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OIAPTER I 

INTRODUCTION 

This thesis presents statistical theory relating to the problem 

of assigning an individual into one of several given populations: 

classification. An individual is defined here as a random observation 

from one of the several populations. The popUlations mder considera­

tion have 1IIUItivariate distributions. The reader is expected to have 

had an introductory course in matheaatical statistics. Also, an 

\D\derstanding of matrix properties and minimax actions would be help­

ful. 

After the establish.ent of several preliminary terms, the multi­

normal (lIUltivariate no1'll&1) distribution will be defined. The second 

major topic will be the classification of an observation into one of 

two populations with known joint distribution fmctions. First, a 

Rayes procedure - requiring the knowledge of a priori probabilities ­

will be presented and then the minimax procedure for two populations 

with continuous distributions. Sometimes the classification problem 

suggests the existence of a third population. This aspect is considered 

when a test fOr a hypothesis concerning multinormal populations is 

defined. Finally, the Bayes classification procedure for several 

arbitrary populations is presented. Specific populations \D\der dis­

cussion will be multinorBal populations with common covariance matrix 

and multivariate discrete popUlations where a random variable has a 

Bernoulli distribution. Estimation is employed at various points 

throughout the thesis. 
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CHAPTER II 

MJLTINORMAL DISTRIBUTION 

The following s)'1lbols are defined: G and A represent _trices; 

G' and I.' represent the transposes of G and A, respectively; and Xi is 

a randOil variable with a realization xi, i • 1, ••• ,m. One assumes 

that Xi is norully distributed with mean lIi and variance a~ < • ,Le., 

Xi is N(lIi,a~) for i • l, ••• ,m. The covariance of Xi and Xj is de­

fined by 

cov(Xi,Xj ) • a i ; 

• E[(Xi - lIi){Xj - lIj)] 

• E(XiXj ) - E(Xi)E(Xj ) 

for i,j • l, •.• ,m. One may notice that a .. • a ..• When i = j,
1) )1 

(J ij • aii • af· The following matrices are defined: !... (Xl' X2 , ••• , 

Xm)' is a random vector; !.. (Xl' ~, ••• , x..)' is an observation vector; 

!!.. (lil ,1I2' ••• , lim)' is the mean vector for !i and !.. =: [a ij] is the 

covariance matrix of order m. 

The ~ltinormal distribution of X will now be defined. This multi ­

variate distribution has the joint distribution function 

F(x) • P(X ~ x) • 

The following statements are presented here without proof:
 

E(Xt ) • lIi' i • 1, ••• ,., so that E(X) .!!.j [4 ,p. 349]
 

var(Xi ) • aii and cov(Xi,Xj) • j • l, ••• ,m, so that t is the
a ij , 

utrix of second-order central moments and second-order product 

momentsj [4,p.349] 
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if !. is invertible, then X has the joint probability density function 

f(!.l • (2w)-m/2(det !l-1/2exp[_~(.! - lI)II-I (.! - ~]. [S,p.472) 

The sywbol H(!,!) will denote the multinormal distribution of X. 
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CHAPTER III
 

CLASSIFICATION INTO ONE OF TWO POPULATIONS
 

wrni KNOWN JOINT DISTRIBUTION FUNCTIONS
 

A. KNOWN A PRIORI PROBABILITIES 

The classification of an observation into one of two arbitrary 

populations with known joint probability density functions and a priori 

probabilities will now be considered. A Bayes procedure will be pre-

tented. 

One lets wl and -2 represent two populations with density func­

tions f l (~ and f2(x) _ respectively. One defines the prior probability 

that an observation comes from -las ql and from W2 as q2. One aSSUlleI 

that ql + q2 c 1. 

M observation ~. (xl -x2' ••• ,x.)' from either wlor w2 _y be 

considered as a point in some a-dimensional sample space R. I~e 

divide this space into two regions. If the observation falls in R
l 

, we 

classify it as coming froll population wl - and if it falls in R2 we 

classify it as coaing from population -2." [2_p.127] Here are four 

probabilities associated with classification: 

PUll) • f R f l (~dx, where ~ • dXl •••me.- is the probability of 
l 

correctly classifying an observation from wl ; 

p(2Il) • fR fl(x)dx is the probability of misclassifying an obser­
2 -­

vation froll wl into w2; 

p(212) • fR f2(x)dx is the probability of correctly classifying an 
2 -­

observation froll W2; 

and p(112) • 'R f f(x)dx is the probability of misclassifying an 
1 2 - ­
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observation from "2 into 1'1. 

