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The development of a mathematical system must follow a rigid set 

of rules. There is, however, one rule or process that may be included 

at different times in the development of the system. That is the 

introduction of a model for the system. In most cases, the system is 

developed first and then a model is constructed. In this paper a few 

axioms and theorems are introduced and then the system is expanded 

after the examination of two isomorphic models. This process is used 

to examine a geometry of 25 points. 

\·fuen considering a geometry, it is a common process to compare the 

system to Euclidean geometry. Any discussion of Euclidean geometry 

leads to a consideration of Euclids fifth postulate or one of several 

other statements equivalent to it. The two statements which are 

rliscussed in detail in this paper are Playfair's axiom and the Pythagorean 

Theorem. 

The thesis then consists of a partial development of a 25 point 



geometry, considerable discussion in chapters two, three, and five 

of models for the ~eometry, and a comparison of the 25-point geometry 

,"ith Euclidean geometry. 



n\fENTY-FIVE POINT fiEOHETRY 

A Thesis 

Presented to 

the Department of Mathematics 

Emporia State University 

In Partial Fulfillment
 

of the Requirements for the Degree
 

Master of Science
 

by
 

Gene Tibbetts
 

August 1077
 



i 
I 

·,-;a,&'7V .,g ;:..., '~'2.-\.t.'" 

Approved for the Major Department 

App 

l 
380555 



ACKNmn... EDCiHENTS 

I extend my thanks and appreciation to Dr. Thomas Bonner 

for his assistance in the preparation of this paper. 

I also wish to express my appreciation to my wife and 

daughter who were very understanding and patient while this 

study was being completed. 



TABLE OF CONTENTS 

CHAPTER TITLE PAGE 

1 .•.•.•. INTRODUCT ION •••••••••••••••••••••••••••••••••• 1
 

2 ••••••• A ?10DEL OP 11 25-POINT GEOHETRY •••••••••••••••• 3
 

3 ••••••• A SECOND HODEL OF A 25-POINT GEmmTRY ••••••••• 16
 

4 TI~E PYTTV\GORE.AJ'.T TTU::ORE1j 26
 

5 ••••••• ISOHT<.:TRIES OF THE 25-POINT PLANf: •••••••••••••• 32
 

r: CO?'TCLUSlor..r 39
 

.. .. .. .. .. .. .. .... BIBl.,InGP,.....l\.?IIY .................................................................. • 1+4
 



Chapter 1 

INTRODUCTION 

The use of models for axiomatic systems is usually for the 

purpose of testing the consistency of the system. Thus, one usually 

has a set of axioms first and creates a model from this set of axioms. 

Yet, in the history of the development of Euclidean geometry it is 

evident that the model - namely, man's conception of his physical 

environment - came first and that the creation of a satisfactory set 

of axioms for a geometry represented by this model came afterward. 

This paper attempts to follow this second procedure. Beginning 

with a very minimum of statements to be accepted as true and with 

a model satisfying these statements as well as many other facts not 

originally taken as axioms, the author hopes to ascertain which of 

these many other facts are basic enough to be included among the 

axioms. By then considering another model possibly isomorphic to 

the first, the author feels that the task of deciding upon the 

necessary axioms may be simplified. 

There is no expectation that the set of axioms which finally 

evolve in this paper will be complete, independent, and categorical 

as is usually required for a mathematical system. Rather, the 

expectation is that this work will be a first step in the development 

of such a system. In the meanwhile, many interesting relations 

and many interesting ideas are found in the process of studying 

the models themselves. 

It should also be noted that this approach was chosen for a 

very specific reason. In all of the articles on the 25-point 
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geometry that the author read, none of the articles attempted to 

develop a set of axioms independent of the model that will be 

presented later. In every case, the authors of those articles used 

the model as if it were the first axiom of the system. In other 

words, in the opinion of this author, each of those articles assumed 

the following axiom. 

Axiom: There are exactly 25 points arranged in three 

given arrays. 

The arrays used by these authors will be the same arrays used in 

this paper and since they are presented in the next chapter, they 

will not be introduced at this time. 

Hence, this paper will attempt, with the models in mind, to 

begin development of a 25-point geometry. 



(~'\a:)tcr .., 

1. >- :J~'F_j":~~~ r;:, '.\ 1.s-~--rnI=:T c-~':cr'-.,:':n.:'" 

,'L t:l(~ r:l.l:'krO\U~ articles tt;at 11av,:; ~)ecn"ritten about finite 

geometries, very few are particularly concerne(! in detail ''lith a 

geo!"letry of ~5 1)oints. Beginning ',\TitL the unJefinc.-1 terr::.s ";)oi:1.t'·, 

n 
,~i'L'" -'1~', ~T'd n () ~<~ C071sic>r ttw fa] l("F:in:;~ azi0,''''. 

>,:"u'_' 1. ·,.,t':c:re are exactly ~') ,U:>tiT1Ct '~oint:;~.
 

r,vT'';'< '); ""v(,r" lin"? cOT'.tains exnc.t:ly!"ivp. 0i"Li.'~ct ~\o:int'".
 

A''''''T'1''1" ~.:	 ~~·j.rou:31-; ;:[1.)/ t', ro :li:~tinct poir,t~. t!~'?re is eYact~_y 

one 11-:1('. 

~'-l:" t~.2~f~ r.::-~i'T':~',~ t".-l.:;: ~OJ.J.OTTi~~ t~leorer'\,8 carl.. 1;0 :,rov,=:.:... 

~"~~",'l~""'''f l ~ ~'').ere :::lr0 ,rj::rrt.ctly 3'" li..11e.s. 

nroaf: ~ror Rxios ], therR are eXActly 25 ~oi~ts. 

T'enC2, there E'ust he 25 X 'II, = r"0 "nfr.::; of 

~ f,~ifferent	 points. "'10\-)7, ,qSSUjTltp.~ tl~8t A:1 cmd j .U__ ·, 

n.re the SaTTl2 floint ;)[li.r, t 11ere Fill he (~~') / 7 

= 3ojl) unique point ;)airs. Pron axion 2, every 

Ij~e contains exactly 5 points. These five 

points of line 1 c.ontain (5 Y l:) / 2 point rain;. 

~;ence, there Rre ::If)!") / 1,') = 3n uniqUA lines. 

rlr.o~.E~~ :2: Given any line, there e.xists a point not on the 

:,:iven line. 

T'roof: riven line 1. FrOTH axiol! ~. 1 contr-,;,ns eXilct1y 

5 distinct points. p·ut hy R.xiom 1 there are 2S 
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distinct points and hence, Eiven any line there 

exists a point not on the given line. 

T'TEo!\.m: 3: I:very point is on exactly six lines. 

Proof: Given any arbitrary point A. Frora axiom 1, there 

exists a point other than A. Call this point B. 

~rom axiom 3, there is a line 1 containing A and D. 

Now, according to axiom 2, there are three other 

points on this line 1. From theorem 2, there 

exists a point F not on 1 and again by axiom 3 

there is a line m through A and F which contains 

no point of 1 other than A or that would contradict 

axiom 3. This line m contains three points other 

than A and F. Now, the two lines 1 and m have 

used nine distinct points. Continuin~ the process 

of choosing points until all 25 points have been 

used allows the construction of six distinct lines. 

No,~, since A was arbitrary, every point is on 

exactly six lines. 

Prior to the next theorem, the first definition of the system 

is needed. 

DEFINITION 1: Two lines intersect if they have a point in common. 

THEOREH 4: Two distinct lines w·hich intersect, intersect in 

exactly one point. 

Proof: Given two distinct lines 1 and m which intersect. 

By definition of intersect, they have a point in common. 
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Therefore, it must be shown that there is only 

one point of intersection. An indirect proof 

will show this. Suppose 1 and m intersect in 

more than one point, PI' P2 , p. Therefore, 
n 

there are two distinct lines through points 

PI and P2· This contradicts axiom 3 and hence, 

two distinct lines which intersect, intersect 

in exactly one point. 

At this point a discussion about a model for the geometry is 

necessary. Consider the following array of 25 letters. 

A B C D E
 

F G H I J
 

K L H N 0
 

P a R s T
 

U V H X
 y 

Let each letter denote a point and each row or column denote a line. 

This array then satisfies the first two axioms but not the third. 

