeat this process. The set A2 = { x2' xl' vl' 

..., vi_l' vi+l' . • ., v n J spans V and is linearly 

dependent. Hence as before, some vector in A2 is a 

linear combination of its predecessors. Because xl' ••• , 

xm are linearly independent, this vector cannot be xl 

or x2' so it must be some Vj' Deleting this Vj, one 

has a new set. 

S2 = {X2' xl' vl' ... , vi-l' vi+l' ... , Vj_l' Vj+l' ... , v n } 

of n vectors spanning v. This process can be repeated 

m times, until the elements of X are exhausted. Each 

time an element of S is deleted. Hence S must have 

oriE':inally contained at least m elements. 

THEOREM 2.4. Let V be a linear space for which 

A = xl' ... , xn is a basis of V. Then every basis of 

V has exactly n elements. 

PROOF. Let A = {Xl' ... , Xn ! and B = {Yl, • • ., Ym} 

be two bases for the linear space V. Since A spans V 

and B is linearly independent in V. Then n ~ m, by 



7
 

theorem 2.3. On the other hand, B spans V and A is 

linearly independent in V, so m 2 n. Hence n = m. 

DEFINI'l'ION. The dimension of a linear space V 

is the number of vectors in a basis for V. 

THEOREM 2.5. In a finite-dimensional linear space, 

every linearly independent set of vectors can be extended 

to a basis. 

This theorem may be proved in a manner similar to the 

method in theorem 2.3. 

COROLLARY 2.1. If a linear space V has dimension 

n, then (i) any n + 1 elements of V are linearly 

dependent, and (ii) no set of n - 1 elements spans V. 

PROOF. The first part of this corollary is 

followed immediately by theorem 2.5 and theorem 2.2. The 

second part is the result of theorem 2.3. 

2.3. SUBSPACES 

DEFINITION. A nonempty subset S of a linear space 

V is a subspace if S is a linear space with respect 

to the operations defined in V. 

DEFINITION. The coset of a subspace S of a linear 

space V is the set x + S = {x + S J S E: S , x is fixed 

in VJ . 
THEOREM 3.1. The set of all cosets of a subspace 

in V is a linear space under the operations defined by 

(x + S) + (y + S) = (x + y) + S, 

d( x + S) = o<.x + S, 
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for all x, yE V ando<.E F. This linear space is denoted 

by vis and is called the quotient space of V with 

respect to S. 

PROOF. For x = y E V, -y + x = 0 E S. I t implies 

(-y + x) + S = S. Hence x + S = Y + S. Therefore, the 

operations are well-defined. 

Since V is an abelian group, S is a normal 

subgroup of V. Thus vis form an abelian group. vis 
is also satisfied the following conditions I 

(i)	 ~(x + S + Y + S) = ~(x + y + S) = ~(x + y) + S 

=o(x + 0( Y + S =o(x + S + 0( Y + S 

= 0« x + S) + 0( (y + s); 

(ii)	 (o<'+~ )(x + S) = (~+~)x + S =o(x +(3x + S 

= oc'x + S + (3 x + S 

=o« x + S) + P( x + s); 

(iii)	 (cx'r)(x + S) = (otr)x + S = odfx) + s 

= o«fx + S) =Dd ~(x + S)); 

(iv) l' (x + S) = 1 • x + S = x + S. 

Therefore vis is a linear space. 

DEFINITION. Let Sand T be two subspaces of 

a linear space V. Then the sum of Sand T is the set 

S + T which contains all the vector s + t for each 

s ~ Sand t E T. 

Figure 2.1 is a geometrical interpretation of a 

quotient space. 
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x+Y+ S 

'it S 

x+S 

s 

~x+S \ 

\ 
I 

\ 
j 

\ 
j 

Fig. 2.1. 

THEOREM 3.2. Let S and T be two subspaces of 

a linear space V. Then S n T and S + T are subs paces 

of V. 

DEFINITION. Let S and T be two subspaces of a 

linear space V. V is a direct sum of Sand T, denoted 

by S @ T, if for each vector v in V, there exists 

unique elements s E S, t E T such that v = s + t. 

THEOREM. 3.3. Let V be a linear space with 

subspace Sand T, and V = S + T. Then 

V=sE9T#SnT= {OJ. 

PROOF. Assume V = S Etl T. Then for each vector 

in V v = s + t is unique ly determined by s E Sand v 
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t E T. Suppose there exists a non-zero vector u E S n T. 

Then u = 0 + U or u = u + O. This contradicts the 

uniqueness. Therefore, S n T = {O~ • 

Next, assume S ~ T = {oj Let v = s + t for 

some s E S and t Eo- T. Suppose there exists another 

s I E S and tiE T such that v = Sl + t I • Then 

S+t=Sl+t', and _Sf + S = t l - t = u. Evidently, 

u is in both S and T. This contradicts snT={ol 

Hence V = S a1 T. 

DEFINITION. Let V and VI be two linear spaces 

over the same field F. A mapping f of V into VI is 

called a linear transformation if 

f(x + y) = f(x) + f(y) 

f( AX) = Af(x), 

for all x, yEV and/\..EF. 

DEFINITION. Let V and VI be two linear spaces 

over the same field. An isomorphism of V onto VI is a 

one-to-one linear transformation of V onto VI. Two 

spaces V and VI are isomorphic, denoted by V ~ VI, 

if there is an isomorphism fl V~VI. 

EXAMPLE 3.1. Let S = {(x, 0)1 XER} and 

T = {(o, X)I x E R} be two subs paces of R2 • Define f 

by f: (x, 0) -;:>(0, x). Then f is an isomorphism of S 

onto T. 

DEFINITION. Let fl V ~VI be a linear transformation. 

Then the kernel (f) = fx E VI f(x) = oj and the image (f) 
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= {Y E V' s Y = f (x) for s orne x E V ] 

Both the kernel (f) and the image (f) are linear 

spaces. 

THEOREM 3.4. Let fl V ->V' be a linear 

transformation with a finite-dimensional domain. Then 

dim(V) = dim(kernel f) + dim(image f). 

PROOF. Let v2, ... , Vn } be a basis for ViVl' 

1and let {VI' ... , vm J , m ~ n, be a basis for the 

kernel of f. Then for any vector v in V can be 

written 
m n 

v = 2... aivi + L- aivi. 
i=l i=m+l 

Hence 
m n 

fey) == f (L aiVi) + f ( L... a· 
~ 
v· 
~ 

) 
i==l i=m+l 

n 
=f( ~ a· v· ) 

i=m+l 
~ ~ 

n 
= L- ai f (vi) • 

i=m+l 

That is, each vector fey)	 can be written as the linear 

combination of f(Vm+l)' •.• , f(vm). Thus f(vm+l)' ••• , f(vn ) 

n spans image (f). Suppose	 . 2=- ai f (vi) = o. Then 
~ = m+l 

n	 n 
f ( . 2:. aivi) = . z.... ai f (vi) = o. 

l=m+l ~=m+l 

n 
Hence . 2= aivi E kernel (f) and there exists a set of 

~=m+l 

n	 m 
scalars { b l' ••• , bm j such that ~ aivi = L.. bivi. 

i=m+l i=l 
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m n 
2. bivi - a·v. = 0.L. l l •
i=l l=m+l 

Therefore b l = .• , = bm = am+l = ••• = an = 0 since 

{Vl' ... , v n } is linearly independent. Hence 

1f (v +l), ..• , f(Vn ») is a basis for image (f).m

THEOREM 3.5. Let fa V~V' be a linear 

transformation with kernel K. Then V/K ~ image (f). 

PROOF. Define Fa V/K-7T; T = image (f), by 

F(v + K) = f(v). 

It is easy to show that F is well-defined. 

Let U, v be any vectors in V and 0( be any 

scalar. Then 

F(u + K + v + K) = F(u + v + K) = f(u + v) = f(u) + f(v) 

= F(u + K) + F(v + K). 

o'F(u + K) = O<f(u) = f( o<.u) = F(o<u + K). 

Thus F is a linear transformation of V/K into T. 

Suppose F(u + K) = F(v + K), then 

o = F(u - v + K) = f(u - v). 

Then u - v E K. Therefore, u + K = v + K and 

thus F is one-to-one. For f(u) E T, then u + K E V/K 

and F(u + K) = f(u). Hence F is onto. Therefore, 

V/K ~ T. 



CHAPTER ) 

NORMED LINEAR SPACES 

). L NORM 

DEFINITION. A normed linear space is a linear 

space N in which to each vector x there corresponds a 

real number, denoted by II x II and called the norm of x 

such that 

( i) Ilxl/ » 0, and 11 xII = 0 if and only if x = 0; 

(ii) II x + y 1/ .e- Ii X II + 1/ yll , for all x, yEN; 

(iii) II 0< x 1/ = It>(l J/ x 1/, for all x E N and 0< E R. 

EXAMPLE 1. 1. The linear space R) of all )-tuples 

x = (xl' x2 ' x)) of real numbers is a normed linear space 

if the norm is defined by 

11 x II = (X12 + x2 2 + X)2) 1/2 • 

EXAMPLE 1.2. The linear space Rn of all n-tuples 

x = (xl' ... , xn ) of real numbers is a normed linear 

space with the corresponding Postman's norm defined by 

II xt!l := IX11 + IX 21 + ..• + Ixn). 
EXAMPLE 1.). With the same space Rn as in the 

last example, define the maximum norm by 

II x 1100 = max { IxlI, ... , IXn I]. 
RnThen is a normed linear space. 