One lets C(2Il) be the cost of misclassifYing an observation from 

1'1 into .2 and the cost of J1isclassifYing an observation fro••2 into 

"1 be CUI2). The probability that an observation is drawn from 1'1 

and misclassified is qlP(2Il). Siailarly, the probability that an 

observation is drawn fro. '11'2 and Ilisclassified is q2PUI2). The expect­

ed cost of misclassification C(2Il)qlP(2Il) + C(112)q2P(112) is to be 

Ddni.ized. [2,pp.128-l3l) When the rule of choosing the regions for 

classification is 

Rl : fl(~ C(112)Q2 
----> , 
f 2(!) - C(2I l )Ql 

R2: fl(~ C(112)Q2 
--< , 
f 2(~ C(2I l )Ql 

the expected cost is llinillized. [2.p.13l) If P[fl(~/f2(!> • 

C(112)Q2/C(2Il)Qll.i] • 0, i • 1,2, and if sets of probability zero are 

excluded from consideration, then this Bayes procedure is unique for 

continuous distributions. [2,p.13l] 

When ql • q2 • ~ and C(112) • C(2Il), or equality may be assumed. 

the likelihood-ratio rule can be used for classification. [6,p.234) 

"1 is the ~re likely population for an observation if the density 

function f l (x) is larger than f 2(x) • Similarly, 11'2 is more likely 

when f2(~ is larger. This rule states that.! is classified into .1 if 

f (~ -1 > I', otherwise classifY .! as fro••2. [6,p.234] One ..y 
f2(~ ­

notice that this procedure is a spedfic case of the Bayes procedure. 
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If discrete distributions are encountered in the two populations, 

the joint probability function f(.!l • PC! • .!l should be substituted 

fOr the density in the previously mentioned rules of classification. 

[3,p.IS3] The probability of Ilisc1assifying an observation froa 'I. 
1 

into '1 j is P(jli) • IR fi(x), i,j • 1,2, i ~ j. 
j 
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B.	 UNKNOWN A PRIORI PROBABILITIES FOR THE CASE OF POPULATIONS 

WITH CONTINUOUS DISTRIBUTIONS 

One may assume now that an observation ~. (xl ,x2 , ••• ,x.)' is 

to be classified into one of two populations with known density func­

tions, the costs of misclassification are known, and the prior prob­

abilities are unknown. 

"A principle that usually leads to a mique procedure is the 

Jlinimax principle. A procedure is mini1l8.x if the maximum expected loss 

is a minimum. From a 'conservative point of view, this may be considered 

an optimum procedure." [2,p.129] "Minimax actions are optimal in the 

theory of two-person, zero-sum games, in the sense that by using such.. 
a strategy, one can be assured of no more loss than the mini1lRDl 

aaxiaua - no matter what the other player (nature, in decision prob­

le_) does." [S,p.373] 

The	 expected loss if an observation is incorrectly classified 

into	 "1 is 

C(112)P(112), and C(211)P(211) 

is the expected loss for misclassification into "2' The Ilinill8x pro­

cedure is applied to these expected losses, i.e., 

C(112)P(112) • C(211)P(211), or 

C(112)/R1 f 2(!.ld!. • C(211)/R2f1 (x)d!.. 

To illustrate this procedure, it is assumed that "1 is N(!t,!) and 

"2 is N(~,!). The ratio of densities is 

1/2 1 -1 
f 1(!.l (det!.l exp[-i(!. - ~1)'~ (!. - ~)] 

• 1/2 1 -1
f 2 (!.l (det ~ exp[-2(! - ~2)'!. (!. - ~2)] 
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1 -1 -1
• exp{--[(x - ~ )'E (x - ~ ) - (x - ~ )'E (x - ~ )]}.2- -1- - -1 - ~- - "-2 

f 1 (!l f (x) 
Por some constant c, -- > c or ~ < c. Taking the natural 

f (!l - f (!l
2 2 

logarithm of the first of these inequalities, 
1 -1 -1

--[(x - ~ )'E (x - ~ ) - (x - ~ )'E (x - ~ )] > log c.2 - .:; - - -1 - -2 - - -2 ­