For example, there is not a line on A and G. In fact this array 

exhibits only 10 of the 30 lines. Consider then the original array 

together with the two following arrays. 

A I L T H
 

S V E II K
 

G 0 R U D 

Y C F N Q
 

M P X B J
 



(1 

nA .c 0 n X 

p nd E G 

' ,V D F T 

J L "I,) TT C 

ry 'T n 
1\. J. J) I 1: 

These three arrays were introduced in the book The Education of 

1
T. C. Hits and have been used as the model of the 25-point r;eometry 

by the subsequent authors. Hence, these arrays will serve as a 

model in this paper. 

A close examination of the three arrays reveals that all of 

the axiolTls and theorems are exhibited by this model. Additional 

discussion about the relationship of the three arr3.ys Hill be found 

in chapter five. There is no claim here that this model is 

isonorpltic to all other models for a geometry satisfying the given 

axioms. This particular model is of interest in itself and this 

paper is concerned as much with the model as with a geometry represented 

by the model. 

Using the model as a basis, the question arises as to what 

other axioms are needed for the geometry represented. So far, these 

interpretations have been introduced. 

A point is any of the 25 letters of the arrays.
 

A line is any row or column in any of the arrays.
 

These lines are often called row-lines or column-lines.
 

For example, ABCDE, AFKPU, and SVElU: are lines in the geometry. 

In order to simplify notation, each of the basic arrays of 

the 25-point model is a matrix and hence, one may refer to the arrays 

.1, .' '-' '. . _ ~.., '.' __.'. ,-- ' .._. .,... j. .- ,_. ,..,., " .to ,-' .', • -, t --. 1 - ~ 
Ll._..;cr ...l..l..-l. u.J..._L.....:;1., .I,. t""-~ .1... uct.·.Ll.-J.. ..... ,L .. v-'- "';'.Iv • .I.l.L ,~ p ........ )..;.
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usinz comroon matrix notation. 

Now, the following definitions are introduced. 

nEFI~nTION 2: Three points are collinear if they lie on the 

same ljne. 

DEFrHTION 3: TH"O lines are parallel if they are any two rmvs 

or any two columns in the same array. 

DBFINITI0~T 6.: Two lines are perpendiculClr if they are any 

row and any column in the same array. 

Some words of caution are necessary at this time. Notice that 

in the definitions of parallel and perpendicular that these are 

defined only on rows and columns of the same array. Ti'or exaraple, 

t'\;jCDI: and !\T'lG'U are perpen(Ucular but no such relationship exists 

bet\veen ARCDE and /\SGn~. 

Exanining the model, the Eollm,]in!:; observations are noted. 

()nSTc1\.VA'T'Im~ 1: Tl1roui~h a point not on a line there is exactly 

one line parallel to the given line. 

Proof: Part 1 - Civen line 1. By t~eorem 2, ~lere exists 

a point a .. not on 1. If 1 is a row-line then
1J 

rmv i is parallel to 1. Jf 1 is a cohll'1il.-line 

t:lcn coluI'ln j is parallel to 1.. ::ence, throug;l 

a ~oint not on a line there exists a line parallel 

to t:le :~ivc" li,.,e. 

Part ? -\n indirect ['roo'" '":rill be as?(~. to 8'-;0\1 

tha t t:lerc is not Elorc than one line t1lrouf,h aij 

parallel to 1. Suppose there is more than one line 

throUBh a parallel to 1. Call them~, n, •.. z.
ij 
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Now, a ..	 appears in more than one row or column 
1J 

of one of the arrays. Therefore, the 25 points 

of this array are not distinct and this contradicts 

axiom 1. Our assumption is false and there is 

not more than one line through a .. parallel to 1.
1J 

Now, from parts 1 and 2, through a point not on 

a line there is exactly one line parallel to the 

given line. 

OBSERVATION 2: Two distinct lines parallel to a third line 

are parallel to each other. 

Proof: Given lines k, 1, and m such that k /I m and 1 11m. 

By definition of parallel, k, 1, and m must all 

be rows or all columns of the same array. Hence, 

by definition of parallel, 1 Ilk. 

OBSERVATION 3:	 Through a point not on a line there is exactly 

one line perpendicular to the given line. 

Proof:	 Part 1 - Given line 1. By theorem 2, there exists 

a point aij not on 1. If 1 is a row-line then 

column j is perpendicular to 1 by definition of 

perpendicular. If 1 is a column-line then row 

i is perpendicular to 1 by definition. Hence, 

Through a point not on a line there exists a line 

perpendicular to the given line. 
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Part 2 - An indirect proof will show that there 

is not more than one line through aij perpendicular 

to 1. Suppose that there is more than one line 

through a .. perpendicular to 1. Call them m, n,
1J 

•.• z. Now, a ..	 appears in more than one row or 
1J 

column of one of the arrays. Therefore, the 25 

points of this array are not distinct and this 

contradicts axiom 1. Our assumption is false and 

there is not more than one line through aij 

perpendicular to 1. 

Now, from parts 1 and 2, through a point not on 

a line there is exactly one line perpendicular to 

the given line. 

OBSERVATIOll 4:	 Two distinct lines perpendicular to the same line 

are parallel. 

Proof:	 Given lines 1, m, and n such that 11 n and m~ n. 

If n is a row-line then by definition of perpendicular 

1 and m are columns in the same array as nand 

1 1\ m by definition of parallel. Likewise, if n 

is a column-line then 1 and m are rows in the same 

array as nand 1 II m. Hence, two distinct lines 

perpendicular to the same line are parallel. 

The four observations regarding the model can not be logically 

derived from the original three axioms since they are based on the 

concepts of parallel and perpendicular which were both defined in 

terms of the model and not in terms of the primitive terms of the axioms. 
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Therefore, let observations 1 and 3 be taken as axioms, in which case 

the other two observations will follow as theorems. 

The axiomatic system now consists of five primitive terms; 

point, line, on, parallel, and perpendicular, and of the five axioms 

that follow. 

Ai: There are exactly 25 points. 

A 2: Every line contains exactly 5 points. 

A 3: Throueh any two points there is exactly one line. 

A 4: Through a point not on a line there is exactly one line 

parallel to the given line. 

A 5: Through a point not on a line there is exactly one line 

perpendicular to the given line. 

Note that the model under study does satisfy all five axioms, 

but again, there is no assumption that this is the only model 

satisfying the axioms. In this paper, any conclusion drawn from the 

model will be labeled as an observation to distinguish it from those 

conclusions derived from the axioms. With the inclusion of axioms 

four and five,	 all conclusions made so far can be derived from the 

axior:ls. 

DEfINITIOlJ 5:	 A line segment is any set of consecutive points 

of a line. 

Por example, All, i'eJiC, and A"FKI' are line segments \Jhile ADD and AED 

are not line segments. In addition, ALCDE and ATKPU and so on ',Jill 

also be considered as line segments as \Jell as lines. 

Secontlly, the COil1.J."TI.On notation AC \·,i11 be used to represent a 

segment such as ABC and AC and CA will be considered as denoting 
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the saPle	 line segment. 

THEo-qml '): Any line contains exactly four line se'3ments Fit'1 

a fixe~ endpoint. 

P:coof: Civen any arbitrary line L Ey ClxiOIa 2, 1 cOCitains 

exactly ~ distinct points, say ~nCDE. Choosing 

any point, C, one can CaRbine it with consecutive 

points of the line terminatinf, lvit'l any of the 

other four points. Hence, there exist segments 

- - - -
CA, cn, CD, and CEo How, since 1 and C \Jere arbitrary, 

any line contains exactly four line scgnents "lith 

a fixed end~)oint. 

TT1EORm~	 (): Every point is on exactly three rou-lines. 

Proof:	 By theorem 3, every point is on exactly six lines. 

By axior~ 1, every point appears exactly once in 

each of the three arrays. NO'v, on every point in 

an array there is exactly one row-line or axiom 1 

would be contradicted. Therefore, since there are 

three arrays, every point is on exactly three 

rmJ-lines. 

THEOREH 7: There are exactly twelve row-segments containing 

any point. 

Proof:	 Given any arbitrary point A. Prom theorem 6, there 

are three row-lines containing A. Combining this 

with theorem 5, there are exactly 3 X 4 = 12 

rm,,-segments containing A. Now since A was arbitrary 
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there are exactly twelve row-segments containing 

any point. 

