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The development of a mathematical system must follow a rigid set
of rules. There is, however, one rule or process that may be included
at different times in the development of the system. That is the
introduction of a model for the system. In most cases, the system is
developed first and then a model is constructed., TIn this paper a few
axioms and theorems are introduced and then the system is expanded
after the examination of two isomorphic models. This process is used
to examine a geometry of 25 points.

When considering a geometry, it is a common process to compare the
system to [uclidean geometry. Any discussion of Euclidean geonetry
leads to a consideration of Fuclids fifth postulate or one of several
other statements equivalent to it. The two statements which are
discussed in detail in this paper are Playfair's axiom and the Pythagorean

Theoren.

The thesis then consists of a partial development of a 25 point



geometry, considerable discussion in chapters two, three, and five
of models for the geometry, and a comparison of the 25-point geometry

~
<

with Euclidean geometry.
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Chapter 1

INTRODUCTION

The use of models for axiomatic systems is usually for the
purpose of testing the consistency of the system. Thus, one usually
has a set of axioms first and creates a model from this set of axioms.
Yet, in the history of the development of Euclidean geometry it is
evident that the model - namely, man's conception of his physical
environmnent - came first and that the creation of a satisfactory set
of axioms for a geometry represented by this model came afterward.

This paper attempts to follow this second procedure. Beginning
with a very minimum of statements to be accepted as true and with
a model satisfying these statements as well as many other facts not
originally taken as axioms, the author hopes to ascertain which of
these many other facts arz basic enough to be included among the
axioms. By then considering another model possibly isomorphic to
the first, the author feels that the task of deciding upon the
necessary axioms may be simplified,.

There 1s no expectation that the set of axioms which finally
evolve in this paper will be complete, independent, and catesorical
as is usually required for a mathematical system. Rather, the
expectation is that this work will be a first step in the development
of such a system. In the meanwhile, many interesting relations
and many interesting ideas are found in the process of studying
the models themselves.

It should also be noted that this approach was chosen for a

very specific reason. 1In all of the articles on the 25-point



geometry that the author read, none of the articles attempted to
develop a set of axioms independent of the model that will be
presented later. 1In every case, the authors of those articles used
the model as if it were the first axiom of the system. In other
words, in the opinion of this author, each of those articles assumed
the following axiom.
Axiom: There are exactly 25 points arranged in three
given arrays.

The arrays used by these authors will be the same arrays used in
this paper and since they are presented in the next chapter, they
will not be introduced at this time.

Hence, this paper will attempt, with the models in mind, to

begin development of a 25-point geometry.



Chapter 7
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G0 the rnumerous articles that have bSecn written about finite
seometries, very few are particularly concerned in detall with a
geometry of 25 noints. 3Je

I - IE P! et 1
Liv~™, and Ton’, consider the

ATIMT 1L There arce exactly 25 Aistinct nointe,

“very line contains exactly five dictinet moints.

v
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diztinct poirte there is awactly

T 20 Throush any tvio

onz line.

thoee zxinng Ehe follaovrine theorams can be sroven,

i1 Thera are oyactly 39 lines,

Proof: Tror axiom 1, there ars exactlv 25 noints.

Tence, thera must he 25 ¥ 24 = 790 nairs of
different points. “Tow, assumine that AD and T4

are the same point »air, there will he 2720 /[ 2

= 399 unique point pairs. From axion 2, every

-

line contains exactly 5 points. These

points of line 1 contain (5 ¥ &) / 2 point nrairs.

T

ence, th

TIATOREM 2: Given any line, there exists a point not or the
~iven line.
Proof: Given 1line 1. From axiom 7, 1 contains exactly

5 distinct points. Put by axiom 1 there are 25



distinct points and hence, given any line there

exists a point not on the given line.

TUEORENM 3: Every point is on exactly six lines.

Proof: Given any arbitrary point A. TFrom axiom 1, there
exists a point other than A. Call this point B.
From axiom 3, there is a line 1 containing A and I.
Now, according to axiom 2, there are three other
points on this line 1. From theorem 2, there
exists a point F not on 1 and again by axiom 3
there is a line m through A and T which contains
no point of 1 other than A or that would contradict
axiom 3. This line m contains three points other
than A and F. Now, the two lines 1 and m have
used nine distinct points. Continuing the process
of choosing points until all 25 points have been
used allows the construction of six distinct lines.
Now, since A was arbitrary, every point is on

exactly six lines.

Prior to the next theorem, the first definition of the system

is needed.

DEFINITION 1: Two lines intersect if they have a point in common.

THEOREM 4: Two distinct lines which intersect, intersect in
exactly one point.
Proof: Given two distinct lines 1 and m which intersect.

By definition of intersect, they have a point in common.



Therefore, it must be shown that there is only
one point of intersection. An indirect proof
will show this. Suppose 1 and m intersect in
more than one point, P> Pos oo pn. Therefore,
there are two distinct lines through points

p. and p2. This contradicts axiom 3 and hence,

1

two distinct lines which intersect, intersect

in exactly one point.

At this point a discussion about a model for the geometry is

necessary. Consider the following array of 25 letters.

A B C
F G H
K L M
P 0 R
U v ou

D E
I J
N O
S T
XY

Let each letter denote a point and each row or column denote a line.

This array then satisfies the first two axioms but not the third.

For example, there is not a line on A and G. 1In fact this array

exhibits only 10 of the 30 lines. Consider then the original array

together with the

A I L
S VvV I
G O R
Y C F
M P X

two following arrays.

T W
H K
U D
N 0



v b ¥ T
J L 5 U C
Y B I X

These three arrays were introduced in the book The Lducation of

T. C. Mits1 and have been used as the model of the 25-point geometry
by the subsequent authors. Hence, these arrays will serve as a
model in this paper.

A close examination of the three arrays treveals that all of
the axioms and theorems are exhibited by this model. Additional
discussion about the relationship of the three arrays will be found
in chapter five. There is no claim here that this model is
isomorphic to all other models for a geometry satisfying the given
axioms, This particular model is of interest in itself and this
paper is concerned as much with the model as with a geometry represented
by the model.

Using the model as a basis, the question arises as to what
other axioms are needed for the geometry represented. So far, these
interpretations have been introduced.

A point is any of the 25 letters of the arrays.
A line is any row or column in any of the arrays.
These lines are often called row-lines or column-lines.

For example, ABCDE, AFKPU, and SVEHK are lines in the geometry.

