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CHAPTER 1

INTRODUCTION

This thesis presents statistical theory relating to the problem
of assigning an individual into one of several given populations:
classification. An individual is defined here as a random observation
from one of the several populations. The populations under considera-
tion have multivariate distributions. The reader is expected to have
had an introductory course in mathematical statistics. Also, an
understanding of matrix properties and minimax actions would be help-
ful,

After the establishment of several preliminary terms, the multi-
normal (multivariate normal) distribution will be defined. The second
major topic will be the classification of an observation into one of
two populations with known joint distribution functions. First, a
Bayes procedure - requiring the knowledge of a priori probabilities -
will be presented and then the minimax procedure for two populations
with continuous distributions. Sometimes the classification problem
suggests the existence of a third population. This aspect is considered
when a test for a hypothesis concerning multinormal populations is
defined. Finally, the Bayes classification procedure for several
arbitrary populations is presented. Specific populations under dis-
cussion will be multinormal populations with common covariance matrix
and multivariate discrete populations where a random variable has a

Bernoulli distribution. Estimation is employed at various points

throughout the thesis.



CHAPTER Il

MULTINORMAL DISTRIBUTION

The following symbols are defined: G and g represent matrices;
G' and g' represent the transposes of G and g, respectively; and )(i is
a random variable with a realization xj, i = 1,...,m. One assumes
that X; is normally distributed with mean ¥y and variance og <= j.e.,
xi is N(ui,o";) for i =1,...,m, The covariance of xi and XJ- is de-
fined by
cov(xi,xj) = cij
= E[(X; - up) (X - uy)]
= E(X,) - E(xi)s(xi)
for i,j = 1,...,m. One may notice that oij = oji' When i = j,
°ij = oii = oi. The following matrices are defined: X = (xl,xz,...,
xm)' is a random vector; X = (xl,xz,...,x‘)' is an observation vector;
U= (ul,uz,...,vm)' is the mean vector for X; and L = [oij] is the
covariance matrix of order m.
The multinormal distribution of X will now be defined. This multi-
variate distribution has the joint distribution function
F(x) = P(X < ).
The following statements are presented here without proof:
E(X{) = u;, i =1,...,m, so that E(X) = u; [4,p.349]
var(xi) = 0;; and cov(xi,xj) = °ij’ j=1,...,m so that L is the
matrix of second-order central moments and second-order product

moments; [4,p.349]
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if I is invertible, then X has the joint probability density function
£@) = 202t DV2emp[x - wrlx - W1 [5,p.472]

The symbol N(u,Z) will denote the multinormal distribution of X.



CHAPTER I1I
CLASSIFICATION INTO ONE OF TWO POPULATIONS

WITH KNOWN JOINT DISTRIBUTION FUNCTIONS
A. KNOWN A PRIORI PROBABILITIES

The classification of an observation into one of two arbitrary
populations with known joint probability density functions and a priori
probabilities will now be considered. A Bayes procedure will be pre-
sented.

One lets x; and ¥, Tepresent two populations with density func-
tions f;(x) and fé(g), respectively. One defines the prior probability
that an observation comes from ¥, as q) and from ¥, as qy- One assumes
that q *4q =1.
or ¥

An observation x = (xl,xz,...,xn)' from either «» may be

1 2
considered as a point in some m-dimensional sample space R. 'We
divide this space into two regions. If the observation falls in Rl’ we
classify it as coming from population LY and if it falls in R, we
classify it as coming from population '2'" [2,p.127] Here are four
probabilities associated with classification:

P(1|1) = Iklfi(g)dz, where dx = dxl...dx‘, is the probability of
correctly classifying an observation from LT

P(2|1) = IRZfl(E)dg_is the probability of misclassifying an obser-
vation from L3 into LY

P(2|2) = J'szz(gt_)di is the probability of correctly classifying an
observation from LY

and P(1|2) = ’lezf(EJdi-is the probability of misclassifying an



observation from x, into x;.

