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CHAFTER 1
INTRODUCTION

The main purpose of this paper is to find a best
approximating polynomial of a given degree for a continuous
function defined on the interval [a, bJ., In order to
do this, one needs to understand metric spaces, normed
linear spaces and inner product spaces,

Chapter 2 illustrates the construction of linear
spaces and its subspaces. In Chapter 3, normed linear
spaces are introduced, It is also shown that every metric
space has a unique completion, Chapter 4 introduces
Hilbert spaces and the Gram-Schmidt process. A normed
linear space may be complete with respect to one norm
but not complete with respect to another one., This
concept is illustrated by an example in Chapter 5.
Orthogonal sets are introduced in Chapter 6, and some
special cases constructed in Chapter 7. In Chapter 8,
it is shown that the best approximating polynomial of a
given degree to a continuous function on a closed interval
does exist and is unique., The application of min-max

approximation is also given in Chapter 8,



CHAPTER 2
LINEAR SPACES

In this chapter, the concepts of a linear space
and a basis for a linear space are discussed.
2.1 LINEAR SPACES

DEFINITION, A linear space V 1is a nonempty
additive abelian group together with a function F x V-V,
where F 1is a field, defined by («,x)>&Xx; satisfying the
following properties, for all B F, x, yev,

(1) X(x +y) =Xx +Xy;

(i1) (&+B)x =ox +Bx;

(1i1) («f )x = (Bx);

(iv) 1x = X.

EXAMPLE 1.1. The set of all real numbers, with
addition and multiplication taken as the operations, is a
linear space.

EXAMPLE 1,2, The set R" of all n-tuples of real

numbers is a linear space under the following operations.

Let x = (xl, Xoy sesy Xn) and y = (yl. o ooy yn).
and define x +y = (X1 * ¥1, Xo0 * ¥2, +usy Xn + ¥p)
o(X= (O<Xl,O(XZg ...,o(Xn).

EXAMPLE 1,3. The set C2 [a, b] of all bounded
continuous real functions defined on [a, bJ 1s a linear

space over R if the sum h = f + g and the scalar product



h' =o(* f are the functions defined for each x € [a, b]
by the equations
(f + g)(x) = f(x) + g(x),
(«(f)(x) = &f(x),

This space will be discussed in some detail in Chapter 3,

EXAMPLE 1,4, Let P be the set of all polynomials,
with real coefficients, defined on the interval {-1, 1].
P 1is a linear space over R, the real numbers, by the
usual addition of two polynomials and the multiplication of
a polynomial by a real number,

DEFINITION, Let V be a linear space over F, Let
Vis V2, +ssy Vo, Dbelong to V and cy, Cp, +.., Cy De
elements in F, Then the vector c¢jyvy + covpy + ... + Ccnvy
is said to be a linear combination of the vectors wvj;, ..., vp.

DEFINITION, Let S Dbe a subset of V and
Vi, V2, «4s, Vn be vectors in V., The collection
Visy V2, «e.y Vn 1is said to span S provided every vector
in S can be written as a linear combination of the
vectors Vis V24 sesy Vpo
2.2 LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

DEFINITION. A set of vectors vy, Vo, ...y Vg in
V is said to be linearly dependent provided there exist
scalars ¢q7, Cp,y +4sy ¢, in F, not all zero, such that
cqvy + cove + ... + cpvy = 0.

DEFINITION, A collection of vectors in a 1linear

space V are linearly independent provided they are not

linearly dependent,



EXAMFLE 2,1, The three vectors (1, 2, 3),
(4, 1, 6), and (6, 5, 12) are linearly dependent in
R3,

EXANPIE 2.2, (1, o0, 0), (0, 1, 0), and (0, 0, 1)

are linearly independent in RB.

EXAMPLE 2,3, In the linear space P of example
1.4, let Tpo(x) =1, Ty(x) = x, To(x) = 2x% - 1,
T3(x) = 4y - 3%, Then these vectors are linearly
independent,

DEFINITION. A collection of vectors Vie Vou eeey

v in V are sald to form a basis for the linear space

n
V provided they span V and are linearly independent.
EXAMPLE 2,4, (1, o, 0), (0, 1, 0), and (0O, 0O, 1)
form a basis for the linear space RB.
EXAMPLE 2,5, (-1, 1) and (1, 1) form a basis for
RZ,
THEOREM 2,1, The non-zero vectors Vit Vor ey ¥V
in a linear space V are linearly dependent if and only
if at least one of the vectors vy 1is a linear combination
of the preceding ones.
PROOF. Suppose the vector vy 1is a linear combination
Vk = ajvy + asvpy + ... + ayx_jvyg_1 of the preceding ones,
Thus
ajvy + agvpo + ...+ ap_ V.1 + (-1)v = 0,
Hence vectors are linearly dependent.

Conversely, suppose that the vectors are linearly



dependent. Then there exist scalars bj, not all zero
such that byvy + byvy, + .., + byvy = 0, Choose the
last subscript k for which by # 0, One can solve for
vk as the linear combination

vi = (B to1)vy + (b Ibo)vy + L+ (Mo vy g,
Thus vy 1s a linear combination of the preceding vectors,
except in the case where k = 1, In this case b;vy = 0,
with by # 0, so vy = 0, contrary to the hypothesis that
none of the given vectors are zero,

THEOREM 2.2, Let S = {vy, vy, ..., Vi} De a
linearly independent subset of a linear space V., If S
is a basis for V, then every subset of V which properly
contains S 1is linearly dependent,

PROOF., TLet A Dbe a subset of V which properly
contains S, That is, A contains at least one vector
Viy1 contained in V  but not in S, Since S 1is a
basis for V, then there exist scalars aj, ..., ay such
that vy, can be written as

Vel = 21Vq t+ agvo + ...t aygvi.
Therefore, A 1is linearly dependent by theorem 2,1,

THEOREM 2.3, Let n vectors span a linear space
V containing m linearly independent vectors, Then n = m,

PROOF. Let S = {vl, Vo ceey vn} be a set of
n vectors spanning V, and X = {xl, Xy eeny Xm} be
a subset of m linearly independent vectors in V. Since

S spans V, X7 1is a linear combination of the Vi



so that the set A = {xl, Vis V24 eeey Vn} still spans
V and is linearly dependent, By theorem 2,1, some
vector of A] must be a linear combination of its

predecessors, This element cannot be x since X 1is

1
linearly independent. Hence some vector v3; 1is dependent
on its predecessors X190 Vs sees Vi_71- Deleting this
vector, the set S, = {XLYl v oeeas Vil Vigls sees Vn}
still spans V.

Repeat this process. The set A, = {xz, X1y Vs
ceey Viole Vid4lr eees vnj spans V and is linearly
dependent. Hence as before, some vector in A, 1is a
linear combination of its predecessors, Because X7, ...,
Xy are linearly independent, this vector cannot be x;

or X,, so it must be some Vi Deleting this Vi, one

has a new set,

-
S

o = {xz, X0 Ve eees Viole Vigls eees V3ol Vikls cee Vn}
of n vectors spanning v, This process can be repeated
m times, until the elements of X are exhausted. Each
time an element of S 1is deleted, Hence S must have
originally contained at least m elements.

THECREM 2,4, Let V be a linear space for which
A= X7, «.vy Xp is a basis of V. Then every basis of
V has exactly n elements,

PROOF. Let A = {xl, ceey Xp) and B ={vy1, ...,ym}
be two bases for the linear space V. Since A spans V

and B 1is linearly independent in V. Then n2zm, by



theorem 2,3, On the other hand, B spans V and A is
linearly independent in V, so mzn, Hence n = m,

DEFINITION, The dimension of a linear space V
is the number of vectors in a basis for V,

THEOREM 2,5, In a finite—dimehsional linear space,
every linearly independent set of vectors can be extended
to a basis,

This theorem may be proved in a manner similar to the
method in theorem 2.3,

COROLLARY 2,1, If a linear space V has dimension
n, then (i) any n + 1 elements of V are linearly
dependent, and (ii) no set of n - 1 elements spans V,

FROOF, The first part of this corollary is
followed immediately by theorem 2,5 and theorem 2.2, The
second part is the result of theorem 2,3,

2.3. SUBSFPACES

DEFINITION, A nonempty subset S of a linear space
V is a subspace if S 1is a linear space with respect
to the operations defined in V.,

DEFINITION. The coset of a subspace S of a linear
space V 1s the set x + S = {x + ss s€S , x is fixed
in V} }

THEOREM 3.1, The set of all cosets of a subspace
in V 1is a linear space under the operations defined by

(x +8) + (y+8)=(x+y)+s5,

A(x + S) =KXx + S,



for all x, y€ V and*€ F, This linear space is denoted
by V/S and is called the quotient space of V with
respect to S,
PROOF., For x =y€V, -y + x =0€8, It implies
(-y + x) + S =8, Hence x + S =y + S. Therefore, the
operations are well-defined,
Since V is an abelian group, S is a normal
subgroup of V., Thus V/S form an abelian group. V/S
is also satisfied the following conditions:
(i) X(x+S+y+8)=«Lx+y+8)=«x+y)+5
XX tXy + S =X + S +xy + S
=X(x + S) +(y + S);

(11) (x+B)(x+8) = (x+f )x + 8 =xx +fx + §

xx + S +8x + S

=x(x + S) + Pf(x + S);

1l

(iii) (o((i)(x+S) (O’F)x+S=o(((1’x)+S

“(fx + S) =x( B(x + 8));
(iv) 1 » (x+8S) =1+ x+ S =x+ 8,
Therefore V/S 1is a linear space.
DEFINITION, Let S and T be two subspaces of
a linear space V, Then the sum of S and T is the set
S + T which contains all the vector s + t for each

s€3S and t€T,.

