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This thesis deals with a topic in abstract algebra, the wreath
product. The wreath product is a special type of permutation group
which acts on ordered pairs. An example is givén to illustrate the
algebraic structure of the wreath product. Methods of performing the
operation of composition of mappings as defined for the wreath product
are demonstrated. Theorems concerned with the structure of wreath
products are developed.

The importance of the concept of wreath products lies in their
use in constructing certain types of subgroups of symmetric groups.
These subgroups are the Sylow p-subgroups of symmetric groups. The
method of constructing Sylow p-subgroups with wreath products is
developed. Computation of the number of Sylow 3-subgroups of the
- symmetric group on thirteen elements is performed. Similar compu-
tations for symmetric groups on 12, 14, and 15 elements are shown.

One chapter is devoted to investigating which wreath products
have the same internal structure; that is, which are isomorphic.

Theorems demonstrating isomorphisms between certain wreath products



with the same number of elements, that is, the same order,arc
developed, and conclusions for wreath products of order less than 100
are derived from these theorems.

Somec minor results of the study are presented in Chapter VI.
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Chapter I: Introduction

The wreath product is a special form of permutation group. Under-
standing the nature of the wreath‘product facilitates comprehension of
certain types of subgroups of the symmetric groups. It is the intention
of this thesis to present the concept of the wreath product in a manner
that a reader with only a basic knowledge of abstract algebra can under-
stand. It is assumed that the reader has had a course in abstract
algebra.

This thesis deals with finite groups.

Some remarks concerning notation and statements of useful theorems
(without proof) are in order. Since the topic at hand is permutation
groups, the reader is reminded that a permutation group G is a set of
one-to-one mappings (permutations) of elements of some set A onto the
same set A.

The notation indicating the action of a mapping (permutation) on
an element of a set will for the most part be exponential. If a is
an element of set A and g 1is a mapping, a® is the element to
which g maps a.

Permutations are often given in cyclic notation. For instance,
(123) is a permutation which maps 1 to 2, 2 to 3, and 3 to 1. It is
a mapping of {1,2,@ to itself. 1(123) = 2, 2(123) 3, and
3(123) - g,

A group G which is generated by a finite set of elements a,

a3, «.. , 4y is designated <aj;,a;, ... , 3. Thus G = <a1,32,...,357.



A permutation group on a set of n elements consisting of all n!
possible one-to-one onto mappings of the set to itself is the symmetric
group on n, designated S,.

The number of elements of a set A is denoted by |A|. The number

of elements in a group G, the order of the group, is designated

similarly, |G

The identity element of a permutation group is designated as (1).

The theorems which the reader will find helpful are listed along

with definitions of appropriate concepts.

1.) Definition of homomorphism: A mapping of the elements of a
group G to those of a group H is called a homomorphism if and only

if gy > h; and g, + h2 implies g,g, + h;h,.

2.) Definition of isomorphism: A one-to-one homomorphism of G
onto H 1is an isomorphism.
The reader is reminded that identities are mapped to identities,

and inverses are taken to inverses by homomorphisms.

3.) Cayley's Theorem: Every group G 1is isomorphic to a per-

mutation group of its own elements.

4.) LaGrange's Theorem: If H is a subgroup of G, then |H|
divides |G|.
The order of an element a of a group G 1is the smallest positive

integer n such that a = (1). Since <a> is a subgroup of G, and



|<a>|= n, the order of an element of a group G must divide the order

of the group G.

5.) Definition of conjugates: Two elements s and s' of a

group G are conjugate if and only if for some x € G, x"lsx = s,

6.) Definition of conjugate sets: Two sets of elements S and

S' are conjugate if for some fixed x ¢ G, x~ISx = S'.

7.) Theorems concerning conjugate sets:
(a) If S and S' are conjugate sets, they contain the
same number of elecments.
(b) Any set conjugate to a subgroup is also a subgroup.
(c) Two conjugate subgroups are isomorphic. The operation

of conjugation is an isomorphism.

8.) Definition of normal subgroups: A subgroup H of a group G
is a normal subgroup if x~'Hx = 1 for all x € G. A normal subgroup H

of G 1is sometimes called a self-conjugate subgroup.

9.) Definition of coset: Given a group G and a subgroup .
The set of elements hx, all h € H, x ¢ G, x fixed, is called a right
coset of H, and is designated [x. Similarly, the set of elements xh,

all h € H, is called a 1left coset xH of H.

10.) Theorems on cosets:
(a) for H a subgroup of G, all x,y ¢ G, either jixM\ily = @
or Hx = lly.

(b) |xti] = |1] and |iix| = Jif]



11.) Definition of a factor group: If H 1is a normal subgroup
in G, the factor group G/l consists of all distinct right cosets of
H. The operation in G/H is defined as (Hxi)(nxj) = Hxjx

|6/1| = Jﬁ%
i

H is the identity element in G/I.

J‘-

12.) The First Theorem on lHomomorphisms: In the homomorphism
G-+ H, the set T of elements of G mapped onto the identity of H

is a normal subgroup of G. T is called the kernel of the homomorphism.

13.) The Second Theorem on Homomorphisms: Given a group G and
a normal subgroup T; then if I = G/T, there is a homomorphism G » H
wvhose kernel is T. This homomorphism is given by g -+ Txy if g e Txj

in G.

14.) The Third Theorem on Homomorphisms: If G » K 1is a homo-
morphism of G onto K and T is the kernel of the homomorphism,

then K 1is isomorphic to G/T,(K =~ G/T).

15.) Definition of Direct Product: The direct product of groups
Ay, Apyeen, ALs designated (Alezx...xAn) is the set of ordered
n-tuples (a;, a5,..., an) for aj € Ai. The product of (a;, a,,..., an)

and (by, by,..., b,) is defined by
(ay, ag,..., an)(bl, by,..., by) = (8;by, asby, ..., agby).

The direct product is a group.



16.) A theorem concerning direct products: A group G is isomorphic
to the direct product of subgroups Ai fori=1,2,..., n, if
(a) every Ai is a normal subgroup of G;
)] Ajf\ gU.Aj) =<1>, the identity subgroup for all j =1,
i#3
(¢) G =UA; fori =1, 2,..., n.
If this isomorphism is satisfied, G, is called the direct

product of the A;'s, equating (1, 1,..., a3,..., 1) to aj.

17.) A preliminary to the Sylow Theorems:
If the order of a group G 1is divisible by a prime p, then

G contains an element of order p.

18.) The first Sylow Thecorem: If G 1is of order n = pMs, where
p does not divide s, p a prime, then G contains subgroups of order
p?, for i =1, 2,..., m, and each subgroup of order pi, i= 1; 2,...,

m-1 is a normal subgroup of at least one subgroup of order pi+1.

19.) Definition of p-group: A group P is a p-group if every

element of P has order a power of a prime p.

20.) Definition of Sylow p-subgroup: A subgroup S of a group
G is a Sylow p-subgroup of G if it is a p-group and is not contained

in any larger p-group which is a subgroup of G.

21.) A corollary to the first Sylow Theorem: Every finite group

G of order n = p™Ms, where (p,s) = 1, p a prime, contains a Sylow



p-subgroup of order p™, and every p-group which is a subgroup of G

is contained in a Sylow p-subgroup of G.

22.) The Second Sylow Theorem: In a finite group G, the Sylow

p-subgroups are conjugate.

23.) The Third Sylow Theorem: The number of Sylow p-subgroups of

a finite group G 1is of the form 1 + kp and is a divisor of |G|.

The - above definitions and theorems are referred to from time
to time as they are needed to prove the theorems involving wreath

products.



Chapter I1: The Wreath Product

As the introduction states, wreath products are permutation groups.
They act on sets of ordered pairs. The fashion in which the elements of
a wrcath product permute the ordered pairs depend upon the components
of each ordered pair.

Let G be a permutation group on the set A and H be a permu-
tation group on set B, with |A] = m and |[B| = n. Without loss of
generality, let A ={1, 2,..., m} and B = {1, 2, 3,..., n}.

Allow G* to be the set of all n-tuples of clements of G. There
exist mappings ¢ from the ordered set B = {1, 2,..., n} to each
element of G¥ ¢(i) is the ith component of the element of G*. Each
of these n-tuples of G* can be considered to be an element of the
direct product of n copies of G, GyXGyX...XG,. There are |G|™ n-
tuples in G*.

The wreath product of G by H, designated G, is a group of
mappings (permutations) on A x B onto itself. These mappings are
represented by 6 = [g,, g,,..., gp3h] where g; e G and h e H. The
mapping 6 on A x B is defined by

(a,1)8 = (a,1) (815825 5msh] o (28 (D) 3Dy = (a8i )il

To prove that GUH is a group, first cxamine closure. TFor 6,
and 6, clements of G, 6,6, is a product of mappings and is well-
defined; that is, 8,0, ¢ GH. If 8, = [gy, gp,..., 7,3h] and 8, =

[P1s P2se--» Pnik] then (a,1)°192 = [(a,1)%1)%2 = (a%(i),ih)0%2 -



(a81,iM02 = ((a8)¢" (i), (iMK) = (aBiPin,ihK) - (a,1)03 for o -
[g1P1h’ 8,Pyhs- s EnPph; hk]. Since gipjh € G and hk ¢ H, 03 ¢ GlH.
‘Examining this result closely shows that it is not necessary to
consider the action of the elements of G!H on (a,i) e A x B when
computing products of elements of G!H. Notice that in 6,6,,h permuted
the p;'s in 62. In the example which follows this proof, the action

of hj in @ on the gj components of 6; is demonstrated.