In order to simplify notation, each of the basic arrays of

the 25-point model is a matrix and hence, one may refer to the arrays

B R TN e LaniL N, Iar . N = T . B -
Lieber anl diccer, Yhe Lducaticn of T.C..iits, p. 155

102 .




using common matrix notation.

Now, the following definitions are introduced.

DEFTHITION 2

Three points are collinear if they lie on the

same line.

AFETFINITION 3: Two lines are parallel if they are any two rows
or any two columns in the same array.

DEFINITIOY 4: Two lines are perpendicular if they are any

row and any column in the same array.

Some words of caution are necessary at this time. Wotice that
in the definitions of parallel and perpendicular that these are
defined only on rows and columns of the same array. For exampnle,
ADCDE and ATKPU are perpendicular but no such relationship exists

between ARCDE and ASGYM,

Txamining the model, the following observations are noted.

NBSFRVATION 1: Through a point not on a line there is exactly
one line parallel to the given line.

Proof: Part 1 - Civen line 1. Zy theoremn 2, there exists
a point aij not on 1. TIf 1 is a row-line then
row i is parallel to 1. Tf 1 is a colum-line
then columa j is parallel to 1. Ilence, throuznh
a noint not on a line there exists a line parallel
to the ~iver linae,
Part 2 - An indirect proof «vill be usg2d to show
that there is not more than one line through aj 5
parallel to 1. Suppose there is more than one line

through a parallel to 1. Call then =, n, ... 2.

1]



Now, aij appears in more than one row or column

of one of the arrays. Therefore, the 25 points

of this array are not distinct and this contradicts
axiom 1. Our assumption is false and there is

not more than one line through aij parallel to 1.
Now, from parts 1 and 2, through a point not on

a line there is exactly one line parallel to the

given line.

OBSERVATION 2: Two distinct lines parallel to a third line
are parallel to each other.
Proof: Given lines k, 1, and m such that k || m and 1 || m.
By definition of parallel, k, 1, and m must all
be rows or all columns of the same array. Hence,

by definition of parallel, 1 || k.

OBSERVATION 3: Through a point not on a line there is exactly
one line perpendicular to the given line.
Proof: Part 1 - Given line 1. By theorem 2, there exists
a point ay 5 not on 1. If 1 is a row-line then
column j is perpendicular to 1 by definition of
perpendicular. If 1 is a column-line then row
i is perpendicular to 1 by definition. Hence,
Through a point not on a line there exists a line

perpendicular to the given line.



Part 2 - An indirect proof will show that there

is not more than one line through aij perpendicular
to 1. Suppose that there is more than one line
through aij perpendicular to 1. Call them m, n,
ees 2. MNow, aij appears in more than one row or
column of one of the arrays. Therefore, the 25
points of this array are not distinct and this
contradicts axiom 1. Our assumption is false and
there is not more than one line through aij
perpendicular to 1.

Now, from parts 1 and 2, through a point not on

a line there is exactly one line perpendicular to

the given line.

OBSERVATION 4: Two distinct lines perpendicular to the same line
are parallel.

Proof: Given lines 1, m, and n such that 1 ] n and m 1L n.
If n is a row-line then by definition of perpendicular
1 and m are columns in the same array as n and
1)} m by definition of parallel. Likewise, if n
is a column-line then 1 and m are rows in the same
array as n and 1 || m. Hence, two distinct lines

perpendicular to the same line are parallel.

The four observations regarding the model can not be logically
derived from the original three axioms since they are based on the
concepts of parallel and perpendicular which were both defined in

terms of the model and not in terms of the primitive terms of the axioms.
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Therefore, let observations 1 and 3 be taken as axioms, in which case
the other two observations will follow as theorems.

The axiomatic system now consists of five primitive terms;
point, line, on, parallel, and perpendicular, and of the five axioms
that follow.

A 1: There are exactly 25 points.

A 2: FEvery line contains exactly 5 points.

A 3: Through any two points there is exactly one line.

A 4: Through a point not on a line there is exactly one line

parallel to the given line.

A 5: Through a point not on a line there is exactly one line

perpendicular to the given line.

Note that the model under study does satisfy all five axioms,
but azain, there is no assumption that this is the only model
satisfying the axioms. In this paper, any conclusion drawn from the
model will be labeled as an observation to distinguish it from those
c;nclusions derived from the axioms. With the inclusion of axioms
four and five, all conclusions made so far can be derived from the

axioms.

DETINITION 5: A line segment is any set of consecutive points

of a line.

For example, AB, ALC, and ATED are line segments while ABD and ALD
are not line segments. In addition, ALCDE and ATYYU and so on will
also be considered as line segments as well as lines.

Secondly, the common motation AC will be used to represent a

segnent such as ABC and AC and CA will be considered as denoting



1]

the same line segment.

THEOREM 5: Any line contains exactly four line seements with

a fixed endpoint.

n

Proof: Given any arbitrary line 1. Py axiom 2, 1 contains
exactly 5 distirct points, say ABCDE. Choosing
any point, C, one can combine it with consecutive
points of the line terminating with any of the
other four points. Hence, there exist segments
EK, Eﬁ, Eﬁ; and CH, Mow, since 1 and C were arbitrary,

any line contains exactly four line segments with

a fixed endpoint.

TNEOREM 6: FEvery point is on exactly three row-lines.
Proof: 2Ry theorem 3, every point is on exactly six lines.
By axiom 1, every point appears exactly once in
each of the three arrays. MNow, on every point in
an array there is exactly one row-line or axiom 1
would be contradicted. Therefore, since there are
three arrays, every point is on exactly three

row-lines.

THEOREM 7: There are exactly twelve row-sepgments containing
any point.
Proof: CGiven any arbitrary point A. Trom theorem 6, there
are three row-lines containing A. Combining this
with theorem 5, there are exactly 3 X 4 = 12

row-segments containing A. HNow since A was arbitrary
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there are exactly twelve row-segments containing

any point.

THEOREM 8: Through a point on a line there is exactly one line
perpendicular to the given line.
Proof: Part 1 - Given line 1. On line 1 choose a point aij.
If 1 is a row-line then column j is perpendicular to
1 by definition of perpendicular. Likewise, if 1
is a column~line then row 1 is perpendicular to 1.
Hence, through a point on a line there exists a
line perpendicular to the given line.
Part 2 -~ An indirect proof will be used to show
that there is not more than one line through aij
perpendicular to 1. Suppose that there is more
than one line through ai perpendicular to 1.
Call them m, n, ... z. JNow, aij is in more than
one row or column of one of the arrays. Therefore,
the 25 points of this array are not distinct,
This contradicts axiom 1. Our assumption is
false and there is not more than one line through
2434 perpendicular to 1.
Now, from parts 1 and 2, through a point on a line

there is exactly one line perpendicular to the

given line.