Figure 2,1 is a geometrical interpretation of a

quotient space.



Fig, 2.1,

THEORENM 3.2, Let S and T be two subspaces of
a linear space V, Then S N T and S + T are subspaces
of V.,

DEFINITION. Let S and T ©be two subspaces of a
linear space V, V 1is a direct sum of S and T, denoted
by S ® T, if for each vector v in V, there exists
unique elements s€S, t€T such that v =s + t.

THEOREM, 3.3, Let V be a linear space with
subspace S and T, and V =S + T, Then
v=s@TrTesnrt= {0,

PROOF. Assume V =S @ T, Then for each vector

v in V v =s + 1 1is uniquely determined by s €S and



t €T, Suppose there exists a non-zero vector ue€s N T,
Then u=0+u or u=u+ 0, This contradicts the
uniqueness. Therefore, S N T = {0] ,

Next, assume SN T =40} , Let v=s+1t for
some s €S and t€ T, Suppose there exists another
s*'€ S and t'€ T such that v =s' 4+ t', Then
s+ t=g8"+ %', and -s' + s =1' - t =u, Evidently,

u is in both S and T, This contradicts S N T = {0},
Hence V =S ® T.

DEFINITION, Let V and V' Dbe two linear spaces
over the same field F, A mapping f of V into V' is
called a linear transformation if

f(x +y) = f(x) + £(y)
f(ax) = Af(x),
for all x, y €V and A€ F,

DEFINITION, Let V and V' Dbe two linear spaces
over the same field, An isomorphism of V onto V' 1is a
one-to-one linear transformation of V onto V', Two
spaces V and V' are isomorphic, denoted by V= V',
if there is an isomorphism f: V->V',

EXAMPLE 3.1. Let S = {(x, 0):+ xe€R] and
T = {(O, x)t XGJR} be two subspaces of R?, Define f
by T

(x, 0) >(0, x), Then f is an isomorphism of S

onto T,

DEFINITION, Let f: V—=>V' be a linear transformation,

Then the kernel (f) = {x:eV& f(x) = O} and the image (f)

10
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={yEV's y = f(x) for some er}.

Both the kernel (f) and the image (f) are linear
spaces,

THEOREM 3.4, Let f:+ V —>V' be a linear
transformation with a finite-dimensional domain, Then

dim(V) = dim(kernel f) + dim(image f).

PROOF., Let 1vl, Vo, ey vn} be a basis for V

and let {Vl' iy Vm} , M % n, be a basis for the

kernel of f. Then for any vector v in V can be

written
m n
v= 2 ajvy + 2 agvi .
i=1 i=m+1
Hence
m n
fv) = £( = ajvi) + £( =  ayvy)
i=1 i=m+1
n
=f( =2_ aivi)
i=m+1
>
= s f(v.).
i=m+1 t .

That is, each vector f(v) can be written as the linear

combination of f(vp4q), «vv, £(vy). Thus F£(vpep)seo., £(vy)

spans image (f). Suppose ﬁi ay f(vi) = 0, Then
i = m+ld
n ) n
f( = ajvsl= > a; f(v.) = 0.
S I pur 1
n
Hence > a;vs € kernel (f) and there exists a set of
i=m+1
) n m
scalars {bl, ceay bmJ such that = a;vy = 2 Dbjyvy.

i=m+1 i=1



m n

Therefore by = ... = by = apyy = ... = ap = 0 since
%vl, vees Vn} is linearly independent., Hence
{f(vm+l), coey f(vn)g is a basis for image (f).

THEOREM 3,5. Let ft+ V™V*' be a linear
transformation with kernel K. Then V/K ¥ image (f).
PROOF, Define Fs: V/K—>T; T = image (f), by
F(v + K) = f(v).
It is easy to show that F 1is well-defined,
Let u, v be any vectors in V and <« be any
scalar, Then

Flu+ K+ v+K) =Flu+v+K)=7Ff(u+v)=7=F(u) + £(v)

F(u + K) + F(v + K).
XF(u + K) =Af(u) = f(KXu) = F(Xu + K),

Thus F is a linear transformation of V/K into T,

Suppose F(u + K) = F(v + K), then

0 =F(u -v+K)=15f(u-v),

Then u - v €K, Therefore, u+ K =v + K and
thus ® is one-to-one, For f(u) € T, then u + K € V/K
and F(u + K) = f(u)., Hence F 1is onto., Therefore,

~J

vV/K ¥,



CHAFTER 3

NORMED LINEAR SFACES

3.1. NORM
DEFINITION, A normed linear space is a linear
space N in which to each vector x there corresponds a

real number, denoted by |l xil and called the norm of X

such that
(1) ix1 2 0, and txll = 0 if and only if x = 0;
(ii) Wx+yy < nyxn + uyil , for all x, y € N;
(1iii) N x1] = 1X] 1] x|, for all x € N and « € R,

EXAMPLE 1.1, The linear space RZ of all 3-tuples
X = (Xl' Xp x3) of real numbers is a normed linear space
if the norm is defined by
W xi = (x12 + x,2 + ij)l/z.
EXAMPLE 1.2, The linear space R"™ of all n-tuples
x = (x3, +.., Xp) of real numbers is a normed linear
space with the corresponding Postman's norm defined by
lxily = [xq ] + |xp] + o0 + [x].
EXAMFLE 1,3, With the same space R" as in the
last example, define the maximum norm by
1%l = max { x1lys ooe s %l
Then R™ is a normed linear space,
EXAMPLE 1.4. The set Cla, bJ of all bounded

continuous real functions defined on [a, b] is a normed
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linear space with the norm defined by
Il £1] = sup|£(x)].
This norm is called the uniform norm,
EXAMPLE 1.5. Let p be a real number such that
1 £ pcow ., R is a normed linear space if the norm is
defined by

n
= (= |x: | D)V
l x”p At [%1]

For instance, Figure 1 illustrates the unit sphere
with respect to several different norms in the space k3.

| Uxle= |

L=

Xt =

Fig, 1
EXAMFLE 1,6, Let Csla, b] be the set of bounded
continuous real functions defined on [a, b]. For
f € Cy[a, b], define
SRV
\lfll=(j £2 dx) .
a

Then Cz[g, b] 1is a normed linear space, The detail will
be given in Chapter 5.
THEOREM 1.1, If p >1, g »1 and 1/p + 1/q = 1,
then
al/Pl/% £ a/p 4 v/
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for all nonnegative real numbers a and b,

PROOF., It is trivial for a =0 or b = 0, so
assume that a and b are positive, Let 0<k<1l, and
define

£(t) = k(t-1) - t¥ + 1,
for all t z 1, Since
£r(t) = x - ktk=1 > o,
Thus f is a strictly increasing function on [1,a>).
Hence, for all t 21,
f(t) z £(1) = 0.
Therefore,

tK € 1 + k(t-1).

a/b and k = 1/p. Then
(a/D)YP2 1+ 1/p(a/p - 1),
Multiply by b on both sides and recall that 1/p + 1/q = 1,

Suppose a 2 b, and let t

then
al/pbl/q‘& a/p + b/q.
If a<b, let t=Db/a, k =1/q. The above inequality
still holds.,
Corollary 1.1, Let x = (X7, X5, ...,y Xp) and

Yy = (¥1y ¥24 «eey ¥n). Then ;§l|xiyij < UX|p II¥lfq-
1=

PROOF, It is trivial if either x =0 or y = 0,
Assume xy # 0. Define aj = (ixij/”x”p)p and
b; = (\¥il /iviq)3. By the Theorem (1.1.),

Clxgl /iy p) sl Zuvilg) £ Cixsl Znxap)®/p + Oyl /ivig)Ya.
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Add the above inequalities for i1 =1, 2, ..., n. Then

the inequality is

n
S |x3vi] £ 0%t Vil -
Z vi| & iyt iyl

COROLLARY 1,2. Let x = (X, X5, ..., X,) and

y = (y1, y2, +vs ¥n). Then {Ix + yilly <nxip + Nyl
This is called Minkowski's inequality,

PROOF. By Holder's inequality one has

n
hx + yilP = =[xy +yalP e 2: xillxg o+ ys P74 Z¥il ity [P
i=1 1=

xg %y + yp | P4+ 2 Z ills + 3|0

1]
'ﬁM:s

1

SlxifpllCx + y)P/QHq + il (x + y)p/q”q
n 1/
=(lixllp +vilp) (2 (x5 + y3)P) q

n
Divide both sides of this inequality by ( El(xi + yi)p)l/q'
i=]1

Then
py1-1/q
(le(x +y)®) < N1l + 1Y)l

Therefore,

Nx + yllp €lxily +1Yllp

The Cauchy-Schwarz's inequality is a special case of

Holder's inequality when p =q = 2,
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3.2. BANACH SPACES

DEFINITION., Let X be a non-empty set. A metric
on X 1is a function d: X x X—>R which satisfies the
following conditions:

(i) d(x, y) 2 0 for all x, y € X, and

d(x, y) = 0 if and only if x = y;
(i1) a(x, y) = d(y, x), for all x, y € X;
(iii) d(x, y) < d(x, z) + d(z, y), for all
X, vy, 2 € X,

A metric space is a nonempty set X +together with a
metric 4 on X.