EXAMPLE 1.4. The set C[a, b] of all bounded 

continuous real functions defined on [a, bJ is a normed 
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linear	 space with the norm defined by 

II fll = suplf(x)/. 

This norm is called the uniform norm. 

EXAMPLE 1.5. Let p be a real number such that 

1 ~ p<:oo Rn is a normed linear space if the norm is 

defined by 
n

II x li p =	 (.L. /x.)P)l/P
1=1 1 • 

For instance, Figure 1 illustrates the unit sphere 

with respect to several different norms in the space R 3. 

1}(II .. "" I 

-I 

Fig. 1 

EXAMPLE 1.6. Let C2La, b] be the set of bounded 

continuous real functions defined on (a, bJ. For 

f E C2 [a, b], define 
b . 

\\ f II = (J f2 dx) 1/2 • 
a 

Then C2~' bJ is a normed linear space. The detail will 

be	 given in Chapter 5. 

THEOREM 1.1. If P > 1, q ~ 1 and lip + l/q = 1, 

then 

al/Pbl/q ~ alp + b/q , 
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for all nonnegative real numbers a and b. 

PROOF. It is trivial for a = 0 or b = 0, so 

assume that a and bare posi tive. Let 0 < k < 1, and 

define 

f(t) = k(t-l) - t k + 1, 

for all t > 1. Since 

f'(t) = k - ktk - l > O. 

Thus f is a strictly increasing function on [1, co) • 

Hence, for all t L 1, 

f(t) 2 f(l) = O. 

Therefore, 

t k ~ 1 + k(t-l). 

Suppose aLb, and let t = alb and k = l/p. Then 

( alb ) 1/P ~ 1 + 1/p (a/b - 1). 

MUltiply by b on both sides and recall that lip + l/q = 1, 

then 

al/Pb l / q ~ alp + b/q. 

If a < b, let t = bfa, k = l/q. The above inequality 

still holds. 

Corollary 1. 1. Let x = (xl' x2, ••• , xn) and 
n 

Y = (Yl' Y2' ••. , Yn)· Then .2 \xiYi/ L lI X!/p 1/Y1fq' 
1=1 

PROOF. It is trivial if either x = 0 or Y = O. 

Assume xY"I O. Define ai = ( jXil /IIX1fp)P and 

b i = (\Yi!liIYllq)q. By the Theorem (1.1.), 

(Ixil /IIXljp)( IYil /IIYI/q) ~ (Ixi) //lX((p)P/p + (IYil /UYI/q)q/q. 
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Add the above inequalities for i = 1, 2, ••• , n. Then 

the inequality is 

n 
.L \xiYi! s. IIX!lp·/lYllq • 
1=1 

COROLLARY 1.2. Let x = (xl' x2' ••• , xn ) and 

Y = (Yl' Y2, .•• , Yn)' Then /I x + Y/l p ~ Ilxl!p + l\ Yll p ' 

This is called Minkowski's inequality. 

PROOF. By Holder's inequality one has 

n n -1 n 
\\x + Yl\pP = .L IXi + Yil p ~ .~ \xil/xi + Yi jP +.~ /Yi\1 xi+Yi IP-l 

1=1 1=1 1=1 

n / n p q
= 2.- lXi/Ix. + Yil p q + ::2.: jYill x ' + y./ /

'1 1 '1 1 11= 1= 

~I)xllpll(x + y)p/qllci + IIYllpl/(x + y)p/q'I q 

n
 
=( llXll p + lIYl/p)(.~ (Xl' + y. )p)l/q


1=1 1 

Divide both sides of this inequality by (,£ (xi + Yi)p)l/q. 
1=1 

Then 

(,£ (xi + Yi)P)l-l/q L I\xll + IIYll ' p p1=1 

Therefore, 

I\x + Yll p ~ II x il p + II Ylip ' 

The Cauchy-Schwarz's inequality is a special case of 

Holder'S inequality when p = q = 2. 
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3.2.	 BANACH SPACES 

DEFINITION. Let X be a non-empty set. A metric 

on X is a function d: X x X-->R which satisfies the 

following conditions: 

(i)	 d(x, y) /' 0 for all x, y E X, and 

d(x, y) = 0 if and only if x = y; 

(ii)	 d(x, y) = d(y, x), for all x, y E X; 

(iii)	 d(x, y) ~ d(x, z) + d(z, y), for all 

x, y, z E.X. 

A metric space is a nonempty set X together with a 

metric d on X. 

THEOREM 2.1. A normed linear space N is a metric 

space if the metric d is defined by d (x, y) = 1I x - y I) • 

PROOF. Let x, y, z be any elements in Nand d 

be defined by d(x, y) = Ilx - yl/. It is easy to show that 

d is a metric on N. 

(i)	 d(x, y) = II x y II '/ 0 and d (x, y) = 0 

if and only if x = y. 

Since d(x, y) = II x - yll = 0 implies x - y = 0, or 

x = y; 

(ii)	 d(x, y) = Ilx - yl! = 1-11 II x - ylj = Ily - xII 

=d(y,x); 

(iii)	 d(x, y) = 1'1 x - y/! ~llx - zll + 1\ Z - y/l 

= d(x, z) + d(z, y). 

Therefore,	 d is a metric in N. 

DEFINITION. A metric space X is complete if 
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every Cauchy sequence in X converges. A Banach space 

is a normed linear space which is complete in the metric 

generated by its norm. 

All the examples enumerated in the last section, 

except C2la, bJ, are Banach spaces. 

EXAMPLE 2.1. Let L2 be the space of all measurable 

functions such that f is integrable on some domain D. 

Then L2 is a normed linear space with the norm in L2 

defined by 

II f 1\ = (JD f 2) 1/2 . 

The completeness of L2 was proved by Riesz-Fisher [lOJ. 

Some examples and theorems of measure theory are presented 

here and later chapters. It is out of this scope to prove 

them. Kolmogorov [lOJ and Royden~2]give some detail. 

A normed linear space may be complete with respect to one 

norm but not complete with respect to another one. 

EXAMPLE 2.2. The space of all bounded continuous 

real functions on [a, bJ is complete if its norm is defined 

by 

11 fll = sup {If(X))1. 
But if its norm is defined by 

II f 1\ = (Jb f2 dx) 1/2 , 
a 

then it is not complete. This will be demonstrated in 

Chapter 5. 

THEOREM 2.2. Let {Xl' .•• , xn~ be a set of n 

linearly independent vectors in a normed linear space N. 
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Then for any choice of scalars ~l' ""O<n ' where the 

~i are not all zero, there exists a positive number S 

such that 

\\01..1xl + ••• + 0( nxn 1\ > S ( \0( 11 + ••• + P<'n I ) • 

The proof of this theorem may be found in [5J. 

THEOREM 2.3. Every finite-dimensional normed 

linear space is complete. 

PROOF. Let {xl' ••. , xn 1 be a basis for the 

space N, and fU iJ be a Cauchy sequence in N. Then 

for each U·1. 

Ui = o(lixl + ••• + 0( nixn' 

where Ui is uniquely determined by c(ki' k = 1,2, ••• , n. 

By theorem 2.2, for each E >0, there exists N ~O and 

6" > 0 such that 

n n 
~ ( 2:: Icx'ki - cXkj!) ~ JI L. (dki -o(kj)Xk 1/

k=l k=l 

= !lui - Ujll <hE 

whenever i j >N. Hence fc:1 ki ~ is a Cauchy sequence in R, 

therefore, it converges to O<k for k = 1, 2, ••• , n. 

Let u = o{lxl + ••• + 0(nXn. Then 

Ilui - ull = ,,( <Xli - o(l)xl + ••• + (c(ni -o<'n)xn II 

~fili - 0<1/ fI xlII + ••• + Iex'ni - 0( n I II xn II 

< fin IIxlll . II xlII + ••• + E/n'llxnll . II x 1/n 

=E.
 
Thus every Cauchy sequence is convergent. Therefore, a 
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finite-dimensional normed linear space is complete. 

3.3. COMPLETION 

DEFINITION. Let X be a metric space and A a 

subset of X. A is said to be dense if A = X. (A 

denotes the closure of A.) 

EXAMPLE 3.1. The set of rational numbers is dense 

in the space R of real numbers with the usual metric. 

EXAMPLE 3.2. The set of polynomials in the space 

C2 La, b] is dense in L2 @, bJ. This example is found 

in L13J 

DEFINITION. Let X* be a complete metric space and 

X a subspace of X*. Then X* is said to be the completion 

*of X if X = X . 

THEOREM 3.1. Every metric space has a completion 

and all of its completions are isometric. 

PROOF. Let X be any metric space. Two Cauchy 

sequence {xn ) and )Ynj of X are said to be equivalent 

if lim d(xn , Yn) = O. This relation is reflexive, 
n~~ 

symmetric, and transitive. Therefore, all Cauchy sequences 

which can be constructed from the elements of the space X 

can be partitioned into equivalent classes of sequences. 

* eLet X be the set of all those classes of sequences. The 

points in X* are denoted by A, B, etc., and rXn1, fYnl 

are Cauchy sequences in A, B, respectively. The distance 

between two classes A and B in X* is defined by 
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d*{A, B) = lim d{xn , Yn ). (3.1.) 
n7ro 

LetE> 0 be given. Since {xn \ and ~YnJ are 

Cauchy sequences, then there exists N > 0, such that 

\d{Xn , Yn) - d{xm, Ym)/ ~ J d{xn , Yn) - d{xn , Ym) I + 

!d{xn , Ym) - d{xm, Ym) I 
L d{yn , Ym) + d{xn , Xm) 

< E/2 + E-/2 = E , 

for all n, m > N. Thus 1d{ xn ' Yn )) is a Cauchy sequence. 