The left side of this inequality may be written as 
1 -1 -1 -1 -1--[x'E x - x'E p - ~'E x + ~'E ~ 2 - - - - -.q -1- - .q- -1 

-1 -1 -1 -1 
- x'~ ~ + ~'!. ~ + ~2!. !. -~!. ~2] 

1 -1 1 -1 1 -1 1-1• -x'E ~ + -,'I x - -p'E ~ - -xlE ~~ 2- - -1 ~- - 2.q- -1 2- - -~ 
1 -1 1 -1 - -p'E x + _pIE ~ 
~2- - 2~- ~ 

-1 1 -1 -1 1-1
• x'E p - -~'I ~ - x'I p + -~'E p~ - - -1 2,- -1 - - -2 2-2- ~ 

1 -1 1-1 
+ -p't p - -~'E p

29- ~ 2~--1 
-1 1 -1• x'I (p - p ) - -(p + P )'I (~ - p ).

- - 9 -2 2 -1 -2 - ""'"1 ~
 

One defines a new random variable
 
-1 1 -1U • X'E (~ - ~~) - -(p + P )'E (~ - p )- - -1 --. 2 ~ -2 - -1 -2 

and the quantity 

a I: (PI 
-1 

- ~2) '!.. (~1 - P2)' 

When the distribution of !. is N(!4.'~' the distribution of U is 

N(~a,a). [2,pp.I34-135] Also, U is N(-~a,a) when X is N(!2,I). 

[2 ,p.135] 

I 
I 

I 

The probability of aisclassifying an observation !. into w2 is 
log -1/2 1 1 2p(2II) • I~ c(2wa) exp[-i(u - ia) /a]du 

• P(U ~ log c). 

U - 1 -a 
One defines a standard normal randoll variable Z I: 1I~' Then. 

a 
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p(211) • p(ZaI/ 2 + la < log c) 
2 ­

• P[Z < (log c _ la)/al / 2] 
- 2 

• .[(log c - la)/al / 2].
2 

where I(z) is the distribution function for a standard nomal distri ­

bution. Similarly. 

p(112) • /- (2wa)-1/2exp [_l(u + !a)2/aldu
log c 2 2 

2 1 - P(U ~ log c) 

is the probability of misclassifying an observation into vI. If 

U + !a 
Z· al/~ is standard noraal. then 

P(l12) • I - P(Zal / 2 -
2
!a 

-
< log c) 

• I - P[Z < (log c + !a)/al / 2]
- 2 

• 1 - 1[(log c + t a)/al / 2]
2 

• I[(-log c - !a)/a1/ 2]. 

since t(z) + .(-z) • I. 

The constant log c is chosen so that 
1 1/2 1 1/2

C(112)1[(-log c - ial/a ]. C(211)1[(log c - ia)/a ]. 

The minimax procedure classifies ~as fro. T1 when 
-I 1 -1x'I (~- p~) - 2-(~ + P )'I (p, - p ) > log Cj-- ~ ~ ~ ~ - ~ ~-

otherwise ~ is classified as from v • [2.p.I36]2

One notices that for known prior probabilities ql and q2. the
 

probabilities of misclassification for the Bayes procedure are 

p(211) • 1[(log c - ~a)/al/2] 

and 
I 1/2

p(112) • I[(-log c - -alta l. 
2 

where 



tb(t IZ):> 
. .;) 

Zb(ZIU:> 

Ot 
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CHAPTER IV
 

A TEST FOR A HYPOmESIS CONCERNING
 

MULTINORMAL POPULATIONS
 

One supposes that ~. (xl .x2••••• X )' is an observation froB m

Wl:N(Pl'~)' W2:N(R2'~' or perhaps some unspecified population w3• 

Whether or not w3 exists may be unknown, but one assumes the prob­

lem of classification suggests the existence of a third population. 

One lets MP • {a~l + 6~21a + e • l} be the set of all points 

in some m-dimensional space which lie on the line segment joining 

Pi and P. Here is a test for the hypothesis that x comes from the- ~ ­
family of sultinorma1 distributions with mean vectors elements of MP 

and with cOlllllOn covariance matrix £. Le •• HO:X comes from N(a~l + S~. 