THEOREM 2.1. A normed linear space N 1s a metric
space if the metric d is defined by d(x, y) =lx - yi .

PROOF., Let x, y, 2 be any elements in N and d
be defined by d(x, y) =llx - yll. It is easy to show that
d 1is a metric on N,

(1) d(x, y) =llx -yl 20 and d(x, y) =0

if and only if x =y.

Since d(x, y) =] x - yll = 0 implies x -y = 0, or
X =Y
(ii) alx, y) =llx -y = 1] llx -y =1y - x|
= d(y, x);
(iii) da(x, y) ={lx =yl €lx -zl + lz -y

= d(x, z) + d(z, y).
Therefore, d 1is a metric in N.

DEFINITION. A metric space X 1is complete if
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every Cauchy sequence in X converges, A Banach space
is a normed linear space which is complete in the metric
generated by its norm,

All the examples enumerated in the last section,
except Cj(a, b], are Banach spaces.

EXAMPLE 2.1, Let Ly Dbe the space of all measurable
functions such that f 1is integrable on some domain D,
Then L, 1is a normed linear space with the norm in L,
defined by

el = (Jp £ 22,
The completeness of L, was proved by Riesz-Fisher [10].
Some examples and theorems of measure theory are presented
here and later chapters. It is out of this scope to prove
them, Kolmogorov [10] and Royden [12] give some detail.
A normed linear space may be complete with respect to one
norm but not complete with respect to another one,

EXAMPLE 2.2, The space of all bounded continuous
real functions on [a, b] is complete if its norm is defined
by

NIl = sup ﬂf(x)u .

But if its norm is defined by
b

e = (| r2ax) /2,
a

then it is not complete, This will be demonstrated in
Chapter 5.
THEOREM 2,2. Let {xl, .v+s X De a set of n

linearly independent vectors in a normed linear space N,



Then for any choice of scalars (Xl' cevssoln 0 where the
ol; are not all zero, there exists a positive number s
such that

The proof of this theorem may be found in [5].

THEOREM 2.3. Every finite-dimensional normed
linear space is complete,

PROOF, Let {Xl' ceey Xn} be a basis for the
space N, and {Ui} be a Cauchy sequence in N, Then
for each Uj

Uj =ol13X1 * oo+ niXno
where U
By theorem 2,2, for each € >0, there exists N>0 and

§$ >0 such that

n n
S(kzllo{ki "o(kjl) é”kZ:l (O(ki -D(kj)xk”

=llu; - Uz <8€

19

5 1s uniquely determined by AKki» K=1, 2, ..., N,

whenever i j >N, Hence {c(ki} is a Cauchy sequence in R,

therefore, it converges to {y for k =1, 2, ..., n,
Let u = dixl + .. + whxn. Then

Hui - u’l = ”(O(li - 0(1)}(1 + ... t (O(nl ‘dn)xn”

4y =Xy ([%2f) * +oo * [oni =]l Xall

< Empxqll o lxgl L., §/n'Han Al xp)l
- €,

Thus every Cauchy sequence 1is convergent, Therefore, a
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finite-dimensional normed linear space is complete,

3.3. COMPLETION

DEFINITION. Let X Dbe a metric space and A a
subset of X. A is said to be dense if A = X. (A
denotes the closure of A.)

EXAMPLE 3,1. The set of rational numbers is dense
in the space R of real numbers with the usual metric.

EXAMPLE 3.2, The set of polynomials in the space
C,{a, b] is dense in 1z [a, b]. This example is found
in {l}] .

DEFINITION, Let x* be a complete metric space and
X a subspace of X*. Then X is said to be the completion
of X if X =X .

THEOREM 3.1. Every metric space has a completion
and all of its completions are isometric.

PROOF. Let X be any metric space. Two Cauchy
sequence {Xng and {y,} of X are said to be equivalent
if %ig d(xp, yn) = 0, This relation is reflexive,
symmetric, and transitive., Therefore, all Cauchy sequences
which can be constructed from the elements of the space X
can be partitioned into equivalent classes of sequences,
Let X' be the set of all those classes of sequences. The
points in X* are denoted by A, B, etc., and {x,)}, {y,)
are Cauchy sequences in A, B, respectively. The distance

between two classes A and B 1in X% 1is defined by
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d*(A, B) = lim d(x,, ¥g). (3.1.)
n-»>w

Let € > 0 be given. Since {xng and ?yn; are
Cauchy sequences, then there exists N > 0, such that
\d(xp, ¥n) = A(xgs ym)| €] a(xp, yn) - dlxp, vm)| +
[d(xn, ¥p) - dA(xm, ¥y |
£ dlypy ym) + alxn, xp)
< €24+ €2 =€,
for all n, m > N, Thus id(xn, yn)j is a Cauchy sequence,
But d(xy, yp) are real numbers, hence the sequence has a
limit. This proves that the 1limit in (3,1) does exist.
Let ?xn] , 3x'n) €A and Jynl, fy'y) €B. Then

lim d(xp, X'n) = 0 and 1lim d(yp, y'n) = 0
n-—e n->o

implies that
d(xpy ¥n) - a(x'ps ¥'0)| £ [d(xn, ¥n) - dlxn, vy

+ ld(x'n' yn) - d(y'n' X'n)]

N

d(Xn, X'n) + d(yn’ y'n)'
That is

lim d(xp,, yn) = 1im d(x'p, y'n)'
n->o n->e

Therefore, (3.1) is well defined.

The distance defined by (3.1) is a metric in X¥

since

(i) d¥*(A, B) = lim d(x,, yp) = 0; d4%(A, B) = 0
n—>o
)

if and only if 1im d(x,, y,) = 0 which implies ixn)
n->w



22

and {yn] are in the same equivalent class, therefore,

(ii) a*(a, B) = 1im d(x,, y,) = lim d(y,, Xp)
n->@ n-&

= d*(B’ A);
(iii) Since
Take the 1limit as n approaches infinity, then

lim d(x,, ¥,) € 1im d(x,, 2z ) + lim d(z,, Yp) -
n—->® n--wo >

Hence the triangle inequality holds in X*, Therefore X¥
is a metric space,
To each point x € X, there corresponds an equivalent

class in X¥, Indeed, the constant sequence J{xpj,

X, = X for each n, is a representative of this class,
Let x = 1im x,; and y = 1lim y,. Then
n-<w n>e

d(x, y) = lim d(x,, yn).
n->w

Therefore, X 1is embedded isometrically in X¥, Thus,
there is nothing to distinguish between X and its
corresponding class in X*¥ and X can be considered a
subset of X¥,

Let A be any class in X¥, {xng € A, and € >0
be given, Then there exists an N such that for all

n, m >N one has d(x,, xy) < € . Let fxn; be a constant

net

segquence converging to xp. Then
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d*(xp, A) € d%(xn, Jx4)) + a*( {x,], &)

= 0 + 1lim d(x,, xm)
m->e0

< &,
Hence X = X*,

It remains to be proved that the space X* is
complete, Let {AnS be a Cauchy sequence in X*, For
given € > 0, there exists N > 4/ such that
d*(Ap, Ap) < €/4 whenever n, m > N, Construct a sequence
{xn) of which each point x, in X, Let B € X* De
a class corresponding to x, such that d*(xp, 4,) < 1/n.

Since d(xp, Xp) = d¥(B,, By)

€ d¥(Bp, Ap) + d*(Ap,, Ap) + d*(Ap, Bp)
< 1/n+ S+ 1/m
<+ S+ S/ o= 3€/,
Thus, {xnz is a Cauchy sequence, Let A Dbe the class
containing the sequence <Xn3' Then
d*(Ay, A) £ d*(Ap, Bp) + d*(Bp, A)

< 1/n + 1im d(x,, x;)

n->ow
<€ o+ 3¢ = ¢,
Therefore, X¥ 1is a complete metric space.

Finally, one must prove that for any two completions
of X are isometric., Let X¥ and X¥*¥ be two completions
of X and Xy, X Dbe subspaces of X¥, X¥¥ respectively,
which are isomorphic to X, Therefore, X g’XZ.

Let A Dbe any element in X¥, By the completion,
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there exists iAn} € X7 which converges to A. Then the
corresponding sequence ?Bn}é? Xp 1is also a Cauchy
sequence, since X; 3'X2 hence dj(Ap, Ap) = do(Bp, Bn),
where dj and dp are metrics of X¥, X#¥ respectively,.
Since X** is complete, it contains an element B such

that

B = 1lim B,.
n-—>o n

Associate B € X#* with A € X¥*¥ which is originally
chosen, Define fi1 X¥* —>X¥%¥ Dby f(A) = B, It is easily
seen that f 1is one-to-one and onto, Let x, y € X%,

Then there exist sequences {xn;, {yn} in X converging
to X, ¥y respectively. Since f preserves convergence,
£ ( {xng), f(Jyn}) converges to f(x), f(y) respectively.
Then

dp(£(x), £(y)) = lim dy(£(3x3), £(Syn)))

n->w

n—>»c

= dy(x, y).
That is, f preserves distance, Hence X¥ & x#%,
EXAMPLE 3.3. Let Q be the set of all rational
numbers, Then R 1s the completion of Q.
EXAMPLE 3.4, Let L,[a, b] be the set of all
measurable functions f such that f° is integrable on

la, bl. Then Ipla, bJ is the completion of Cp[a, bJ.