But d{xn , Yn) are real numbers, hence the sequence has a 

limit. This proves that the limit in (3.1) does exist. 

Let ~ xn ~ J 1X'n) E A and ) Yn)' f'Y n)) E B • Then 

lim d{xn , x'n) = 0 and lim d{yn , Y' ) = 0 
n-'>02:1 n ~(X) n 

implies that 

\d (xn ' Yn) - d (x' n' y' n) 1 ~ Id (Xn , Yn) - d (X~, Yn) I 

+ jd{x'n, Yn ) - d{Y'n' x'n)l 

L d ( Xn ' x' n) + d (Yn' Y' n) . 

That is 

lim d{xn , Yn ) = lim d{x'n' Y'n)' 
n~ro n~(X) 

Therefore, (3.1) is well defined. 

The distance defined by (3.1) is a metric in X* 

since 

(i) d*{A, B) = lim d{xn , Yn ) / 0; d*{A, B) = 0 
n7m 

if and only if lim d{xn , Yn) = 0 which implies {xn ) 
n~w 
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and {ynj are in the same equivalent class, therefore, 

A = B. 

(ii) d*(A, B) = lim d(xn , Yn ) = lim d(yn , xn ) 
n~~	 n-"?t:O 

= d*(B,	 A); 

(iii)	 Since 

d(xn , Yn ) ~ d(xn , zn) + d(zn' Yn ). 

Take	 the limit as n approaches infinity, then 

lim d(xn , Yn) ~ lim d(xn , zn ) + lim d(zn' Y ).n 
n~~ n~~	 ~~ 

Hence the triangle inequality holds in X*. Therefore X* 

is a metric space. 

To each point x E X, there corresponds an equivalent 

class in X*. Indeed, the constant sequence ~xnJ, 

xn = x for each n, is a representative of this class. 

Let x = lim x and y = lim Yn . Then 
n-)Q? 

n n-">oo 

d(x, y) = lim d(xn , Yn)' 
n-")a? 

Therefore, X is embedded isometrically in X*. Thus, 

there is nothing to distinguish between X and its 

corresponding class in X* and X can be considered a 

subset of X*. 

Let A be any class in x* , ~ Xnl ~ A, and E >0 

be given. Then there exists an N such that for all 

n, m '/ N one has d(xn , xm) <. E • Let fXn ) be a constant 

seauence converging to xn . Then 
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d* ( xn ' A) ~ d* ( xn , ) xn )) + d* ( {xn )' A) 

= ° + lim d(xn • Xm) 
m..::,c:x> 

< E 

Hence X = X*. 

It remains to be proved that the space x* is 

complete. Let iAn) be a Cauchy sequence in X*. For 

given E > 0, there exists N > 4/E such that 

d*(An , Am) < E/4 whenever n, m > N. Construct a sequence 

~xn) of which each point xn in X. Let Bn E X* be 

a class corresponding to xn such that d*(xn, An) < lin. 

Since d(xn • xm) = d*(B , Bm)n 

~ d*(Bn • An) + d*(An • Am) + d*(Am• Bm) 

< lin + E;4 + lim 

< y4 + E/4 + E/4 = 3 E/4. 

Thus, ~xnJ is a Cauchy sequence. Let A be the class 

containing the sequence \ X n ). Then 

d*(An , A) ~ d*(An , Bn ) + d*(Bn , A) 

< lin + lim d(xn • ~) 
n 4 00 

< Ej'4 + 3 E/4 = E. 

Therefore, X* is a complete metric space. 

Finally, one must prove that for any two completions 

of X are isometric. Let X* and X** be two completions 

of X and Xl' x2 be subspaces of X*. X** respectively, 

which are isomorphic to X. Therefore. 
AJ 

Xl = X2 • 

Let A be any element in X*. By the completion, 
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there exists ,Ani E Xl which converges to A. Then the 

corresponding sequence iBn} E X2 is also a Cauchy 

sequence, since Xl ';! X2 hence dl(Am, An) = d2(Bm, Bn ), 

where dl and d2 are metrics of X*, X** respectively. 

Since X** is complete, it contains an element B such 

that 

B = lim B •n 
n~CO 

Associate B E X~a with A E X* which is originally 

chosen. Define fa X* ~X** by f(A) = B. It is easily 

seen that f is one-to-one and onto. Let x, y E X*. 

Then there exist sequences 1xn ; , fYn} in X converging 

to x, y respectively. Since f preserves convergence, 

f( fxn)), f( 5Yn)) converges to f(x), fey) respectively. 

Then 

d2 (f(x), fey)) = lim d2 (f({x )), f(fYnj))n
n7~ 

= lim dl(~xn), fYnl) 
n-')<x> 

= dl(x, y). 

That is, f preserves distance. Hence X* ~ X**. 

EXAMPLE 3.3. Let Q be the set of all rational 

numbers. Then R is the completion of Q. 

EXAMPLE 3.4. Let L2 (a, bJ be the set of all 

measurable functions f such that f2 is integrable on 

[a, b]. Then L2 (a, bJ is the completion of C2 [a, b). 

This example in found in LIO] • 



CHAPTER 4 

HILBERT SPACES 

4.1.	 INNER PRODUCT SPACES 

The inner product of two vectors u = (xl' ... , xn ) 

and v = (Yl' .•. , Yn ) in the n-dimensional linear space 

Rn with real components is given by the quantity 

(u, v) = xIYl + ... + xnYn' (4.1. ) 

DEFINITION. An inner product space S is a linear 

space over the field R of real numbers with a function 

S X S ~R denoted by (u, v). The scalar (u, v) is 

called the inner product of u and v which satisfies 

the following properties I 

(i)	 (u, v) = (v, u), for all u, v E: S; 

(ii)	 (u + v, w) = (u, w) + (v, w), for all 

u, v, w E S; 

(iii)	 (<:Xu, v) =o<.(u, v), for allo<' €R; 

(iv)	 (u, u) / 0 and (u, u) = 0 if and only 

if u = o. 
Rn is an inner product space if the inner product 

is defined by (4.1). 

EXAMPLE 1.1. The space C2 [a, b] of all bounded 

continuous real functions defined on [a, b] is an inner 

product space if its inner product is defined by 

(f, g ) = J~ f ( x )g ( x ) d {( x) , 

where Y(x) is an increasing function on [a, bJ. This 
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proof will be given in Chapter 5. 

EXAMPLE 1.2. The linear space R3 of all 3-tuples 

of real numbers in an inner product space if the inner 

product of two vectors x = (xl' x2' x ) and y = 

I

3

(Yl' Y2' Y3) in R3 is defined by 

(x, y) = (xl + x2)(Yl + Y2) + x2Y2 + (x2 + x3 )(Y2 + Y3). 

THEOREM 1.1. Let x and Y be two vectors in an 

inner product space. Then 

L. 1/2 . 1/2(x, y) _ (x, x) (y, y) .\ 
This inequality is called the Schwarz inequality. 

PROOF. Let 0( = (y, y) and ~= -(x, y). By the 

definition, 

o -f (o<'x +r y, 0<' x + ry) 

= cx:2 (x, x) + 2o<r (x, y) + ~2(y, y) 

= (y, y)2(x, x) _ 2(x, y)2(y, y) 

+ (x, y)2(y, y) 

= (y, y)(x, x) - (x, y)2. 

This inequality is trivial if y = O. Assume y ~ O. That 

is 

(x, y)2 ~ (x, y) . (y, y). 

Therefore, 

\(x, y) I ~ (x, x) 1/2 (y, y) 1/2 • 

THEOREM 1.2. Any inner product space S is a 

normed linear space. The norm is defined by llxl\ = (x, x)1/2. 

PROOF. For each vector x in S, 

(i) The first axiom of normed linear space is 
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satisfied trivially. 

(ii) II x + y 1/2	 = (x + y, x + y) = (x, x) + 

2(x,	 y) + (y, y) 

1/2 1/2
~ (x, x) + 2(x, x) (y, y) + (y, y) 

= II x/I 2 + 211xl/ • /I YO + l/yl/2 
2= (I/x!l + lIy/f) 

Take the square root on both sides; 

II x + yll ~ 1\ x II + II y{/. 

(iii)	 Ilo<xll = (o<'x, 0< x) 1/2 = 10('1 (x, x)1/2 = lo<.IJjxl!. 

RnIn the n-dimensional linear space , many 

geometrical questions involve the length of a vector and 

the angle between two vectors. The inner product plays 

an important role in these problems. 

The length Ilxll of any vector x is defined to 

be the non-negative square root, 

)1/2llxl/ = (x, x • 

This is possible since (x, x) is a nonnegative real 

number. 

Let x and y be any two vectors in R
n 

• Then 

the difference x - y, (Fig. 4.1), of x and y is given 

by 

11 x - yl12 = II xil2 + Ily//2 - 2I1xtl'Iyl/ cos e. 

'/ )(-y 

e 
x 

Fig. 4.1. 
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Since I\x - YI!2 = (x - y, x - y) = (x, x) - 2(x, y) + (y, y), 

one has 

cos E) = (x, y) /1/ x I) • 1/ yl/ • 

Thus two vectors x and yare orthogonal if and only 

if (x, y) = O. 

4.2.	 HILBERT SPACES 

The set of all complex numbers is a complex linear 

space under addition and mUltiplication. 