~. [1.p.492] For this test. the test statistic 

-1 [(~ - ~l) I ~-1 (~2 - ~l)] 2 

(~ - !!..l) '!. (! - !.1) - -1 
(.!:!.2 - .!:!.l) '~ (.!!.2 - !!..l) 

has a chi-square distribution with m - 1 degrees of freedom. [7.p.492] 

When the value of the test statistic is in or near a specified criti ­

cal region. ! possibly belongs to a population which is not N(a!!..l + S~. 

~. 

If .!:!.l' .!:!.2' and f. are \D\known. they may be estimated by using a 

randoll sample !tl •••• '~nl from wl and a random sample ~l"" '!2n2 

from w2• The sample sizes. nl and n2, should be made as large as is 

feasibly possible. When the expected value of an estimator is equal 

to the parameter being estimated. that estimator is unbiased. [l,p.31S] 
- n

The ith sallple _an vector !.t. • l:k_l!ik/n is an estimate for !i' where 
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i • 1 or 2 and n • 01 or O2, respectively. [1.p.24l] Since 

E(~) • P.(E~.l~k/n) 

• t~.lE(!ik/n) 

• ~I:~SlE(!ik) 
S ~(014) 

• 14.' 
~	 is an \D\biased esti_te of 14' The ith suple covariance matrix 

1 n - ­
~ • -----ltk l(x· k - x.)(x· k - x.)t-.a. n - • -1 -1 -1 -1 

is an \D\biased estimate of t. [l,p.232] Since ~ will not usually be 

the salle as ~2' the pooled sample covariance matrix 

1 
~ • [(01 - l)Sl + (n2 - l)~] 

01 + 02 - 2 

is used as an \D\biased estimate for t. [l,p.24l] However, if 51 =~, 

then ~l • ~ .~. For large suples, l!.l' l!.2' and !. are replaced by 

~, ! 2' and !, respectively. [1,p.492] 
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CHAPTER V 

CLASSIFICATION INTO ONE OF P POPULATIONS 

A.	 BAYES PROCEDURE FOR ARBITRARY POPULATIONS 

The Bayes procedure for the classification of an observation 

x • (xl,x2, ••• ,Xm)' into one of p populations with known density 

functions will now be presented. One lets wl, ••• ,w represent pp 

popUlations having respective density fUnctions fl(~' ••. '£P(~. The 

entire sample space is divided into p mutually exclusive regions 

Rl' ••• '~ such that Ri is the region for classification into Wi' i • 

l, ••• ,p. Also, one lets the cost of misclassifying an observation 

from Wi into wj be C(jli), where the probability of such a misclassi­

fication is P(jli) = I R fl. (x)dx, i,j • l, ••• ,p, i ~ j. One defines 
j -­

the prior probability that an observation comes from Wi as qi' i • 1 •••• , 

p.	 One assumes that ql + ••• + ~ = 1. 

The expected cost of misclassification 

t~.lqi[t~=lC(jli)P(jli)] 
j~i 

is to be minimized. [2,p.142] The first step in the Bayes procedure 

is to evaluate 

Sj(x) • Ii.lqifi(~C(jli), 
i~j
 

j • l, ••• ,p, where Dj(~ • -Sj(~ is called the jth discriminant
 

score. [l,p.246] When the regions of classification, Rl, ••• ,R ' arep 

defined such that x is assigned to R. if S.(x) = minimum{Sl(x), ••• ,
- J J-­

5 (x)}, j= l, ••• ,p, the expected cost of misclassification is minimized. p­
[2,p.143] One notices that IlinillU1l{Sl (x), ••• ,Sp(~ ) = -maximum{Dl (x),
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•.• ,D (x)}. If more than one of the discriBdnant scores have the p-
same maximum value, the selection of a discriminant score for cla••i­

fication purposes amonl those with maxi.ua value is irrelevant. 