THEOREM R: Through a point on a line there is exactly one line 

perpendicular to the given line. 

Proof: Part 1 - Given line 1. On line 1 choose a point a ..• 
lJ 

If 1 is a row-line then column j is perpendicular to 

1 by definition of perpendicular. Likewise, if 1 

is a column-line then row i is perpendicular to 1. 

Hence, through a point on a line there exists a 

line perpendicular to the given line. 

Part 2 - An indirect proof will be used to show 

that there is not more than one line through a ..
lJ 

perpendicular to 1. Suppose that there is more 

than one line through a perpendicular to 1. 
i·] 

Call them m, n, ••• z. Now, a. is in more than
lj 

one row or column of one of the arrays. Therefore, 

the 25 points of this array are not distinct. 

This contradicts axiom 1. Our assumption is 

false and there is not more than one line through 

aij perpendicular to 1. 

Now, from parts 1 and 2, through a point on a line 

there is exactly one line perpendicular to the 

given line. 
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T:TT',,J?.r:l~ '): There are c'.xactly (~i3ht line se2,nents p,~r;):".nr1icnlat' 

to a given line sesment at its endpoints. 

"roof:	 raVel! aG :lrLitrary li.ne se~;';]ent A':. "'rOD] tl-eorer ' 

", t>erl? is exactly anI' 1i n p t 11rou2;r: A perpen.·acular 

to AT', an(1. there is exactl:;- one line throu2;h E 

pe.rpendicular to AB. 1C~ach of t~lese two lines 

contC1i~s four line segnents ()y theon~]11 5 a!.ld nm,! 

t;,ere are Il :: 2 = 'i line Se2;T:1ents ;Jerrendicular 

to AD t llrouz11 A and D. 

-To,,!, since AD \Vas arb:! trary, there are exactly 

ei,zht line se:::;nents perpendicul:lr to a n;iven line 

se:ment at its endpoints. 

Ti~Tli,-JTIOH (,: 1> Trian'.~le is the union of t;le line sesnents 

connecting J non-collinear points. 

T)r:"'I~TITIO:j 7; fA ri,o,ht triangle is a triangle Hhich has two 

sides perpenrlicular. 

~or example, triansle ABF is a right trian~le. 

Exa:ninHtion of the trian3les of the 2.5--point '3eonetry reveals 

an interestin:-::: phenor:<enon. The sides of a trian~le l10 not <1ppear 

iT~ any single array. CCl'lsirler as an eXR!'Tfl1e the three points n, 

L, and T":. The side :T~ is in the first array, si,le L~ is in the 

"LTTsrocol1'l array, ant~ sfde . (~ is in the third array. 

The discussion of triangles in this chapter 1"il1 conclude 

\.:rith the introduction of the following theorems. 
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THEOn.EH 10: There are exactly 2000 triangles. 

Proof: From ax~oD 1, there are 25 points in the system 

and again, the.re are 600 point pairs. Now, the 

three points that form a triangle must not be 

collinear, so each of the point pairs may be combined 

with any of 20 distinct points. Hence, there are 

600 X 20 = 12000 point triples. But there are 

3: permutations of a triple. Thus, 3: of these 

12000 triangles are the same triangle. Therefore, 

there are 12000 / 6 = 2000 distinct triangles. 

THEOREl1	 11: There are exactly 1200 distinct ri~ht triangles. 

Proof:	 From axiom 1, there are 25 distinct points and 

combining this with theorem 7, there are 25 X 12 

= 300 row-segments. Since AB and BA are the same 

segment, there will be 300 / 2 = 150 distinct 

row-segments. Now, using theorem 9, there must be 

150 X 8 = 1200 pairs of perpendicular segments. 

Axiom 3 justifies a line and hence a segment 

through the non-joined endpoints of the perpendicular 

segments. Therefore, these each form a right 

triangle by definition of right triangle. lIence, 

there are exactly 1200 distinct right triangles. 

Note that all theorems hold on the basis of the axioms, not 

merely on inspection of the model. However, the next concept to be 

introduced - the concept of length - will be introduced in this 
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chapter only on	 the nodel. I t is 11Oper1 that one can f~el:er!niQe frOlll 

a study of this	 model vhat furt'ler axioms, tf any, are needed for 

the geometry in	 order that this concept be realized there. 

Consider the three basic 2rrays. In· thera, regard the lines as 

being closed and the points as being cyclically rermutable. In other 

\Vords, in the first array the point A iT~f'lediate1y "fo110\\ls" the point 

Eo !Ience, the fo110,"lin.e definitions. 

nf',:'TFTlon ~:	 The distance between two rm., points is the least 

number of steps separatinc; the two points. The 

distance between two column points is ~ tines 

the least nUT'lber of steps separating them. 

liar example, the distance between A and E is 1 \-1hi1e the distance 

bet\veen A and F is V. The distance between A and D is 2 \.,hi1e the 

distance bet\Veen A and P is 2 ~. 

DEFINITION 9:	 The length of segment An shall be the distance 

between A and B. 

i 

!
I I'Totice that when discussing distance or length, rO\V-\vise 

r1istance and column-wise distance are resarded as incommensurable. 

Secondly, notice that distance is (lefined on a line and hence, 

in the first array, d(A,C) is undefined. To find d(A,G), the second

Ii 

II
! array is used and d(A,G) = 2 ~. 

The rationale for these definitions on the model and the necessary 

i 
extensions to tl'le axiomatic system for the geometry \vi11 be discussed 

in a later chapter. Before that, it will be necessary to look at 

another model satisfying the five axioms. 
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;\ ~ECOjm nJDEL or L\ 25--POINT Gmr~ETRY 

Consider the set of all ordereG. pairs, (x,y), of elements in 

tIle ~ield ~ . Ther<:: are exactly tw:=nty five SUCll pairs. If this set 
:J 

I::; t:l~:ei1 to be the set of points in a zeometry, then axiom I is 

s.J.tis.;'"iecl. 

Let a line be any set of ordered pairs, (x,y), of elements in 

Z5 which satisfy the equation ax + by = c where a, b, and c are in 

2 .qnd \here a and ~) are not both zero. T~len for 9ny ~iven a, b, and c 
5 

j'" 1, ..l. r) a value v == I,-l(c -- ~")' over 7,... ..- "" .- T ,. . J ._~ L~""'" is detennined as :c rnn~cs\. 

) 

"~~nce~ i:l ,~n~,.T C3.se '\7:u~r9 ~ :; .Ij there are five or(1~r?:r'l p.e.:trs satisfyiI,1.2; 

t !' :'I,.... r"J 1 V" - -·1 -10 ,-1, ~ .....,~_.~ a;1 
~" -'7t'1e 2quatioI1. If :J '" n, ,leu u VeL ue .. - a c L,O ",p-t~,r lL'lL,C. c.,"') j 

ranzes over /~ 'i. In th is case, t:l~re are also five ordered pairs 

satisfying the equation. T~jus, there are exactly five points on 

evc:1:"y line and axiolll 2 is satisfied. 

Let (xl,Y ) c.nd (x2 'YZ) be any two distinct ordered flairs. Is
I 

t~lere a line throur;h these tvlO points? That is, are there elements 

a, b, anel c in Z" such t 1lat ax + by = c is satisfied. by the coordinates 
,) 

of both points? 

Case 1 - If there is k " ~ such that Xl = kX 2 and YI = kY2(mod 5) 

then akx + bkY2 Must equal c and aX + byZ must equal c. Thus, choose
Z 2 

c = ~. There necessarily exist a and b in Z , not both equal 0,
S 

such that aX + by'] = 0. For these values it is clear that
2 

akx.., + bky.., will also be I). In short, there exist a, b, amI c for 
L. ~. 

whidl both pairs (xl ,Y I) and (x y 2) satisfy the equation ax + by = c.
2

, 
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Case 2 - If there is k I ~ such that xl = kYl and X = kYZ(mod 5)z 

again choose c O. Then akYl + bYl = 0 and akyZ + byZ = 0 when 

ak + b =0. In Z there always exist elements a and b, not both 0,
5 

such that ak + b - 0 for any given k I O. Hence, again a, b, and c 

exist such that both pairs (x1 'Y1) and (xz,yZ) satisfy the equation. 