DEFINITION. A Hilbert space H is a complex 

Banach space in which there is defined a complex function 

H x H -7C, denoted by (x, y), with the following properties I 

For all x, y, z in H, 

(i) ( 0< x + Py, z) = 0< (x, z) + (3 (y, z), for all 

ot,r EC ; 

(ii) (x, YJ = (y, x); 

(iii)	 (x, x) = llxl/2 • 

EXAMPLE 2.1. The set of all complex functions 

defined on [0, 2 ITJ with the property )[0, 27f] If j 2 < (X) 

is a Hilbert space if the norm is defined by 

2II fll = (J[O, 2rr] If/ )1/2. 

4.3.	 ORTHONORMAL SETS 

DEFINITION. A set )ei \ in a Hilbert space is 

called orthonormal provided 

(e i , e j ) = b ij' 

where ~ i j is the Kronecker delta symbol defined by 
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if l I j
~ij = {: 

if i = j. 

DEFINITION. An orthonormal set 1ei J is said to be 

complete in an inner product space S if it is not 

properly contained in any other orthonormal set. 

THEOREM 3.1. Let ~ e 1, ... , en 1 be an orthonormal 

set of a Hilbert space H. Let P by any element in H. 

Then 

n 2.L I(P, ei) 1 L IIPl/2 • 
l=l 

This inequality is known as Bessel's inequality. 

PROOF. 
n 2 

o	 ~I/P - 2. (P, ei)ei ll 
i=l 

n n 
= (P - L: (P, ei)ei, P - L (P, ei)ei) 

i=l i=l 

n 
= (P, F) - 2- (P, ei)(P, ei) ­

i=l 

n n 
.L. (P, ei) (ei' p) + .L (P, ei) (F, ei) 
l=l l=l 

n 
= (P, F) L (P, ei)(ei' P) 

i=l 

n 2 
= I!P/)2 - L:-/(P, ei)/ • 

i=l 

Therefore, 
n 

.L !(P, ei)J 2 ~ II PI)~ 
l=l 
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The geometrical interpretation of this inequality 

is that the sum of the squares of the components of a 

vector is less than or equal to the square of the length 

of the vector. If the orthonormal set is complete, then 

equality holds. This is known as Parseval's equation. 

THEOREM 3.2. Let {ei1 be an orthonormal set in 

a Hilbert space H. Then for any element P in H, the 

set S = {ei l (p, ei) 101 is either empty or countable. 

PROOF. Suppose S is not empty. Let 

Sn = fei' /(P, ei)I 
2 :>lI p I/2/n ]. 

for all positive integers n. By theorem 3.1, 

~ 
n 

!(P, ei)12~IIPI)2. 
1=1 

Therefore Sn contains at most n - 1 elements. Since 
co 

\(P, ei)! > 0 for all e'1 in Sn' Hence S =nMl Sn 

and therefore S is countable. 

The next theorem is the general form of Bessel's 

inequality. 

THEOREM 3.3. Let \ei~ be a nonempty orthonormal 

set in a Hilbert space H. Then 

:L.(p, ei) 2 L II Plf (3.1.) 

for all P in H. 

PROOF. With the same construction as in the 

preceeding theorem, S is either empty or countable. If 

S is empty, then L I(P, ei)1 2 = O. In this case, the 

theorem is trivial. If S is countable, it means S 
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contains finite or countably infinite number of elements. 

In the case of the number of elements in S being finite, 

theorem 3.1 is the special case. Suppose S contains 

countably infinitely many elements, and S = 1el' ••• , 

en' ..• 5. By Dirichlet's theorem, any infinite series 

resulting from the rearrangement of terms of an absolutely 

convergent series is also absolutely convergent and has 

the same sum as the original series. Therefore, 
<Xl

L.I (P, ei)1 2 can be rewritten as ~l \ (P, en)1 2 and 

(3.1.) reduces to the assertion that 

00

LI(p, e n )\2 L 
1IpJl2. (3.2.) 

n=l 

Theorem 3.1 shows that no partial sum of square of the 

components of a vector P can exceed Ilp112 • Hence (3.2) 

is true. 

THEOREM 3.4. Let ~ be an orthonormal set inei ) 

a Hilbert space H. Then is complete if and onlyfei) 

if Parseval's equation holds, that is, 

2 2L I(P, ei) 1 = II P 1/ , 

for each P in H. 

PROOF. Assume ei\ is an orthonormal set in H.1
Let P be any element in Hand P' = P - ~(p, ei)ei' 

Then, for all j, 

(P', ej)	 = (P - 2:. (P , ei)ei' ej) 

= (P, ej) (~(P, ei)' ej) 

= (P, ej) (P, ej) = O. 
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That is, pi is orthogonal to all ei' Suppose pi I 0, 

choose e = P I III PI) • It is clear that II e I{ = 1 and is 

orthogonal to all ei· Then f
) 
e·
1)

) u f e J is an 

orthonormal set in H which contains { ei)
) properly. 

This is a contradiction since ei 
1 
) is a complete~ 

orthornormal set. 

Next, assume that Parsevalls equation is true. 

Suppose ~ei) were not complete. Then there exists a 

nonzero element e in H which is orthogonal to all 

ei and II ell = 1 such that {ei) U {e) contains ~ei) 

properly. Then 

1\ e 11 = O.
2 = L:.I(e, e i) /2 

This implies that e = 0, which is a contradiction. 

DEFINITION. An orthonormal set )ei1 is said to 

be an orthonormal basis for a normed linear space N if 

~ei~ is complete in N. 

EXA~PLE J.l. Let ei be the n-tuple in Rn such 

that the ith component of e·1 is 1 and all the other 

components are zero. Then {el, ••• , en) is an orthonormal 

basis for Rn . 

THEOREM J.5. Every Hilbert space H has an 

orthonormal basis. 

PROOF. Let E be the collection of all nonempty 
I 

orthonormal subsets of H. (E, C) is a partially ordered 

set. For any totally ordered subset S of E, let SI be 

the union of elements in S. If x and yare any elements 
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in Sf, then there corresponds Sl and S2 in S such that 

x E Sl and y E S2. By the definition of a totally 

ordered set, either Sl C S2 or S2 C Sl. Now assume 

that Sl C S2. Then x and yare both contained in S2. 

Since S' is an orthonormal set" then S' is an element 

of E which is an upper bound of all the elements in S. 

By the Zorn's lemma, E contains a maximal element. That 

is, H contains a complete orthonormal set. Therefore, 

H has an orthonormal basis. 

THEOREM 3.5. Let rei} be an orthonormal basis 

for a Hilbert space H. Then for any element f in H, 

f = L... (f, ei) ei. 

PROOF. (f -2.(f, ei)ei, ei) =(f, ei) - (2:-(f, ei)ei' ei) 

= (f, ei) - (f, ei) = 0, 

for all i. By the definition of an orthonormal basis, 

there is no element in H which is orthogonal to all the 

ei except the zero vector. Hence f -2(f, ei)ei = O. 

Thus, f = ~(f, ei) ei for any element f in H. 

THEOREM 3.7. Let T be dense in a Hilbert space 

H. If S is an orthonormal basis in T, then S is also 

an orthonormal basis in H. 

PROOF. Suppose there were an element f in H 

which was orthogonal to all the elements in S. Let S 

be the closure set of S. Then for all g E. S, there 

exists a sequence of elements in S converging~ gn~ 
to g. That is, II hnll --'70 as n-7C1J, if hn = g - gn. 
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Let E > 0 be given. By the Schwarz inequality, 

\(f, g) - (f, gn)1 = 

= 
L. 

I{f, g) - (f, 

I(1', hn ) I 
II I'll . II hnll. 

g - h n ) 

Thus (f, g) = lim 
n~~ 

(f, gn). 

By the hypothesis, (f, gn) = 0 for all gnE S. 

Hence (1', g) = 0 which implies that l' is orthogonal to 

each element in S. But the previous theorem guarantees 

that S = T. Hence S is not a complete orthonormal set. 

This is a contradiction. 

4.4. ORTHONON~LIZATION 

THEOREM 4.1. For any orthogonal set {Pi~ in a 

normed linear space, there exists a corresponding 

orthonormal set. This is obtained by the Gram-Schmidt 

\ 

, 
~ 

II 
~ 

process. 

lIeol! = 1 

hence 

llell) = L 

P2' I 0 

(Pz, eO) = 0,(Pz', eO) = (PZ ' eO) 

and 

PROOF. Pi I 0 for all i = 0, 1, 2, •.• , 

II Poll> O. Let eO = Poll/Poll. It is evident that 

and eO is orthogonal to Pk for k I O. Let 

P'l = Pl - {P l , eO)eO. Then Pl' I 0 and 

(Pl ', eO) = (P l , eO) - (P l , eO) = O. 

Hence e l = P l ' IliPl 'II is orthogonal to eO and 

Let PZ' = Pz - {P2, eO)e O - (PZ' el)el. Then 

(FZ', el) = (F2, el) (PZ ' el) = O. 
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Hence e2 = P2 I /"P2 'II is orthogonal to el' e2, and 

IIe211 = 1. Continuing in the same way, one obtains an 

orthonormal set ~eo, el' •.• , en' ••• 1 with the 

required property. 

EXAMPLE 4.1. Use the Gram-Schmidt process to 

normalize the orthogonal set ~LO(X)' Ll(x), L2(X), L3(x)~ 

of polynomials in C2 ~l, +1], where 

LO(X) = 1;
 

Ll(x) = x;
 

L2 (x) = ~(3x2 - 1);
 

L3 (x) = ~(5x3 - 3x).
 