[2,p.143] When discrete distributions are encountered in the p popu­

lations, the joint probability function should be substituted for the 

density in the discriminant score. [3,pp.lSS-lS6] This Bayes proce­

dure may be shown to be \D1ique for continuous distributions under 

conditions analogous to the case of two populations. [2 ,pp.143-144] 

One assumes now that f(!.l is a joint probability density function 

or a joint probability function. The appropriate form of the Bayes 

theorem for the classification problem is 

(\i f i (x) 
P(wil x) • , 

- t P qkfk(!J
k.l 

i • l, ••• ,p. [7,p.4l6] This is the posterior probability of the ith 

population given that! has been observed. One lets C(j Ij) • 0 for 

j • l, ••• ,p. If x is classified into .j' j - l, ••• ,p, the expected 

loss is 

+ C(jlp)p(w Ix) • tl_1C(j\i)qif.(X)C(j \1)P(1I11!.l + ••• p _ i~j 1 - [2,p.143]
P • 

tk_lqkfk (x) 

Clearly, this expected loss is minimized if the index j is chosen when 

5j (!J • t1_lC(jli)qifi(X) 

i~j 

has mini.ua value, j • l, ••• ,p. 

One supposes j is the index such that 

5. (x) - miniu{5l (x) , ••• ,5 (x)},
3- - p­
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j • l, ..• ,p, and the costs of Jlisclassification are equal. One defines 

C(kli) as unity for i,k • l, ••• ,p, i ~ k. Therefore, 

Il.lqif i (!J 
i~j 

< I~.l qi f i (!J 
i~k 

for k • 1, ••• ,p, k .~ j. After subtracting Ir.l qi f i (!J froll 

i"j,k 
both sides of the above inequality, 

qk f k(!J < qj f j (!J , 

k· l, ••• ,p, k~ j. [2,p.144] The Bayes procedure classifies x 

as fro. 'II' j when 

q. f (x)
J j ­

is maximum, j = l, ••• ,p. [2,p.l44] One notices that the classification 

of !. into 'll'j when P('II'j l,!l has Jl8.Xi.JIIUII value, j • l, ••• ,p, is an equiva­

lent procedure. [l,p.246] 

If qi and P(jli) are unknown, they may be estimated by using p 

random samples froll the combined population of wl""'.p' i,j • 1 •..• ,p. 

i ~ j. One lets !.il""'~ni be a randoll sa~le of size ni from Wi' 

i • l, ••• ,p. Also, one lets N • nl + ••• + n be the combined sample p 

size. An estimate for qi is 
_ ni 
qi =- H' i • l, ••• ,po [l,p.2Sl] 

After the N observations have been classified using the Bayes procedure, 

the Jlisclassification probabilities may be estimated. One lets wij be 

the number of observations froll Wi which were erroneously classified 

into 'll'j' i,j c l, ••• ,p, i 'I- j. A biased estimate for the probability 

that an observation froll Wi is Ilisclassified into w isj 

w. j
If(j Ii) • -,1

n·1 

i,j • l, ••• ,p, i ~ j. [1,p.248] 
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A.l. MULTINORMAL POPULATIONS WITH COMMON COVARIANCE MATRIX 

The Bayes procedure - applied to the case of p multinormal 

populations with common covariance matrix ~ - will now be presented. 

One assUlles that the parameters and the prior probability of 1I'i: 

N(p.,t), i • l, ••• ,p, are known and the costs of misclassification 
"'"1. ­

are equal. For simplicity, one lets C(jli) • 1 for i,j • l, ••.•p, 

i "i j. 

One supposes j is the index, j • l •••• ,p, such that 

qkfk (x) < qjfj (x) 

for k • l, ••• ,p, k ~ j. This inequality can be written as 

f j (!) > qk 

fk(x) qj 

One defines a new function as 

f j (!) r jk (!) • log ____ 
f (x)
k 

-1 1 -1• x't (p. - ~~) - -(Pj + p~)'t (P. - p~) - - -J ~ 2 - -.. - ') ""'-II. 

1 -1 
• [~- 2(~j + ~)] '!. (.!!.j - P.k). 