TUTORIY 71 There are cxactly eight line segments parpendicular

halanv

to a given line sezment at its endvoints.
Tronf: Odven arn arbitrary line serment AT. Trom tleoren

~

7, there is exactly one lire throush A perpendicular
to AT and there is exactly one line throuch B
perpendicular to AB. Tach of these two lines
contains four line segnents by theorem 5 aand now
there are & X 2 = 7 line secments vnerpendicular

to Kﬁ-through A and D.

“ow, since AB was arbitrary, there are exactly

eight line segnents perpendicular to a oiven line

semment at its endnoints.

NEFIRTTION 6: A Triancle is the union of the line sesments
connecting 3 non-collinear points,
DETTIITION 7: A right triangle is a triangle which has two

sides perpendicular.

Tor exanple, triangle ABF is a right triangle.

Ixamination of the trianzles of the 25-point ceometry reveals
an interestinz phenomenon. The sides of a triangle do not anpear
T3

any single arrav. Consider as an examnle the three points 11,

=N
=
]

he first array, side LR is in the

L, and M, The side "R is in t ay,
saconl array, and side ¥L is in the third array.

The discussion of triangles in this chapter will conclude

with the introduction of the following theorems.
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HEORFM 10: There are exactly 2000 triangles.
Proof: Trom axionm 1, there are 25 points in the system
and again, there are 600 point pairs. MNow, the
three points that form a triangle must not be
collinear, so each of the point pairs may be combined
with any of 20 distinct points. Hence, there are
600 X 20 = 12000 point triples. But there are
3! permutations of a triple. Thus, 3! of these
12000 triangles are the same triangle. Therefore,

there are 12000 / 6 = 2000 distinct triangles.

THEOREM 11: There are exactly 1200 distinct right triangles.

Proof: TFrom axiom 1, there are 25 distinct points and
combining this with theorem 7, there are 25 X 12
= 300 row-segments. Since AB and BA are the same
segment, there will be 300 / 2 = 150 distinct
row-segments. Now, using theorem 9, there must be
150 X 8 = 1200 pairs of perpendicular segments.
Axiom 3 justifies a line and hence a segment
through the non-joined endpoints of the perpendicular
segments. Therefore, these each form a right
triangle by definition of right triangle. Ience,

there are exactly 1200 distinct right triangles.

Note that all theorems hold on the basis of the axioms, not

merely on inspection of the model. However, the next concept to be

introduced - the concept of length - will be introduced in this



chapter only on the model. It is hoped that one can determine from
a study of this model what further axioms, if any, are needed for
the geometry in order that this concept be realized there.

Consider the three basic arrays. In them, regard the lines as
being closed and the points as being cyclically permutable., In other
words, in the first array the point A immediately '"follows' the point

E. ‘ence, the following definitions.

DRTINTTION 2: The distance between two vrow points is the least
nurtber of steps separating the two points. The
distance between two column points is Q 2 tinmes

the least number of steps separating them.,

Tor example, the distance between A and b is 1 while the distance
—

between A and ¥ is \ 2. The distance between A and D is 2 while the

distance between A and P is 2 Q 2.

DEFINITION 9: The length of segment AD shall be the distance

between A and B.

Notice that when discussing distance or length, row-wise
distance and column-wise distance are regarded as incommensurable.
Secondly, notice that distance is defined on a line and hence,
in the first array, d(A,G) is undefined. To find d(A,G), the second
array is used and d(A,G) = 2 J_E.
The rationale for these definitions on the model and the necessary
extensions to the axiomatic system for the geometry will be discussed
in a later chapter. BRefore that, it will be necessary to look at

another model satisfying the five axioms.



Chaonter 3
A CSECOND 'ODIL OI' A 25-POINT GEOETRY
F

Consider t all ordered pairs, (%,y), of elements in

the field Z_. There are exactly twenty five such pairs. If this set
is taien to be the set of points in a geometry, then axiom 1 is
satisfied.

Let a line be any set of ordered pairs, (x,y), of elements in
ZS which satisfy the equation ax + by = ¢ where a, b, and ¢ are in
ZS and where a and b are not both zero. Then for any csiven a, b, and ¢

. -1 . .
i® b #£ 0, avalue v = h” " {c ~ ax) is determined as x ranzes over 7.

Tance, in anv case vhera b # 0 there are five ordered pairs satisfying
. . . ; -1 4. 4 :
the zquation., If L = 9, then a value x = a "¢ is deterined as vy

ranges over 7.. In this case, there are also five ordered pairs
satisfying the equation. Thus, there are exactly five points on

every line and axiom 2 is satisfied.

jas)

Let (xl,yl) end (x,,y,) be any two distinct ordered pairs. Is
there a line through these two points? That is, are there elements

a, b, and ¢ in Z_ such that ax + by = ¢ is satisfied by the coordinates

of both points?

Case 1 - If there is k # 3 such that Xy = kxz and v, = kyz(mod 5)

then akx, + blky, must equal c and ax

5 + by? must equal c. Thus, choose

2

c = 9. There necessarily exist a and b in ZS’ not both equal 0,
such that ax, + byo = 0, Tor these values it is clear that

akx, + bky, will also be N. In short, there exist a, b, and c for

whichi both pairs (xl,yl) and (x,, yz) satisfy the equation ax + by = c.
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Case 2 - If there is k¥ # 7 such that Xl = kyl and X, = kyZ(mod 5)
agsain choose ¢ = 0. Then akyl + by1 = 0 and akyz + by2 = 0 when

al + b =0, 1In Z5 there always exist elements a and b, not both 0,
such that ak + b = 0 for any given k # 0. Hence, again a, b, and ¢
exist such that both pairs (xl,yl) and (XZ’Y2) satisfy the equation.

Case 3 - If neither of the above cases occur, then xl Y1
Xz Y2 * 0.

A system of two linear equations with non-zero determinent of coefficients
always has a non-zero solution when all elements are in a field and
¢ # 0. Thus again there exist a, b, and c satisfying the system.

In other words, given any two points (xl,yl) and (xz,yZ), there
exist a, b, and c such that ax + by = ¢ is satisfied by the coordinates
of both points. Thus through any two distinct points there is a line.

To insure uniqueness of lines one considers all linear equations
which are equivalent mod 5 as representing the same line.