Case 3 - If neither of the above cases occur, then IX Y1 
Xz1 Y I I O.Z

A system of two linear equations with non-zero detern1nent of coefficients 

always has a non-zero solution when all elements are in a field and 

c I O. Thus again there exist a, b, and c satisfying the system. 

In other words, given any two points (x 'Y1) and (xz,YZ)' there
1

exist a, b, and c such that ax + by = c is satisfied by the coordinates 

of both points. Thus through any two distinct points there is a line. 

To insure uniqueness of lines one considers all linear equations 

which are equivalent mod 5 as representing the SaMe line. 

Before considering the other axioms, it is enlightening to compare 

this model with the one of the previous chapter. The aim is to see 

if the two are isomorphic. To accomplish this, regard the first array 

of letters as the key array and associate with each point an ordered 

pair of numbers from the set of residue classes (mod 5). 

4 I A 13 C D E 

3 I F G H I J 

Z K L H N 0 

1 P Q R S T 

0 U V W X Y 

o 1 Z 3 4
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Renee, the coordinates of U are (0,0) and the coordinates of S are (3,1). 

It is now possible to associate with each of the thirty lines 

an algebraic expression. 

DEFINITION 10: The slope of the line through the points P1(x 'Y1)1 

and P (x ,y?) is found by the following formula. 
2 2 ~ 

- y )yZ 1 (mod 5m= 

- xlx 2 

and the equation of the line by the formula 

y - Yl =: m(x - xl) (mod 5) 

H'or example, consider points LO,2) and H(2,O). 

Y - 0 ~ m(x - 2)
 

but m := 2 - 0 ~ 2 == -2 ~ 3 (mod 5)
 
1 - 2 :r 

so, Y - 0 ~ 3(x - 2) 

Y=3x + 4 (mod 5) 

Using the same method, the equation of the line CORun is y ==- 3x (mod 5). 

To verify that these are indeed the equations of the lines AILTW 

and GORUD one may substitute the points into the equations ano see if 

they yield a true statement. 'For example, A('1,a) is on the line AILTH 

a ~ 3(n) + 4 (mod 5) 

At this stage, the equations of all 30 lines are produced. 
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y == o(mod 5) (0,0),(1,0),(2,0),(3,0),(4,0) U V W X Y 

y -= l(mod 5) (0,1),(1,1),(2,1),(3,1),(4,1) P Q R S T 

y -= 2(mod 5) 

y -= 3 (mod 5) 

y =.4(mod 5) (0,4),(1,4),(2,4),(3,4),(4,4) 

(0,2),(1,2),(2,2),(3,2),(4,2) 

(0,3),(1,3),(2,3),(3,3),(4,3) 

ABC 

K L M 

F G H 

D 

N 

I 

E 

0 

J 

y = x + 1(mod 5) 

y -:=.x(mod 5) (0,0),(1,1),(2,2),(3,3),(4,4) 

(0,1),(1,2),(2,3),(3,4),(4,0) 

U 

P 

Q 

L 

M 

M 

I 

D 

E 

Y 

y -= x + 2 (mod 5) {0,2),(1,3),(2,4),(3,O),(4,1) K G eXT 

y = x + J (mod 5) (0,3),(1,4),(2,0),(3,1),(4,2) F 13 ~ S 0 

y .-: x + 1+ (mod 5) (0,4),(1,0),(2,1),(3,2),(4,3) A V R N J 

y -= 2x (mod 5) (0 , 0) , (1 , 2) , (2,1+) , (3 , 1) , (4 ,3) U L C S J 

Y= 2x + 1(mod 5) (0, 1) , (1,3) , (2,0) , (3,2) , (L+, 4) P G q
\, '":.'" E 

y -= 2x + 2(mod 5) (0,2), (1,lf), (2,1), (3,3), (If,!)) v
I'... 13 R I Y 

y= 2:< + 3 (mod 5) (0,3),(1,8),(2,2),(3,4),(4,1) F V TI D T 

Y::: 2x + 4(mod 5) (0,4),(1,1),(2,3),(3,0),(4,2) A n 11 X 0 

Y=3x(rnoLl 5) (1,0),(1,3),(2,1),(3,4),(4,2) U G R D 0 

Y ::. 3x + 1(raod 5) (0,1),(1,4),(2,2),(3,0),(4,3) P 1) 
.\) 

p '7 
.t.'.. J 

Y=- 3x + 2(E10d 5) ('1,2), (1 ,0), (2,3), (3, 1), (4,1+) u 
1\,. V r; S E 

Y ::3x + 3(~ocl 5) (~,3),(1,1),(2,4),(3,2),(4,0) F Q C N Y 

Y"= 3x + 4(mod 5) (0,4), (1 ,2), (2,0), (3,3), (4, 1) A L T-! I T 

Y :=:" 4x (mod 5) ('" ~) , (1 , 4) , (2,3) , (3 , 2) , (4, 1) U J n 1'.:­-, T 

Y3- 4x -I­ 1(mod 5) (0,1),(1,0),(2,4),(3,3),(&,2) 1:' "v C I 0 

y -== I:x + 2(raod,) (8,2),(1,1),(2,n),(3,4),(4,3) T' 

h 'l 
, 

n D J 

)7 = ll·X -f­ 3 (T~od 5) (O,3),(1,2),(2,1),(3,~),(4,4) ~ 

L' L R '7 
/". r 

Y~ ILx -f- If ("lOti 5) (D, 4) , (1 ,3) , (2,2) , (3 , 1) , (If, 0) A G "j 

,.. 
~') Y 
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x·~ 1(mod 5) (0,1),(O,1),(n,2),(0,3),(0,4) U p K F A 

x =1(mod 5) (1,0),(1,1),(1,2),(1,3),(1,4) V i) L G B 

x =2 (mod 5) (2,n),(2,1),(2,2),(2,3),(2,4) \,1 p. H H C 

x == 3(mod 5) (3,0),(3,1),(3,2),(3,3),(3,4) X S N I D 

x == 4(mod 5) (4, n) , (4, 1) , (II ,2) , (4 ,3) , (4, 4) y T 0 J E 

Going back to the original definitions, recall that AILTW and 

GORTIn are parallel lines. An exwnination of the equations of these 

two lines and of other parallel lines leads to the following interpretations. 

Two lines are parallel if they have the same slope. 

Now, if attention is turned to the relationship between perpendicular 

lines and to comparing the slopes of perpendicular lines, one is led 

to the following conclusion. 

Two lines are perpendicular if the slope of exactly one is twice 

the slope of the other (rnod 5) or if one line ~as no slope while 

the other is of slope O. 

For exan.pIe , the lines AII.:n! and IVOCP Here orisinally defined 

to b2 perpenJicular. :;otice that the slope of AII/.:'P is 3 \\1h11c the 

slope of Ivocr is I: and 2(1:) ::-. J(:uod 5). Also notice that in array 

one the slopes of the row-lines are a ~lile the slopes of the colwnn­

lines are undefined. 

Jo'v to exanine sone of the familiar statements a:)out parallel 

unJ 0crpendicular li~cs. 1.B.ny 'tvere con~3idere::: in cllaptcr tvlO Jut t}~c 

approaC·~l to t:H2 iJroof 3 ..... 3 chan~.~eLl ill tl.1is c~.~apte.r. 
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OBSERVATION 5: Two distinct lines parallel to the same line 

are parallel to each other. 

Proof: Suppose 1, m, and n are distinct lines such that 

1 1/ nand m JJ n. The equations of the lines are 

1: y=a1x+b1, m: y-=.-a x+b , n: y=-a x+b . 
2 2 3 3

Since 1 i\ n, a ;: a and b /A b . and since m II n,
1 3 1 3 

a 2 a a 3 and b - b Hence, a 1 =- a • 
2 3 . 2

It must now be shown that b ~ b . Suppose that
1 2 

b == b • Then the equation of 1 is y =a 1x + b
1 2 1 

and the equation of m is y =- a 1x + b
1

• Hence, 

1 and m are not distinct. This contradicts the 

given and b i b 2. Therefore, 1 and m are parallel.
1 

OBSERVATION 6: Two distinct lines perpendicular to the same 

line are parallel to each other. 

Proof: Suppose 1, ill, and n are distinct lines such that 

1~ nand m In. The equations of the lines are 

1: y::a x+b , m: y=a x+b2 , n: y.=:a x+b3 . 
1 1 2 3

Now since 1~ n a 
1 

E 2a
3 

and since m l n, a 2 ~ 2a
3

. 