J

Since composition of mappings is an associative operation, it is

19j

seen that for 6;, 63, 6y € G, (0;6;)0) = 0,(6;0y).
There exists an identity element I ¢ GH. I = [(1),(1),...,(1);(1)].
For 8 ¢ GMH,0T = I = § since -
(21,8 5--,80:h] (1), (1),...,(1);(1)]
= [g;(1),8,(1),...,8,(1)5h(D)]
= [g1,82,---,8,3h] = 8
and [(1),(1),...,(1);(1)][gy .82, --,8p;h]
= [(1)g;,(M)gy,. -+, (1)gn;5(1)h]

= [glsgz.v"':gn;h] =0

Each 8 ¢ Gl has an inverse in GH. If 6 = [gl,gz,...,gn;h],
then 971 = [(g, 1,g,71,...,g," )7 h71]

since h-1
(81855 --,8,3h1[(g; 71,87, 008 ") " "R

- - - -1 -
= [(g:8y---»80) (8, 1,8, 7,0 v ,gy DR R RAL]
= [(8,,8,,---58)(g; 71,8, 0w vug, 1) 5 (1)]

= [g;8,7 g8, e ugney ™l (D))



= [(1))(1))"°:(1); (1)] =1

- - - -1 h gy
Similarly [(g,"%,g,71,...,g. "7 ;h71]lg,,8,,... ;0]

- - - -1 -1 -
= [(gy gyt gy 1yh (gl,gz,---,gn)h ; h™1h]
1

-1
[{(g, g, ,-.,gn“l)(gl,gz,.--,gn)}h ; (1]

[(gl‘lgl,gz'lgz,---,gn'lgn)h_l; (1]
[(C1),(1),...,anM Y ()]
[(1),(1),...,(1); (] = I.

Thus, Gl is a group. This is Theorem 1 of Chapter II.

Theorem 2. The order of the wreath product of G by If is |G| [H],
where n = |B|
Since therc are |G|n possible choices of n-tuples of G* and |H|

possible choices of h & H, |6| = la|n|ul.

(R is a group of permutations on A x B. Tt follows then that
(R is a subgroup of the symmetric group on A x B, Smn‘ It is shown
in section (d), Chapter IV that form > 1, n > 1, Smlsn is a proper

subgroup of S ..

The following example of a wreath product helps to understand the
nature of the concept. Let A = {1,2,3,4}; B = {1,2,3}; ¢ = {(1),(12)}
a permutation group of order two on the set A; and H = {(1), (123),
(132) } a group of order three on B. Since |A| = 4, |B| = 3, |A x B| =
12. |G} = 2 and |H| = 3 means [GH]| = 23 . 3= 24, GeH consists of

24 elements of Sy,, which altogether contains 12! permutations.



The ordered pairs
a
b
c
d
e

f

of A x B are expressed

= (1,1) g =
= (1,2) h =
= (1,3) i=
= (2,1) j o=
= (2,2) k =
= (2,3) 1 =

The clements (permutations) of GQH are

= [(1),(1),(1) ()]

= [(1),(1),A2);(1)]
= [(1),02),(1) ;)]
= [(12),(1), (1) ;5(1)]
= [(1),(12),(12) ;(1)]
= [(12),(1),(12) ;(1)]
= [(12),(12),(1); (1))
= [(12),(12),(12);
= [(1),(1),(1);(123)]
[(1),(1),(12) ;(123) ]
[(1),(12),(1);(123) ]
((12),(1),(1);(123)]

In Table 1 which follows, the g and h components

arranged in column.

are the ordered pairs to which each ¢ maps a,b,c,...

(1]

Beneath these components

as letters.
(3,1)
(3,2)
(3,3
(4,1)
(4,2)

(4,3)

[((1),(12),(12);(123) ]
[(12),(1),(12);(123)]
[(12),(12),(1);(123)]
[(12),(12),(12);(123)]
[(1),(1),(1);(132)]
[(1),(1),(12);(132)]
[(1),(12),(1);(132)]
[(12),(1),(1);(132)]
[(1),(12),(12);(132)]
[(12),(1),(12);(132)]
[(12),(12),(1);(132)]
[(12),(12),(12);(132) ]

of each 8 are
in the same column,

,1. Tollowing

this table is an explanation concerning how it is constructed.



Table 1
8, 82 83 By 85 B¢
g1 N (1) (1) (12) (1) (12)
g2 1 @ (12) (1) (12) (1)
g3 (1) (12) (1) eY) (12) (12)
h (1) (1) (1) 0 (1) (1)

a (1,1  (1,1) (@1,1) (2,1) (@1,1) (2,1
b (1,2) (1,2) (2,2 (1,2) (2,2) (1,2
c (1,3) (2,3 (1,3) (1,3 (2,3) (2,3)
d (2,1) (2,1) (2,1) (1,1) (2,1) (1,1
e (2,2) (2,2 (1,2 (2,20 (1,2) (2,2
3 (2,3)  (1,3)  (2,3) (2,3 (1,3 (1,3)
g s, (.1 6,1 (G, (6,1 (B3,1)
h (3,2) (3,2 (3,22 (3,2 (3,20 (3,2
i (3,3) (3,3 (3,3 (3,3 (3,3 (3,3)
j 4,1) (4,1 (4,1) (4,1 (4,1) (4,1)
k (4,2 (4,2) 4,2 (4,2 4,2y (4,2

1 4,3) (4,3 (4,3) 4,3 4,3 (4,3

(12)
(12)
(1)
(1)

2,1)
2,2)
(1,3)
(1,1)
(1,2)
(2,3)
(3,1)
(3,2)
(3,3)
(4,1)
@,2)

(4,3)

(12)
(12)
(12)
(1)

(z,1)
(2,2)
(2,3)
(1,1
(1,2)
(1,3)
(3,1
(3,2)
(3,3)
(4,1)
(4,2)

(4,3)

11



8
82

83

(1)
(1)
(1)
(123)

(1,2)
(1,3)
(1,1)
(2,2)
(2,3)
(2,1)
(3,2)
(3,3)
(3,1)
(4,2)
(4,3)

(4,1)

(1)
(1)
(12)

(123)

(1,2)
(1,3)
(2,1)
(2,2)
(2,3)
(1,1)
(3,2)
(3,3)
(3,1)
(4,2)
(4,3)

(4,1)

Table 1, continued

811
(1)
(12)
(1)
(123)

(1,2)
(2,3)
(1,1)
(2,2)
(1,3)
(2,1)
(3,2)
(3,3)
(3,1)
(4,2)
(4,3)

(4,1)

812
(12)
(1)
(1)
(123)

(2,2)
(1,3)
(1,1)
(1,2)
(2,3)
(2,1)
(3,2)
(3,3)
(3,1)
(4;2)
(4,3)

(4,1)

813
(1)
(12)-
(12)

(123)

(1,2)
(2,3)
(2,1)
(2,2)
(1,3)
(1,1)
(3,2)
(3,3)
(3,1)
(4,2)
(4,3)

(4,1)

014
(12)
(1)
(12)

(123)

(2,2)
(1,3)
(2,1)
(1,2)
(2,3)
(1,1)
(3,2)
(3,3)
(3,1)
(4,2)
(4,3)

(4,1)

815
(12)
(12)
(1)
(123)

(2,2)
(2,3)
(1,1)
(1,2)
(1,3)
(2,1)
(3,2)
(3,3)
(3,1)
(4,2)
(4,3)

(4,1)

916
(12)
(12)
(12)

(123)

(2,2)
(2,3)
(2,1)
(1,2)
(1,3)
(1,1)
(3,2)
(3,3)
(3,1)
(4,2)
(4,3)

(4,1)

12



(1)
(1)
(1)
(132)

(1,3)
(1,1)
(1,2)

(2,3)

(2,1

(2,2)
(3,3)
(3,1)
(3,2)
(4,3)
(4,1)

(4,2)

(1)
(1)
(12)

(132)

(1,3)
(1,1)
(2,2)
(2,3)
(2,1)
(1,2)
(3,3)
(3,1
(3,2)
(4,3)
(4,1)

(4,2)

Table 1, continued

819
(1)
(12)
(1)
(132)

(1,3)
(2,1
(1,2)
(2,3)
(1,1)
(2,2)
(3,3)
(3,1)
(3,2)
(4,3)
(4,1)

(4,2)

820
(12)
(1)
(1)
(132)

(2,3)
(1,1)
(1,2)
(1,3)
(2,1)
(2,2)
(3,3)
(3,1
(3,2)
(4,3)
(4,1)

(4,2)

821
(-
(12)
(12)

(132)

(1,3)

(2,1)

- (2,2)

(2,3)
(1,1)
(1,2)
(3,3)
(3,1)
(3,2)
(4,3)
(4,1)

(4,2)

(12)
(1)
(12)

(132)

(2,3)
(1,1)
(2,2)
(1,3)
(z,1)
(1,2)
(3,3)
(3,1
(3,2)
(4,3)
(4,1)

(4,2)

(12)
(12)
(1)
(132)

(2,3)
(2,1)
(1,2)
(1,3)
(1,1)
(2,2)
(3,3)
(3,1)
(3,2)
(4,3)
(4,1)

(4,2)

(12)
(12)
(12)

(132)

(2,3)
(2,1)
(2,2)
(1,3)
(1,1)
(1,2)
(3,3)
(3,1)
(3,2)
(4,3)
(4,1)

(4,2)
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Understanding Table 1 may be facilitated by looking at scveral
examples.
Example 1: ad = (1,1)[(12):(1),(1);(1)]

= (161 [(2), (1), ()] 1)y = 1(12) 1 (1)y = (2,1)
The first component of a, 1, is mapped to 2 because the g1-

component of 8, is (12).