This example in found in 110],



CHAFTER 4
HILBERT SFACES

4,1, INNER PRODUCT SFACES

The inner product of two vectors u = (xl, couy xn)

and v = (y1, ...y ¥Yp) in the n-dimensional linear space
R" with real components is given by the quantity
(u, v) = xqy7 + ... + X yn. (&.1.)
DEFINITION, An inner product space S 1s a linear
space over the field R of real numbers with a function
S x S—>R denoted by (u, v). The scalar (u, v) is
called the inner product of u and v which satisfies
the following properties:
(i) (u, v) = (v, u), for all u, v € S;
(i11) (u+ v, w) = (u, w) + (v, w), for all
u, v, w € 5;

(iii) (Au, v) =A(u, v), for all o €R;

(iv) (u, u) > 0 and (u, u) = 0 if and only
if u = 0,

R is an inner product space if the inner product
is defined by (4.1).

EXAMFLE 1.1. The space Cy[a, b] of all bounded
continuous real functions defined on [a, b] 1is an inner
product space if its inner product is defined by

(t, &) = 2 t(x0e(x)arx),

where P(x) is an increasing function on [a, b]. This
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proof will be given in Chapter 5.

EXAMPLE 1.2, The linear space RS of all 3-tuples
of real numbers in an inner product space if the inner
product of two vectors x = (x1, X, x3) and y =
(yl. Yoo y3) in R3 is defined by

(x, ¥) = (x3 + x)(yy + y2) + xoyp + (xp + x5)(yp ¥q)

THEOREM 1.1. Let x and y be two vectors in an

inner product space, Then
l(x, wl< (x, Y2 (v, »Y2,
This inequality is called the Schwarz inequality.
PROOF. Let K= (y, y) and (= -(x, y). By the
definition,
0 <€ (xx +0 Y, X +(3y)
= o?(x, x) + 2:B(x, ¥) + B%(y, ¥)
= (v, V)%(x, x) - 2(x, ¥)2(y, ¥)
+ (x, ¥)%(y, ¥)
= (v, ¥)(x, x) - (x, ¥)%.

This inequality is trivial if y = 0., Assume y # 0, That

is

2 4 .

(x, ¥)° £ (x, y) * (y, ¥).
Therefore,
1/2
(x, M1 £ (x, Y2y, /2,
THEORENM 1.2. Any inner product space S 1is a

normed linear space. The norm is defined by Ilix!l = (x, x)l/z.

PROOF,., For each vector x in S,

(i) The first axiom of normed linear space is
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satisfied trivially.

(ii) Ix + ylP

(x+y, x+y)=(x, x) +
2(x, y) + (y, ¥)
< (x, x) + 2(x, x)l/z(y. Y2 . (v, ¥)
= [|x)1? + 20xll * iy + [yi?
= (] x!i +l|yH)2
Take the square root on both sides;
Wx + yll £nxtl + Uyl
(111) fixll = (x, )2 = Wi (x, 02 = Iz,
In the n-dimensional linear space Rn, many
geometrical questions involve the length of a vector and
the angle between two vectors. The inner product plays
an important role in these problems,
The length |ix |l of any vector x 1is defined to
be the non-negative square root,
Wxt = (x, x)l/z.
This is possible since (x, X) 1is a nonnegative real
number,
Let x and y Dbe any two vectors in Rn. Then
the difference x -y, (Fig. 4.1), of x and y 1is given
by

nx - sz = ||zl + HyH2 - 2)x!lyll cosd.

Fig. L',"l.
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Since [|x -y = (x -y, x - ¥) = (x, x) - 2(x, ¥) + (v, ¥),
one has

cos® = (x, y)/l|xI| * (| yi.
Thus two vectors x and y are orthogonal if and only

if (x, y) = 0,

4,2, HILBERT SPACES

The set of all complex numbers is a complex linear
space under addition and multiplication,

DEFINITION., A Hilbert space H 1is a complex
Banach space in which there is defined a complex function
H x H-—>C, denoted by (x, y), with the following propertiess

For all x, y, z in H,

(i) (oxx + By, z) =x(x, z) + 3(y, z), for all

oA, (B €C

(11) (x, ¥) = (v, x)3

(ii1) (x, x) = Uxi°,

EXAMPLE 2.1, The set of all complex functions
defined on IO, 2HJ with the property /&b, 27]‘fj2<:a7
is a Hilbert space if the norm is defined by

1= S, ong 11222,

4,3, ORTHONORMAL SETS
DEFINITION. A set {e;] in a Hilbert space is

called orthonormal provided
(e

i ej) = 813,

where Erij is the Kronecker delta symbol defined by
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g { 0 if 1 # ]
1 1 if i = j.

DEFINITION. An orthonormal set je;)] is said to be
complete in an inner product space S if it is not
properly contained in any other orthonormal set,

THEOREM 3.1. Let {e1, ..., en) be an orthonormal
set of a Hilbert space H. Let P Dby any element in H,
Then

ﬁ | (P, e5)|® = 1IPI2.
i=1

This inequality is known as Bessel's inequality.

PROOF,
a 2
0 [P - = (P, ej)eyll
1=1
n n
= (P - Z (P, e-l)ei, P - 2 (F, ei)ei)
i=1 i=1

n
= (Pl I) - 2 (Pv ei)(Pv el) -
i=1

n n
Z (Pl ei)(ei' P) + Z (P. ei)(Pl ei)
i=1 i=]1

n
(P, P) - Z (Pl ei)(eil P)
i=1

n
2
= ||PI? - fiJ(P' e;)| <.

Therefore,

T M5

Jee, )] 22 11
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The geometrical interpretation of this inequality
is that the sum of the squares of the components of a
vector is less than or equal to the square of the length
of the vector, If the orthonormal set is complete, then
equality holds, This is known as Parseval's equation,
THEOREM 3,2, Let {ei; be an orthonormal set in
a Hilbert space H, Then for any element P in H, the
set S = {ei: (P, e;) # O} is either empty or countable,
PROOF, Suppose S 1is not empty. Let
Sp = {esr |, e)[2> [IR12/n).

for all positive integers n, By theorem 3,1,
hn 2 >
> [(®, ep)|" =PI
i=1

Therefore S contains at most n - 1 elements. Since
|(P, e;)] > 0 for all e; in S,. Hence S =] Sp
and therefore S 1s countable,

The next theorem is the general form of Bessel's
inequality.

THEOREM 3,3. Let {eiﬁ be a nonempty orthonormal
set in a Hilbert space H, Then

> (P, e;) < |l PIF (3.1.)

for all P in H,

PROOF, With the same construction as in the
preceeding theorem, S 1is either empty or countable, If
S is empty, then ZZI(P, ei)[2 = 0, In this case, the

theorem is trivial, If S 1is countable, it means S
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contains finite or countably infinite number of elements.
In the case of the number of elements in S Dbeing finite,
theorem 3.1 is the special case, Suppose S contains
countably infinitely many elements, and S = iel, ceey
€hy ves 3. By Dirichlet's theorem, any infinite series
resulting from the rearrangement of terms of an absolutely
convergent series is also absolutely convergent and has
the same sum as the original serieszp Therefore,
EJ(P, ei)]2 can be rewritten as %zi\(P, enﬂ 2  and
(3.1,) reduces to the assertion that
Ij:l[(P, en) |2 &Il FJ°. (3.2.)

Theorem 3,1 shows that no partial sum of square of the
components of a vector P can exceed IIPI, Hence (3.2)
is true.

THEOREM 3.4, Let ﬂeig be an orthonormal set in
a Hilbert space H. Then {ei} is complete if and only
if Parseval's equation holds, that is,

>|(F, e1)]? = llBI,

for each P 1in H,

PROOF, Assume ieig is an orthonormal set in H,
Let P be any element in H and P' =P - Z (p, ej)e;.
Then, for all J,

(P', ej)

(P 'Z(P ’ ei)ei’ ej)
(P, ej) - (Z(Po ei)v ej)
= (P, e3) - (P, e3) = 0.



That is, P' 1is orthogonal to all e;. Suppose P' # 0,
choose e = P'/||P|. It is clear that ||e/= 1 and is
orthogonal to all ej. Then {eig U {e} is an
orthonormal set in H which contains §ei; properly,

This is a contradiction since §eis is a complete
orthornormal set,

Next, assume that Parseval's equation is true.
Suppose {eix were not complete, Then there exists a
nonzero element e in H which is orthogonal to all
e; and |lell =1 such that §eig U {e) contains {ej]
properly. Then

lelf = Tlte, e5)|? = 0.