By a law of logarithms, rjk(x) • -rkj (~. The Bayes classification 

procedure assigns ~ to region Rj , j • l, ••• ,p, when 

qk 
rjk(!) > log­

qj 

for k • l, ••• ,p, k "i j. [2,p.147] 

If the population parameters are unknown, they may be estimated 

by using p random samples. One lets ~l' ••• '~in. be a sa.ple of size 
1 

from 1I'i' i • l, ••• ,p. An estimate for P. isni -1 
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- ni /
~ • tkalXik nit 

i • l •••••p. [l.p.247] ~ ..y be estimated by the pooled sample 

covariance matrix 
p

I ial (ni - I)!i
Sa, 

tP n. - p
hi 1 

where!i is the ith sample covariance matrix. i • l •... ,p. {1.p.247] 

In the functions r ij (x). ~i' ~j' and !. are respectively replaced by 

~, !j' and~. [2,p.149-ISO] "Hence, for sufficiently large samples 

one can use the theory given above." [2.p.150] 

One supposes now that p a 2 and the probabilities of misclassifi­

cation must be estimated. An estimate 

- - -I - -
a • (!.l - ~) '! (Xl - ~) 

for 

CI • (!I - !!2) ,!.-l (Pi - ~) 

..y be used to obtain esti..tes 

~(211) a 1[(101 c - ~a)/al/2) 

Mel 

'(112) a .[(-101 c - !a)/a1/ 
21

2 

of th•••lassification probabilities. [l.p.244) "It should be noted, 

how~••t these esti_tors are biased. that is. on the awrage. the 

act~.I1Jilityof 1Iisc:1assification is greater than the esti_ted 
,'~*./;; 'I 

C(l12)Q2
.244] One recalls that c • • 

C(211)QI 
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A. 2. MULTIVARIATE DISCRETE POPULATIONS WHERE X HAS A BERNOULLI DISTRI-

BurION 

For an illustration of the Bayes classification procedure when p 

populations have discrete distributions, one asSUJlleS that each rando. 

variable in a rando. vector!. (Xl, ••• ,x.)' has a Bernoulli distri­

bution. X attains the values I and 0 with respective probabilitiesj 

P(X j • Ilwi) • Pij and P(X j =olwi ) • I - Pij' 

i • I, ••• ,p, j .I ••.••m. In the ith popUlation, the probability 

function of Xj is fi(xj). rp~l(1 - Pij)I-Xj for xj • 0,1, 
Lo otherwise, 

i • I, ... ,p, j • I, ... ,m. 

One supposes XI •••• ,Xm are mutually independent and the costs of 

misclassification are equal. One lets C(jli) • 1. i.j • I, ••• ,p, 

i ~ j. The joint probability function for 'I'i is 

f i (!> • nj.l f i (xj ), 

i • l .... ,p. [l,p.2SI] An observation!. (x1.x2' ....x..)' is 

Classified as from 'I'i if 

~~~ 
P(Wi 1x) • -----------­

- tk.lqkfk(!> 

has maximum value for i • I, .•••p. 

If the Bernoulli distribtttion mean p.. is tmknown, it .ay be 
1) 

estimated by using a random sample of size ni from 'I'i' i • I, ••••p, 

j • I ••••••• One lets nij be the nu.ber of sample points from the ith 

population which have a I in the jth row. An unbiased estimate for Pij 

is 
nij

Pij ._-. 
ni 
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i • l ••.••p, j • 1•••• ,m. [l.p.25l] The estimate Pij should 

be substituted for Pij to obtain an estimated posterior probability 

V(.il~ of the ith population. [1.p.252] 

,~ 

"1 
;~ 

'1 
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CHAPTER VI 

CONCLUSION 

The ..jor objective of this thesis has been to present statistical 

theory relative to the classification problem. Because the .ultinoraal 

distribution is one of the more cOBllOn and important multivariate 

distributions. a definition of this distribution has been included. 

An area for further study would be the minimax procedure for several 

given arbitrary populations. 

During an application of classification. an investigator l18y 

wish to use some relevant statistical theory that has not been included 

in this thesis. If two given populations have univariate discrete dis­

tributions. one may desire to ellploy a mnimax procedure. [3.p.IS4-ISS) 

Before using the test of a hypothesis concerning multinorul populations. 

one may want to test for equality of several covariance matrices. 

[2.p.247-2S0] Also. one ..y wish to run some type of test on the multi­

normal mean vectors. [1.p.230-234] Finally. one _y desire to use 

a llini..x classification procedure when three populations with multi­

variate continuous distributions are involved. [2.p.144-IS2] 
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