Hence, a 
1 

~ a 2 and 1 11m. 

OBSERVATION 7: A line perpendicular to one of two parallel lines 

is perpendicular to the other. 

Proof: Suppose 1, m, and n are distinct lines such that 

1.1. m and m II n. The equations of the lines are 

1: y ~ a 1x + b 1, m: Y3 a 2x + b 2 , n: y :::::a3x + b3 · 

Now, since 1 1- m, a =. 2a? and since In 1\ n, a =. "a31 - 2 

Hence, a ~ 2a3 and therefore, 1 .l.. n.1 
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Ol.\SERVATlmI :3: Through a point not on a line t}-}.ere exists a 

line parallel to the given line. 

Proof: Given P(x 'Yl) and line 1: Y $ ax + b. Since Z 
1 5 

is closed for addition, there exists b ' such that 

h' I b. Eence, Y 5 ax + h' is an equation of the 

required line. 

'}SS:2RVATIOLT J: Through a point not on a line there exists a 

line perpendicular to the given line. 

"['roof: Given point rex ,Y,) and line 1: y.= ax + b. Since 
1 • 

is closed for multiplication, there exists an 
S 

a' suc;" that a I = 2a. lIenee, y - y 1 '0.:. 2a (x ..' xl) 

is an equatiol1 of t;;2 require(~ li.ae. 

OBSERVATlmJ Fl: T;1rough a point not on a line there exists 

exactly one line parallel to tlw given line. 

"Proof: Observation ~ justifies the existence of il line. It 

is necessary to show t~3t there is only one line . 

.'\n :tndircct proof "Jill b2 used to shmv this. SUPfw3e 

t'lcre e;dst t,m distinct lines 1 'mrl,'~ thro<lZ'" (x,y) 

sue:"; t::at 1 \1 n anr3'"1 II n. The e<:]u3tions of the 

n: v::::ax-l-b15,nc$ are 1: y::: a 1x + hI' ~'1: y -::::.a?x + b?, .Y-- 3"' L 3• 

,.• l.DCR.Lc·· , \ \ n, a I "" a 3 and cdnc e ';1 1\ n, Cl-? ": .'1 3 • 

Therefore, a '= a • Hence, the equations of 1 anc~ TIl
2 1 

are 1: Y :::' a + hI and :11: Yl:~ a x + b? Ivhen the1x
1 1 1 1 

Doint (x ,y ) is substituted in the equations.- 1 1 . 

Therefore, b == b anel 1 and m are not distinct.
1 2 

This contradicts the given. Our assumption is false 

and there is not more than one line through (;~, y) 
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parallel to n. 

~'J01" from observation 3 and this proof. through a 

point not on a line there exists exactly one line 

parallel to the given line. 

OBSER\0\TION 11: Through a point on a line there exists exactly 

one line perpendicular to the given line. 

Proof: The proof of this observation is similar to the 

proof of observation 10 and hence the author will 

not reproduce it. 

This second model of a geometry of 25 points has been sho~vn to 

satisfy the five axioms satisfied by the first model. In both cases 

the undefined terms were point. line. on. parallel. and perpendicular. 

The axioms are the same five as has been mentioned before. 

The fact that there is an isonorphism between these two models 

does not suggest that the set of axioms is categorical. One objective 

of this paper is to study the two models themselves in order to find 

out what other axioms are needed to come up with a set which may be 

cate~orical. At this stage. a major concept - that of length - has 

been established for the first model but not included in the axiomatic 

system. Before including it. it may worthwhile to interpret the concept 

in the second model. 

nemember that distance between two points of an array could only 

be measured horizontally or vertically by following a row or column. 

This definition results in only two non-zero units of length. 1 or 2. 

for row distance and t~"o non-zero units of length. -{2 or 2.J2', 

for column distance. Thus. the following distances from the first model. 
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d (A,B) d (A,E) 1 
r
 

dr(A,C) = dr(A,D) = 2
 

d (A,F) = d A,D) = ~i
 

r 

c c
 

d (A,K) = d (A,P) = 2 ~2
 
c c 

To maintain this idea, define distance between PI (x 1'Yl) and 

P (x2 ,y?) by the following formula. 
2 ­

dE ~-~~-'-=--~'2 )2+ 2(y1 - ;;)2-(~Od 5) 

At) examination of this formula shows that it alw'ays yields positive 

answers which is desirable for distance and it distinguishes between 

row and column distance. For example, 

d (A, E):: -J(~·-=-OZ'·~-;-('4. - 4) 2 (mod 5) 
r···· ..·..·;:; ....---.-----···2··-·· 

_ ~ (I)'" + 2(f\) (mod 5) 

:::. Jl' (mod 5) 

1 (mod 5) 

and 
-------· --­

d(A,F)= "f (0 - 0)
2 

+ 2(4 - 3)
2 

(mod 5) 

:=. ~--( 0) Z---:;-; (1) 2 (mod 5) 

:= \I"z- (mod 5) 

Likewise, d(A,C)==- 2(mod 5) and d(A,K)== 2 .,j2(mod 5). This exhibits 

the fact that the non-zero row leneths remain 1 and 2 while the 

r--- ,­
non-zero column lengths remain '\J 2 and 2 \J 2. 

The content of this chapter may be summarized as follows: 

Coordinates have been assigned to points by interpreting a point to 

be an ordered pair of numbers in the field 2 • The number of distinct5 

points is thus the number of distinct ordered pairs (x,y) over 25 

which is clearly 25. A line is then represented as a set of five 
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points related ;1'1 a sin;;1e linear equation in t\'l0 unknmffis (mod 5). 

lUI the other axioms of the orie;inal non-coordinate geometry ,,,ere 

then imposed and a f~v of the observations about the new model were 

discussed. 

It is worth particular notice that in both models and in the 

aximnatic ::?;eometry. through a point not on a line there exists exactly 

one line parallel to the given line. Thus, the question arises as 

to ,-Jhat other important theorems from Euclidean zeonetry are true in 

the t\VO models. This study could obviously be an unending process; 

hmvever, one of these involves a concept already introduced to both 

uodels but not yet axior.latized. This important concept will be the 

focal point of chapter four. 



Chapter 4 

THE PYTHAGOREAN THEORETI 

In chapter three, as was discussed in its conclusion, the discovery 

that through a point not on a line there is a unique parallel to the 

given line gives rise to the question as to what other theorems of 

Euclidean geometry are also true in the two 25-point models. This 

chapter will be devoted to a discussion revolving around the pythagorean 

theorem and whether or not it is valid in the 25-point models. 

Theorem 11 from chapter two limits the number of right triangles 

in this geometry and in the models to 1200. Now since the three 

original arrays are symmetric, there will be 400 right trian~les in 

each array. Therefore, the discussion of right triangles will center 

around a discussion of the 400 right triangles in the first array. 

And since there are only 400 of them to consider, the author will 

adopt a method of exhausting cases rather than discussing the general 

right triangle. 

For reference, the first array will be reproduced at this time. 

A B C D E 

TTF G n I J
 

K L ~1 jJ 0
 

p
 0 R S T
 

U V H X Y
 

From the definition of right triangle, and from the definition 

of perpendicular lines, one of the legs of a right triangle must be 

a row-segment while the other leg must be a column-segment. Combining 
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this idea with the fact that row distances are 1 and 2 and column 

distances are 'J 2 and 2. \f 1, it is obvious that there are only four 

possible pairs of lengths for the legs of a right triangle. These 

pairs are 1 and -J--Z, 1 and 2 '1-2, 2 and '.\2 and 2 and 2 '\f2~ Now, 

each of these pairs may be combined with any of the four possible 

lengths as the length of the hypotenuse and so there are only 16 

possible distinct right triangles in our system. To classify the 

400 right triangles of array one into these possibilities, the author 

examined all four hundred of them using the fo11mving method. 

First, examine all possible right triangles with legs of length 

1 and ~-2. These fall into a number of definite patterns. One group 

consists of all right trian81es formed as fo110,"s: choose any 

arbitrary point, say D. From that point proceed one unit to the right 

to point E and then down one unit to point J. These three points 

fona right triangle DEJ. Nmv, there are 25 points from \vhich to begin 

and hence, there are 25 right triangles formed by this ~llethod. 