This implies that e = 0, which is a contradiction,

DEFINITION. An orthonormal set 3ej, is said to
be an orthonormal basis for a normed linear space N 1if
§eig is complete in N,

EXAMFPLE 3,1, Let ej; be the n-tuple in R™ such

that the ith component of e; 1s 1 and all the other
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components are zero, Then {el, ooy en3 is an orthonormal

basis for RT,

THEOREM 3.5. Every Hilbert space H has an
orthonormal basis,

PROOF, Let E Dbe the collection of al} nonempty
orthonormal subsets of H, (E,<) is a partially ordered

set., For any totally ordered subset S of E, let S' be

the union of elements in S. If x and y are any elements
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in S', then there corresponds S and Sp in S such that
x €S1 and y € Sz, By the definition of a totally
ordered set, either S5S; € Sp2 or Spo &€ 53, Now assume
that S; < Sp. Then x and y are both contained in Sj.
Since S' 1is an orthonormal set, then S' 1is an element
of E which is an upper bound of all the elements in S,
By the Zorn's lemma, E contains a maximal element, That
is, H contains a complete orthonormal set, Therefore,
H has an orthonormal basis,

THEOREM 3.5. Let {e;)} be an orthonormal basis
for a Hilbert space H, Then for any element f in H,

f=2Z(f, e;) e5.
PROOF. (f -2Z>(f, ejlei, ej) =(f, e;) - (Z(f, ej)e;, e;)
= (f, e;) - (f, e;) =0,

for all i, By the definition of an orthonormal basis,
there is no element in H which is orthogonal to all the
e; except the zero vector. Hence f -3>(f, ej)le; = O,
Thus, f =2>(f, e;j) ey for any element f 1in H,

THEOREM 3.7. Let T Dbe dense in a Hilbert space
H, If S 1is an orthonormal basis in T, then S 1is also
an orthonormal basis in H,

PROOF, Suppose there were an element f in H
which was orthogonal to all the elements in S. Let s
be the closure set of S, Then for all g Efgl there
exists a sequence ?gn} of elements in S converging

to g. That is, |lhn|{| >0 as n->w, if hn = g - gn.
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Let € >0 be given, By the Schwarz inequality,

(fl g) - (fp gn)' = I(fp g) - (fp g - hn){
= '(f' hn)’
S0 £l 1l g

Thus (f, g) = lim (f, &n).
noo

By the hypothesis, (f, gp) = 0 for all gn € S.
Hence (f, g) = 0 which implies that f 1is orthogonal to
each element in S. But the previous theorem guarantees

that S = T. Hence S is not a complete orthonormal set.

This is a contradiction,

4,4, ORTHONOMALIZATION

THEOREM 4,1. For any orthogonal set {PFj| in a
normed linear space, there exists a corresponding
orthonormal set, This is obtained by the Gram-Schmidt
process,

PROOF. P'l % O fOI‘ all i = O' l, 2' e 9 ay hence
I[Boll > 0. Let ey = Po/lPoll. It is evident that |legl/ = 1
and ey 1is orthogonal to Py for k # 0, Let
P'y =P, - (Py, egleg. Then Py1' # 0 and

(Pl', eo) = (Pl’ eo) - (Pl' eo) = 0,

Hence e, = P1'/lIP1'l] 1is orthogonal to ey and leql) = 1.
Let P2' = Ppr - (PQ, eo)eo - (Pz, el)el. Then Pz' % 0

and

]
o

(Pz'p eo) = (P2v eo) - (sz eo)

(Pz', el) = (Pop, el) - (Pp, el) = 0.



Hence ep = Po'/|\P,'|| is orthogonal to ey, ez, and
lleol] = 1, Continuing in the same way, one obtains an
orthonormal set 1Jeg, €1, «+vy €ny oo } with the
required property,

EXAMPLE 4,1, Use the Gram-Schmidt process to

normalize the orthogonal set {Lo(x), Ll(x), Lo(x), LB(X)Z

of polynomials in CZ[Fl, +1], where

Lo(x) = 13

Lq(x) = xi

Ly(x) = $(3x2 - 1);

Ly(x) = (5%3 - 3x).

SOLUTION. Let ||Lg(x)|] = (.Li Loz(x)dx)l/2 =

(j:i dx)l/2 =,/2, By the Gram-Schmidt process,
Eo(x) = Lo(X)/”LO(X)” = l/(\/z_v

and
IEq(x) = (f_i 172 a2 = 1,
Eq(x) 1is also orthogonal to Lyp(x) for k =1, 2, 3,
Let L;'(x) = Ll(x) - (L4, EO)EO(X). Then
E1(x) = L' (x)/1IL1" (0] =,/3/2 %, and ||E1(x)]) = 1.
With the same process, it is easy to find
Ez(x) = v/5/8(3x% - 1), and l[E,(x)1] = 1;
= /7/8(5x7 - 3x), and IE4(x)| = 1.
where Ei(x) is orthogonal to all Ej for i £ .

Therefore, {Eo(x), E,(x), E,(x), EB(X)} is an

orthonormal set generated by §Lo(x), Ly(x), Lp(x), LB(X)}.
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CHAFTER 5
THE SPACE C,{a, D]

5.1, Cg[a, b]

In this section, the main purpose is to prove that
the set CsYa, b] of all bounded continuous real functions
is a normed linear space.

First of all, C,[a, b] 1is not empty since it
contains at least the constant functions., Define the sum

and the scalar product of any two functions f and g in

CZ [av b] by

(f + g)(x)
(£ £) (x)

f(x) + g(x);
«(f(x)).

I

Since f and g are continuous, for given € > 0,
there exists Si>'o and 5;2 > 0 such that
1f(x) - £(y) | << whenever Kk - y|<&,
and
le(x) - aly)] <2 whenever |x - y|<3j,
where x, y € [a, b]. Choose § = mirx%gi, Sé;. Then
(£ + 2)(x) - (£ + &) (y)|= [£(x) -~ £(y) + g(x) - e¥)]
£lE(x) - £y + | e(x) - &ly)]
< €02+ €2 =€,
Hence f + g € C,{a, b].
Also, for any f, g € Cz{é, ﬁ], x‘E[a, b], and

< 3 € R,



37

(X f +Be)(x) = ) (x) + (Pg)(x)
= X (£(x)) + ple(x)),
Moreover, f + pe € Cz[é, b]/. Thus C,[a, b] is
easily seen to be a linear space,
Define
(£, &) = 2 f(xex)a)(x),
where ?(x) is a strictly increasing function defined on

{a, b]. Then

(1) (£, &) = [2 t(exalx) = £ e(x)r(x)al(x)

(gv )
(11) (£, g+ 1) = 2 £(x)(e(x) + h(x))a’(x)

2 rexa)x + 2 rxnxaXx)

= (f, g) + (f, h);
‘s , b _ Q b
(1) (f, g) = Lf(x)e(x)ar(x) =of, £(x)ex)ar(x)

=(f, g), for allX € R;

b
(iv) (£, £) =J; 10| 20000 2|2 Pl zo.
If (f, f) = 0, then jz £2(x)d’(x) = 0, By the First

Mean Value theorem, there exists m such that

JZfz(x)dy(x) = ml}%b) - V(ai],

)
where inf{fz(x))é m £ sup§f2(x)§. Suppose f(x) # 0, then

m > 0, Since f?x) is strictly increasing in [a, bJ,
it follows that
JZfZ(x)dg(x) = n[Y(®) - P(a)] > o.
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This contradicts the fact that jzfz(x)dy(x) = 0., Therefore,
Cg{a, bj is an inner product space,

Define the norm of f by

I£i= (s, D% = (Pr2al) 2,

Then

(i) Wfll 20, and ||fil = 0 if and only if f(x) = 0.
This follows by property (iv) of an inner product space,

(ii) Let f, g €Cp[a, p]. By using Schwarsz's
inequality (f + g, f) < |If + g|] * | fi], which was proved
in Chapter 4,

Nt + g|)?

(f+g, £+g)

=(f+g, £f) + (f+ g, g)

S|If + g WU+ f + gl * | gV

= f+ g« UL+ ngl).
If f+ g = 0, the triangle inequality is trivial. So
assume f + g # 0 and ||f + g]| >0, Divide each side by
£ + g”, then

£+ ell <y £1] + | &lf.
(iii) For any scalar « € R,

ol £ 1] = £, o) L/2

il

( Soele2(x)af(x)) Y/
= (o(szfz(x)d)?(x))l/z

-

ol
Therefore, C,[a, P] is a normed linear space. But C,[a, bJ

fails to be a complete normed linear space as the following
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discussion indicates,

Let {fn} be a sequence of bounded continuous real

functions defined by

1 0 £x £1/2,
£(x) = {-2%(x - 1/2) + 1 1/2 £ x £ 1/2 + (1/2)",
0 1/2 + (1/2)1 2 x £ 1,

Let €> 0 be given, assume m > n, there exists
n=2/ >0 such that

£y = fnll = (178 * (/200((2D + 2m) (x - 1/2))%ax) /2

+

1/2 + (1/2)n 2..11/2
C s s (1§2§m (-20(x + 1/2) + 1)%dx)

(2m - 2™ (173 + 1/23Mm % 4 an(a/3(1/2n - 1/2m)3)1/2
<am1/3 - 1/29MY2 215 e (1/em) 12

K143+ 2/N =14/3 + €

<<,
Hence {fn} is a Cauchy sequence, There exists a sequence

{fn} which converges pointwise to f(x) = 1, But

I£n(x) = 1l = f 5 4 (1/0)n(-D)%ax)1/2

i

2
(1 - 172 + 172M Y2,
Then |If,(x) - 1l > 14/2 as n->®, Therefore, {fn} does
not converge with respect to the given norm, This proves

that Cz[g, b] is not a complete normed linear space.

5.2, THE SPACE L, [a, b]

It can be shown that Ipfa, b] of all square measurable

functions on ([a, b] 1is a normed linear space by using the



analogous processes as in the preceeding section,

The proof of the campleteness of L,[a, b] is
given by Kolmogorov {lO].