Example 2: b%5 = (1,2)[(1),(12),(12)§(1)]
= 1@ 1), 02),02)] 201)y = (1(12) 2(1)y = (2,2).
The first component of b, 1, is mapped to 2 becausc the g,-

component of 85 is (12).

Fxanple 3: 913 (2,3)[(1)’(12),(12)2(123)]

(20033 [(1),(12), (12)] 3(123)y = (2(12) 3(123}

(1,1).
The first component of f, 2, is mapped to 1 by the gz- component

of 913.

Exanple 4: 014 = (2. 1)[02), (1), (12) 5(123) ]

= (20 1012),(1),(12)] 1(123)y o (2(12) 1(123),

(1,2).
The first component of d, 2, is acted upon by the g;-component

of 614.

The twenty-four elements of GUI may be expressed as permutations

of the set containing a,b,c,...,.l.



(ad) , (be) ,and (cf).
is its own inverse and 6, is the identity.

these is (1), so {6,,8,,...,8g} is similar to the G* defined on page

7.

of mappings).

I

(cf)

(be)

(ad)

(be) (cf)
(ad) (cf)
(ad) (be)
(ad) (be) (c1)

(abc) (def) (ghi) (jk1)

= (abcdef) (ghi) (3k1)

(abfdec) (ghi) (jk1)

= (aefdbc) (ghi) (jk1)

(abf) (cde) (ghi) (jk1)
(aef) (bed) (ghi) (jk1)
(aec) (b£d) (ghi) (jk1)
(aecdbf) (ghi) (jk1)
(acb) (dfe) (gih) (j1k)
(acedfb) (gih) (j1k)
(acbdfe) (gih) (j1k)
(afedcb) (gih) (j1k)
(ace) (bdg) (gih) (j1k)
{(afb) (ced) (gih) (j1k)
(afe) (bdc) (gih) (j1k)

(afbdce) (gih) (j1k)

15

The elements 6,,6,,...,05 are every distinct product of the cycles

Refer to {6,,8,,...,6g} as G*.

{6q,0 «es,01¢} is not closed under the operation (composition
9,710 +716 p

Since the h-component

These eight elements form a group since each one

The h-component of each of

of each of these elements is

(123), it is seen that 8qG* = G*8q = {08q,0,5,...,0,6}.

Similarly, {6,9,81g,...,954} is not closed under the operation.

Since each h-component is (132) = (123)-!, this set consists of inverses

of 64G*.

Also 6,,G* = G*6,, = {675,0,5,...,05,1}.
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Table 2 which follows is the multiplication (or composition
of mappings) table for GYH as defined in this example. It was computed
from the cyclic forms of ei € GlH. For brevity, only the subscripts
of the 6; are listed. Using this table as reference, one can demonstrate
how products of elements of GIH may be computed without reference to

ordered pairs of A x B.
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In the demonstration of closure of GIH on page 8, it is seen that

in 8;0;, the h-component of 8; permutes the g-components of 6 For

i’ i

the example given here,
h .
(8y,8,,83) (glh’gzh’gah) .
In particular, (gl,gz,ga)(123)
= (8 (129)°8,(123) "85 (123))
= (g,,25,8))

Similarly, (gl,gz,g3)(132) = (ga’gl’gz)

The following two examples demonstrate the computation of eiej

without reference to ordecred pairs of A x B.

Example 13 6.0, = [(1),(1),(1);(123)][(12),(12), (1) 5(123)]
[((1) (1), (1)) ((12),12), (1)) (123) 5 (123) (123)]
[(C1),(1),(1)) ((12),(1),(12));(132)]

[(12),(1),(12);(132)] = 6,,.

I

Inspection of the multiplication table reveals the same result,

Example 2: 8,,0,, = [(12),(1),(12);(123)]1[(1),(12),(12);(132)]
[((12),(1),(12)) ((1),(12),(12)) (123) ;(123) (132) ]
[((12),(1),(12))((12),(12),(1));(1)] |
[(1),(12),(12);(1)] = 6

fi

- The multiplication table shows 8,,6,, = 6;.
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Chapter III: The Importance of Wreath Products

The concept of the wreath product facilitates construction of
Sylow p—subgrﬁups of the symmetric group S,- It is shown in section
3 of Chapter 4 that for some prime p, if P, is a Sylow p-subgroup of
Spr, P41, @ Sylow p-subgroup of Spr+1, has the same structure as
Prl<c>, where c is a cycle of order p in Spr+1' A Sylow p-subgroup of

S;, consists of the direct product of groups of this form.
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Chapter IV: Theorems Connected with the Wreath Product

Section 1: The structure of a wreath product is given in this
chapter by presenting four theorems. Theorem 1 demonstrates that the
permutations 6 ¢ GRH for which h = (1) form a groﬁp isomorphic to
G* as defined on page 7, and Theorem 2 shows this group to be a normal
subgroup. Theorem 3 demonstrates (G¥H)/{0:8 € G, h = (1)} isomorphic
to H. Theorem 4 establishes that {6:6 ¢ GH and g; = (1) for all i}

is isomorphic to H.
Theorem 1: {6: 6 ¢ GH, h = (1)} = G*

Let f be a mapping from {6: 6 ¢ G\H, h = (1)} to G* such that
for 0 = [2),8,,---,83(1]. 6 = (g1,85,-..,8,).
Ife =1[p,p,s:-esPp3(1)] and 6, = [r,r T,

(6,6, F

PERK

[plrl(l)’pzrz(l)""’pnrn(l);(l)]f

[plrl,p2r2,~--.pnrn;(1)]f

(PyTys PyTyse-esPpTy)

(P sPysee-sPp)(T5T),.-.,Tp)

£y £
O1 e2

Since f is a one-to-one correspondence which preserves operations
it is an isomorphism. Thus {0: 0 ¢ G¢H, h = (1)} is a subgroup of
G!H and is isomorphic to G* the direct product of n copies of G.

Henceforth,{g: 8 ¢ GWM, h = (1)} is referred to as G*.
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Theorem 2: G* is a normal subgroup of GYH.

Let f be a mapping from G¥i to H such that for 6 = [gl,gZ;

...,gn;h] an element of GUH, ef

= h. Then for 6, = [gl,gz,...,gn;h]
and 8, = [p,,p,,..-,Pp:k].
£ hk1f
(6162) = [glplh’gzpzh’-‘-:gnpnh’hk]

hk

So f 1is a homomorphism onto H. The elements of G* are mapped
to the identity element of H by f, so G* is the kernel of f. By

the first Theorem on liomomorphisms, G* is a normal subgroup of GR.
Theorem 3: (G¥H)/G* = H.
Application of the Third Theorem on Homomorphism establishes this.

Theorem 4: K = {686 ¢ G and 8 = [(1),(1),...,(1);h} is iso-

morphic to H.

Clearly |KX| = [H|]. Ife = [(1),(1),...,(1);h] and of - h, then

(eiej)f = hihj = eifejf. Since f 1is one-to-one and onto and since

f preserves the operations, K = H.

Consider the example given in Chapter One.

A

{1,2,3,4}, B =1{1,2,3}

a = <(12)>, H = <(123)>

It is seen that G* ~ G x G x G
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Also G* is a normal subgroup of G, since for p ¢ GIH, 6 ¢ G*,

the h-component of p~lgp is hp‘lhp = (1).

In this case, (GtH)/G* = {G*,84G*,8,,G*} . The isomorphism
involved is
) f =
£ _
(846*) " = (123)

(e,,6F = (132

(1)
(123)

K = {08,,84,0;,} (61)f
(eg)

(6, % = (132)

Section 2: Associativity of the Wreath Product

If the process of forming the wreath product is considered to
be a binary operation, it is associative. If K is a permutation
group on a set C, then (GMH)K = GY(HYK). If (A xB) xC and A x (B

x C) are equated with A x B x C, the two wreath products are identical.
Theorem 1: The operation of forming wreath products is associative.

If G, H, and K are permutation groups on sets A, B, and C respec-

tively with |A| = m, |B|] = n, |C| = p, then (GMH)IK = GL(HK).

first |(GH)XK| = |GRUHRK) |

| () K| = |QH|PIK| = (|G| H]P|K| = |6|"P|H|P|K].
lgaHk) | = |6|"P|Hak| since |B x c| = np;
and |G|"P|N}K| = |G|"P|H|P|K| since [H}K| = |H|P|K]|

Thus | (GI)IK| =|GAHIK) |
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Since the orders of the two wreath products are the same, a one-
to-one onto mapping from one to the other that is an isomorphism completes
the proof.

If ¢ € (GIH)UK, then ¢ is of the form [(gl,gz,...,gn;hl), (gn+1,

~282n302) s -+ 5 (8(p_1yna1 2+ - 8pnihp) 5k]

Let f be a mapping from (GYH)K into GU(HY¥K) such that for ¢ ¢
(GH)RK,

of = (C:270-PYRRN- S5 By IN - sees82n302) 5 -5 (B(po1ynag e s

gpn;hp) :k]f = [g1’g2:"°:gpn;(h1:h2:"°:hp;k)]€ G?(H?K)

Clearly f is a one- to -one onto mapping. Also-it is the desired
isomorphism. If ¢ = [(gl,gz,...,gn;hl),(gn+1,...,g2n;h2)...,(g(p_1)n+1,
- +»8pnshp) sk] and  ¢' = [(g'},8",,---58"sh' ), (8'n415---58"2050"2) s

. . ; f
..,(g'(p_l)n+1,...,g'Pn,h'p),k'], consider (¢¢')*. k acts upon the
subscripts of the h';'s.
f
So (¢¢")" = [(8,,8,,--->813h ) (8" 1k 1) n+1"'"g'(lk-l)n+n;h'1k)’

. . . f
. ’(g(p_l)n+1’. .. ,gpn,hp) (g' (pk-l)n+1’ cee ,g(pk_l)n+n ,h'pk) ’ kk'] .