2 1/2

SOLUTION. Let llto(x)1/ = ( 1-1
1 

LO (x)dx) = 

(l.~ dx) 1/2 = J2. By the Gram-Schmidt process, 

Eo(x) = LO(x)/ULO(x)11 = 1/,12, 

and 

IIEO(x)!I = (li 1/2 dx)1/2 = 1. 

EO(x) is also orthogonal to Lk(x) for k = 1, 2, 3. 

Let Ll'(x) = Ll(x) - (Ll , EO)EO(x). Then 

El(x) = Ll'(x)/IILl'(X)1j =,./3/2 x, and !/El(x)J/ = 1. 

With the same process, it is easy to find 

E2 (x) = '/5/8(3x2 - 1), and lIE2 (x)ll = 1; 

E3 (x) =J7/8(5x3 - 3x), and IlE3 (x)l/ = 1. 

where Ei(x) is orthogonal to all Ej for i ~ j. 

Therefore, fEo(x), El(x), E2 (x), E3(x)~ is an 

orthonormal set generated by )LO(X)' Ll(x), L2(x), L3 (X)]. 
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THE SPACE C2 la, b]
 

5.1. C2(a, b] 

In this section, the main purpose is to prove that 

the set C2la, bJ of all bounded continuous real functions 

is a normed linear space. 

First of all, C2[a, bJ is not empty since it 

contains at least the constant functions. Define the sum 

and the scalar product of any two functions f and g in 

C2[a, b] by 

(f + g)(x) = rex) + g(x); 

(0( f) ( x) = eX ( f ( x) ) • 

Since f and g are continuous, for given E > 0, 

there exis ts ~l"/ 0 and ~ 2 '/ 0 such that 

\f(x) - fey) 1 < E;2 whenever Ix - yl < ~I' 

and 

\edx) - g(y)) < E/2 whenever Ix - yl < 62, 

where x, y E [a, bJ. Choose f:= min~ ~l' ~2~' Then 

\(f + g)(x) - (f + g)(y) 1= \f(x) - fey) + g(x) - g(y)1 

~ If(x) - fey) \ + I g(x) - g(y)1 

< E/2 + c/2 = E 

Hence f + g E C2 la, b]. 

Also, for any f, g E C2 ra, b], x E [a, bJ, and 

c;>(,~ER, 
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( 0< f + ~ g) (x) = (0<'f) (x) + (fg) (x) 

= ~(f(x)) + f(g(x)). 

Moreover, o<f + ~g E C2 Ca, b]. Thus C2 [a, bJ is 

easily seen to be a linear space. 

Define 

(f, g) = Sa
b 

f(x)g(x)dl(x), 

where Y(x) is a strictly increasing function defined on 

(a, b). Then 

(i) (f, g) = J~ f(x)g(x)dY(x) = J~ g(x)f(x)dr(x) 

= (g, f); 

(ii) (f, g + h) = J~ f(x)(g(x) + h(x))d)(x) 

= Jb f(x)g(x)dY(x) + Jb f(x)h(x)d?(x)
a a 

= (f, g) + (f, h); 

( iii) (0(f, g) = J~ eX f ( x) g ( x) d?( x) =ex' J~ f ( x) g ( x) dJ(x) 

=0( f, g), for all 0< E R; 

( i v) (f, f ) =J: If (x) 12d V(x) ~ IJ~ f2 (x) d ?(x) I / O. 

If (f, f) = 0, then Jb f 2 (x)dY(x) = o. By the First 
a 

Mean Value theorem, there exists m such that 

~f2 ( x) d r(x) = m[f( b ) - Y(a 8' 
where inf1f2(x)) f m ~ SUP\f2(x)\. Suppose f(x) i 0, then 

m » o. Since (x) is strictly increasing in [a, b], 

it follows that 

J~f.2(X)d~(X) = mlY(b) - Y(a)] > O. 
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This contradicts the fact that S~f2(X)dY(X) = O. Therefore, 

C2 La, bJ is an inner product space. 

Define the norm of f by 

II f II = (f, f)1/2 = (j~f2(X)dl(x) )1/2. 

Then 

(i) \\fll L-O, and Ilffl = 0 if and only if f(x) = O. 

This follows by property (iv) of an inner product space. 

(ii) Let f, g EC2[a, bJ. By using Schwarz's 

inequali ty (f + g, f) L. I' f + gil • 1\ f 1\, which was proved 

in Chapter 4, 

11 f +	 gl12 = (f + g, f + g) 

= (f	 + g, f) + (f + g, g) 

£llf	 + gil • Ilfll + llf + gIl • 1/ gIl 

= 1\ f	 + gil • (/1 f II + 1\ gIl) • 

If f + g = 0, the triangle inequality is trivial. So 

assume f + g -I 0 and II f + gIl> O. Divide each side by 

I\f + gil, then 

Ilf + gil ~11 fll + I!gl/. 
(iii)	 For any scalar ~ E R,
 

110( f 11 = (O<f, 0<' f) 1/2
 

= ( J~o(2f2(x)d/(x))1/2 

= (~2Jbf2(x)dl(x))1/2 
a 

=)0<'/'/1 fll. 

Therefore, C2 [a, bJ is a normed linear space. But C2 [a, ~ 

fails to be a complete normed linear space as the following 
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discussion indicates. 

Let {fn} be a sequence of bounded continuous real 

functions defined by 

o f. x ~ 1/2, 

= 1/2) 1 1/2 ~ x ~ 1/2 + (1/2)n,fn(x) {_~n(x - + 

o 1/2 + (1/2) n 6: x ~ 1. 

Let E:> 0 be given, assume m '> n, there exists 

n = 2/E :> 0 such that 

\Ifn - fmll = {Ji:~ + {1/2)m«_2n + 2m){x - 1/2))2dx )1/2 

+ { Jl/2 + {1/2)n (-2n{x + 1/2) + 1)2dx )1/2
1/2 + {1/2)m 

= {2m _ 2n ){1/3 • 1/23m)1/2 + 2n{1/3{1/2n _ 1/2m)3)1/2 

~ 2m(1/3 • 1/23m)1/2 = 1/./3' (1/2m )1/2 

<1/;(3· 2/N = 1/tl3 • E­

< E 

Hence { f n } is a Cauchy sequence. There exists a sequence 

{fn} which converges pointwise to f(x) = 1. But 

Jl )2 ) 1/21I fn{x) - 111 = ( 1/2 + (1/2)n{-1 dx 

= (l - 1/2 + 1/2n )1/2. 

Then II f n (x) - 111 -?' 1/,./2 as n -?> <:0 • Therefore, {fnl does 

not converge with respect to the given norm. This proves 

that C2 [a, b] is not a complete normed linear space. 

5.2. THE SPACE L2 [a, bJ 

It can be shown that L2 (a, bJ of all square measurable 

functions on (a, b] is a normed linear space by using the 
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analogous processes as in the preceeding section. 

The proof of the completeness of L2 [a, b] is 

given by Kolmogorov [lOJ. 

It is shown in [12J, that every bounded and Riemann 

integrable function on [a, b) is Lebesgue integraPle. 

Since all the functions in C2La, b] are bounded and 

Riemann integrable, C2 La, b] is a subspace of L2La,b]. 

The concepts of measurable functions and Lebesgue 

integration lie beyond the scope of this paper. The 

interested reader is referred to [lOJ, and [12] for a 

development of these topics. In order to preserve the 

coherence of this paper the following theorem, found in 

llO], is stated here without proof. 

Theorem 2.1. L2 La, b] is the completion of C2[a,~. 



CHAPTER 6
 

ORTHONORMAL POLYNOMIALS IN C2 La, bJ
 

6.1. ORTHOGONAL SETS
 

DEFINITION. A function w(x) defined on [a, bJ 

is called weight function provided it is continuous on 

Ca, b], positive except possibly at a finite number of 

points, and j~ xk w(x)dx exists for k = 0, 1, 2, •••• 

Let P(x) and Q(x) be two integrable functions 

on [a, bJ and (x) strictly increasing on La, bJ. 

Then the inner product of P(x) and Q(x) is defined by 

(P, Q) = J: P(x)Q(x)d~(x). 

If the derivative of (x) exists and is continuous, 

then it can be said that P(x) and Q(x) are orthogonal 

with respect to the weight function w(x) = (ex). 

If Y(x) is discontinuous at most finite points 

aO' aI' •.• , an on ra, bJ and a L aO .::::: a 1 < ••• < an ~ b. 

Then 

J~P(X)Q(X)dY(X) = J:OPQdY + J:~PQdV + ••• + J~PQdl. 

The weight function is still defined. 

DEFINITION. Two functions P(x) and Q(x) are 

said to be orthogonal on (a, b], if 

(P, Q) =J~ P(x)Q(x)dl(x) = 0. 

2EXAMPLE 1.1. Let P(x) = x and Q(x) = x - 1/3. 

Then p(x) and Q(x) are orthogonal on [-1, IJ with 
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respect to the weight function w(x) = 1. 

DEFINITION. ~Fi(X)~ a set of functions is called 

an orthogonal set provided that the Pi(x) are mutually 

orthogonal, and Pi(x) has degree i. In other words, 

(i) For each i, Pi(x) =ofixi + a polynomial of 

degree <.. i, with 0( i I 0; 

(ii) (Pi' P j ) = 0, whenever i I j.
 