It is shown in [12], that every bounded and Riemann
integrable function on fa, b] is Lebesgue integrable.
Since all the functions in Cgfa, b] are bounded and
Riemann integrable, Cp[a, b] is a subspace of L,[a,b].

The concepts of measurable functions and Lebesgue
integration lie beyond the scope of this paper. The
interested reader is referred to [10), and le] for a
development of these topics, In order to preserve the
coherence of this paper the following theorem, found in
{10}, is stated here without proof,

Theorem 2,1, L,[a, b] is the completion of C,[a, b
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CHAPTER 6
ORTHONORMAL FPOLYNOMIALS IN C,{a, b]

6,1. ORTHOGONAL SETS

DEFINITION. A function w(x) defined on [a, b]
is called weight function provided it is continuous on
(a, b}, positive except possibly at a finite number of
points, and _jg x¥ w(x)dx exists for k = 0, 1, 2, vuu &

let P(x) and Q(x) Dbe two integrable functions
on [a, b] and /(x) strictly increasing on Ya, bJ.
Then the inner product of F(x) and Q(x) 1is defined by

(7, @) = f2 P(xa(x)al(x).

If the derivative of f(x) exists and is continuous,
then it can be said that P(x) and Q(x) are orthogonal
with respect to the weight function w(x) = f{x).

If ?(x) is discontinuous at most finite points
Agy @1y +e0y 8y on [a, b] and a £ap <aj < ... <ap £ b,

Then
SPr0emalx) = S %aa/ + filraal + ... + [ paa’,

The weight function is still defined,.
DEFINITION, Two functions P(x) and Q(x) are
said to be orthogonal on [a, b], if ‘
. b
(F, @) = J° P(x)a(x)a/(x) = o.
a
EXANPLE 1.1, Let P(x) = x and Q(x) = x* - 1/3.

Then P(x) and Q(x) are orthogonal on [-1, l] with



respect to the weight function w(x) = 1,

DEFINITION., {F;(x)] a set of functions is called
an orthogonal set provided that the Pi(x) are mutuvally
orthogonal, and P;(x) has degree 1. In other words,

(i) For each i, P;(x) =o/ixi + a polynomial of
degree < i, with o(; # 03

(i1) (P4, Pj) = 0, whenever i # j.

EXAMPLE 1.2, Jcos kx} and {sin kx; for k = 0,
1, 2, ... are orthogonal sets on the interval [0, 277]

with respect to the weight function w(x) = 1,

6.2, ORTHONORMAL POLYNOMIALS
)

THEOREM 2.1. Let 3Py(x), ..., P (x); Dbe a set
of ORTHONORMAL polynomials on J[a, b]. Then it is linearly
independent,

FROOF. Let dgPy(x) + ... + dyPn(x) = 0. Since
0 1is the zero vector, so (Fj(x), 0) = 0 for all
i=0,1,2, «.., n, Then

= dj (P;(x), Pi(x)).

But P;(x) # 0, and thus d; = 0 for i=20,1, 2, ..,, n,
Therefore, {Po(x), ceey Pn(x)g is linearly independent.

THEOREM 2.2, Let §F (x), ..., Py(x)] be an
ORTHONORMAL set of polynomials defined on {a, b]. Then
for any polynomial P(x) of degree £ n,

P(X) = dopo(x) + .0 t ann(x)y

L2
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where d; = jz P, (x)F(x)w(x)dx are uniguely determined
by F(x). ‘

PROOF. Let P(x) be a polynomial of degree n with
leading coefficient a,. Then

P(x) = anxn + a polynomial of degree < n,
P, (x) =o(nxn + a polynomial of degree < n, where o, # O.
Let d, = ap/xy,. Then

P(x) = d,P(x) + a polynomial of degree < n.
Repeat the processes for Pp_1(x), ..., Pgo(x). Then

F(x) = dgPp(x) + ... + d Pu(x),

Since

(P;, P)

JZ Pi(x)P(x)w(x)dx i

(Py, dgPp + «.v + dpPp)
= dj,
for 1i =0, 1, «vs, N, Therefore, the coefficients are
uniquely determined by P(x) itself.

COROLLARY 2,1, The set {Pq(x), ..., Pp(x)) of
ORTHONORMAL polynomials forms a basis for the n-dimensional
linear space consisting of all polynomials of degree £ n,

COROLLARY 2,2, If P(x) is a polynomial of
degree < n, Then P(x) is ORTHONORMAL to F,(x).

THEOREN 2.3, Let ﬁ'Po(x), cee Pn(x)j be an
orthonormal set of polynomials defined on [a, bJ, Then
there exists A, Bp, and Cp with ApCh # 0 such that

Fpo(x) = (Apx + Bp)Pn_1(x) + CPp_o(x), (1.1)

where F_j(x) = 0, (1.1) is called the three-term recursion
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formula,

FROOF., Let Fp(x) = apx™ + a polynomial of degree n,
an-1 1is the leading coefficient of Pp_1(x) and a,_; # 0.
Hence Ap = ap/ap_; # 0. Then Pp(x) - ApxP,_1(x) is a
polynomial of degree n - 1., By theorem 1.2,

Pp(x) - A xPp_1(x) = dgobp(x) + ... + dy_1Fy_1(x).
Then

P, (x) (Apx + Bn)Pp_1(x) + CpPp-2(x).
To determine B,, and Cpn, take the inner product of (1.1)
with Pp_1(x) and P,_o(x) respectively. Then
Bh = -An(xPn_1, Pn-1)
and
0= (P,, Ppp) = Ap(xP,_q, Py p) + Cp. (1.2)
Take the inner product of Py_7(x) = (An-1Xx + Bp_1)Pp_o(x)
+ Cn-1Pn-3(x) with Pp_1(x). Then
1= A, 1(xPn_p, Pp_7)
= Ap-1(Pn-2, xPn-1),
since (xP,_», Pp.7) =ﬁfb (xFp_p)Pp_qw(x)dx
_] (Pp-2) (xPy_1)w(x)dx
= (Pp_p, xPp_7).
Substitute An.7 into (1.2)., Then
Cp = -(An/Ap_1).
Let {Po(x), ey Pn(x)3 be an orthonormal set of polynomials
defined on [a, b].
THEOREM 2.4, The zeros of the polynomial Pp(x)

defined on La, bl are all real and distinct and interior
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to this interval.

PROOF, Since P, (x) 1is a polynomial of degree
n # 0, Pn(x) changes sign n times in the interval
(a, b]. PL(x) is orthogonal to a polynomial Py(x) = 1

of degree 0 with respect to the weight function w(x).

Then
2 B (x)w(x)dx = 0
o, Fn(x)w(x)dx = 0.
Suppose Pp(x) Jjust changes signs at m points
X1y +es9 Xp, (m < n), in the interval [a, bJ. Let P(x)

be a polynomial of degree m and
F(x) = (x - x7) o0 (x - %),
Then P(x) has the same sign as P,(x) does so that the
product Pp(x)F(x) does not change sign in [a, b]. Then
52 Pp(x)P(x)w(x)dx # O,
This contradicts the fact that (Pn(x), P(x)) = 0,

THEOREM 2.5. Let i Po(x), F1(x), ..., P (x)] be
an orthonormal set, then P,(x) and P,_;(x) have no
common zeros.,

PROOF. To prove this theorem by induction, F; and
Fy have no common zero when n = 1, Assume n = k the
theorem is true, Suppose Pk+l(x) and Pk(x) have
common zero, say Xp. Then by recursion formula

CxFr-1(x0) = Pra1(X0) - (Agr1xg *+ Byr1)Prc(x0).
Since Pyuq1(xg) = Pr(xg) = 0, It implies CxFr-1(xg) = 0,
But Ck # 0 so that Pk_l(xo) = 0, X 1is also a zero

of Py_7(x). This contradicts the induction hypothesis



that Py(x) and Py_;(x) has no common zeros,
THEOREM 2.6, Let {Py(x), ..., Pn(x)] be an
orthonormal set of polynomials defined on [a, b].

If £(x) = 5 a3Fi(x), e(x) = & 3P (x), then

P rxex)ax = & ap

a ir

FROOF,

P reax = S22 2385 (x)) (5, b3P;(x))ax

n n b
= 3 .Z . . .
f%o aj 520 bJ la Pl(x)PJ(x)dx

n
= 2iPi

L6



CHAPTER 7
SFECIAL ORTHOGONAL POLYNOMIALS

7.1. SOME EXAMPLES OF ORTHOGONAL SETS

Orthogonal sets are very important in approximating
continuous functions, It is quite efficient to use an
orthogonal set in approximating continuous functions,
Besides that, sets of orthogonal polynomials also play an
important role in physics., The Hermite polynomials are
used in connection with a form of the Schrodinger wave
equation in quantum mechanics and the Laguerre polynomials
are used in connection with the wave equation of the
hydrogen atom,

Table 7,1 illustrates several kinds of orthogonal
polynomials and their weight functions. Legendre polynomials
and Chebyshev polynomials are two special cases of Jacobi's
polynomials, vacobi polynomials reduce to Legendre's
polynomials if K= B = 0, and to Chebyshev's polynomials
when &L = 8 = -1/2,

Some orthogonal sets have a very interesting
phenomena, That is, those polynomials Pn(x) contain
only even powers of x or only odd powers of x according
to whether n 1is even or odd, Let Pn(x) be defined on
a symmetric interval [-a, a], with an even weight function

w(x).