Each h; may be considered to be acting only on the numbers 1, 2,...,
n,
f _ .
So (¢¢') - [(glg'(lk_l)n...lh,- s ,gng' (lk-l)n+nh1’h ].h' lk) ye ey

(g ! k’ ; '

] | .
(p-1)n+1% (pk-1)ne1Pp** " **Epnf (pk-1)nenhp’
(¢¢')f = [g,e', .k h »8,8", .k eea,g g hoseoos

1® (1°-1)n+1"1°°2% 1K)+ v 277255 (1k-1)nen2

-’g ;(hlh'lk,hzh'zk,.--,

g g' hyg?** g' x h
(p-1)n+1" (p~-1)n+1"P pn (p~-1)n+n"P
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Since the orders of the two wreath products are the same, a one-
to-one onto mapping from one to the other that is an isomorphism completes

the proof.

If ¢ ¢ (GRH)AK, then ¢ is of the form [(g1,825---283h 1), (841>

. ’an;hZ) PR ] (g(p-l)m-l L :gpn;hp) ;k]
Let f be a mapping from (GYH)K into GU(HYK) such that for ¢ e

(GHNK,
£ _ : .
¢ = [(gl’gZ”"’gn’hl)’(gn+1 ,-'°!g2n’h2):'°°:(g(p_1)n+1:°":

Bonshp) k15 = (21,8200 gyns(hphg, . uhpik) Je GRONK)

Clearly f is a one- to -one onto mapping. Also it is the desired
isomorphism. If ¢ = [(gl,gz,...,gn;hl),(gn+1,...,g2n;h2)...,(g(p_l)n+1,
-,gpn;hp):k] and 4)' = [(g'ltg'zx'°-’g' ;h'l)’ (g'n+1""”g'2n;h'2)’

f
"(g'(p—l)n+1""’g pn,h'p) ;k'], consider (¢¢') k acts upon the

subscripts of the h';'s.

So (¢¢')f = [(glxgzx--°9gn;h1)(g'(]_k_1) n+]_;---,g'(lk_l)n+n;h'1k),

. . . f
0;(g(p_1)n+1,”-’gpn,hp)(g' (pk-l)n+1"'"g(Pk—l)n'fn’h'Pk)’ kk'] .

Each h; may be considered to be acting only on the numbers 1, 2,...,

f _ .
So (¢¢') - [(glg' (lk—l)l’l+1h’ . .,gng' (1k_1)n+nh1,h lh' lk) 3e sy

' t . ] f
(B p-1)ne18 (pk-1)ne1hp’* ***Bpn8’ (pk_1)nenhp Pt pk) 5 Kk ']

[ £ - ' 1 '
(¢¢) [glg (lk-l)n+1h1’g2g (lk-l)n+2h1’ -,gng (lk-l)l’l'ﬂ’lhl,‘..,

' P ' ;hh' ,hh' Seees
g(P-l)n+1g (pk-l)n+1hP’ ,gpng (pk-l)n+nhp (hy k22 ok
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hph'pk;kk')] = [glg'(lk—l)n+1h1"“’gpng'(pk—l)n+nhp;(h1’h2"'"

h sk)(h'y,h',, .00 kD]
p K1,y prk"]

- If we allow (ik - Dn + jhi = (jhi,ik), then (¢¢')f =

o! ! . .o ! o ! >
(28" (ahy 1Ky 28,8 (ohy 1Ky o 88" ghy 1k oo 8 1)ne18 (10, pK)

"gpng

' sChyhy,eeosh 3K (R Lh e uht 5k T = [(81,82,. s
(nhlfpk) 1,0 D 1,0'2 . )] [(g1,82

' ' 1 (hy,hy, oo h5K) h. .h h :k
gpn)(g (1’1)’g (2’1)’ '8 (n’p)) P )( 1272 p: )

' 1 1! = o . o1
(R eesh! 5KOT = L858y, 8 (L ek 5]

. ' ' [ - .
:(h l)h 2)"',h p;k )] [glagZ:-'-:gpn:

B,y % @, m,p

. £,
hy,eo,h 3K)10g' L8 ,eeeng' (h' ,h' . .0t 3kN)] = "t
(hyh,, hs Y1lg'y .8, ,--058 p (h' ,h', . )1 = ¢ (")

Thus f preserves the operation and is an.isomorphism.

Theorem 2: If (Ax B) xC=Ax (BxC) =AxBxCC, then (GU)NK

is identical with GU(HLK).

To demonstrate this, it suffices to show that for ¢ e (RINZK

as defined in Theorem 1, and isomorphism f as defined in Theorem 1,

s = of

((a,b),0)? = ((a,b) (&(c-1)n+1l,---,8n5N0c) ;oK)

((af(c-1)n+b phey k)

(ag(c—l)n+b’(bhc,ck))

(ag(c-l)n+b,(b’c)(h1,h2,...,hp;k))
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Let (c-1)n + b = (b,c).

Then ((a,b),c)® = (af(P,C) (b,c) (hyshy,. .. hysk)y

f
(a,(b,c))?

Section 3: Construction of Sylow p-subgroups of Sn

llere is perhaps the most outstanding aspect of wreath products,
the construction of Sylow p-subgroups of S,- The computation of the
order of Sylow p-subgroups and the construction thereof with wreath

products is demonstrated in this section with an example.

(1.) Computation of the order of a Sylow p-subgroup of She

The order of S is n!. If |S| = nt = p™s for some prime p
such that (p,s) = 1, the Sylow p-subgroups have order p™ by a corollary
of the First Sylow Thecorem. When n is expressed in base p, n =

k-1

aopk + app - *...+ ap 4P + 3 where 0 < a; <p -1, and M = [ %.] +

[T+ ...+ [R_].

2
P pK
To show this, consider [ M ]. [ L] is the number of factors of
P
n! =nn - 1)(n - 2)...3+2+1 which contain at least the first power of

p; that is, p, 2p, 3p,...,kp, where k = [ = ].

n
p

[ Ez_] is the number of factors ofn! which contain p* as a factor.
p
llence p appears as a factor of n! at least this many more times. Similar
remarks hold for [ D ],...,[

n_ 1.
| p3 o~
[ E__] = 0 for i > k + 1, since pk+1 > .
pl
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Since [ 1] = aopk+a1pk'1+...+ak_1p+ak
p

= aOPk + 3‘117k-1 oot ak_ipl

pi
= aoPk—l + alpk'z +...+ a3, forl<ic<k,
M= [ E.]'+ [B_] ...+ [D_]

p2 pK
= k-1 k-2
= (a +a +...+ a + a

(20 1P k2P A

+ (agpk-2 + a;pk-3 +.. .+ & _5) *...+ (ag+ 3;) + ag.

Factoring out the coefficient a;'s yields M = ao(pk'1 + pk‘2 +

o+ p+ 1) + al(pk'2 to.tp+ 1) ok ay 5(p+ 1)+ o3 .

(2.) Construction of Sylow p-subgroups
The information developed above show that a Sylow p-subgroup of

T T T _
Spr has order pNT, where Nr ol | g__] * 55_] oot ﬁ;_] = pr 1,

pT-2 +.. .+ p + 1. Constructing Sylow p-subgroups for Sp, sz,...,

Spk easily generalizes to constructing a Sylow p-subgroup for S .

k

Writing n = agp™ + alpk’1 +...+ @ _p + 3, partition the n letters

into a; sets of pk letters, a, sets of pk“1 letters,..., a1 sets of

p letters and a, sets of single letters. When the appropriate Sylow

k
p-subgroups in each set are constructed, then the direct product of

these is a group P of order p™ and is a Sylow p-subgroup of Sn'
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The wreath product may be used in this construction of Sylow

p-subgroups of Sn' For some prime p, a Sylow p-subgroup of Sp’ the
1-1
symmetric group on 1, 2, ..., p, is of order p, since le = pP =

pP = p’ = p. Therefore this Sylow p-subgroup is cyclic and may be
generated by the cycle (123...p). In any event, this Sylow p-subgroup
is isomorphic to <(123...p)>. sz onl, 2, ..., p2 has a subgroup
which is the direct product of the cyclic groups generated by a, =
(r2...p), a, = (p+1,..., 2P),..., a.p = ((p-1)p+l,..., p2). This
direct product has order pP. This direct product is not a Sylow

p-subgroup of Sy, since a Sylow p-subgroup of S_, has order pP*l.

p
Consider the element b = [1,p+1,2p+l,...,(p-1)p+1][2,p+2,...,(p-1)

p+2]...[p,2p,...,p 1 of order p.

b'laib = a1 where the subscripts are taken modulo p.
Consider a; = [(i-1)p+1,(i-1)p+2,...,ip], b-! = [(p-D)p+1,
(p-2)p+1,...,p+1,p] [(p-1)p+2,...,p+2,2]...[p?,p?-p,...,2p,P],
so b7lab ={[p2- p+1,p2-2p +A1,..., p+1,1]
P2 -p+2,p2 -2p+2,...,p+1, 2]
...[p%, P2 - p,..., 2p, p]}
{[(i -p+1, (i-p+2,...,ip}
{[l,p +1,2p + 1,...,p2 - p + 1]
[2,p+ 2,...,p%2 - p + 2]

...[p,2p,...,p?%]}

b~! takes ip + 1 to (i - 1)p + 1, then a; maps (i - 1)p + 1

to (i - 1)p+ 2. But b takes (i - 1)p + 2 to ip + 2. So b'laib
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maps ip + 1 to ip + 2. A similar argument holds for ip + 2 being mapped
to ip + 3, and so on. If b~l maps an element to one which is fixed by
a, b immediately reverses this action. Hence b"aib =[ip + 1, ip + 2,

LG+ DP] = ag,).