One lets C(2|1) be the cost of misclassifying an observation from
¥} into v, and the cost of misclassifying an observation from ¥, into
¥, be C(1|2). The probability that an observation is drawn from L3
and misclassified is q;P(2]1). Similarly, the probability that an
observation is drawn from 7, and misclassified is q2P(1|2). The expect-
ed cost of misclassification C(2|1)q;P(2|1) + C(112)q;P(1]2) is to be
minimized. [2,pp.128-131] When the rule of choosing the regions for
classification is‘

Rir H C(1|2)32’
£,(x) " C(2|1)q,

2 @ calae,
£,(0 cC(2]1)q,

the expected cost is minimized. [2,p.131] If P[fl(z)/fé(g) -

C(1|2)q2/C(2|1)q1|li] =0, i=1,2, and if sets of probability zero are
excluded from consideration, then this Bayes procedure is unique for
continuous distributions. [2,p.131]

When Q =q, = % and C(1]2) = C(2|1), or equality may be assumed,
the likelihood-ratio rule can be used for classification. [6,p.234]
L is the more likely population for an observation if the density
function f,(x) is larger than fz(g). Similarly, 7, is more likely

when fé(g) is larger. This rule states that x is classified into LY if

£ (x)
1 2 1; otherwise classify x as from . [6,p.234] One may
f2(§)

notice that this procedure is a specific case of the Bayes procedure.
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If discrete distributions are encountered in the two populations,

the joint probability function £(x) = P(X = x) should be substituted
for the density in the previously mentioned rules of classification.

[3,p.153] The probability of misclassifying an observation from LA
into "y is P(j|i) = szfi(gt_). i,j=1,2,1¢j.



B. UNKNOWN A PRIORI PROBABILITIES FOR THE CASE OF POPULATIONS
WITH CONTINUOUS DISTRIBUTIONS

One may assume now that an observation x = (xl,xz,...,xm)' is
to be classified into one of two populations with known density func-
tions, the costs of misclassification are known, and the prior prob-
abilities are unknown.

"A principle that usually leads to a unique procedure is the
minimax principle, A procedure is minimax if the maximum expected loss
is a minimum. From a conservative point of view, this may be considered
an optimum procedure.” [2,p.129] ‘*Minimax actions are optimal in the
theory of two-person, zero-sum games, in the sense that by using such
a strategy, one can be assured of no more loss than the minimum
maximum -~ no matter what the other player (nature, in decision prob-
lems) does." [5,p.373]

The expected loss if an observation is incorrectly classified
into L is

c@1|{2yrQ1]2), and c(2|1)P(2]1)
is the expected loss for misclassification into e The minimax pro-
cedure is applied to these expected losses, i.e.,
c@i2yrcif2) = c2|1r2l1), or
C(1|2)Ile2(5)d5_- C(le)!RZfl(z)dl.
To illustrate this procedure, it is assumed that =«

is N(u,,L) and

1 %

T, is N(EQ’EJ' The ratio of densities is

1/2 -
£,(x) (det I) / exp[t%fz_- yi)'z_l(g_- ¥,)]

£, (et D)

exp[-%(z_- 22)'£f1(5_- ¥,)]
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1 -1 a1
= expl-3[(x - 1)'L (X - w) - (x- W) (x- W)k
f, (x) f (x)
1= > cor 4= < ¢. Taking the natural

logarithm of the first of these inequalities,

For some constant c,

-:—,[(5 - y_l)'g‘l(i -n) - (x- gz)'fl(g - 4,)] 2 log c.

The left side of this inequality may be written as

-%li'z'lz -xely cwr e wr
S TV A wEx - g;}{lgzl

= ey -y - ey
] ;_55' - %Eéi-i&z 1, -1

= Xy - sy - Xy ¢ U
P, -

= 5'22_'1(1_:_1 - u) - .1-,(3_1 + 1) '_t_'l(gl - 1.

One defines a new random variable
U= 1’5’1(11 - ) - %(}1; + 1) '2'1(11 - by)
and the quantity
a= (u - u) '22_-1(11_1 - ).
When the distribution of X is N(y,,I), the distribution of U is
NGa,a). [2,pp.134-135] Also, U is N(-Ju,a) when X is N(u,,D).
[2,p.135]
The probability of misclassifying an observation x into ", is
P(2]1) = 1108 (zra) M 2exp[-5(u - 30 /aldu
= P(U < log c).