Examination of all of these rie::t triangles shm,rs that the hypotenuse 

r-
Is found in the second array and is found to always be of length 2. ~ 2. 

A 3ccon": group 0:' rigl:t triangles is found Ly proceeding froG 

t~lC~ uegirl~1ii·i.;; tioin.t, say D asai~-l, 011(; un.it to t~tC left to poi-at v 

auc: Uten dO\m onl'2 unit to point }-[, Therefore, triangle DeIl is 

forme(~. Again there will he 25 triangles formed by this method. In 

each of these cases, the hypotenuse is found in tIle third array 
..­

'-,n,-l ·C' f . 1- ;. :l.,-..r- 1.... t') f"')0di." l .. ' "oune· to b",. 0,- 1e,.,,,,,t,,". ~,.• 

1":1:,:' tltir~.l .-:srou~ if~ foun::} by ~roceeding frol;l t112 be,si-~.:.;.in~ pOiTlt, 

T' ;:, ..~·):lin, .-1o'rn on,,:: unit to tb P. ~)oint I and tiLen one unit to til':: ri,'.','ct 

t'! 1 CloC" <~to 'Jo:Lr!.t .T i:lnJ 11ence trj,1n~J.'2 "U. Once r~ore t;.~erc are 25 of ",'--.',::>'-­
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ri -'t tl'ia",,~l;s ar,,1 Lrc~n.cii of t:1C'.SC' cases 1Jhc::n searching for tIll" 

:'~ypotc:nuse, 3. different sitll:Jtion results. TtH~ hYj10tenuse of trian;::;le 

DLT i~3 t;~le line se~r,12nt 'JJ Hhich is found in the second array. But 

~)J is also the hypotenuse for rizht triangle Df,J t;V'hich t;vas already 

considered in ::;rOllp one. In fact, each hypotenuse of the. right trianzles 

in zroup three is found to be one of the twenty five possibilities 

already considered in group one. Hence, the length of each hypotenuse 

is 2 '-J2. 
Finally, in group four, proceed from the beginning point D 

dmm one unit to point I and then left one unit to point ~L Right 

triangle DIU is one of the 25 possibilities in this croup. Each 

hypotenuse of the right triangles in this group is one of the 25 

possibilities already considered in group two and again the hypotenuse 

is of length 2 ~: 

l':ow, from these four cases a statement can be made about right 

triangles with le~~s of lenr-th 1 and 12. This statement could be 

called a theorem or observation since the author has proved it by 

exhausting all possible cases but since a formal proof of the statement 

has not been discovered, it shall be presented as a conjecture. 

COUJECTURE 1: Any right triangle t;V'ith legs of length 1 and -J-Z 
r-­

has a hypotenuse of length 2 ~ 2. 

Secondly, examine all right triangles with legs of length 1 

and 2 ~-2. Using the method just outlined, each of the four groups 

yields right triangles such as triangle ABL, trian~le BAK, triangle AtJ" 

or triangle BLK. The hypotenuse of right trianzle ABL is found in 

array two as is the hypotenuse of each of the tvJenty five right trianeles 
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in this 8rouP and it is found to be of length 2. The hypotenuse of 

right triangle BAK is found in the third array and is of length 2 

as is all of this group. The hypotenuse of right triangle AKL and each 

hypotenuse in group three is one of the possibilities from group one 

as they were in the first case. The hypotenuse of right triangle 

ELK and each hypotenuse in group four is one of the possibilities 

from group t~vo. Having checked all of these possibilities led to 

the second conjecture. 

CONJECTURE 2:	 Any right triangle with le?,s of length 1 and 2 ~"2 

has a hypotenuse of length 2. 

Thirdly, examine all right triangles lvith legs of length 2 and 

~. Using the same method as before, the right triangles of this 

case ","ill be such as triangle ACII, triangle CAF, triangle AFH, or 

triangle CHF. Hhen examining each hypotenuse, the same pattern 

exists as existed in the first t~vo cases. These one hundred triau:,;les 

yield the following conjecture. 

CO~1JECTUR.E 3:	 Any ri2;ht triangle ~lith legs of length 2 and ~ 

has a hypotenuse of lenGth 1. 

Finally, examine all right triangles ~Jith legs of lenzth 2 and 

2 ~2. These :'lre ri~sht trian8les such as triangle ACH, trianz,le CAI~, 

trian[t,le AI'1'f, or trianZle cnc The pattern holds true for these 

one hundred right triangles and leads to tbe fourth conjecture. 

COITJECTurzr If:	 Any right triangle with legs of len::~th 2 and 

,-- r;:: ­
2 ~ 2 has a hypotenuse of len2t~ ~ ~. 
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nOWt the process used considered one hundred right triangles 

in each ~roup examined which obviously yields a total of four hundred 

r:i~~ht trianl31es. Ey previous discussion t this exhausts all the 

possibilities for the first array. The process could be used to 

examine the rir;ht triangles in arrays two and three but this is 

e~uivilant to examining the first array a second and a third time. 

Three e:caminations of the same array is obviously not necessary. 

Therefore organizing the four conjectures into one statement yieldst 

the follm'1ing conclusion. 

CONJECTURE 5: Any ri~ht triangle of the 25-point model has 

sides whose lengths are one of the four following 

possibilities: legs of length 1 and ~ and 

r-
hypotenuse of length 2 ~ 2 t legs of length 1 and 

f""­
2 ~ 2 and hypotenuse of length 2 t legs of length 

2 and -[""2 and hypotenuse of length It or legs 

of length 2 and 2 ~ and hypotenuse of length ~ 

Therefore t a discussion of right triangles and specifically a 

discussion of the Pythazorean theorem involves consideration of only 

four possibilities. 

OBSERVATION 12: In any right triangles t the sum of the squares 

of the lengths of the legs (mod 5) is congruent 

to the square of the len~th of the hypotenuse(mod 5). 

Proof: Case 1 - Consider the right triangles with legs of 

length 1 and ~2 and hypotenuse of length 2 J2-. 
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1/:= 1 (mod 5), (V)2 =- 2(mod 5), (2 --r2)2 .==. 3(mod 5) 

2 r--2 r-2 
ann therefore, 1 + (\J 2) := (2 \j 2) (mod 5).
 

Hence, the theorem is true in this case.
 

Case 2 - Consider the right triangles with legs of
 

r--­
length 1 and 2 ~ 2 and hypotenuse of length 2. 

12 ,=. 1 (mod 5), (2 r2)2 =- 3(mod 5), 22:.::_ 4(mod 5) 

2
and therefore, 1 + (2 -.r-2)2=. 22(mod 5). Hence,
 

the theorem is true in this case.
 

Case 3 - Consider the right triangles with legs of
 

length 2 and 2 {2 and hypotenuse of leneth ..[2.
 

2
2 

s=. f!. (mod 5), (2 --.12) 2 =- 3 (mod 5), (D) 2.=:. 2 (mod 5)
 

? 2 r- 2
4 + 3 =- 2 (mod 5) and therefore, 2- + (2 V) ~ (~ 2) ­

(mod 5). Hence, the theorem is true in this case.
 

Case 4 - Consider the right triangles with legs of
 

length 2 and ~-2' and hypotenuse of length 1.
 

22 =- 4(mod 5), (--r-2) 2 =- 2 (mod 5), 1
2 =. 1 (mod 5),
 

2 + 4 =: 1 (mod 5) and therefore, 22 + (r2) 2 _~ 12 (mod 5).
 

Hence, the theorem is true in this case.
 

~1m.], from the four cases, in any right triangle,
 

the sum of the squares of the lengths of the legs is
 

congruent to the square of the length of the hypotenuse
 

(mod 5).
 

In conclusion, chapter four has exhibited the fact that the study 

of right triangles of which there are 1200, Inay be reduced to the study 

of only four specific cases. 



Chapter 5 

IsmfETRIES or TIm 25-POINT PLANE 

The preceding chapters consist of conclusions arrived at by 

the author through his own original methods, using only the axioms 

and definitions presented. In this chapter, the author makes use of 

a su~r;estion made by H. Hartyn Cundy in a paper entitled "25-point 

"' 2 . •GeOT1etry'. The suggestlon lnvo1ves the use of group theory. 