Also (b'laibf' = a2;,; or b'laibb'laib = a2,

i i+l
or b la2.b = a2
i i+l-

n

This generalizes to b~la;b = a"; , by induction.

From the results above, it is seen that froml)"aib =a; , one
may derive a; = baj,ib7l.
ba;b7l = b2a;, (b2 = a;

Again by induction, bmaib'm = aj_ Combining these results, it

n
is discovered that

bMa™;bM = a. _ for all natural numbers m and n. This information

is necessary to show that bmani is of an order which is a power of p

for all natural numbers m and n. Consider (bmani)p = bmanibman ...bmani

(b™a"; b ™ b™™a"; . . .b"a";

ani_m(meanib-Zm)mebmani‘“bma i

ani_mani_zm(bSmanib-Sm)bSmbmani...bmani

p-l]mbmani

n n n n
a3im? i-2m? i-3m---2 i-(p-l]mb(

n n n n
2 im? i-2m---3 i-(p-1)m? i
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If (p,n) = 1, this element is of order p, so long as (p,m) also
equals 1. If p divides m, this element is the identity, being (ani)p =

a"P; = (1).

If (p,n) =1 and (p,m) = 1, (bmani)p is of order p, hence b™a", is

1

of order p2. So bMa"; is an element of a p-group. Since a";b™ =

b™a},,, a";b™ is also an element of a p-group.

The p-group generated by b and a;'s cannot have order greater

p+l p+l

than p , since p is the order of a Sylow p-subgroup of S It

pZ-*

cannot have order less than pp+1 since |<a1>x<a2>x...x<ap>| = pP.

No a, generates aj for j # i, nor will any a; generate b. Similar

b will not generate any aj. So this group is a Sylow p-subgroup of

S This subgroup may be generated by a, and b.

p2:
This Sylow p-subgroup is the wreath product of <a;> and the group

generated by the first cycle of b. The set associated with <a;> is

A =1{1,2,...,p} and the set associated with the first cycle of b is

B {1,p+1,2p+1,...,(p-1)p+1l}. The elements of A x B are (j,ip + 1)

for j = 1,2,...,p; 1 = 0,1...,p-1. Call the first cycle of b by the

letter c,then|<a1>\<c>| = |<a1>||B||<c>| = pPp = pP+1,

If (j,ip + 1) is identified with ip + j, <a;>}<c> is a subgroup
of sz. Since|<a1>§<c>| = pp+1, it is a Sylow p-subgroup of sz.
Sylow p-subgroups are conjugate, hence they are isomorphic. So <a;,b>

may be equated with <aj;>¥<c>.

Let P, be a Sylow p-subgroup of Spr on 1,2,...,pY. The letters

1,...,pr,pr+1,...,Zpr,...,pr+1 are those permuted by elements of
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Spr+l. Let c = [1,p"*1,2p™+1,...,(p-1)p% + 1][2,pT+2,2p%+2,...,(p-1)
PT+2] ... [3,PT+3,2pT+3, . .., (P-D)PT+5]. .. [pT,2p7,. .. ,p"*1].

Then let Pr(i) = c'iPrci.' Since Pr(i) is a conjugate of P in
Spr+1, it is a group of order er. Moreover, it is a permutation group
of the letters ipY + 1,...,(i+1)pY. To see this, consider p, an element
of Pp. p is a permutation on 1,...,pT. c-1 maps pf + j to j for 1 £
j £ p¥. p takes j to k for 1 < k < p¥ and ¢ maps k to pf + k. So
c‘lpc permutes the elements pT + m for 1 s m s pT. Similarly, c-2
maps 2pT + j to j, and c2 takes k to 2pT + k, so c‘zpc2 permutes

the elements 2pT + m. In general, c'ipci permutes elements ipT + m

form=1,...,p%;i =0,...,p - 1.
Since each Pr(i) displaces a distinct set of letters, the group

they generate is their direct product.
- N
pxp,(Dx...xp_(p-1| = pNryp = pPNr,

Since no p ® P, generates ¢ and ¢ generates no element of P, the
group generated by ¢ and P, is of order ppNT+1. But pN_. + 1

= p(pr-l + pr'2+...+ p+1) +1

(pT + pT-l +. .+ pZ + p) + 1

i

p(r+1)'1 + p(r+1)'2 +...+p2+p+1

N

T+l

So ¢ and P. generate P.,), a Sylow p-subgroup of Spr+1-
Now consider P acting on letters 1,...,pT, and d a cycle of order
p, d = (uoul...up_l). The wreath product Prl<d> permutes symbols (i,uj)

fori=1,...,p%; j = 0,...,p-1.
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[PRed>| = [P|P[<d| =[PP - p

T I+pT 2 e e L

pp(pr"1+pr‘2+...+p+1) . p!

= ppT+pT-le. 4pZep+l

er+1

So Pr1<d> is a Sylow p-subgroup of Spr+1- If (i,uj) is identified
with i + jpr, then, within isomorphism, Pr+1 as defined above and Prk<d>

are the sane.

To illustrate the preceding discussion, a Sylow 3-subgroup of S;,
is constructed. 13 = 1-32 + 1:3 + 1. So the thirtcen letters are
partitioned into one sct of nine letters, oﬁc set of three letters, and
one set of one letter. A Sylow 3-subgroup of S;3 is © = P, x P} x I
where P, (for r = 1,2) is a Sylow 3-subgroup of Sxr.

Let P = <(123)>,

and P, =€(123),(147)(258)(369)>.

Py, = PR <147>.

Investigate the construction of P,.

Allow a = (123) and b = (147)(258) (369).

So b~la;b = [(174)(285) (396)](123) [(147) (258) (369)]
= (456). Let a, = (456).
b la,b = [(174) (285) (396)](456) [(147) (258) (369)] = (789)
Let (789) = aq
b~lazb = [(174) (285) (396)1(789) [(147) (258) (369)] = (123) = a,
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Each of the a; displaces a distinct set of letters, so the group

they generate is their product. Now |<a,>x<a,>x<a,>| = 33. Since b

2
is of order 3, the group generated by P; and b must have order at least
33%1, Since b e S32 and P; & S32, the order of the group generated by

P, and b cannot be of order greater than 33*1, Hence P) and b generate

P, , a Sylow 3-subgroup of Sj;2.

Consider Pj}<(147)>. Since P; permutes 3 elements and <(147)>
permutes 3 elements, p11<(147)> permutes 9 elements. So P 1<(147)> c

S32.

Here it is necessary to allow 1 = uy, 4 = u;, 7 = up so that (147)

may be called ¢ = (uguju,). Then PQ <c> permutes symbols (i,uj) for

|Py2<c>| = 33.3 = 3371, the order of a Sylow 3-subgroup of Sj2.
If (i,u;) is identified with i + 3j, BQ <c> is the same as P, within
isomorphism, since Sylow subgroups are conjugate by the Second Sylow
Theorem.

If P2 is allowed to permute the letters 1,2,...,9; P; to permute

10,11,12; and the identity group to map 13 to itself then

S = <(123),(147)(258) (369)>. x <(10,11,12)> x I
= (P12<(147)>) xPy xI,
|8] = [Py|«|P1]+|T| = 33%1.3 = 35 = 243,

Note that 5 = 1(3271+1)+1. Ifay =1, a; =1, a, =1, and p = 3,

then 13 = a;p2 + a;p + a,.
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13! = pMs, M = a (p2-1+1) + a,

It should be noted that any Sylow 3-subgroup of Sy5 is isomorphic

to any Sylow 3-subgroup of either S,, or Siy-
P, x Py =P, xP, xI =P, xP, xIxI.

- r r-1 .
In general, for n = agp” + a,p ...+ a2, 4p *oa,, where 0 g a; <

p-1, a Sylow p-subgroup § in S is

8= (PpxP.x...x P x (Proy X Proy XouoX Pry) x...

a, times a,; times

X (P1 X Py x...x Pl) x (I x1I x...x1I)

a._1 times a, times

If &) is designated the Sylow p-subgroup of S, when a, = 0, &1
the Sylow p-subgroup of S, when a, = 1, and so on up to Sp—l for a,. =

p-1, it is scen that

o =81 =& =...= SP“'

The complete construction of a Sylow 3-subgroup of Sq is helpful
in computing the number of Sylow 3-subgroups of S;; that actually exist.
It happens that there are over three million distinct Sylow 3-subgroups
of S;3. To establish this, proceed as follows:

Since 8 = P, x Py x I, the number of Sylow 3-subgroups of Sg and
of 53 must be taken into account. The Third Sylow Theorem dictates

that the number in each case must be of the form 1 + 3k. For Sq,
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1 + 3k must divide 9! The same may be said for S3, 1 + 3j must divide
3! Matters are simplified for S;. The cyclic subgroup of order 3 is
the only Sylow 3-subgroup of Sj.

The elements of a Sylow 3-subgroup of Sq are found to be cycles of
order 3? products of disjoint cycles of order 3, and cycles of order 9.
Cycles such as (123) and (145) cannot belong to the same Sylow.3-subgroup,
since (123)(145) = (12345), a cycle of order 5. Nor can (123) and (124)
belong to the same Sylow 3-subgroup, since (123)(124) = (14)(23), an
element of order 2. No two single 3-cycles of a Sylow 3-subgroup can

permute the same letters of 1,2,...,9 .