Before considering the other axioms, it is enlightening to compare
this model with the one of the previous chapter. The aim is to see
if the two are isomorphic. To accomplish this, regard the first array
of letters as the key array and associate with each point an ordered

pair of numbers from the set of residue classes (mod 5).

2 XK L M N O
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Hence, the coordinates of U are (0,0) and the coordinates of S are (3,1).

It is now possible to associate with each of the thirty lines

an algebraic expression.

DEFINITION 10: The slope of the line through the points Pl(xl’yl)

and P (xz,yo) is found by the following formula.

2
y') -y

mz —~ 1 (mod 5)
Xz - Xl

and the equation of the line by the formula

y -y, = m(x - xl) (mod 5)

¥or example, consider points L(1,2) and W(2,0).

y -0z mx - 2)

but m= 2 -0 = 2= -2 = 3(mod 5)
1-2 -1

S0, ¥ - 0= 3(x - 2)

vy = 3x + 4 (mod 5)

Using the same method, the equation of the line GORUD is y = 3x (mod 5).
To verify that these are indeed the equations of the lines AILTW
and GORUD one may substitute the points into the equations and see if

they yield a true statement. For example, A(9,%4) is on the line AILTW
4 =30 + 4 (mod 5)

At this stage, the equations of all 39 lines are produced.



y = 0(mod 5) (0,0),(1,0),(2,0),(3,0),(4,0) U
y = 1(mod 5) (0,1),(1,1),(2,1),(3,1),(4,1) P
y = 2(mod 5) (0,2),(1,2),(2,2),(3,2),(4,2) K
y = 3(mod 5) (0,3),(1,3),(2,3),(3,3),(4,3) F
y = 4(mod 5) (0,4),(1,84),(2,4),(3,4),(4,4) A
y = x(mod 5) (0,0),(1,1),(2,2),(3,3), (4,4)
vy=x + 1(mod 5) (0,1),(1,2),(2,3),(3,4), (4,0)
y=1x + 2(nod 5) (0,2),(1,3),(2,4),(3,0), (4,1)
y =x + 3(mod 5) (0,3),(1,4),(2,0),(3,1),(4,2)
vy =x + 4(mod 5)

2z (mnod 5)

2x +

1 (mod
2% + 2(nod
+ 3 (mod

x + 4(mod

3x (mod 5)

il

3x

1

%X + 2(mod

jil

+ 3(mod

I
B

i

+ 4 (mod

= 4x(mod 3)

¢+ 1(mod

+ 3 (nod

Ax -+ 4(nod

+ 1 (mod !

tx + 2(rmod !

5)
5)
5)

5)

(0,8),(1,0),(2,1),(3,2), (4,3)

(0,0),(1,2),(2,4),(3,1), (4,3)
(0,1),(1,3),(2,0),(3,2), (4,4)
(9,2),(1,4),(2,1),(3,3),(4,9)
(0,3),(1,9),(2,2),(3,4), (4,1)

,4),(1,1),(2,3),(3,0),(4,2)

(7,0),(1,3),(02,1),(3,4),(4,2)
(0,1),(1,4),(2,2),(3,2),(4,3)
(7,2),(1,0),(2,3),(3,1), (4,4
(7,3),(1,1),(2,4),(3,2), (4,0)

(0,4),(1,2),(2,0),(3,3),(4,1)

(",M,(1,4),(2,3),(3,2),(4,1)
(0,1),(1,0),(2,4),(3,3), (4,2
(7,2),(1,1),(2,9),(3,4),(4,3)
(0,2),(1,2),(2,1),(3,7),(4,4)

(2,43, (1,3),(2,2),(3,1), (4,9)

B

W

td

v

T
‘\’

M

M

W

R

n

N

D

%]

&7
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fow’

x & Y(mod 5) 2,1),00,1),(7,2),(7,3),(n,4) U P K F A

XE]_(T"IO'J 5) (1:{)>:(1,]—>’(1’2>:(]—s3>’(1’[-0 v n L G B
x = 2(mod 5) (2,m,02,1),(2,2),(2,2),(2,4) v R M H C
x = 2(mod 5) 3,m,3,1),03,2),03,3),(3,4) ¥ § N I D

x = 4(mod 5) (4,0), (4,1),(4,2),(4,3),(4,4) Y T O J E

Going back to the original definitions, recall that AILTW and
CORUD are parallel lines. An examination of the equations of these

two lines and of other parallel lines leads to the following interpretations.

Two lines are parallel if they have the same slope.

How, if attention is turned to the relationship between perpendicular
lines and to comparing the slopes of perpendicular lines, one is led

to the following conclusion.

Two lines are perpendicular if the slope of exactly one is twice
the slope of the other (mod 5) or if one line has no slope while

the other is of slope 0.

For example, the lines AILTY and IVOCP were originally defined
to be perpendicular. Hotice that the slope of AILTI is 3 while the
slope of TVOCP is 4 and 2{4) = 3(mod 5). Also notice that in array
one the slopes of the row~lines are 2 while the slopes of the column-
ines are undefinad.

Jow to exarmine some of the familiar statemwents about paralicl
and perpendicular linns. ‘lany were considered in chapter two but Eiw

approach to tae proofs is changed in this cliapter.
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OBSERVATION 5: Two distinct lines parallel to the same line

Proof:

are parallel to each other.
Suppose 1, m, and n are distinct lines such that
1)/ n and m /| n. The equations of the lines are

1:y= arx + bl’ m: y'Egazx +b., n:y=ax+b,_.

3 3

and since m i} n,

2

Since 1 |} n, a =a, and b1 # b3.

a, = a, and b2 # b3. Hence, a; = a,e

Tt must now be shown that b1 # b?. Suppose that

lx + b1

Hence,

b1 = bz. Then the equation of 1 is y = a

and the equation of m is y'EEaix + bl'
1 and m are not distinct. This contradicts the

given and b1 # by. Therefore, 1 and m are parallel.

OBSERVATION 6: Two distinct lines perpendicular to the same

Proof:

line are parallel to each other.
Suppose 1, m, and n are distinct lines such that
11l nand m4i n. The equations of the lines are

1:y§ax+b,m:yEax+brn:yEax+b

1 1 2 3 3°
Now since 11 n a = 2a, and sincem L n, a, = 2a..
1 3 2 3
13 =
Hence, a1 = a, and 1 {| m.