Pn(x) w(x) (a, D]
(1-xF (1+x)f
J acobi 1, 1]
12( > 'lo B> 'l)
Legendre 1 -1, 1)
Chebyshev (l-xz)-l/2 (-1, 1]
Laguerre x* e~X [O,OO)
(x>-1)
. -
Hermite eX - ,00)
Table 7,1.
To prove the above assertion, let Q(x) be any

polynomial of degree

less than n. Then

)/a Po(x)Q(x)w(x)dx = 0.
-a

Changing variable by

0O =
Since Q(x)
so is Q(-x)., Thus,

_X'

-a

- ,[ Pn(-x)Q(—x)w(-x)dx

a

J[a Pn(-x)Q(-x)w(x)dx.
-a

P (-x)

has the same sign on the even powers of

sign on the odd powers of x as

P (x).

Pp(x) = (-1)"p,(-x).

is a orthogonal set,

is a polynomial of degree less than n,

and opposite

Therefore,

48

Pp(-x)
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This equation shows that Pn(x) contains only even powers of

x or only odd powers of x, according as n 1is even or

odd,

7.2, THE DEVELOPMENT OF THE CHEBYSHEV POLYNOMIALS

THEOREM 2,1, Let T,*(x) = cos n§ defined on
{0, 1] and x = (1 - cos@)/2, where 0486 T, Then
Th* 1s a polynomial of degree n, This polynomial is
sald to be a shifted Chebyshev polynomial,

PROOF. This theorem may be proved by induction.,
The relation x = (1 - cos®)/2 can be written as
cosb= 1 - 2x, which in turn says that cos & is transformed
into Ty*(x). That is, T *(x) = cos® . Suppose it is
true when n = k, Since

cos(k + 1)©

cos©®cos kB - sin®6sin k6 ,

and cos(k - 1)8 cos©@cos kO + sin®sin k6,
Adding them one has,

cos(k + 1)6

2 cosB cos k8 - cos(k - 1)6

2(1 = 2x)Ty*(x) - Tr_1*(x).
This is a polynomial of degree k + 1. Thus Ty41%*(x)
= cos{k + 1)O ,

Use the trigonometric integral,

K §
—[) cos nfcos mo d€ = C 0,

where Co =T and Cp = /2 (n # 0). With the change of
variable x = (1 - cos @ )/2,

1 Tp*(x)Tp*(x) dx = Coo .
Jo A T %mn
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Therefore, the set of shifted Chebyshev polynomials is
orthogonal over [0,1] with respect to the weight function
(x(1 - x))'l/z. With the aid of three-term recurrence
formula, the first four shifted Chebyshev polynomials are
To*(x) = 1,
T1*(x)
T,*(x) = 1 - 8x + 8x2,

]

1l - 2x,

TB*(X) =1 - 18x + 48%% - 32x3,
These polynomials defined on [O, l] are graphed

in Figure 7.1.

T )

Fig., 7.1.

The Chebyshev polynomials Tp(x) are defined in
terms of the shifted Chebyshev polynomials Tp*(x) by
the relation

Th(x) = Tp*((1 - x)/2).
Tp(x) is defined on [~1, 1], since
Tr*((1-x)/2)

cos né@,

Tp(x)

|l
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where 0% 0 27T,

According to the trigonometric identity,
cos nfcos m@ = % cos(n + m)9 + cos (n - m)g ,
it can be rewritten as

Tn(X)Tp(x) = 5 [Tpan(x) + Tp_p(x)) .
Setting m =1,
Tty (X)) = 2xTp(x) = Tp_1(x),

This formula is called the recurrence relation of the
Chebyshev polynomials. This formula is quite useful in
approximation problems because it is self-starting and
efficient in terms of computation time and storage space.

With the aid of the recurrence relation, the first

four polynomials are listed below:

To(x) = 1,
T,(x) = x,
To(x) = 2x° - 1,
T3(x) = 4x3 - 3x,
! Ta (X)
)
—— > X
-| i
209
-] Ty(x)

Fig. 7.2.



52

It is not a loss of generalization to consider
only the interval [—l, l], since by a change of variable
one can handle an interval ([a, b].

The orthogonality of the Chebyshev polynomials
over [-1, 1] with respect to the weight function
(1 - xz)'l/2 can be proved in the same manner as in
the case of the shifted Chebyshev polynomials.

From the relation

Tn(x) = cos nx,
it is true that |T,(x)] £ 1 for all x¢& [-1, 1].
This property is very important in the least-square
approximation by Chebyshev polynomials,

Theorem 2.4 in Chapter 6 guaranteed that the zeros
of Tn(x) are all real, distinct, and lie on the interval
(-1, 1].

EXAMPLE 7.1, Find the roots of T3(x).

SOLUTION, S

i
'
1
1
t
1
(
1
1
1

AN
_VF‘* 3 |

-A

Fig. 7.3.
In Figure 7.3, S 1is a semicircle with radius 1,
the relation between x and B is

X = cos 6, 0£0<T,
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Let T3(x) = 0, Then
T3(x) = cos38 = O,

Hence 38 = nw+ /2, n =0, 1, 2, Thus the roots of T3(x)
will be at 8= T/6, T/2, and 5M/6., Then since x = cos@,
x =,/3/2, 0, and =/3/2, They are real, distinct, and
lie in (-1, 17,

In general, the zeros of Chebyshev polynomials of
degree n are

X = cos(ZK-l)ﬁ/Zn , k=1,2, ..., n,
The zeros are symmetric with respect to the origin,
Moreover, the roots accumulate around the end points -1

and 1 for large values of n,



CHAPTER 8
APPLICATION OF ORTHOGONAL POLYNOMIALS

8,1, LEAST-SQUARE APPROXIMATION TO A CONTINUOUS FUNCTION

A set G = {Pi(x)j of polynomials distinguishes
points of [a, b] if the P;(x) are defined on [a, D]
and for each pair of points x; # x; of ([a, b] there
is a function Py(x) € G with Py(x]) # Pr(x2).

Let F(x) be a continuous real function defined
on [(a, b]. The least squares technique is a method to
find a set {dl, ceay dks of scalars and

P(x) = dPy(x) + ... + dgPr(x),
such that
E(dy, +evy d) = Jo (F(x) - B(x))%ax
is minimized,

The condition for a minimum is 2E/ dd; = 0 for
i=1, ..., k. Since F(x) 1is not a function of the d;,
one has that 9F/adj = 0, Then by Leibnitz's rule
9E/ 9d;

JZ %5 a; (F(x) - P(x))%dx

0

[}

(-2) §2 (F(x) - P(x)) @P(x)/24; dx

(-2)( §° FOPi(x)ax - |7 P(x)P;(x)ax,

Thus

ap [7 B OB (ax + oL+ @y [2 PR(0F; (dx = f3 FG0Pi(x)ax



i=1, .v., k. (1.1)
This is a system of k 1linear equations in the k
unknowns, The coefficient matrix of this system is quite
often ill-conditioned, and thus the application of the
Gauss elimination procedure may produce unreliable results,

But every linear equation of this system can be
reduced to a very simple equation if a continuous function
may be approximable by an orthogonal set. By the
Weierstress theorem, every continuous real function F(x)
on f[a, b] can be approximated by a polynomial., Theorem
2,2 in Chapter 6 showed that every polynomial can be
represented by the linear combination of orthonormal
polynomials, Therefore, it is possible to approximate a
continuous real function by an orthonormal set.

Let Py(x), ..., Fu(x) be an orthonormal set.
Then, (1.1) reduces to

b

d; = Sa F(x)P; (x)dx

55

By using this equation, the equations can be solved directly

without round-off problems. Also, there is only one

operation for solving for each d;. Therefore, least-square

approximation by orthogonal polynomials is not only less

likely to produce large errors but is also more efficient.

8.2, THE BEST APPROXIMATION BY POLYNOMIALS OVER [a, b]

Let F Dbe a continuous function on [g, b], and F
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be a polynomial of degree n, Then P 1is called the best
approximation to F, with respect to the norm I #, if
IF - Pl £IF - Pyl for all polynomials F, of degree n,
THEOREM 2.1, Let F be a continuous function on
[a, b]. Then there exists a polynomial P of degree n
which is the best approximation to F,
PROOF. TLet {F;1 1 i £n] be aset of linearly

independent polynomials, where each P; has degree of 1,

n n
and iZ_i Pi = M. Let P = El aiPi and E(al, eeey an)

=||F - Pl . Then E(aj, ..., an) is continuous, Since
for given € >0,
E(ag, +vus 2y) = E(d1, cuey bp)| =|0F - Bl - IF - 2]
4|F - P - F + P

n
= 2_|b; - aj|l[F;l|

i=1
n
é;(max [bi - ail) - ;Zi“Pi”.
L i=

Then [E(al, veey ay) - E(by, .., bn)|<€ whenever
mgx]bi - a4l < €/,
i
n - n
Let S = {(al. cevy 8p) 12 @~ = l}. H;Zl a; il
k=1 i=1

is also continuous on S. S 1is a closed subset of RD
n

and bounded. Therefore || 2. a;P;}| attains its minimum
i=1

value, say m, on S. The polynomials F; are assumed to

be linearly independent and the aj are not all zeros so
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that m > 0,

n
E(ay, ..., a,) 1is also bounded since I} = a; P )|
i=1
is bounded on S. By completeness, E(ay, +vvy an) has

a greatest lower bound m'., If E(aj, ..., an) attains
m' in some region, then the best approximation exists in
that region, Let