U-!a

One defines a standard normal random variable Z = ——75-— Then,
nl



P2|1) = P(zal/2 %a < log ¢)
= P[Z < (log ¢ - %u)/ullz]
= ¢[(log ¢ - %a)/allz],
where #(z) is the distribution function for a standard normal distri-
bution. Similarly,
P(L|2) = f;og c(Zla)‘l/zexp[-%(u . %u)zla]du
=1 - P(U < log ¢)
is the probability of misclassifying an observation into w;. If

U+lu
Z s-——T7%— is standard normal, then
.1

P(1|2) = 1 - P(zal/? - 20 < 10g )

1-P[Z<(loge+ %u)/allz]

1-9¢(logc + %u)/allz]

*[(-1og ¢ - lay/al/?),
since #(z) + ¢(-z) = 1.
The constant log ¢ is chosen so that
c1|2)e[(-log ¢ - %u)/ullz] = C(2|1)#[(log ¢ - ;a)/ullz].
The minimax procedure classifies x as from v, when
5}§f1(gi - By - %(gi + _152)'{1(3_1 - 32) > log c;

otherwise x is classified as from « [2,p.136]

2
One notices that for known prior probabilities q, and q,, the
probabilities of misclassification for the Bayes procedure are
P2|1) = #[(log ¢ - %a)/ullzl

and

/2

P(1|2) = ¢[(-log c - %a)/ul 1,

where



C(1]2)q,
C(2|1)q,

10
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CHAPTER IV
A TEST FOR A HYPOTHESIS CONCERNING

MULTINORMAL POPULATIONS

One supposes that x = (xl,xz,...,xm)' is an observation from
'1‘N(24’§)' 'Z‘N(BQ’EJ’ or perhaps some unspecified population Tye
Whether or not LEY exists may be unknown, but one assumes the prob-
lem of classification suggests the existence of a third population.

One lets MP = {ay, + Bgelu + 8 = 1} be the set of all points
in some m-dimensional space which lie on the line segment joining
H and L Here is a test for the hypothesis that x comes from the
family of multinormal distributions with mean vectors elements of MP
and with common covariance matrix L, i.e., Hy:Xx comes from N("EJ + 822.

). [7,p.492] For this test, the test statistic

(x - w2ty - u)Y

-1
(x-uw)'E (x-y) - .
' ! (uy - wy)'L 1(.‘12 -y

has a chi-square distribution with m - 1 degrees of freedom. [7,p.492]}
When the value of the test statistic is in or near a specified criti-
cal region, x possibly belongs to a population which is not N(m_g_1 + 8y,
.

If Wis By and I are unknown, they may be estimated by using a
random sample 511"”’5in1 from " and a random sample 521""’52n2
from LT The sample sizes, n and n,, should be made as large as is
feasibly possible. When the expected value of an estimator is equal

to the parameter being estimated, that estimator is unbiased. [1,p.315}

The ith sample mean vector x, = z:-lfdk/“ 1s an estimate for y,, where
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i=1lor2andns= n) or n,, respectively. [1,p.241] Since

n
E(X) =BGy X, /n)

Exa1 B4y /M)

i£¥=15(5ik)
1
n (")

= Ei,

X is an unbiased estimate of ) P The ith sample covariance matrix

D T | .z Ty
Y Tk Gk - B Gy - )

is an unbiased estimate of £. [1,p.232] Since S, will not usually be

the same as -S—z’ the pooled sample covariance matrix

1
Swo [(“1 - 1)_§_1 . (n2 - 1)_5_.2]
nl + nz -2
is used as an unbiased estimate for L. [1,p.241] However, if $; = 8,5,
then §_1 = §_2 = S. For large samples, Bys Mo and I are replaced by

Zl: _’__‘-_ 2° and S, respectively., (7,p.492]
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CHAPTER V

CLASSIFICATION INTO ONE OF p POPULATIONS
A. BAYES PROCEDURE FOR ARBITRARY POPULATIONS

The Bayes procedure for the classification of an observation
X = ("1»"2»'-°-xm)' into one of p populations with known density

functions will now be presented. One lets wl,...,wp represent p

populations having respective density functions fl (_x_),...,q)(i). The
entire sample space is divided into p mutually exclusive regions

Rl,...,Rp such that Ry is the region for classification into =

j» 1=

1,...,p. Also, one lets the cost of misclassifying an observation

from 7; into w; be C(j|1), where the probability of such a misclassi-

fication is P(j|i) = fp £, (x)dx, i,j = 1,...,p, i # j. One defines

g 1=
the prior probability that an observation comes from ¥, as q; i=1,...
P. One assumes that q, + ... + 9 = 1.