OBSERVATION 7: A line perpendicular to one of two parallel lines

Proof:

is perpendicular to the other.
Suppose 1, m, and n are distinct lines such that
1L m and m || n. The equations of the lines are

1: y = a;x + bl’ m: Y = a,X + b2, n: y = agx + b3.

Now, since 1 i m, a, = 2a, and since m I\ n, a, = aj.

Hence, a, = 2a3 and therefore, 1 1\ n.



OBSERVATINN

Proof:

DBSZRVATION

Troof:
OBRSERVATIOH
Proof:

o

3: Through a point not on a line there exists a
line parallel to the given line.

Given P(xl,yl) and line 1: y = ax + b. Since Z

-

is closed for addition, there exists b' such that
# b. TYence, vy =ax + b' is an equation of the

required line.

~

3+ Through a point not on a line there exists a
line perpendicular to the given line.

{*iven point P(xl,y1) and line 1: y = ax + b. Since

7. 1is closed for muitiplication, there exists an
5
a' such that a' = 2a. Jlience, y - 71 = 2a(x - xl)

is an equation of thie required line,

15:  Through a point not on a line there exists
exactly one line parallel to the given line.

o

Observation ? justifies the existence of a line. It

is necessary to show that there is only one lines

An dindirect proof will bz used to show this. Zuppos

there exist two distinct lines 1 and = throus™~ (z,y)
such that 1 W n and = || n. The equations of the

lines are 1: v = a;x +h m: oy :_a?x + bg, n: v=a

1,

e

Since 1 |\ n, = a, and sincemiln, a_ = a
1 : ?

Therefore, a, = a;. Hence, the equations of 1 anc m

Fe s = x. + b nd m: v, = a_.x, +b_ when the
are 1 yl._ al 1 1 and m: y; = 151 "

noint (xl,yl) is substituted in the equations.

Therefore, b1 =b,_and 1 and m are not distinct.

This contradicts the given. Our assumption is false

and there is not more than one line through {x,y)

3R



parallel to n.
Mow from observation 3 and this proof, throuzh a
point not on a line there exists exactly one line

parallel to the given line.

OBSERVATION 11: Through a point on a line there exists exactly
one line perpendicular to the gziven line.
Proof: The proof of this observation is similar to the
proof of obhservation 10 and hence the author will

not reproduce it.

This second model of a geometry of 25 points has been shown to
satisfy the five axioms satisfied by the first model. 1In bhoth cases
the undefined terms were point, line, on, parallel, and perpendicular.
The axioms are the same five as has been mentioned before.

The fact that there is an isomorphism between these two models
does not suggest that the set of axioms is categorical. One objective
of this paper is to study the two models themselves in order to find
out what other axioms are needed to come up with a set which may be
catezorical. At this stage, a major concept - that of length — has
been established for the first model but not included in the axiomatic
system. Before including it, it may worthwhile to interpret the concept
in the second model.

Remember that distance between two points of an array could only
be measured horizontally or vertically by following a row or column.
This definition results in only two non-zero units of length, 1 or 2,
for row distance and two non-zero units of length, J'E or 2 \f?f,

for column distance. Thus, the following distances from the first model.



d (A,B) = d _(A,F) = 1

r r

d_(A,C) = d (a,D) = 2

d (A,F) = d A1) = N 2

d (A,K) =d (A,P) = 2\ 2
Cc [

To maintain this idea, define distance between Pl(xl’yl) and

PQ(XZ’Y?) by the following formula.

dz= \J(Xl - x2)2 + Z(y1 - y2)2 (mod 5)

Au examination of this formula shows that it always yields positive
answers which is desirable for distance and it distinguishes between

row and column distance. For example,

d(a,B) = J 0 -D%+ 20 - 42 (mod 5)

=4 W2+ 2m2 (mod 5)
= J“I (mod 5)
= 1 (mod 5)

and

d(A,F) = \} © -0+ 20 - D (mod 5)

W

\f(o)2 + 2(1)%  (mod 5)

= \}——2 (mod 5)

Likewise, d(A,C) = 2(mod 5) and d(A,K) = 2 Q’E(mod 5). This exhibits
the fact that the non-zero row lengths remain 1 and 2 while the
non-zero column lengths remain QME and 2 \f?i

The content of this chapter may be summarized as follows:
Coordinates have been assigned to points by interpreting a point to
be an ordered pair of numbers in the field ZS‘ The number of distinct
points is thus the number of distinct ordered pairs (x,y) over Z5

which is clearly 25. A line is then represented as a set of five



points related by a single linear equation in two unknowns (mod 5).
All the other axioms of the original non-coordinate geometry were
then imposed and a few of the observations about the new model were
discussed.

It is worth particular notice that in both models and in the
axiomatic geometry, through a point not on a line there exists exactly
one line parallel to the given line. Thus, the question arises as
to what other important theorems from Fuclidean geometry are true in
the two models. This study could obviously be an unending process;
however, one of these involves a concept already introduced to both
uodels but not yet axiomatized. This important concept will be the

focal point of chapter four.



Chapter 4

THE PYTHAGOREAN THEORIM

In chapter three, as was discussed in its conclusion, the discovery
that through a point not on a line there 1is a unique parallel to the
ziven line gives rise to the question as to what other theorems of
Fuclidean geometry are also true in the two 25-point models. This
chapter will be devoted to a discussion revolving around the pythagorean
theorem and whether or not it is valid in the 25-point models.

Theorem 11 from chapter two limits the number of right triangles
in this geometry and in the models to 1200. Now since the three
original arrays are symmetric, there will be 470 right triangles in
each array. Therefore, the discussion of right triangles will center
around a discussion of the 400 right triangles in the first array.

And since there are only 400 of them to consider, the author will
adopt a method of exhausting cases rather than discussing the general
right triangle.

For reference, the first array will be reproduced at this time,

v v v X Y

From the definition of right triangle, and from the definition
of perpendicular lines, one of the legs of a right triangle must be

a row-segment while the other leg must be a column-segment. Combining



this idea with the fact that row distances are 1 and 2 and column

distances are \I2 and 2 2, it is obvious that there are only four
rossible pairs of lengths for the legs of a right triangle. These
pairs are 1 and Qwé, 1 and 2 \FE, 2 and 2 and 2 and 2 \fii Now,
each of these pairs may be combined with any of the four possible
lengths as the length of the hypotenuse and so there are only 16
possible distinct right triangles in our system. To classify the
4N0 right triangles of array one into these possibilities, the author
examined all four hundred of them using the following method.
First, examine all possible right triangles with legs of length
1 and N\ 2. These fall into a number of definite patterns. One group
consists of all right triangles formed as follows: choose any
arbitrary point, say D. From that point proceed one unit to the right
to point E and then down one unit to point J. These three points
form right triangle DEJ. HNow, there are 25 points from which to begin
and hence, there are 25 right triangles formed by this method.
Examination of all of these right triangles shows that the hypotenuse
is found in the second array and is found to always be of length 2 \f?&
A secoud group ol right triangles is found Ly proceeding from
tue veglunicg point, say 9 again, one unit to the left to peint <
aud then down one unit to point ¥, Therefore, triangle TCI is
formed. Again there will be 25 triangles formed by this method. 1In
each of these cases, the hypotenuse is found in the third array

and is found to be ol lensth Q'Q’b.