EXAMPLE 1.2. {cos kx1 and ~sin kX~ for k = 0,
 

1, 2, ., . are orthogonal sets on the interval [0,211J 

with respect to the weight function w(x) = 1. 

6.2. ORTHONORMAL POLYNOMIALS 

THEOREM 2.1. Let {PO(x), ••. , 
1

Fn(x)j be a set 

of ORTHONORlf~L polynomials on La, bJ. Then it is linearly 

independent. 

FROOF. Let dOFO(x) + ••• + dnPn(x) = O. Since 

o is the zero vector, so (fi(x), 0) = 0 for all 

i = 0, 1, 2, •.• , n. Then 

o = (Pi(x), 0) = (Pi(x), dOFO(x) + •.• + dnfn(x)) 

= di(Pi(X), Fi(x)). 

But Pi(x) I 0, and thus di = 0 for i = 0, 1, 2, •.• , n • 

Therefore, {FO(X)' ••. , Pn(x)~ is linearly independent. 

THEOREM 2.2, Let )FO(X)' ••• , Pn(x)j be an 

ORTHONORMAL set of polynomials defined on (a, bJ. Then 

for any polynomial P(x) of degree ~ n, 

P(x) = dOPO(x) + ••• + dnPn(x), 
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where di = J~ Pi(x)P(x)w(x)dx are uniquely determined 

by F(x). 

PROOF. Let P(x) be a polynomial of degree n with 

leading coefficient an' Then 

nP(x) = anx + a polynomial of degree < n. 

P (x) = 0( nxn + a polynomial of degree <. n, where 0( n -I O.n 

Let dn = anl~n' Then 

P(x) = dnPn(x) + a polynomial of degree < n. 

Repeat the processes for Pn-l(X), .,., PO(x). Then 

P(x) = dOPO(x) + ... + dnPn(x). 

Since 

Jb P.(x)P(x)w(x)dx = (Pi' P)
a 1 

= (Pi' doPO + .•• + dnPn ) 

= di' 

for i = 0, 1, ••• , n. Therefore, the coefficients are 

uniquely determined by P(x) itself. 

COROLLARY 2,1. The set ~Po(x), "., Pn(x) 1 of 

ORTHONORMAL polynomials forms a basis for the n-dimensional 

linear space consisting of all polynomials of degree ~ n. 

COROLLA.RY 2,2. If p(x) is a polynomial of 

degree < n. Then p(x) is ORTHONORMAL to Pn(x). 

THEOREM 2·.3. Let {po(x), .•• , Fn(x)j be an 

orthonormal set of polynomials defined on [a, bJ. Then 

there exists An' Bn , and Cn with AnCn -I 0 such that 

Fn(x) = (Anx + Bn)Pn-l(x) + CnPn -2(x) , (1.1) 

where F_l(x) = O. (1.1) is called the three-term recursion 
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formula. 

FROOF. Let Fn(x) = anxn + a polynomial of degree n. 

an-l is the leading coefficient of Pn-l(x) and an-l I o. 

Hence An = an/an-l I O. Then Pn(x) - AnxPn_l(x) is a 

polynomial of degree n - 1. By theorem 1.2, 

Pn(x) - An~Pn-l(x) = dOPO(x) + ••. + dn-1Pn-l(x). 

Then 

Pn(x) = (Anx + Bn)Pn-l(x) + CnPn -2(X). 

To determine Bn , and Cn, take the inner product of (1.1) 

with Pn-l(X) and Pn -2(X) respectively. Then 

Bn = -An(xPn-l' Pn-l) 

and 

o = (Pn , Pn - 2 ) = An(xPn - l , Pn - 2 ) + Cn. (1.2) 

Take the inner product of Pn-l(x) = (An-1X + Bn -l)Pn -2(X) 

+	 Cn -1Pn -3(x) with Pn-l(x). Then 

1 = An _l (xFn -2, Pn - l ) 

= An - l (Pn -2, xFn-l), 

since (xPn - 2 , Pn - l ) = J~ (xFn _2 )Pn _l w(x)dx 

=J~ (Fn _2)(XPn _l )w(x)dx 

= (Pn-2' xPn - l ). 

Substitute An-l into (1.2). Then 

Cn = -(An/An - l )· 

Let {po(x), •.• , Pn(x)} be an orthonormal set of polynomials 

defined on (a, bJ. 

THEOREM 2.4. The zeros of the polynomial Pn(x) 

defined on [a, b] are all real and distinct and interior 
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to this interval. 

PROOF. Since Pn(x) is a polynomial of degree 

n "I 0, Pn(X) changes sign n times in the interval 

Ca, bJ. Pn(x) is orthogonal to a polynomial PO(x) = 1 

of degree 0 with respect to the weight function w(x). 

Then 

J~ Pn(x)w(x)dx = O. 

Suppose Pn(x) just changes signs at m points 

xl, .•. , Xm' (m < n), in the interval (a, bJ. Let P(x) 

be a polynomial of degree m and 

P(x) = (x - xl) ••• (x - Xm). 

Then p(x) has the same sign as Pn(x) does so that the 

product Pn(x)P(x) does not change sign in [a, bJ. Then 

Sa
b

Pn(x)P(x)w(x)dx "I O. 

This contradicts the fact that (Pn(x), p(x)) = O. 

THEOREM 2.5. Let {Po(x), Fl(x), ••• , P (x)1 ben 

an orthonormal set, then Pn(x) and Pn_l(x) have no 

common zeros. 

PROOF. To prove this theorem by induction. Pl and 

Po have no common zero when n = 1. Assume n = k the 

theorem is true. Suppose Pk+l(x) and Pk(x) have 

common zero, say xO. Then by recursion formula 

CkFk_l(xO) = Pk+l(xO) - (Ak+lxO + Bk+l)Pk(xO). 

Since Pk+l(xO) = Pk(Xo) = O. It implies CkPk-l(xO) = O. 

But Ck "I 0 so that Pk-l(x ) = O. Xo is also a zero o 

of Pk-l(x). This contradicts the induction hypothesis 
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that Pk(x) and Pk-l(x) has no common zeros. 

THEOREM 2.6. Let ~PO(x), ••• , Pn(x) 1 be an 

orthonormal set of polynomials defined on fa, bJ. 

If f(x) = i%O aiPi(x), g(x) = i~ biPi(X), then 

j~ f(x)g(x)dx = i~ aibi· 

PROOF. 

J~ f(x)g(x)dx =J~(i~O aiPi(x))(j~O bjPj(x))dx 

n n b 
= i~O ai j;;'O b j J Pi(X)Pj(x)dxa 

- £: a-b 1-· - - 0 11= 



CHAPTER 7
 

SPECIAL ORTHOGONAL POLYNOMIALS
 

7.1. SOME EXAMPLES OF ORTHOGONAL SETS
 

Orthogonal sets are very important in approximating 

continuous functions. It is quite efficient to use an 

orthogonal set in approximating continuous functions. 

Besides that, sets of orthogonal polynomials also play an 

important role in physics. The Hermite polynomials are 

used in connection with a form of the Schrodinger wave 

equation in quantum mechanics and the Laguerre polynomials 

are used in connection with the wave equation of the 

hydrogen atom. 

Table 7.1 illustrates several kinds of orthogonal 

polynomials and their weight functions. Legendre polynomials 

and Chebyshev polynomials are two special cases of Jacobi's 

polynomials. uacobi polynomials reduce to Legendre's 

polynomials if 0(= ~ = 0, and to Chebyshev's polynomials 

when ~= ~ = -1/2. 

Some orthogonal sets have a very interesting 

phenomena. That is, those polynomials Pn(x) contain 

only even powers of x or only odd powers of x according 

to whether n is even or odd. Let Pn(x) be defined on 

a symmetric interval (-a, aJ, with an even weight function 

w(x). 
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Pn(x) w(x) (a, b] 

(l-xr (l+x)l'
 
Jacobi [-1, IJ
 

(0< > -1, (3:> -1)
 

Legendr'e 1 [-1, IJ 

Chebyshev (1_x2 )-1/2 (-1, IJ
 

Laguerre x
0( e-x (O,co)
 

(01.>-1) 

_x2
Hermite e (-co ,co) 

Table 7. L 

To prove the above assertion, let Q(x) be any 

polynomial of degree less than n. Then 

(a Pn(x)Q(x)w(x)dx = O. 
)-a 

Changing variable by -x, 

-a 
o = - J f n (-x) Q(-x) w( -x) dx 

a 

a 
= 1 Pn ( -x) Q( -x) w(x) dx. 

-a 

Since Q(x) is a polynomial of degree less than n, 

so is Q(-x). Thus, Pn(-x) is a orthogonal set. Pn(-x) 

has the same sign on the even powers of x and opposite 

sign on the odd powers of x as Pn(x). Therefore, 

Pn(x) = (-l)npn(-x). 
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This equation shows that Pn (x) contains only even powers of 

x or only odd powers of x, according as n is even or 

odd. 

7.2. THE DEVELOPMENT OF THE CHEBYSHEV POLYNOMIALS 

THEOREM 2.1. Let Tn*(x) = cos ne defined on 

[0, lJ and x = (1 - cos e )/2, where 06 e ~ 11. Then 

Tn * is a polynomial of degree n. This polynomial is 

said to be a shifted Chebyshev polynomial. 

PROOF. This theorem may be proved by induction. 