In his article, fir. Cundy noted how the three original arrays 

of the 25-point geometry were related to each other. If r is the 

operator transforfling the first array into the second array then p 

applie'.-l to the second array yields the third array. For example, 

C is the third letter in the first row of array one and it is removed 

to the secon(l position of rm·l four by t"e operator p. Nmv, if the 

second array is considered, L is the point that is in the third position 

0+ the first rO',' anrl it is also renoved to t~e seconrl position of rOttl 

four by the operator p. Graphically, the result of the operation p 

on all 25 points accomplishes the following. 

nA B C D E A I L T TJ A i.~ 0 () ".'. 

TO'C' p tJ r;1<' G 1-1 I J V Ii: IT. ;\- :','J J:..." 

~,1: L N () T) G 0 T\. F D V D ~ ~,r Tr~ P 
~ ~ 

r~n IT () (l n r. s .t C -r J L S U1. li " 
.,., Trv nIT V TJ " y J n,'- y T) I i ... " " " 

The. question iilITle,1i.a.tely [Irises as to what hapreus if the operator 

'")) S 2p:)lied to t;,e thin' array. The cUscussion of thi" uil1 he left 

ul1til later in the chapter, after introducing additional definitions 

? 
--r;unc.ly, "2S-}'oint r;eonetry", ~f:1thematica1 Gazette, XXXVI
 

(September 1'152), 153-166.
 



,.....,T..,-.'..,.· r"Ir:~T0. 1 1 ; ., 1" l":, ,- ,
L ,2 opcratt)~ .. , . , 

~,.TjlJ_C- ~ lC:.'J'l28 an~T .~rr3Y 

"" 

une1"";o.~n"-.;;~ 1 • 

::7:'n~".~I~-rry·-r 1 '" ~. r~' t'le op2rn tor ">J!·1icl.~, rc'verse8 the cyclic 

or~'~C'r .i.r- t1'.f~. ro~::: of t~H~ .8rrnys. 

"'''cI''ITI:l'' 11;	 "-·1" Ls t1.-'e opc~rator F~lic', reverses the cyclic 

or"~cr ill 1:-!ot~1 t~l.e rOVTs a:Hl eolll~:r~:l.~; of tIle arrays • 

'"-:rn,T _.. -j T") '7J:),'1 _ _ cr n f r' _ r ,TO. n 'r1rl "'''':'l r.:, ., .'t 1> --. , ~ .",.. Lerate a "raul' 0, or .er _, _,Iv~,. ,.e e1e..<.ont, 

o F th,,~ ,';roup ;emrl t'leir re1ationshil'ls are eJ':l,ihj,t,:~rl in the fol1mrL'l'!, 

ta'jl:~. ":c3TTlination of the table vi 11 rev0al that t~te properties of 

il ;roup- closure, inverse:', identity, ano assoc 1,-3.tivity - i1re satisfied 

l..,y t:.'.is Sj.rs te.n. 

-1 1 i -., P -D pi -pi ?!' .­ ip -i-p 1 _, T) 

--·1 II 1 -1 .-1. i '-p p -pi pi 
') 
,­-p --ip in 2 

') 

1 I I -1 1 i -i P '-'p pi -pi 2 p ir -in 
') 

.- n 

ill -·i t 1 ..-I ip -ip 
I. 

-p 
') 

P -pi ;') --]1 pi 

-i It 1. --i -1 1 -ip ip 
? 

P 
?-'.p­ pi ._p P -pi 

~ II -p p pi -pi 
') 

p -­ 2 
-p --ip ip -·1 i --i 1 

--r I I p -'p -?i pi __p2 2 
P ip ---ip 1 -i i -1 

pi II ···pi pi !) -p i -i 1 -1 il) 
2 

0 

,., __pL --i ~) 

--pi ?i -pi -<) P -1 i -1 1 -ip 2 
-0 

?
p'­ ip 

') 

'p'" 
? 

'-p 
-. 1)2 -ip ip -1 1 -j i -p pi -pi 0 

ip -ip l.p 
~ _.p " ,:. 

TJ --pi Di -p P --i 1 -1 i 

-ip ip -ip ? 
-~) 

?
-;Y' pi -ni P -p i -1 1 -i 

2 
-p 

2 
P 

? 
--]1 it) -ip 1 -1 i -i P -pi pi -p 
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The twelve operations on the first array \"ill yield the followin2. 

A B C D E A B C D E 

F G II I J F G H I J 

K L M N 0 1 K L M N 0 
? 

P Q R S T P Q R S T 

U V u X y U V ~'1J X y 

A B C D E A E D C B 

F G H I J F J I F G 

K L H U 0 i K 0 N H L 
7­

p Q R S T P T S R Q 

u V U "A Y U Y X lr V 

A B C D E A B C D E 

F G II I J U V ~J X Y 

K L 11 N 0 -i P Q R S T 
~ 

p 0 R S T K L M N 0 

U V n "I\. y F G H I J 

A B C D E A I L '" 1­ r,;r 

F G p
" I J S V E H T' 

h 

K L H n 0 p r, 0 R U D 
.:;,. 

p Q R S T Y C F t! (~ 

U V H X Y II P " A 
p 
I.' J 



A n 

" 
,.., 
l, 

",..,
\) 

T-,' 
1..1 A IT T L I 

F r, T1 I J "M 
II J B v 

" P 

T7 
,'­ L H N 0 -p y Q N F C 

~ 

p Q R S T G D U R 0 

U V H X Y S K H E V 

A B C D E A E D C B 

F G II I J U Y X V V 

K L H N 0 -1 P T S R () 

~ 
p Q R S T K 0 N 1'1 L 

U V F X Y F J I H G 

A B C D E A H T L I 

F G 11 I J S K II E V 

K L M n 0 pi G D U R 0 
~ 

p Q R S T Y (1 IT F C 

U V ~.! X Y M 
J' J B X P 

A B C D E A I L T H 

F G H I J 1'1 P X B J 

K L H N 0 -pi y C F N () 

'>' 
p Q R S T (; 0 R U D 

U V H X y S V E 11 K 
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A B C D E A H 0 Q x 

F G H I J R Y B I K 

K L H N 0 ip J L S U C 
,.. 

p '1 R S T V D F H T 

U V 17 X Y 1'1 P VI E G 

A B C D E A X Q 0 II 

F G H I J N G E \oJ P 

K L M 1'1 0 -ip V T 1'1 F D 

~ 
p Q R S T J C U S L 

U V VI X Y R K I B Y 

A B C D E A 11 0 Q x 

F G II I J 1'1 P H E G 

K L H N 0 
2 

P V D F 1'1 T 

::;, 
p Q R S T J L S U C 

U V Ttl X Y R Y B I K 

A B C D E A X Q 0 H 

F G II I J R K I B Y 

K L H N 0 
2 

-p J C U S L 

p Q R S T 
"7 

V T M F D 

U V tV X Y 1'1 G E l~J P 
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Returninr, to the original definitions of the operators, since 

distance is defined in the three original arrays, distance is obviously 

preserved under the operations "p" and "p211. 

The operator "i" reverses the cyclic order in the rows but 

leaves the order in the columns unchanged. Now, reversing the cyclic 

order simply interchanges the points in positions 2 and 5 and in 

positions 3 and 4. With the definition of distance used in chapter 

t\vO, "i" also preserves distance. By the same an;ument, the operator 

"-1" Hhich changes the cyclic order in both the rows and columns 

must also preserve distance. 

Finally a1on3 this line, the 0I1erlltor "-i" simply reverses the 

cyclic order within the columns and leaves the ortler in the rmvs 

unchanged and hence, it will also pres~rve distance. 

I' '! n .!~ ,~. " n .:'
:~o\V , -p, pl, lp, -pl, " . " ,ane1" -'p2 f''H1• 11 a so preserve-lp 1 

distance since they use either the second or third array and do one 

of the "order exchangine;" operations just discussed. Hence, the 

entire group preserve distance. 

r,eturnin2; to c11apter four and the study of ri~ht trian31es can 

be simplified nOli! hecause of these ne"T operators. These isoaetries 

of the 25-point plane lead us to the fo1101ving facts. There are now 

t\\r(>lve arrays insteac'! of three. T11erefore, since there eTe 12IJ') 

ri;~ht trian2:1es, each of the twelve arrays must represent one hundred 

triangles. It is still true that every triangle has hase-heisht 

lenl?;tlt of 1 - ~-2, 1 - 7 "2, 2 - ~2, or 2 - 2 V. At e~ch of the 

75 Jloints in any array consider a risht trian::3le of eaeh of the four 

ty;'cs. rence, insteal~ of checLin2; I~')n right triansles as '·.ras necessary 



.........
 