The third asroun is

oun<d by nroceeding from tha hezinning poink,
n, Jdom ons unit to the point I and then one unit to the rinht

~

to ooint J and Mence triancle DIJ. Once nore there are 25 of thesa



2 %2)

I AT o

it

triavgles and ir 2ach of these cases when scarching for the
aypotenuse, a different situation results. The hypotenuse of trianzle
DIJ iz the line sesment NJ which is found in the second array. But

5J is also the hypotenuse for ripht triansle DLJ which was already
considered in group one. 1In fact, each hypotenuse of the right trianrles
in group three is found to be one of the twenty five possibilities

already considered in group one. Ilence, the length of each hypotenuse

Tinally, in group four, proceed from the beginning point D
down one unit to point I and then left one unit to point H. Right
triangle DIN is one of the 25 possibilities in this group. Tach
hypotenuse of the right triangles in this group is one of the 25
possibilities already considered in group two and again the hypotenuse
is of length 2 \rgi

Mow, from these four cases a statement can be made about right
triangles with legs of length 1 and \fE. This statement could be
called a theorem or observation since the author has proved it by
exhausting all possible cases but since a formal proof of the statement

has not been discovered, it shall be presented as a conjecture.

CONMJECTURE 1: Any right triangle with legs of length 1 and N 2

—
has a hypotenuse of length 2 V 2,

Secondly, examine all right triangles with legs of length 1
and 2 J~§: Using the method just outlined, each of the four groups
yields right triangles such as triangle ABL, triangle BAX, triangle AKL
or triangle BLX. The hypotenuse of right triangle ABL is found in

array two as is the hypotenuse of each of the twenty five right triangles
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in this group and it is found to be of length 2. The hypotenuse of
right triangle BAK is found in the third array and is of length 2
as is all of this group. The hypotenuse of right triangle AXL and each
hypotenuse in group three is one of the possibilities from group one
as they were in the first case. The hypotenuse of right triangle
BLK and each hypotenuse in group four is one of the possibilities

from group two. Having checked all of these possibilities led to

the second conjecture.

CONJECTURE 2: Any right triangle with lees of length 1 and 2 Q 2

has a hypotenuse of length 2.

Thirdly, examine all right triangles with legs of length 2 and
NN 2. Using the same method as before, the right triangles of this
case will be such as triangle ACH, triangle CAF¥, triangle AFH, or
triangle CHF. When examining each hypotenuse, the same pattern
exists as existed in the first two cases. These one hundred triangles

yvield the following conjecture.

CONJECTURE 3: Any right triangle with less of lencth 2 and Q 2

has a hypotenuse of length 1.

Finally, examine all right triangles with legs of length 2 and

2 V/Q. These are right triangles such as triangle ACH, triangle CAI,

triangle AI'M, or triangle CM{., The pattern holds true for these

one hundred right triangles and leads to the fourth conjecture.

COIIJECTURY 4: Any ricsht triangle with legs of lenpth 2 and

[~
2 N 2 has a hypotenuse of lensth \ 2.
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Now, the process used considered one hundred right triangles
in each croup examined which obviously yields a total of four hundred
richt triangles. DBy previous discussion, this exhausts all the
possibilities for the first array. The process could be used to
examine the right triangles in arrays two and three but this is
equivilant to examining the first array a second and a third time.
Three examinations of the same array is obviously not necessary.
Therefore, organizing the four conjectures into one statement yields

the following conclusion.

CONJECTURE 5: Any right triangle of the 25-point model has
sides whose lengths are one of the four following

possibilities: legs of length 1 and 4’5 and

hypotenuse of length Z‘Q 2, legs of length 1 and
2 \fE and hypotenuse of length 2, legs of length

2 and dﬂé and hypotenuse of length 1, or legs

of length 2 and Z‘J’E and hypotenuse of length VFEi

Therefore, a discussion of right triangles and specifically a
discussion of the Pythagorean theorem involves consideration of only

four possibilities.

OBSTRVATION 12: In any right triangles, the sum of the squares
of the lengths of the legs (mod 5) is congruent

to the square of the length of the hypotenuse{(mod 5).
Proof: Case 1 - Conslder the right triangles with legs of

length 1 and Jﬂé and hypotenuse of length 2 ¢ 2.
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17 = 1(mod 5), (\2)2= 2(mod 5), (2N 2)2 = 3(mod 5)
and therefore, 12 + ( Q~2)225 (2 Vrﬁ)z(mod 5).
lence, the theorem is true in this case.
Case 2 - Consider the right triangles with legs of
length 1 and 2 &ai and hypotenuse of length 2.

12= 1(mod 5), (2 \/_—2)23 3(mod 5), 22

= 4(mod 5)

and therefore, 12 + (2 2)2 = 22(mod 5). Hence,

the theorem is true in this case.

Case 3 - Consider the right triangles with legs of
length 2 and 2 \FE and hypotenuse of length Ur?i

22 = 4(mod 5), (2 2)2= 3(mod 5), ( {2)2= 2(mod 5)
4 + 3 =2(mod 5) and therefore, 22 + (2 \ 2)2 = (N 2)2
(mod 5). Hence, the theorem is true in this case.
Case 4 - Consider the right triangles with legs of

length 2 and Q 2—and hypotenuse of length 1.

22 = 4(mod 5), (N 2)2 = 2¢a0d 5), 12 = 1(mod 5),

2 + 4 = 1(mod 5) and therefore, 22 + (J 2)2.= 1%(mod 5).
Hence, the theorem is true in this case.

low, from the four cases, in any right triangle,

the sum of the squares of the lengths of the legs is

congruent to the square of the length of the hypotenuse

(mod 5).

In conclusion, chapter four has exhibited the fact that the study
of right triangles of which there are 1200, may be reduced to the study

of only four specific cases.