The relation x = (1 - cose )/2 can be written as 

cosB= 1 - 2x, which in turn says that cos e is transformed 

into Tl *(x). That is, Tl *(x) = cos e. Suppose it is 

true when n = k. Since 

cos(k + l)e = cosecos k6 - sinesin kG 

and cos(k - 1)8 = cosecos ke+ sin8sin kS 

Adding them one has, 

cos(k +	 1)8 = 2 cose cos ke - cos(k - 1)& 

= 2(1 - 2x)Tk*(x) - Tk_l*(x). 

This is a polynomial of degree k + 1. Thus Tk+l*(x) 

= cos(k + l)e . 

Use	 the trigonometric integral,
 

i7T cos n e cos me de = Cn [ mn'
 

where Co = 11 and Cn = 11"/2 (n f 0). With the change of 

variable x = (1- cos8)/2, 

l Tn*(x) Tm*(x) dx = Cn ~ mn·Jo ,Ix(l-x) 
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Therefore, the set of shifted Chebyshev polynomials is 

orthogonal over (0,1] with respect to the weight function 

(x(l - x))-1/2. With the aid of three-term recurrence 

formula, the first four shifted Chebyshev polynomials are 

TO*(x) = 1, 

Tl*(x) = 1 2x, 

T2~~(x) = 1 8x + 8x2 , 

TJ*(x) = 1 l8x + 48x2 J2xJ • 

These polynomials defined on (0, lJ are graphed 

in Figure 7.1. 
-roi''l.l() 

x 
o 

-\ 

Fig. 7.1. 

The Chebyshev polynomials Tn(x) are defined in 

terms of the shifted Chebyshev polynomials Tn*(x) by 

the relation 

Tn(x) = Tn*«l - x)/2). 

Tn(x) is defined on Gl, lJ, since 

Tn(x) = Tn*«l-x)/2) 

= cos n e , 
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where 0 ~ E> ~ IT . 

According to the trigonometric identity, 

cos n8 cos mB = ~ cos(n + m)B + cos (n - m)e 

it can be rewritten as 

Tn(x)Tm(x) = i[Tn+m(x) + Tn_m(x)] • 

Setting m = 1, 

Tn+l(x) = 2xTn (x) - Tn_l(x). 

This formula is called the recurrence relation of the 

Chebyshev polynomials. This formula is quite useful in 

approximation problems because it is self-starting and 

efficient in terms of computation time and storage space. 

With the aid of the recurrence relation, the first 

four polynomials are listed belowl 

TO(x) = 1, 

Tl(x) = x, 

T2 (x) = 2x2 - 1, 

T3(x) = 4x3 - 3x. 

I It: *' llb=>X 

Fig. 7.2. 
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It is not a loss of generalization to consider 

only the interval ~l, IJ, since by a change of variable 

one can handle an interval la, b]. 

The orthogonality of the Chebyshev polynomials 

over [-1, IJ with respect to the weight function 

(1 - x2 )-1/2 can be proved in the same manner as in 

the case of the shifted Chebyshev polynomials. 

From the relation 

Tn(x) = cos nx, 

it is true that \Tn(x)\ ~ 1 for all x E [-1, 1]. 

This property is very important in the least-square 

approximation by Chebyshev polynomials. 

Theorem 2.4 in Chapter 6 guaranteed that the zeros 

of Tn(x) are all real, distinct, and lie on the interval 

[ -1, IJ. 

EXAMPLE 7.1. Find the roots of T3(x). 

SOLUTION. 

-I 

Fig. 7.3.
 

In Figure 7.3, S is a semicircle with radius 1.
 

the relation between x and e is 

x = cos e , O~e~TT. 
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Let T3 (x) = O. Then 

T3(x) = cOS38 = O. 

Hence 39 = n1T+ IT/2, n = 0, 1, 2. Thus the roots of T3(x) 

will be at e= 1f"/6, TT/2, and 5 rr/6. Then since x = cos e , 
x =~/2, 0, and -~/2. They are real, distinct, and 

lie in (-1, 1]. 

In general, the zeros of Chebyshev polynomials of 

degree n are 

xk = cos(2k-l)IT/2n , k = 1, 2, ••• , n. 

The zeros are symmetric with respect to the origin. 

Moreover, the roots accumulate around the end points -1 

and 1 for large values of n. 



CHAPTER 8 

APPLICATION OF ORTHOGONAL POLYNOMIALS 

8.1.	 LEAST-SQUARE APPROXIMATION TO A CONTINUOUS FUNCTION 

A set G = {Pi(x)J of polynomials distinguishes 

points of [a, b] if the Pi(x) are defined on La, bJ 

and for each pair of points xl 'I x2 of [a, b J there 

is a function Pk(x) E G with Pk(xl) 'I Pk (X2). 

Let F(x) be a continuous real function defined 

on (a, bJ. The least squares technique is a method to 

find a set {dl , ••• , dk~ of scalars and 

p(x) = dlPl(x) + •.. + dkPk(x), 

such that 

E(dl , ••• , dk) = Jb (F(x) - p(x))2 dx 
a 

is minimized. 

The condition for a minimum is BE/ odi = 0 for 

i = 1, ••• , k. Since F(x) is not a function of the di' 

one has that aF/adi = O. Then by Leibnitz's rule 

J
o = oE/ ad i 

b 2 
= a a/ o di (F(x) - P(x)) dx 

b 
= (-2)	 j (F(x) - P(x)) C3P(x)/odi dx 

a 

= (-2)( Jb F(x)Pi(x)dx - Sba P(x)Pi(x)dx.a 

Thus 

Jb	 b Jbdl a Pl(x)Pi(x)dx + ... + dk Sa Pk(X)Pi(x)dx = a F(x)Pi(x)dx 
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i == 1, ••• , k. ( 1.1) 

This is a system of k linear equations in the k 

unknowns. The coefficient matrix of this system is quite 

often ill-conditioned, and thus the application of the 

Gauss elimination procedure may produce unreliable results. 

But every linear equation of this system can be 

reduced to a very simple equation if a continuous function 

may be approximable by an orthogonal set. By the 

Weierstress theorem, every continuous real function F(x) 

on la, bJ can be approximated by a polynomial. Theorem 

2,2 in Chapter 6 showed that every polynomial can be 

represented by the linear combination of orthonormal 

polynomials. Therefore, it is possible to approximate a 

continuous real function by an orthonormal set. 

Let Pl(x), , •• , Pn(x) be an orthonormal set. 

Then, (1.1) reduces to 

b 
di == ) F(x)Pi(x)dx 

a 

By using this equation, the equations can be solved directly 

without round-off problems. Also, there is only one 

operation for solving for each die Therefore, least-square 

approximation by orthogonal polynomials is not only less 

likely to produce large errors but is also more efficient. 

8.2, THE BEST APPROXIMATION BY POLYNOMIALS OVER La, b] 

Let F be a continuous function on La, bJ, and F 
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be a polynomial of degree n. Then P is called the best 

approximation to F, with respect to the norm II 1\, if 

IIF - PII f II F - Pnl( for all polynomials Fn of degree n. 

THEOREM 2.1. Let F be a continuous function on 

la, bJ. Then there exists a polynomial P of degree n 

which is the best approximation to F. 

PROOF. Let {Pi' 1 ~ i f: nJ be a set of linearly 

independent polynomials, where each p. has degree of i,1 

n n 
and L. Pi = M. Let P = z=. aiPi and E(al' ..., an)

i=l i=l 

= 11 F - P 11 • Then E(al' ... , an) is continuous. Since 

for given E >0, 

\E(al' • II, an) - E(b l , .•• , bn ) I = IOF - PII - IIF - pili I 
LIlF - P - F + pi 1/ 

n 
= L Ib i - ai/UFill

i=l 

n 
L (m~x Ib i - ai I) · .L IIpill . 

~ 1=1 

Then !E(al' ••• , an) - E(b l , ••• , bn)]<E whenever 

m~xlbi - ail < ElM. 
1 

n	 n
2Let s = { (a l , ... , an) • 2.. a k = l}' II L aiPiH 

k=l i=l 

is also continuous on S. S is a closed subset of Rn 

n 
and bounded. Therefore II	 ~ aiPili attains its minimum
 

1=1
 

value, say m, on S. The polynomials p.
1 are assumed to 

be linearly independent and the ai are not all zeros so 
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m "7 O. 

n 
E(al' ... , an) is also bounded since Il L aiP'11 . 1 1.1.= 

is bounded on S. By completeness, E(al' ••• , an) has 

a greatest lower bound m'. If E(al' ••• , an) attains 

m' in some region, then the best approximation exists in 

that region, Let 

R :: (m' + 1 + F )/m. 

Suppose 
n 
L ai

2 » R2 for , • " an) E 
n

R Then(aI'
i=l 

n nII £ aiPil1 ::: (1... a. 2) 1/2 II (2:
i=l j=l J . 1J= 

= (~ a· 2) 1/2 . II i 
j=l J i=l 

n n 
and .L «.2:. a. 2 ) -1/2a' ) 2 - Then, since these

1.=1 J=l J 1. - L 

coefficients sum to one, it follows that 

n 2 
II i~ aiPil 1 > (.f. a1.. )1/2 . m 

1.=1 • 

Thus 
n	 n 

IIF - L. a·P·II"7 112 a·P· II -II FII 

But this is 

. 11.1. . 11.1.1.= 1.= 

/' (£ a. 2) 1/2m _ 
. 1 1.1.= 

)mR -IIFH 

= m' + I, 

a contradiction, since m' 

, 

1/2 n 
a· 2 )- • z... a·P. IIJ . 1. 1.1.=1 

(2.	 a. 2 ) -1/2aiPi \I , 
j=l J 

1/ F II
 

is the greatest 
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2 R2lower bound of E(al' , •• , an)' Therefore 2 a. L... 