It is known that a Sylow 3-subgroup of Sq is generated by a 3-

cycle and a permutation of three disjoint 3-cycles. Choice of either

9-8-7
3.2

= 84 distinct 3-cycles and their inverses. Since the other generator,

of these is restricted by choice of the other. There are (g) =

a properly selected triple, transmutes a 3-cycle into two conjugate
disjoint 3-cycles, divide 84 by 3 to obtain 28. For instance, consider
the 28 3-cycles involving 1, none of which is an inverse of any of the

others;

(123), (124), (125), (126), (127), (128), (129),
(134), (135), (136), (137), (138), (139),

(145), (146), (147), (148), (149),

(156), (157), (158), (159),

(167), (168), (169),

(178), (179),

(189) .
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Once a 3-cycle has been chosen as generator, selection of the other
generator, a triple of disjoint 3-cycles, is restricted. Each of the
3-cycles of the triple must permute exactly one of the elements of
the given 3-cycle, since otherwise permutations having orders other
than powers of 3 are obtained. Consider (123) and (147)(235)(689);
(123)(147)(235)(689) = (1347) (25)(689) which is of order 12.

With this restriction, there are (§) ways of selecting the letters
of the first factor of the triple, and 2 distinct ways of ordering
these letters. For the second factor there are (g) ways of selecting
the letters and 2 distinct ways of ordering them. There remains (%)
or one way to select the letters for the third factor, and two ways of

ordering them. Altogether there are

(%) (3)23 = %_5_ L4303 L 6i5.4.3.2

= 6! possible triples of disjoint 3-cycles.

Note that (6!)(28) does not yield a number of the form 1 + 3k.
A Sylow 3-subgroup of Sq must contain several triples of the proper
form. The e*ample which is constructed below shows that any Sylow
3-subgroup of Sq contains 18 such triples,

Let the letters a,b,c...,i Le the nine clements permuted by

members of Sq. Select ay = (abc), 8 = (adi)(bch)(cfg); then

8 la;g = (def) = a,

il

87lay = (ihg) = a3

8—1(!38 —‘: (abC) Gl



36

A Sylow 3-subgroup of Sq contains 81 elements. The subgroup <a,,
a,ya4> accounts for twenty-seven of these elements, which are all pro-
ducts almazna3r where m = 0,1,2; n = 0,1,2; and r = 0,1,2.

Other than 8 and B~l, there remain 52 elements yet to be inspected.
Thirty-six of them are 9-cycles. The other sixteen are the desired
triplcs of 3-cycles.

Consider @18, @28, a3B, a; 18, as-18 and «3~!B. Each of these gen-
erater six 9-cycles distinct from those generated by the other five.
Table 3 lists these products on pages 37-38.

it is not necessary to consider Bay, Ba,, and so forth. B'lals =
ap Meons alB=Rap. Similarly, azB = Baz and a3B = Bay .

So far, sixty-five of the 81 elements have been given. Sixteen
remain to be found. These are triples of 3-cycles in which the three
letters of a; are apportioned one to each factor. There can be no
more than 18 such elements, 8 and B~! included, in a Sylow 3-subgroup
of S , since there are 63 elements which are not of this form. There
are exactly 18 elements of this form. The following nine elements are
distinct triples of the appropriate form, none of which are inverses

of one another:

R a1a2a38'1
@ a,058 o 0,87 a,
@ a,Ba, a,871a,a,
@) Bayag ay8 oy,

a1a38a2



Table 3

(aIB) = (abc) (adi) (beh) (cfg) = (aehbfgedi)

(ax,8)2
(@,8)3
(«,8)"
(a,8)5
(x,8)6
(a,8)7
(«,8)8
(x,8)°
(a,8) =
(a,8)2
CYOR
(a,8)"
(x,8) 5
(a,B) 8
(a,8) 7
(«,8) 8
(0,8) ?
(x48) =
(a48) 2
(a,8)
(x48) "
(xg8)°
(a,8) 8
(a48) 7
(x48) 8

(a48)®

1

1]

(ahfciebgd)

(abc) (def) (ihg) = o 0,0,
(afibdhceg)

(agechdbif)

1
123

(acb) (dfe) (igh)
(adgbeicfh)
(aidcgfbhe)
(a), the identity

(def) (adi) (beh) (cfg) = (adhbegcfi)
(ahecidbgf)
(abc) (def) (ihg)

(aeibfhcdg)

i
R

(agdchfbie)

(acb) (dfe) (igh)

(afgbdiceh)

1}
[
1
—
Q
]
—
Q
]
—

(aifcgebhd)
(a)
(ihg) (adi) (beh) (cfg) = (adibehcfyg)

(aiecgdbhf)

[i]
R
R
R

(abc) (def) (ihg)
(aegbficdh)
(ahdcifbge)

(acb) (dfe) (igh)

1]
Q
—

(afhbdgcei)
(agfchebid)

(a)

37



Table 3, continued

(al‘lg) = (acb) (adi) (beh) (cfg) = (afgcehbdi)

(a;718) 2
(a,718)3
CTRREI
(a;,"18)5
(a,"1p) @
(a;"1R)7
(a;"1p) 8
(a,"1R) 2
(a,"18)

(a,"1g) 2
(a{1@3
CHR
(a,"18)5
(o, 18)8
(a,718)7
(a,”t8)®
(a,"18)?
(a3-1é)

(a3~18)2
(a;718) 3
(a3” 1) "
(a3718) 5
(a371p)®
(a3718)7
(a3718)8

(a3—18)9

(agebifchd)

(acb) (dfe) (igh)

]
Q

(aeicdgbfh)

(ahfbgdcie)

(abc) (def) (ihg)

(adhcfibeg)

G1ao03

(aidbhecgf)

(a)

(dfe) (adi) (beh) (cfg) = (adgcfhbei)
(agfbidche)

(acb) (dfe) (igh) =

I

Q
—

R
N

R

(aficegbdh)
(ahdbgecif)
(abc) (def) (ihg)

(aehcdibfyg)

ajagas

(aiebhfcgd)

(a)

(igh) (adi) (beh) (cfg) = (adicfgbeh)
(aifbhdcge)

(acb) (dfe) (igh) =

|

=]
—

Q
N

QR
w

(afhceibdg)
(agdbiechf)
(abc) (def) (ihg) = a;aj,a4
(aegcdhbfi)
(ahebgfcid)

(a)

38
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These nine elements and their inverses are the eighteen desired
triples. Any one of these may be considered to be the second gen-
erator, the triple of disjoint 3-cycles of this particular Sylow 3-
subgroup. For instance, if a1a2a38 = vy, then B = a1'1a2’1a3‘ly.
Recall that there are 6! = 720 ways of selecting an appropriate triple.
Since each Sylow 3-subgroup of S, contains 18 of these, there are
720/18 = 40 ways of selecting a distinct Sylow 3-subgroup once the
single 3-cycle generator is chosen. Recall that there are 28 such
3-cycles to choose as generators. Altogether there are 2840 = 1120
Sylow 3-subgroups of Sg.

The criteria of the Third Sylow Theorem are satisfied. 1120 =
1 + 1119 = 1 +3(373). 1120 = 23:5-7 divides 9! = 27.3%.5.7,

With this information one can calculate the number of Sylow

3-subgroups of S;3. There are (1;)(3) ways of selecting the letters

permuted by S;3 to construct a Sylow 3-subgroup,

$§ =P, xP; xI.

(1;)(2) = 13.12:11-10

5 + 4 = 2860 = 1 + 2859 =1 + (953)3.

Note that both 1120 and 2860 are of the form 1 + 3k. Hence their

product is of the same form.

(1120) (2860) = 3,203,200 = 1 + 3,203,199 = 1 + 3(1,067,733).
3,203,200 = 2752.7-11+13 divides 13! = 2103552.7.11.13. So the
criteria of the Third Sylow Theorem are satisfied. The number of

Sylow 3-subgroups of S;, is 3,203,200.
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It is not too difficult to compute the number of Sylow 3-subgroups
of S;, and S;,. There are (ﬂf) ways of selecting letters to construct
a Sylow 3-subgroup of S;,.

(12) = 12°11:10 _ 55,
3 3.2

(1120) (220) = 246,000, the number of Sylow 3-subgroups of Sj;,.

14.13.12.11.10 54

For S,,, there are (}4)(3) = .
1 () 5432 2

= 20,020 ways

to select the letters.

(1120) (22020) = 22,422,400, the number of Sylow 3-subgroups of S,,.

When considering the number of Sylow 3-subgroups of S;g, some

difficulty is encountered.
(195)(3) = 100100 = 2 + 100098 = 2 + 3(33,366).

Multiplying 100100 by 1120 yields another number of the form
2 + 3k, an undesirable result in light of the Third Sylow Theorem. The
problem is solved when the fact that P, x (P; x P;) and (P, x P;) x P,
are isomorphic but not identical is taken into account. Doubling

100,100 yields 200,200.

(200,200) {1120) = 224,224,000 =1 + 224,223,999 = 1 + 3(74,741,333).
224,224,000 = 285372.11.13 divides 15! = 211365372.11-13. So the

number of Sylow 3-subgroups of S;g is 224,224,000.
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Section 4: Theorem--For m> 1, n > 1, SRS, is a proper subgroup
of Sy

If M= {1,2,...,m} and N = {1,2,...,n}

=
b

=
"

mn, so it
is easily seen that SmlSnSE Sun* If either m =1 orn =1, then Smlsn =

Smn -

n!

3
il

(m!)n!

(m!)™n!