The expected cost of misclassification

a4 colnrglng
j#i
is to be minimized. [2,p.142] The first step in the Bayes procedure

is to evaluate

S50 = 2P _1q;f; (0CG 1),

ifj
j=1,...,p, where Dj(i) = -Sj(§) is called the jth discriminant

score. [1,p.246] When the regions of classification, Rl,...,Rp, are

defined such that x is assigned to R; if Sj(i) = minimun{sl(z),...,

J
Sp(g)}, j= 1,...,p, the expected cost of misclassification is minimized.

[2,p.143] One notices that liniuum{sl(g),...,sp(g)} = —maximum{Dl(z),
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""Dp(f)}' If more than one of the discriminant scores have the
same maximum value, the selection of a discriminant score for classi-
fication purposes among those with maximum value is irrelevant.
[2,p.143] When discrete distributions are encountered in the p popu-
lations, the joint probability function should be substituted for the
density in the discriminant score. [3,pp.155-156] This Bayes proce-
dure may be shown to be unique for continuous distributions umder
conditions analogous to the case of two populations. [2,pp.143-144]

One assumes now that f(x) is a joint probability density fumction
or a joint probability function. The appropriate form of the Bayes
theorem for the classification problem is
q £, ()
P g f@

k=l
i=1,...,p. [7,p.416] This is the posterior probability of the ith

Plri|x) =

population given that x has been observed. One lets C(jlj) = 0 for
i=1,...,p. If xis classified into 5 j=1,...,p, the expected

loss is

23.1CG l1)as £, (0)
CHIDP|x) + ...+ CHIPIPxID) = 5,} 1T zipaas]

Clearly, this expected loss is minimized if the index j is chosen when

5, = P 1CG11)e €5
idj

has minimum value, j = 1,...,p.
One supposes j is the index such that

8;(x) = ninimh{sl(i),...,sp(gc_)},
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j=1,...,p, and the costs of misclassification are equal. One defines
C(k|i) as unity for i,k = 1,...,p, i ¥ k. Therefore,

p p
ti:lqifi(f) < zi.lqificz)

ify igk
for k = 1,...,p, k # j. After subtracting 2?_1 qifi(f) from

if9,k
both sides of the above inequality,
f (x) <q,f (x),
qk k(_) qj j(_)
k=1,...,p, k# j. [2,p.144] The Bayes procedure classifies x

as from 7, when

j
£
q] j(§)
is maximm, j = 1,...,p. [2,p.144] One notices that the classification

of x into 'j when P(~¥

J
lent procedure. [1,p.246]

|£) has maximm value, j = 1,...,p, is an equiva-

If q; and P(j|i) are unknown, they may be estimated by using p

random samples from the combined population of ll,...,'p, i,j=1,...,p,

i¥¢ j. One lets 5&1"“’§ini be a random sample of size nj from T

i=1,...,p. Also, one lets N = np o+ ... np be the combined sample

size. An estimate for q is

q = Eﬁ, i=1,...,p. [1,p.251]
After the N observations have been classified using the Bayes procedure,
the misclassification probabilities may be estimated. One lets "ij be
the number of observations from ¥, which were erroneously classified
into 15, i, j=1,...,p, i # j. A biased estimate for the probability

that an observation from L is misclassified into W, is

3
P3| 1) -#
1

i,j=1,...,p, 1 #3j. [1,p.248]
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A.1. MULTINORMAL POPULATIONS WITH COMMON COVARIANCE MATRIX

The Bayes procedure - applied to the case of p multinormal
populations with common covariance matrix I - will now be presented.
One assumes that the parameters and the prior probability of LT
N(Ei,g), i=1,...,p, are known and the costs of misclassification
are equal. For simplicity, one lets C(j|i) =1 fori,j=1,...,p,
i#ij.