1 - •i=l 

This region is closed and bounded. Thus the continuous 

function E(a l , ••• , an) attains its minimum value in 

this region. Hence the theorem is proved. 

THEOREM 2.2. Let F be a continuous function defined 

on La, bJ. Then for each n, there exists a unique 

polynomial of degree n that is the best approximation 

to F. 

PROOF. Let P = alF l + ... + anPn and 

pi = blFl + ... + bnFn be two best approximations of a 

continuous function F with the same order, where the 

Pi are linearly independent and each p.
1 

has degree i. 

Then II F - P II = II F - P I II ::: E. Let 

G ::: (o(a l + (1 - 0( )bl)Pl + ••• + (olan + (l-ci..)bn)Pn , 

for 0 < 0( < L Thus 
n 

11 F - G /I = II F ~ (o(a. + (1 -oZ)bi)Pill 
. 1 11= 

=1/ (F - p) + (1 -o()(F - pI)I/ 

~ o</IF - P 11+ (1 -do.) /I F - pi II 

= E, 

Since P and pi are already the best approximations of F, 

G cannot give a better approximation, hence equality must 

hold, Therefore, either 

IIF - PII= 0 or IIF - pili::: 0, 

or for some scalar ~ 

F-P= f(F-P'). 
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In the	 last case, 

(1 - ~ ) F = (1 - ~ ) (blPl + ••• + bnPn ) 

l ,i = (al - ~bl)Pl + ••• + (an - ~bn)Pn' 
~ 
i	 That is,
'I 

t	 ((1 - ~ )b l - (al - ~bl))Pl + ••• + ((1 -~ )bn - (an - ~bn))Pn 

1	 = 0, 

Since p.
1 are linear independent, this implies that 

(1 - ~)bi - (ai - ~bi) = 0, for i = 1, ••• , n, Hence 

ai = b i , for i = 1, "" n. Thus ~ =1. Thus the 

approximation is unique in either case. 

Theorem 2.2. can be extended to the Lp spaces. 

This development may be found in (lOJ. 

THEOREM 2.3. Let fPl' ••• , Pn } be a set of 

polynomials such that deg(Pi ) = i. If for each continuous 

function on [a, b], the best polynomia.l of degree less than 

or equal to n is a linear combination of the Pi, then 

PI' , •• , Pn are Chebyshev polynomials. This famous 

theorem was proved by A. Harr. 

8.3. MIN-MAX APPROXIMATION BY POLYNOMIALS OVER (a, bJ 

The min-max approximation to a continuous function 

F on (a, bJ is the best approximation to F in the 

Loa norm. 

In general, a function F(x) has a Taylor's series 

expansion if its derivatives exist and are continuous on 

[a, bJ. If F(x) is expanded by a Maclaurin series, then 
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F(x) = L
co 

arx
r 

• This series converges uniformly to F(x) • 
r=O 

This means that for each E > 0, there exists n( E ) :> 0 

such that 
n 

{ r 
~ 
jj IF(x) - L arx / <E 
~ r=O-~ 
,,~ n 

rfor all x E: (a, bJ. Then Pn(x) = L a x is anr
r=O 

approximating polynomial for f(x). 
co 

For example, let F(x) = eX = 2: xnjn: • Then 
n=O 

n = 12 is required to approximate eX on [0, 1] with an 

error 10-8 • In this case, the Maclaurin series of eX 

converges very fast. But some series, for instance, 

In(l + x) = ~ (_l)n-lxnjn converges around x = 1 so 
n=l 

slowly that 108 terms are needed to guarantee an error 

less than 10-8 • 

The primary objective now is to find a polynomial 

of lower degree for the approximation but having the same 

accuracy. The Chebyshev economization technique is used 

for this purpose. 

Let F(x) be a continuous function on [-1, +lJ. 

Let E > 0 be given. By the stone-Weierstrass theorem 

there exists a polynomial p(x) such that 

/F(x) - p(x)/ < E 

for each x E [-1, +1]. 

Since the collection {To' Tl, .•. 1, of Chebyshev 

polynomials is a basis for C2 (-1, +lJ it follows that 
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p(x) can 

subset of 

be expressed as a 

{TO' Tl , ... J. 
linear combination of a 

Then there exists a set 

finite 

of 

Chebyshev polynomials, {To, Tl, ••• , 

\F (x) - Pn (x) I < E 

Tn} such that 

1
~ 

~ 

I 
i 

where Pn(x) 

En 

For the same 

Pn-l*(X) in 

= daTa + ... + dnTn • Then 

= II F - Pn II 

= sup {IF(X) - Pn(x) I I X E [-1, + 1J} 
< E 

reason, Pn(x) has its best approximation 

lTo(x), •.• , Tn-l(X)] of Chebyshev 

polynomials. 

Let En - l = sup /Fn(x) - Pn-l*(x)j. Then 

sup 1F(x) - Pn-l*(x)! ~ sup IF(x) - Fn(x)/ + sup/Pn(x)-Pn_l*(x)! 

= En + En-I. 

If En + En - l is still less than E , one may repeat the 

process to get the best approximation Pn - 2*(x) of 

Fn_l*(x); and continue in this manner until, 

En + En - l + .,. + E j ~ E < En + En - l + •.. + E j + E j -1' 

Then Pj*(x) is the lowest-degree approximating polynomial 

to F (x) wi thin the error allowance E • 

n 

THEOREM 

defined on 

3.1. Let 

(-1, +lJ. 

Fn(x) be 

If Pn(x) 

a 

= 

polynomial of degree 

anxn + Q(x), where 

Q(x) is a polynomial of degree < n, then the min-max 

approximation Fn_l*(x) to Pn(x) by polynomials of degree 

less than n is given by Pn-l*(x) = Fn(x) - an21-nTn(x). 

FROOF. It can be shown by induction that 
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2n l nTn(x) = - x + Q'(x), where Q'(x) is a polynomial of 

deg-ree < n, Then 

Pn-l*(x)	 = Pn(x) - a n 21 - nTn (x) 

= anxn + Q(x) - an21-n(2n-lxn + Q'(x)) 

= Q(x) - a n 2 1 - nQ'(x), 

is a polynomial of deg-ree ~ n, Suppose the theorem were 

false, Then there exists a Pn-l(x) such that 

sup/Pn(x) - Pn-l*(x)/ > supjPn(x) - Pn-l(x)! 

Let e(x) = Fn_l*(x) - Fn_l(x) be nonzero polynomials of 

'j
:1 

degree < nand 
1 
,~ Pn(x) - Fn_l(x) = Pn(x) - Fn_l*(x) + e(x). 

Since Pn(x) - Pn-l*(x) = a n2 1 - nTn (x), 

nsup jan2 1- Tn (x) I> sup I a n21 - nTn (x) + e(x)/. 

But /Tn(x) I ~ 1 for x E [-1, lJ, therefore, 

lan I2 1 - n > sup !an 21 - nTn (x) + e(x)/ 

? \anl-nTn(x) + e(x)/ 

> a n2 1 - nTn (x) + e(x) 

>-Ian! 21 -
n

, 

for all x E [-1, 1]. Set xk = cos kV/n, k = 0, 1, •.• , n. 

Then 

l-n l-n ( -j )Ia n l2 > a n2 Tn cos klTi n + e(xk) 

= an21-ncos k-rr+ e(xk) 

= an21- n (-1)k + e(xk) 

/' -]an \2 1 - n • 

Assuming an / 0, 
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o > e(xk) if k is even, 

and 

o <. e(xk) if k is odd. 

If an < 0, the opposite direction applies for these 

inequalities. Since Xo > xl > ... ~ xk' in either case 

an » 0 or an < 0, these inequalities imply that e (x) 

changes sign in [-1, lJ at least n times. Therefore 

e(x) has at least n zeros. This contradicts the fact 

that e(x) is a polynomial of degree ~ n-l. 

The following table which expresses Tn(x) in 

powers of x is useful in the application of the 

Chebyshev economization process. 

1 = TO
 

x = Tl
 

x2 = 2-1 (TO + T2 )
 

x3 = 2-2( 3Tl + T )
3 

x4 = 2-3(3To + 4T2 + T4) 

x5 = 2-4 (lOTl + 5T3 + T5) 

x6 = 2-5 (lOTO + 15T2 + 6T4 + T6) 

EXAMPLE. The approximation 

4ln (1 + x) ~ x - i x2 + j x 3 - ~ x

has truncation error less than 0.12 at x = 1. With the 

aid of the preceeding table, 

ln(l + x) ~ 1/192 (141 TO + 24 Tl - 52 T2 + 8 T3 - T4)' 

The advantage of Chebyshev economization is that the 

truncation error is still less than 0.1£ after the 





CHAPTER 9 

SUMMARY 

In Chapter 3, theorem 3.1 proved that every metric 

space has a unique completion. This theorem is quite 

important in approximation theory. 

The next problem is to find a set of polynomials 

to approximate a continuous function in C2(a, b]. 

Orthogonal polynomials are the answer, and a complete 

orthonormal set is shown to be a basis for C2 [a, b]. 

For each continuous function f(x) on [a, bJ, 
<I: 

I there may be several approximating polynomials. Among 

the approximating polynomials, which is the best one of 

degree n? The theorems in Chapter 8 proved that the 

best approximating polynomial of a given degree does 

exist and is unique. 
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