(mn) !

n
92]

1 implies |Sml Sn| onl -

{(mn) !

m! | Spnl -

l

=]
]

1 implies |S1S

It is understood that m and n are natural numbers. Induction is
used to show that when both m and n are greater than 1, SQS  is a
proper subgroup of S_ . Consider m = n = 2. [SS;| = (2!)22} <
(2-2)! = |S,| since (21)2:21 = 22-2 = 8 and (2-2)! = 4! = 24,

Assume for some k € N, the natural numbers, that (k!)2.2! <
(2k)!.

[(k+1)!]2-2! = (k+1)2(k!)2-2! while [2(k+1)]! = [(2k+2)(2k+1)}]
[(2k)!].

(k+1)2 < (2k+2) (2k+1) for all k € N, so [(k+1)!]2-2! < [2(k+1)]!.

Therefore for all m > 1, m e N, (m!)2-2! < (2m)!.

Assume for some j e N that (m!)I-j! < (mj)!

mHG* D Gayt = mH G+ DI 51 and [(G+1m]! = [(+1)m]
[(G+Dm-1]...[(G+1)m-(m-1) ] [(Gm)!].

It happens that

(m) (G+1) < [G+)m][(G+D)m-1]...[(j+1)m-(m-1)]

or (m!)(j+1) < [(G+1Im][(j+1)m-1]...[jm+1]



So (mN)I*1(5+1)1 < [(j+1)m]!
Therefore for all m > 1, n > 1,

(mH)Mn! < (mn)!

1S Snl < |Smnl

Sm‘(Sn is a proper subgroup of S

mn *

42



Chapter V: Wreath Products of Small Orders

Section 1: Possible Orders of Wreath Products

Theorem: Since |G| = [G||B||H| where B is the set of clements
permuted by I, || must divide |B|!

H is a permutation group on B, so Il is a subgroup of S,Bl. By

LaGrange's Theorem, |H| must divide ISIB||' |S|B‘| = |B|!

Since this chapter concerns wreath products of small orders, the
concept of ''small" nmust be defined. Ilere it is considered to be less
than or cqual to 100.

Sn has a cycle ¢ of order n, so <c>¥<(1)> has order n when (1) €

> 1 and

Sy- This case is trivial. O is nontrivial if both !G

1| > 1.

1f |G| = 2 and |B| = 2, then || = 2. |cui| = 22-2 = 8. ‘This

is the smallest possible order for a non-trivial wreath product.

For |G| = 2 and !B| = 3, IH! may be 2,3 or 6.

23.6 = 48
23-3 = 24
23.2 = 16

If !G| = 2 and IB! = 4, IH! can have value 2,3,4,6,8,12 or 24.
2%+2 = 32 246 = 96

48 248

N
&=
.
93]
i

128 > 100

244 = 64

43
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when |G| = 2 and |B| = 5, the possibilities for |H| are 2,3,4,5,6,
8,10,12,15,20,24,30,60, and 120.
25.2 = 64
25.3 = 96
25.4 = 128 > 100
|G| = 2 and |B| = 6 means the smallest value for [li| is 2. 26.2 =
128 > 100.
If |G| =3, |B] =2 means |H| = 2 and || = 32:2 = 18.
When |G| = 3 and |B| = 3, the possibilities for |G| are 33.2,

33.3, and 33.6.

|G| = 3 and |B|

162 > 100.

The

33.2

33.3

54 33.6 = 162 > 100

81

4 means the lowest value of |QYH| is 3*-2 =

= 4 and |B| = 2 yields |QH| = 42-2 = 32.

= 4 and |B| = 3 means |G| > 43.2 = 128 > 100.

= 5 and |B| = 2 yields |G| = 52-2 = 50.

= 6, |B] = 2 implies |[GdH| = 62-2 = 72.

= 7, |B] = 2 means |G| = 72-2 = 98.

possible orders less than or equal to 100 are 8,16,18,24,32,

48,50,54,64,72,81,96, and 98.



45
Section 2: Isomorphisms between Wreath Products

In this section, three theorems and a corollary are presented to
establish the conditions in which two wreath products are isomorphic.
It follows from these theorems that wreath products of some particular
orders are always isomorphic. A counter example is given to show that

two wreath products of order 32 are not necessarily isomorphic.

Before Théorem 1 can be presented, it must be understood that the
exponential notation for mappings behaves the same way as the func-
tional notation; that is, (gl,gz,...,gn)hk is equivalent to (hk)
[(gy:8;5---580)] = h(k[(g,,855.-.,8,)]). An example is presented to

demonstrate this.

Let G =S, and H = S,, then G = 52153. Consider [(1),(12),

3
(12);(123)] and [(12),(1),(12);(13)]. The product of these is
[(1),(12),(12);(123)][(12),(1),(12);(13)]
[C(1),(12),(12))((12),(1),(12)) (123);(123) (13)]
[(1)(1),(12)(12),(12)(12) 5(12)]
[(1),(1),(1);(12)]

If h = (123) and k = (13), hk = (123)(13)

(12).

Notice how (12) acts on (gl,gz,g3).

(12) [(gy,8,,85)] = (g,,8,,85) "

(123) (13) [(g,,8,,85)1 = (123)[(g5,8,,8;)] = (8,,8;,83) "

[lowever, if ordinary mapping notation is used [(gl,gz,g3)](hk) =

(e e -8 )tk = {[(g).8,,8;)1(123)3(13) = [(g,,25,8)1(13) =(g,.8;.8,),
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which is not the same clement of G x G x G unless g, = 8, = &3- In

general (82181:83) # (81»33»82)-

Theorem 1: If G = G', where G and G' are permutation groups over

some sects A and A', |A| not necessarily equal to |A'|, and H' = a"lHa

where |B| = |B'| and a € S|B|' then G = GUI'.
Clearly, G = G' means |G| = |G'|, and H' = a-llla yields |H| = |H'|.
so |ce| = |6|!Blul = | |IB'u'| = |6'u'|. A one-to-one onto

mapping between the two wreath products can be designed.

Let ¢; be an isomorphism between G and G'. ¢, is an isomorphism
between G x G x...x G and G' x G' x...x G' if (gl,gz,...,gn)¢2 =
(g1¢1,g2¢1,...,gn¢1) for n = |B| = |B'|.

Designate the elements of G x G x...x G as y;. So clements of
G' x G' x...x G' are vi¢2.

Then allow ¢4 to be a mapping from Gt to GUH' defined by [vyi;

hi]¢3 = [(a‘1¢2)(v1);a'1ha].

¢3 is an isomorphism. That it is one-to-one and onto follows
from the facts that a~l and ¢, are one-to-one and onto. That it

preserves operations is demonstrated as follows:

[v,3h 1930v, 50,143
[(a714,) (v;) 527 h a] [(a"1¢,) (v,) ;271h,a]

f[(a"1¢2)(v1)][(a'1¢2)(vz)]a-lhla;a‘lhlaa‘lhza}

1)

1)

[t}

{[(a~14,) (v1)1[(a"thia) (a=16,) (v,) 1527 hyhya)

i

([(a™1p,) (v)1[(a"Th 9,) (v,)]5a7 h b a}.
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Now hjs, = ¢,h, for all h; ¢ H or ¢, = hi'1¢2hi. ¢, merely renames

the components of (gl,gz,...,gn). In (gl,gz,...,gn)hil¢2hi, h: changes

i
the order of the components, ¢2 renames them, and hi'l restores the
original order.

So [vy5h1%3 [vp;n21%3=01(a 24,) (V1) 1[(a 2021y ) (v2) 1527 hy By 2}
{[(a165) (V) 1[(a"16) (") 1587 hy by a)
[(a~1¢,) (v;v,M"1);a-1h  hya]

[vyvo "1 sh by 193,

{[vy 3hy 1 [vy5hy 1393

i

So G = GRH'

Corollary to Theorem 1: IF G = G' and H = H' for |B| = |B'|, then
GH = GRH'.

This follows immediately, since H' = (1)~1i(1).

Theorem 2: If |G| - |G'| = p for some prime p and H' = a~lHa for
|B| = |B'| and a ¢ S| g » then GIH = GRH'.

If |G| = |G'| = p for some prime, G and G' must both be cyclic

groups. Cyclic groups of the same order are isomorphic.

Theorem 3: G = G' and [H| = |H'| = [B|] = |B*| = 2 or |H| =
|H'| = |B| = |B'| = 3 yields GIH = G"tH'.

This follows from the corollary to Theorem 1, since H = H' in
both cases. There is only one group of order 2 which permutes a set
of two elements. Similarly, there is only one group of order 3 which

permutes a set of three elements.



48

Thecorems 2 and 3 permit the conclusion that two wreath products
of order 8, 18, 24, 50, 81, or 98 are isomorphic, since each of these
numbers is of the form p2-2 or p3.3 where p is a prime. This is the

only way they can be written in the form mKn where n divides k!.

There remain seven other possible orders less than 100 for which
isomorphisms might possibly be constructed. Looking at the circum-
stances in which these values occur, one finds that there are at least
cleven distinct wreath products:

16 = 23.2

32 = 2%.2 = 42.2

A8 = 23.6 = 2%.3
54 = 32.2
64 = 2%-4 = 25.2
72 = 62.2
96 = 246 = 25.3

Theorems 1 and 2 permit the conclusion that in cases where |G| =

|G| = 16 or |G| = |GRH'|= 54, then GIH = GXH'. In these cases

|G| = |G'| = p for p=2,3, so G = G'. There are three permutation
groups of order 2 on a set of 3 clements, but they are conjugates of
one another.

<(12)> = (123)<(23)>(132) = (132)<(13)>(123).