Chapter 5

ISOMETRIES OF THW 25-POINT PLANE

The preceding chapters consist of conclusions arrived at by
the author through his own original methods, using only the axioms
and definitions presented. In this chapter, the author makes use of
a sugcestion made by H. Martyn Cundy in a paper entitled "25-point
Geometry”.2 The suggestion involves the use of group theory.

In his article, Mr. Cundy noted how the three original arrays
of the 25-point geometry were related to each other. If p is the
operator transforming the first array into the second array then p
applied to the second array yields the third array. TFor example,
 is the third letter in the first row of array one and it is removed
to thie second position of row four by the operator p. HNow, if the
second array is considered, L is the point that is in the third position
of the first row and it is also removed to the second position of row

four by the operator ». Craphically, the result of the operation p

on all 25 points accomplishes the following.

A B C D L AT L T W AT 0 9 X

¥ 6 H I J s v B I ¥ P W ' G

¥ L M N O 0 G 0 R U D P v n ¥ M 7
____9 _____7

P 29 R 8 7T Yy o v oo J .. 5 U ¢C

vy T owy TP 3 3J =Y T T ¥

The question immeliately arises as to what happens if the operator

falbt

» 1s aprlied to the third array. The discussion of this will

until later in the chapnter, after introducing additional definitions

2
cundy, "25-Point Geometry'', Mathematical Gazette, XTI
(feptember 1732), 153-16%,




nTRTITTTAT 1] 1Y 4 £'2 aperator leaves any array unchaonyn’
SRR AR , LN 2 operato? lanveas any ary unehanya
DETTIIETTAT 10 4T fa the onerator which reoversaes the cyclic

nETTYITION ]

orsor ir the roirm of the arravs.

1

; -1" is the oparator vhiich raverses the cycl

5]

L
1

orter in both the rows an!l columns of the arrays.

<

RIS i“l,i,ﬁ } zenerate a croup of order twelve, The elenents

1 ..
of the

roup anrd thelr relationships are erhibitad in the following

a group

Tl

‘xamination of the table will reveal that the properties of

- closure, inverse, identity, and associativity - are satisfied

by this systen.
; . . . 2 . : 2
-1 1 i -1 i -D pi ~-pi n ip ~in -n”
. . , , 2 . . 2
-1 1 -1 -1 i -9 p  -pi pi -p ~ip ip e
2 2
1 -1 1 i ot P -7 pi -pi p- in ~inp —-n"
. . . . 2 2 . .
i -1 i 1 ~1 ip -ip -n D~ -pi n -D pi
2 2
1 i -1 -1 1 -ip ip D ~n*= pi -p p -pi
2 2 . .
0 -p D pi -pi »p -p -ip ip -1 i -1 1
; 2 2 . ;
~-p p -p  =-pi pi -p° ip  -ip 1 =i i -1
2 o
pi -pi pi ) -D i -1 1 -1 in 2 -D —-in
. . . . , . 2 2 .
-ni ni ~pi -0 n —~i i -1 1 ~-ip -D D~ ip
2 2 . . . . .
Pl -p n* ~in ip -1 1 -] i -p pi ~-pi D
9 ~
in ~in ip ~-p7 »n° -pi pi -p P -1 1 -1 i
. . . 2 2 ; . ,
~ip in -ip ) -D pi -ni o] -D i -1 1 -i
2 2 ? . . . . .
~-D D ~P ip -ip 1 -1 i -1 D -pi pi -p
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The twelve operations on the first array will yield the following.

A B C D E A B C D E
P G H I J F ¢ H I J
K L M N O 1 K L M N O
>
P Q R S T P Q R S T
UV U XY UV W XY
A B C D E A E D C B
F G H I J F J I ® G
K L M N O i K 0 N M L
EE—
P QR S T P T S R Q
UV U X Y U Y X 1V
A B C D E A B C D E
F G H I J U vV W OX Y
K L M N O -i P QR S T
—_
P O R ST K L M N 0O
U V U X Y F G ® 1 J
A B CDE AT L T W
F ¢ H I J S V E H K
K L ¥ 1 0 p G 0 R U D
—_——2
P Q R S T Y C F 1 Q
UV ¥ X Y M P X B J



A

ke

\7

G

v

V’

B

[op}

D

1

M

o)

H

M

W

1

T

(@]

M

%

E

Y

-P

pi

._Pi

-
&

1

U

H

L

hid
FiY

R

A8

M

H

TJ

e

G

v

i



G

L

v

B

G

O

H

M

o)

c

H

W

H

M

W

I

M

W

N

w

7]

ip

_ip

%

\

N

N

Vv

N

Vv

N

31

K

W

W

M

W

421

1

G

H

36



37
Returning to the original definitions of the operators, since
distance is defined in the three original arrays, distance is obviously

211

Y and np .

preserved under the operations ''p
The operator "i' reverses the cyclic order in the rows but
leaves the order in the columns unchanged. Now, reversing the cyclic
order simply interchanges the points in positions 2 and 5 and in
positions 3 and 4. With the definition of distance used in chapter
two, "i" also preserves distance. By the same arcument, the operator
"~-1" which changes the cyclic order in both the rows and columns
must also preserve distance.
Finally along this line, the operator "-i" simply reverses the
cyvclic order within the columns and leaves the order in the rows
unchanged and hence, it will also preszrve distance.

v ' H 20 T 1 .
How, "-p", 'pi¥, "ip", "-pi

, "-ip", and "~p2” will also preserve

3t
distance since they use either the second or third array and do one
of the “order exchanging' operations just discussed, Wence, the
entire zroup preserve distance.

Returning to chapter four and the study of richt triangles can
ba simplified now because of these new operators. These isometries
of the 25-point plane lead us to the following facts. There are now
twelve arrays instead of three. Therefore, since there are 1209
rirht triangles, cach of the twelve arravs must represent one hundred
triangles. It is still true that every triangle has base-height

_ — —
length of 1 =N 2, 1 - 2N 2, 2 -2, or 2 -2N2. At each of the
75 points in any array consider a risht triancle of each of the four

types. UVence, instead of chechiing 490 right triancles as was necessary



j)
2

1
i

in the previous method, it 1s now necessary to check only one hundre:

rixht triansles and in essence all 1200 will then have been considered,
fence, it has been shown in this chapter that when considering

the croup cenerated by i-&,i,p-S the examination of right triangles

can be reduced to an examination of only one hundred cases in any one

of the arravs generated by the group and therefore it is not impossible

to use the method of exhausting cases when considering theorems ahout

right triangles.