. ) t) 

Ln tLe previ GUS method, it is now necessary to check only one J'lmrlxe(l 

r13]lt trian~les and in essence all 1200 will then have been considered. 

:{ence, it has been shown in this chapter that Hhen considerin::~ 

the 2;roup ::;enerated by t -l,i,p 1the examination of right triangles 

can he reduced to an examination of only one hundred cases in anyone 

of the arrays generated by the group and therefore it is not impossible 

to use the method of exhausting cases when considering theorems ahout 

right trianr,les. 
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Chapter 6 

CONCLUSION 

As is quite often the case when dealing with a somewhat unexplored 

concept, this study of the 25-point geometry has raised nearly as many 

questions as it has presented answers. For example, what would the 

geometry become if two parallel lines were simply lines which have 

no points in common and were not restricted to being in the same 

array in the model? Some of the questions raised in the previous chapters 

deserve some additional comment, and that will be the intent of this 

chapter. 

One point which possibly needs clarification deals with perpendicular 

lines in the coordinate chapter. For the purpose of discussion, the 

definition of perpendicular is repeated here. 

Two lines are perpendicular if the slope of exactly one is 

twice the slope of the second. 

Notice that contrary to Euclidean geometry, with this definition and 

the slopes of the lines, A perpendicular to B does not imply that 

B is perpendicular to A. lIenee, we have a deviation from Euclidean 

geometry. 

A second concept from Euclidean geometry that is not used in the 

25-point geometry is the concept of betweeness. The lack of this 

concept in the 25-poiat geometry makes the definition of line segment 

divorced from the same concept in Euclidean geometry. The definition 

of betweeness from Euclidean geometry is: 

Point B is between points A and C if all are distinct 

and AB + BC = AC. 
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If this definition is used in the 25-point geometry, tHO problems 

b:uneJiately arise. First, notice that point E would be between 

~oints A and D since AE = 1, :CD = 1, AD = 2, and hence, AE + ED = l\IJ. 

Secondly, since AD = 1, rm = 2, and AD = 2 and hence A13 + BD :f AD, 

point 3 does not lie bet",een A and D even though it "appears" to. 

Another problem also arises when considering betweeness. Hilbert's 

second axiom of order states that given any t\-lO points on a line there 

always exists a point between them. Obviously, this axiom '{QuId not 

"Jc true if the two given points "ere A and .:::'. T:IC lacl~ of satisfying 

this axiom if betvleeness were defined in t T... __ 25-point geomctry1..1 t::' 

'.lOuld pro~ably not be a maj or factor but the contradictions raised in 

the previous paragraph and a lack of discovery of a suitahle substitute 

led the author to omission of the concept of betueeness in t:lC: 

2S-point 3cometry. 

r.losely relatec1 to t~,e :i us t completed di"cussicn is the concept 

of 1:L:12 S0:>;:·,c.nt. vhen i'lakin('; the definitions, t 1[p. (~efinition of lirlc 

s;;;[;,aent is one of tIle IlIOSt dif':icult. l~emenb:~r t 1.1n.t in the rlefinition 

of line segment, the lines are pot considered to be closec1 • TTence, 

?~\D is not a line sesmcll.t. nne of the reasons for this is that the 

author wished to preservc the fact that TIE and CB would represent 

the sa:ne segment. If the lines were considered closed then t-lOuld 

En represent the segment consisting of points :S, A, and 13 or the 

segment consisting of points E, n, C, and B? For the author's 

seometry, EB should represent the segment consisting of the points 

:C, D, C, and n and then EB and BE ~.,ill represent the same segment. 

7he reader might be interested in examining ~vhat course the geometry 

vould take if the lines were considered closed. Obviously, the 



41 

discussion of right triangles in this paper would drastically be 

altered by the change in the definition of line segment. 

Another concept that was deleted by the author is the concept 

of angle in the general sense. Right angle can be discussed since 

perpendicular lines are defined but no suitable definition for angle 

was found. It is possible that some type of definition related to 

triangles with the same lengths of sides could be introduced but 

this does not seem to offer any particular insight into the study of 

the 25-point geometry and hence, it was omitted. This omission then 

eliminated two concepts equivilent to the fifth postulate of Euclid. 

They are that the sum of the angles of a triangle is equal to two 

right angles and the existence of similar non-congruent triangles, 

that is of non-congruent triangles which have all three angles of one 

congruent to all three angles of the other. 

The paper also suggests that possibly there are concepts from 

Euclidean geometry that are also true in the 2S-point geometry but 

have not been examined in this paper. For example, is it possible 

that an in-depth study of group theory would simplify the system 

even more than the group of order 12 which Has presented? mlat 

properties of triangles in general are true in this systern? Do the 

conic sections exist in the 25-point seometry and if so, what properties 

of them are true? These are just a few of the flany concepts that 

could be exronined and the reader has possibly found others for which 

he has a special interest. 

Finally, some concluding remarks about the Pythagorean theorem 

are in order here. The study of the models has indicated that the 
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:'U[, Df t:JC- sq-:.mres of the two legs of a ri2;ht trian~le is equal to 

th:3 s1uare on the hypotenuse. The ques tion is to determine whether 

or not another axiom for the geometry of 25 points should be this 

fact itse~lf or ~"hether it should be some oth.er more basic stateFlent 

r'rw.) \71dd;. this fact could be logically derive·~. 

Consider the six sets of axioms used by Pilhert for Euclidean 

~;eo'1.etry. These are the axioms of connection, order, continui ty, 

cons;ruence, parallels, and cOhlpleteness. It has just been noted 

"Thy the concept of order has not been desirable for the 25-point 

~eometry sUGgested by the models stucliec1. :-'or similar reasons, the 

notion of continuity does not fit this geometry. Regardin;: the 

axioms of connection, axiom 2 and 3 for the 25-point geometry are 

precisely that type of axiom, and the 4th axiom listed for the 

25--point geometry is a "parallels" axiom. The axiom on perpendiculars 

listed for the 25-point geometry does not correspond to any of Hilbert's 

axio,-as. It ~.".as needed in our geometry but not in Euclid's. The 

completeness axiom by Hilbert states that it is not possible to add 

(to the system of points of a line) points such that the extended 

system shall form a new geometry for which all the other axioms hold. 

Clearly, the axiom 1 for t11e 25-point geonetry regarding the existence 

of exactly 25 points an3 the a:dorn fixin8 the number of points on a 

line make the addition of neVI points impossible. There reT'1ains 

therefore, only the axioms of congruence. 

The author sU3gests that it is possible that TUlhert' s axioms of 

con8ruence could be replaced in the 25-point geometry by axioms of 

len;~th. This results from the fact that the author has found no 

suitable way to consider congruence for anything other than segments. 
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:;OH,	 rilbert' s axi.oms of con3ruence of sep;ments are as follows: 

a)	 If A,n are points on a line L and if A' is on a line L', 

t}lere is exactly one point B' on a given side of A' on L' 

such that AB is conzruent to A'B' • 

b)	 Every sevnent is congruent to itself. 

-	 --" 
c) If AB is congruent to segment A'B' and if An is congruent to 

segment A"B", then A'B' is congruent to A"B". 

d) If An and BC are segments on L with only B in C01TImOn, and 

if A'B' and B'C' are segments on L' with only B' in co~~on, 

- -" --" 
and if AB is congruent to A'B' and BC is congruent to B'C' 

then segment AC is congruent to segment A'C' • 

Now, it is irmaediately evident that these four axioms cannot 

be used in the 25-point geometry. Tvith the definition of distance 

used in this geometry, Hilbert's axiom which has been labeled a) 

is not true. For example, if AB is of length 1, there are two segments 

with endpoint A' of length 1. Clearly more investigation along this 

line is needed but this investigation has not been conpleted in time 

for inclusion in this paper. It is hoped, however, that enough has 

been included to make the effort worthwhile and to stimulate the 

reader to also examine the 25-point geometry in more detail. 
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