In the event that |G| = |G'|=2 and |H| = |H'| = 6 for |B| = |B'| =

3, then G'¥H' = G¥. This follows since G = G' and H = H' = S,. |G¥|

= |GH'| = 48.
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If |G| = |G'| = 2 and |H| = |H'| = 3 for |B] = |B'| = 4, then GM =
GRH'. This conclusion is permitted since G * G' and the four permu-
tation groups of order 3 on a set of four elements are conjugates of

one another:

<(123)> = (14)<(234)>(14)
= (34)<(124)>(34)
= (24)<(134)>(24).
Again, |GUI| = |G'H'| = 48.
If |G| = |GRH'| = 72 and G = G', then GH = GRH'.
In this case |H| = |H'| = |B| = |B'| = 2, so H = H', by Theorem 3.

For two wreath products of the same order, it is always possible
to devise a one-to-one onto correspondence between them. In the in-
stances above, an isomorphism can always be constructed. But there are
cases in which an isomorphism cannot exist between the two wreath
products. An example involving wreath products of order 32 -emonstrates

this.

Let G =<(12)> for any set A and let G' = G. Let H =<(12)> for
|B] = 4 and H' = <(12)(34)> for |B'| = 4.

lcaw| = 2%.2 = 32 = |cnu'|.

Clearly G = G' amd H = H', since H and H' are of order 2. But
there does not exist an isomorphism between GUH and G"H'. Table 4
lists the elehenﬁs of each which do not involve the identity element

of H or H'. There is no need to list those elements since G* = G x G
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xGxG=6"xG"xG" xG'=G'™, In Table 4, allow (12) to be repre-
sented by 1, and (1) to be represented by 0. Also let (12)(34) = ¢.
Every element of either G* or G'* has order 2. Inspection of
Table 4 reveals that GUI has eight elements of order 4, while GRII'
contains twelve such elements. Since isomorphisms preserve order,

there can be no isomorphism between GtH and GRH'.

This example illustrates that mere isomorphism between II and H'
is not sufficient to guarantee isomorphism between Gl and G H'.
In this case, H' # a~-lHa for any a ¢ S,- (12) is an odd permutation;
that is, it is the product of an odd number of transpositions, a
transposition being a cycle of order 2. (12)(34) is an even permu-
tation. A permutation is either even or odd, but not both. Hence

a~!(12)a # (12)(34) for any a € S,,.

There remain some unanswered questions about wreath products of
orders 48, 64, 72, and 96. Concerning 64, it can be asserted that if
H = <(12)> and H' = <(12)(34)> for |B| = |B'| = 5. H' # a"lHa, for
any a € Sg for the same reasons as those given in the preceding para-
graph. It is suspected that construction of a table similar to Table
4 would reveal the two wreath products involved do not contain the
same number of elements of the same order. This is a topic for further
study.

It is also suspected that construction of tables would reveal

irreconcileable differences in the following instances:



order

Table 4:

[00001]
[10001]
[01001]
[00101]
[00011]
[11001]
[01101]
[00111]
[10101]
[10011]
[01011]
[11101]
[11011)
[10111]
[01111]

[11111)

Elements of GH

[00000]
[11000]
[11000]
[00000]
[00000]
[00000]
[11000]
[00000]
[11000]
[11000]
[11000]
[00000]
[00000]
[11000]
[11000]

[00000]

[01001]

[10001]

" [10101]

[01101]

[01011]

[10011]

[01111]

[10111]

[00000]

[00000]

[00000]

[00000]
[00000]

[00000]

[00000]

[00000]
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Table 4:

[0000¢],
[10004] .
[0100¢]
[0010¢]
[00014]
[11006]
[01106]
[0011¢]
[10104]
[1001¢]
[0101¢]
[111064]
[11014]
[10116]
[0111¢]

[1111¢]

Elements of GRH'

a2

[00000]
[11000]
[11000]
[00110]
[00110]
[00000]
[11110]
[00000]
[11110]
[11110]
[11110]
[00110]
[00110]
[11000]
[11000]

[00000]

a3

[01004]
[10004]
[0001¢]

[00106]

" [10014]

[01014]
[01104]
[10104]
[1101¢]
[11104]
[01114]

[10114]

[00000]
[00000]
[00000]

[00000]

[00000]

[00000]
[00000]
[00000]
[00000]
[00000]
[00000]

[00000]
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|6 =2, |H| =2, |B] =4, [6'| =4, |[H| =2, [B'] =2;
|G| = |GrH'| = 32.

|G| = 2, |u| =6, |B|] =3, |G| =2, |[H| =3, |B'| = 4;
|G| = |GrH'| = 48.

|G| =2, [H|] =4, |B| =4, |6'] =2, |u']| =2, [B'] =5;
|GtH| = |G H'| = 64.

|G| = |6*| = 6. |H| = [H'] = |B|=|B'|= 2 where G = S3 and G'
is a cyclic group of order 6. |G| = |G'§H'| = 72.

|6l = |6'| =2, || =6, |B] =4; [H'| =3, [BY] =5;
|G| = |gru| = 96.

Here it can be noted that for |G| = |G'| = 2, |u| = |H'| = 3
for |B| = [B'| =5, then |GMH| = |GRH'| = 96 and GIH = G'QH'. There

are ten permutation groups of order 3 on a set of five elements, but

they are all conjugate, since they are the Sylow 3-subgroups of Sg.
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Chapter VI: Some Further Results of the Study

Section 1: Theorem:

If G and i are p-groups for some prime p, then G is a p-group.

Since G and If are p-groups, |G| = p™ for some m ¢ N and 1| =
p? for some n e N. If |B| =k, where B is the set of elements per-
muted by H, then |G| = |G[|B||H| = (pmkpn = pkmpn = pkmen

So GWH is a p-group, since the order of each of its elements must
divide pKm+n,
This result should not be surprising, since the construction of

Sylow p-subgroups of Spr

involved the formation of wrecath products of
p-groups.
Section 2: Theorem:

For any prime p, (p-2)! =1 + kp for some k € N.

For S, there are p! orderings of the p elcments. lowever as p-

p
cycles there are only (p-1)! distinct elements of Sp since therec are
p ways of selecting the first cntry of the p-cycle. Iach p-cycle

is of order p; hence it will generate p-1 distinct p-cycles and the
identity. Each collection of these p-1 distinct p-cycles and the
identity compose a group. So there are - . (p-2)! cyclic

p-1

subgroups of order p of S These are the Sylow p-subgroups of S

p

Since the number of Sylow p-subgroups of any group is of the form

p

1 + kp by the Third Sylow Theorem, (p-2)! =1 + kp for some k e N.
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Section 3: Theorem:

The operation of forming wreath products is not commutative.
GH # G in general.

Consider the example given in Chapter II; A = {1,2,3,4}, B =
{1,2,3}, G = <(12)> and U = <(123)>.
TEET
1141

3
e ¥
So GQRIl an HYG, having different orders are not even isomorphic,

i
1}

| Gaui| 23.3 = 24

|HRG| 34.2 = 162.

let alone equal. Since 24 does not divide 162, GQH'# HYG by LaGranges

Theorem. llowever, GIH ¥ S;, and H}G & S,,.

Section 4: The set of finite permutation groups with the operation
of wreath product is a semi-group.

A semigroup is a set upon which an associative binary operation is
well-defined. 1In Chapter II it is seen that a wreath product is a
permutation group. Associativity of the operation is demonstrated in

Section 2 of Chapter 1V.

Section 5: Any group G is isomorphic to a wreath product.
By Cayley's Theorem, G = P where P is some permutation group of

the elements of G. P = PISI.
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Chapter VII: Conclusion

The basic intent of this paper was to present the wreath product
in a form understandable to the persoh with only a basic knowledge of
permutation groups and abstract algebra. The failing of many texts is
that they are too concise. They give no examples, and their definitions
depend upon too much esoteric information given beforehand. This
thesis has attempted to define the wreath product as simply as possible.
It has provided examples and proofs where none existed in the available
literature, and fleshed out some proofs which were presented in the
texts, Hall in pagticular. Special attention has been given to con-
struction of Sylow p-subgroups of symmetric groups, this being one of
the important applications of wreath products.

A great deal of time and space has been devoted to calculation of
the number of Sylow 3-subgroups of S;;. The concept of the wreath
product was not used here.

Some questions have been left unanswered about isomorphisms between
wreath products of certain orders. However, a theorem which assisted
greatly has been proven in that particular section.

A particularly exciting result of this study is the theorem pre-
sented in Section 2, Chapter VI, that for any prime p, (p-2)! =1 + kp
for some natural number k. This is an application of group theory to

problems in number theory.

Topics for further study might include development of a smooth

algorithm for constructing a Sylow p-subgroup of S, element by element.
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In the construction of a Sylow 3-subgroup of Sq in Section 3, Chapter IV,
trial-and-error was used. Also direct use of the concept of the wreath
product in this matter might be developed.

Another topic for further study involves the unanswered questions
about isomorphisms between wreath products of orders 32, 48, 64, 72,
and 96. One might construct counter examples to demonstrate non-
isomorphisms, or one might devise and prove theorems demonstrating
existence or non-existence of isomorphisms.

The importance of wreath products rests partially on Sylow p-
subgroups. The question now is, what good are Sylow p-subgroups.

This is something for further study.

Nothing has been said in this paper about twisted wreath products
or restricted wreath products. Nor was anything mentioned concerning
the wreath product being a special type of semi-direct product. Again

these are topics for further study.

If the reader goes away from this thesis with a better under-
standing of wreath products and a higher appreciation of permutation
groups in general, this thesis accomplished part of its purpose. If
the paper has engendered in the reader a desire to investigate further

the wreath product and its applications, it has done still more.
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