Chapter 6

CONCLUSTION

As is quite often the case when dealing with a somewhat unexplored
concept, this study of the 25-point geometry has raised nearly as many
questions as it has presented answers. For example, what would the
geometry become if two parallel lines were simply lines which have
no points in common and were not restricted to being in the same
array in the model? Some of the questions raised in the previous chapters
deserve some additional comment, and that will be the intent of this
chapter.

One point which possibly needs clarification deals with perpendicular
lines in the coordinate chapter. For the purpose of discussion, the
definition of perpendicular is repeated here.

Two lines are perpendicular if the slope of exactly one is
twice the slope of the second.
Notice that contrary to Euclidean geometry, with this definition and
the slopes of the lines, A perpendicular to B does not imply that
B is perpendicular to A. Ilence, we have a deviation from Euclidean
geometry.

A second concept from Euclidean geometry that is not used in the
25-point geometry is the concept of betweeness. The lack of this
concept in the 25-point geometry makes the definition of line segment
divorced from the same concept in Euclidean geometry. The definition
of betweeness from Luclidean geometry is:

Point B is between points A and C if all are distinct

e

and AB + EE = AC
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If this definition is used in the 25-point geometry, two problems
immediately arise., Tirst, notice that point I would be between
points A and ¥ since AE = 1, ED = 1, AD = 2, and hence, AE + D = AD.
S5econdly, since A3 = 1, BD = 2, and AD = 2 and hence A3 + BD # AD,
point B does not lie between A and D even though it "appears” to.
Another problem also arises when considering betweeness. FHilbert's
second axiom of order states that given any two points on a line there
always exists a point between them. Obviously, this axiom would not
be true if the two given points were A and 5. The laclk of satisfying
this axiom 1f betweeness were defined in the 25-point geometry
would probably not Lbe a major factor but the contradictions raised in
the previous paragraph and a lack of discovery of a suitable substitute
led the author to omission of the concept of betueecness in the
2E-point zeometry.
Closely related to the just completed discussicn is the concept

of line semment. "hen making the definitions, the Adefinition of line

is one of the most difficult. Remembear that in the definition

segment, the lines are rot considered to be closed. llence,
AT is not a line segment. One of the reasons for this is that the
author wished to preserve the fact that 3T and LB would represent
the same segment. If the lines were considered closed then would
T2 represent the sesment consisting of points T, A, and B or the
segment consisting of points E, D, C, and B? For the author's
zeometry, EB should represent the segment consisting of the points
Z, D, C, and ¥ and then IB and DT will represent the same segment.

The reader might be interested in examining what course the geometry

would take if the lines were considered closed. Obviously, the
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discussion of right triangles in this paper would drastically be
altered by the change in the definition of line segment.

Another concept that was deleted by the author is the concept
of angle in the general sense. Right angle can be discussed since
perpendicular lines are defined but no suitable definition for angle
was found. It is possible that some type of definition related to
triangles with the same lengths of sides could be introduced but
this does not seem..to offer any particular insight into the study of
the 25-point geometry and hence, it was omitted. This omission then
eliminated two concepts equivilent to the fifth postulate of Euclid.
They are that the sum of the angles of a triangle is equal to two
right angles and the existence of similar non-congruent triangles,
that is of non-congruent triangles which have all three angles of one
congruent to all three angles of the other.

The paper also suggests that possibly there are concepts from
Fuclidean geometry that are also true in the 25-point geometry but
have not been examined in this paper. For example, is it possible
that an in-depth study of group theory would simplify the system
even more than the group of order 12 which was presented? What
properties of triangles in general are true in this system? Do the
conic sections exist in the 25-point geometry and if so, what properties
of them are true? These are just a few of the many concepts that
could be examined and the reader has possibly found others for which
he has a special interest.

Finally, some concluding remarks about the Pythagorean theorem

are in order here. The study of the models has indicated that the
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sur. of the squares of the two legs of a richt triansle is equal to
tha square on the hypotenuse. The question is to determine whether
or not another axiom for the geometry of 25 points should be this
fact itself or whether it should be some other more basic statement
ich this fact could be logically derived,

Consider the six sets of axioms used by Milbert for Tuclidean
saometry., These are the axioms of connection, order, continuity,
conzruence, narallels, and completeness. It has just been noted
why the concept of order has not been desirable for the 25-point
ceonetry suggested by the models studied. Tor similar reasons, the
notion of continuity does not fit this geometry. Regarding the
axioms of connection, axiom 2 and 3 for the 25-point geometry are
precisely that type of axiom, and the 4th axiom listed for the
25-point geometry is a "parallels" axiom. The axiom on perpendiculars
listed for the 25-point zeometry does not correspond to any of Hilbert's
axioms. It was needed in our geometry but not in Tuclid's. The
completeness axiom by Hilbert states that it is not possible to add
(to the system of points of a line) points such that the extended
system shall form a new geometry for which all the other axioms hold.
Clearly, the axiom 1 for the 25-point geometry regarding the existence
of exactly 25 noints and the axiom fixing the number of points on a
line make the addition of new points impossible. There remains
therefore, only the axioms of congruence.

The author susgests that it is possible that 'lilbert’'s axioms of
congruence could be replaced in the 25-point geometry by axioms of
length., This results from the fact that the author has found no

suitable way to consider congruence for anything other than segments.
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Yow, Vilbert's axioms of congruence of sepments are as follows:
a) If A,B are points on a line L and if A' is on a line L'

3

here is exactly one point B' on a given side of A' on L'

such that AR is congruent to A'B'.

b) FEvery sesment is congruent to itself.

c) If AB is congruent to segment A'B' and if AB is congruent to

segment A''B'', then A'B' is congruent to A''B'',
d) If AB and BC are segments on L with only B in common, and

if A'B' and B'C' are segments on L' with only B' in common,

and if APB is congruent to A'B' and BC is congruent to B'C'

then segment AC is congruent to segment.XTE?.

Now, it is immediately evident that these four axioms cannot
be used in the 25-point geometry. With the definition of distance
used in this geometry, Nilbert's axiom which has been labeled a)
is not true. For example, if AB is of length 1, there are two segments
with endpoint A' of length 1. Clearly more investigation along this
line is needed but this investigation has not been conpleted in time
for inclusion in this paper. Tt is hoped, however, that enough has
been included to make the effort worthwhile and to stimulate the

reader to also examine the 25-polnt geometry in more detail.
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