R=(m*"+ 1+ F )/nm,

n
Suppose .22 ai2'> RZ for (al, eeey ap) € R™, Then
1:
n n n _ n
12 apll= @ a2 (2 a2)™V2 0 3 op |
i=1 J=1 =1 i=1
n n n
2 ~1/2
== aPHY2 5 (2 a )V,
i=1 i=l  j=1
n n
and S (( = a.2)—l/2ai)2 = 1. Then, since these

i=1  j=1 9
coefficients sum to one, it follows that

2.1/2
ai ) * ml

n
1:

n
<Pyl >
”féi *itill 2 1

Thus

n n
HF - Z alP]_”Z”Z aiPi i - FEy
i=1 1=1

> (3 a2)l/?

n
1=

ai m"”F”

1
7mR - || Flf
=m' + 1,

But this is a contradiction, since m' is the greatest
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'zé RZ.

n
lower bound of E(aj, «uu, ap). Therefore ay
i=1

This region is closed and bounded, Thus the continuous
function E(aj, ..., a,) attains its minimum value in
this region, Hence the theorem is proved,

THEOREM 2,2, Let F ©be a continuous function defined
on [a, bJ, Then for each n, there exists a unique
polynomial of degree n that is the best approximation
to F,

FROOF, Let P = alPl + ,., T anP and

n
P' = byP; + ... + b Py Dbe two best approximations of a
continuous function F with the same order, where the

P. are linearly independent and each F; has degree 1,
Then |IF - Pl =|iF - P*'Il = E, Let

G = (Ka] + (1 =X)by)Py + ... + (Kap + (1 -L)by)Ey,
for 04 «£ < 1, Thus

n
|F - 2 (Ka; + (1 -X)b;)Esll
i=1 1

IF - Gl

= I (F -P)+ (1 -X)(F - Pl

£olF =P 1+ (L -xX)I|F - B

= E,
Since P and F' are already the best approximations of F,
G cannot give a better approximation, hence equality must
hold, Therefore, either

HF - Pll= 0 or I|F - PY= o0,

or for some scalar B

F-P=F(F-P').
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In the last case,

(1 - B)F

(1 - B )(byPy + ... + bpPp)

]

(ay - pby)Py + ... + (an - fon)Py.

That is,

((1 - 8)by - (a3 - Bb1)IPy + .o + ((1 -B)by - (an -fPn))Py
= 0,
Since P; are linear independent, this implies that

(L -B)b; - (a3 - Bbj) = 0, for i =1, ..., n, Hence

a; = by, for i=1, ..., n, Thus @=ﬂq Thus the
approximation is unigue in either case,

Theorem 2,2, can be extended to the . Lp spaces,
This development may be found in [10].

THEOREM 2.3. Let {Pl, oo, Pn} be a set of
polynomials such that deg(P;) = i, If for each continuous
function on [a, b], the best polynomial of degree less than
or equal to n 1is a linear combination of the Pj;, then

Piv voey P, are Chebyshev polynomials. This famous

theorem was proved by A, Harr.

8.3, MIN-MAX AFPROXIMATION BY POLYNOMIALS OVER [a, b]
The min-max approximation to a continuous function
F on [a, b] 1is the best approximation to F in the
Lo norm,
In general, a function F(x) has a Taylor's series
expansion if its derivatives exist and are continuous on

(a, b], If F(x) 1is expanded by a Maclaurin series, then



1es)
F(x) = > arxr. This series converges uniformly to F(x).
r=0

This means that for each € >0, there exists n(€ ) > 0
such that

|F(x) - ﬁ apx’ [ €,

r=0
n
for all x €[a, bJ. Then P,(x) = X ax" is an
r=0
approximating polynomial for f(x).
For example, let F(x) = eX = EE x?/n! , Then
n=0

n = 12 is required to approximate eX on [0, 1] with an
error 10"8. In this case, the Maclaurin series of e%
converges very fast, But some series, for instance,

[eb]
In(l + x) = > (—l)n'lxn/n converges around x = 1 so
n=1

slowly that 108 terms are needed to guarantee an error
less than 10'8.

The primary objective now is to find a polynomial
of lower degree for the approximation but having the same
accuracy. The Chebyshev economization technique is used
for this purpose,.

Let F(x) be a continuous function on [-1, +1].
let € > 0 be given, By the Stone-Weierstrass theorem
there exists a polynomial p(x) such that

[F(x) - p(x)] < €
for each x €[-1, +1],.
Since the collection {TO, T1y eoo 3, of Chebyshev

polynomials is a basis for Cg[;l, +lJ it follows that

60
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p(x) can be expressed as a linear combination of a finite
subset of {TO, Ty, ...} . Then there exists a set of
Chebyshev polynomials, {TO, T1y eoey Tn} such that

\F(x) - Pp(x)| <€

where P, (x) = dgTg + ... + dpyTp. Then
E, = I[F - Bp
= sup ﬂF(x) - Pp(x)| s x E[fl, +l]}
< &,

For the same reason, Pn(x) has its best approximation
Ph-1*(x) in {TO(X). ey Tn_l(x)} of Chebyshev
polynomials,

Let Ep_; = sup |Pp(x) - Ph_1*(x)|. Then
sup |F(x) - Pp_1*(x)| & sup |F(x) - Fo(x)] + sup [Py, (x) =P, _*(x)|

= Epn + En-1.

If E, + E,_ 7 is still less than € , one may repeat the
process to get the best approximation Pn_z*(x) of
Fn-1*(x); and continue in this manner until,
En+ Ep1+ oo +Ej €€LEy + By g+ ...+ Ej + By,
Then Pj*(x) is the lowest-degree approximating polynomial
to F(x) within the error allowance € ,

THEOREM 3.1, Let Pn(x) be a polynomial of degree
n defined on [-1, +1J. If Fp(x) = ax" + Q(x), where
Q(x) 1is a polynomial of degree < n, then the min-mzx
approximation Fp_1*(x) to Pp(x) by polynomials of degree
less than n 1is given by Pn_l*(x) = Pn(x) - anZl'nTn(x).

FROOF, It can be shown by induction that



62

T, (x) = pn=-lyn 4 Q'(x), where Q'(x) is a polynomial of

degree < n, Then

Pn_l*(x) Po(x) - an21-nTn(x)

apx™ + Q(x) - ap2l-n(2n-1xn + Q' (x))

Q(X) - anzl-nQ' (X) ’

is a polynomial of degree < n, Suppose the theorem were
false, Then there exists a P,_j(x) such that
sup [Pp(x) - Pp_1*(x)] > sup|Pp(x) - Po_1(x)] .
Let e(x) = Py_1*(x) - P,_1(x) be nonzero polynomials of
degree < n and
Polx) = Pp_1(x) = Pp(x) - Pr_1*(x) + e(x).
Since Pp(x) - P,_1¥*(x) = an21 07, (%),

sup |22 T (x) | > sup | an2l PT(x) + e(x)].

But ]Tn(x)] £1 for x e€[-1, 1], therefore,
|an|21-nﬁ> sup |an210Tn(x) + e(x)]

> |agt M (x) + e(x)]
> anzl‘nTn(x) + e(x)

>—|an121-n!
for all x €[-1, 1]. Set x, = cos kT/n, k = 0, 1, ..., n.
Then
1-n l-n
Ian|2 > ap? Tn(cos kT/n) + e(xk)
= ap2t™cos kT+ e(xy)
an21 0(-1)% + e(xy)

> -lap|21-n,

Assuming a, > O,
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0 > e(xy) if k 1is even,
and

0 ¢ e(xy) 1if k 1is odd.
If a, < 0, the opposite direction applies for these
inequalities., Since X5 > X1 > ... > Xk, in either case
a, > 0 or ap< 0, these inequalities imply that e(x)
changes sign in [—1, l] at least n times. Therefore
e(x) has at least n =zeros. This contradicts the fact
that e(x) 1is a polynomial of degree £ n-1,

The following table which expresses Tp(x) in
powers of x 1is useful in the application of the
Chebyshev economization process,

1 =1

0
T,

X

x? = 2=1(1y + T,)

x3 = 272(3T] + Ty)
x* = 2-3(3T, + 4T, + Ty)
x5 = 27%(10Ty + 5T + Ts)

x6 = 2-5(10Ty + 15T, + 6Ty + T¢)
EXAMPLE. The approximation

In(l + x) & x - % x? + % x3 - % a

has truncation error less than 0.12 at x = 1, With the
aid of the preceeding table,

In(l + x) & 1/192(141 Ty + 24 T - 52 T + 8 T4 - Ty),
The advantage of Chebyshev economization is that the

truncation error is still less than 0.,1¢ after the



omission of the terms

T 3

and

Ty .
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CHAPTER 9
SUMMARY

In Chapter 3, theorem 3.1 proved that every metric
space has a unique completion, This theorem is quite
important in approximation theory.

The next problem is to find a set of polynomials
to approximate a continuous function in Cg[a, b].
Orthogonal polynomials are the answer, and a complete
orthonormal set is shown to be a basis for Cyla, DbJ,.

For each continuous function f(x) on [a, bJ,
there may be several approximating polynomials., Among
the approximating polynomials, which is the best one of
degree n? The theorems in Chapter 8 proved that the
best approximating polynomial of a given degree does

exist and is unique,



10,

11,

12,
13.

14,

15,
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