One supposes j is the index, j = 1,...,p, such that

Y f (X < q5f;(0)
for k = 1,...,p, k # j. This inequality can be written as

50 9

fi() q

One defines a new function as

£5(x)
£, (X)

rjk (_x_) = log

1 -1

=x'L f&,- -y - 5(.‘1‘_j * Ry - )
=[x - 30y w0y - pyd.

By a law of logarithms, rjk(f) = 'rkj(f)' The Bayes classification

procedure assigns x to region Rj, j=1,...,p, when

L
5 (X) > log —
Y
for k= 1,...,p, k # j. [2,p.147]
If the population parameters are unknown, they may be estimated

by using p random samples. One lets x.

_11,...,5ini be a sample of size

n, from LITS i=1l,...,p. An estimate for gi is
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nj
X e Bik/My
i=1,...,p. [1,p.247] I may be estimated by the pooled sample

covariance matrix

P
Iy - DS

zgtlni - P
vhere §_i is the ith sample covariance matrix, i = 1,...,p. [1,p.247]
In the functions rij(zj, Yo Wy, and I are respectively replaced by
Xy, 35, and S. [2,p.149-150] *Hence, for sufficiently large samples
one can use the theory given above." [2,p.150]
One supposes now that p = 2 and the probabilities of misclassifi-
cation must be estimated. An estimate
e § -E)8NE - 5)
for
as (- p) 7ty - wy)
may be used to obtain estimates
P2l1) = #{(t0g ¢ - Ja)/at/?)
and
Pal2) = oi(-log c - ay/a'?
of thcfﬁiﬁtllssification probabilities. [1,p.244] "It should be noted,

'**f,at these estimators are biased, that is, on the average, the

actusl/pmbability of misclassification is greater than the estimated
C(1|2)q2

.244] One recalls that c = —_ _ °
c(2l1)q,
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A.2., MULTIVARIATE DISCRETE POPULATIONS WHERE X HAS A BERNOULLI DISTRI-
BUTION

For an illustration of the Bayes classification procedure when p
populations have discrete distributions, one assumes that each random
variable in a random vector X = (Xys.+.,X5)" has a Bernoulli distri-
bution. Xj attains the values 1 and 0 with respective probabilities

P(X; = =) = Py and P(X; = 0lws) =1 - Py4»
i=1,...,p, 3 =1,...,m. In the ith population, the probability

. . X4 1-X5
x - = x 1 -— J . BB
function of j is f1(xj) pig( Pij) for xJ 0,1,
0 otherwise,

i=1l,...,p,3=1,...,m
One supposes X;,...,X, are mutually independent and the costs of
misclassification are equal. One lets C(j|i) =1,1i,5=1,...,p,
i # j. The joint probability function for LY is
£3 () = M. fj(xy),
i=1,...,p. [1,p.251] An observation x = (Xy,Xp,5.00,%p) " is

classified as from *i if

q;f; (x)
P('ili) = ..];_i_.____
has maximum value for i = 1,...,p.
If the Bernoulli distribution mean pij is unknown, it may be
estimated by using a random sample of size n; from LI i=1,...,p,

j=1,...,m. One lets nyy be the number of sample points from the ith

population which have a 1 in the jth row. An unbiased estimate for pij

is

n
-— ij
pij . —_,

ny
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i=1,...,p, 3 =1,...,m. [1,p.251] The estimate Eij should
be substituted for pij to obtain an estimated posterior probability

FIwilz) of the ith population. [1,p.252]



20

CHAPTER VI

CONCLUSION

The major objective of this thesis has been to present statistical
theory relative to the classification problem. Because the multinormal
distribution is one of the more common and important multivariate
distributions, a definition of this distribution has been included.

An area for further study would be the minimax procedure for several
given arbitrary populations.

During an application of classification, an investigator may
wish to use some relevant statistical theory that has not been included
in this thesis. If two given populations have univariate discrete dis-
tributions, one may desire to employ a minimax procedure. [3,p.154-155])
Before using the test of a hypothesis concerning multinormal populations,
one may want to test for equality of several covariance matrices.
[2,p.247-250] Also, one may wish to run some type of test on the multi-
normal mean vectors. [1,p.230-234] Finally, one may desire to use
a minimax classification procedure when three populations with multi-

variate continuous distributions are involved. [2,p.144-152]
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