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In order to make any type of exploration, some tools are necessary. 

The fraction 5/3 is chosen as a tool to make explorations in continued 

fractions. 

This thesis mainly consists of the following things. Discussion 

about the numbers 5/3, 5 and 3 and their significant contributions to 

the world of mathematics and to the theory of continued fractions in 

particular. It is to be noticed that 5/3 is the only fraction, when 

expanded in the form of a continued fraction, that has terms in its 
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observations. Famous numbers such as Fibonacci numbers, Theon diameters, 

et cetera, yield some properties in common to each other when they are 

studied in the light of continued fractions. A method is explained to 

get a magic square of order 3 from the magic hexagon of order 3. 
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PREFACE 

This thesis consists of 40 theorems which are related to the 

theory of continued fractions. Special attention has been given to 

the numbers 5/3, 5 and 3 throughout this thesis, and their contribu­

tion to mathematics is explained. 

The thesis is divided into 5 chapters. The first chapter deals 

with the history of continued fractions. The second chapter consists 

of a discussion about the fraction 5/3 and some related theorems. The 

theorems are 15 in number, and they are easy to understand. The third 

chapter consists of 25 interesting theorems and the fourth chapter, some 

observations and suggestions for further study. The fifth chapter is 

the summary. 

Knowledge of geometry and calculus is not needed to understand 

this thesis. Any person who has three years introductory algebra can 

comprehend this material. 

In order to assist the reader in understanding certain difficult 

theorems, necessary material to understand those theorems is given before 

each such theorem under the title, "Introduction to theorem. II 
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III shall set forth the method of forming fractions which is most 

pleasing to me today '· 

[ 19, p. 346] 
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Chapter I: Introductory Material 

1.1 Intl~oduction 

It is very interesting to know how methods and tools to solve 

mathematical problems are found and devised. 

In the world of mathematics some techniques are found by chance 

and some by constant struggle. There are some others which are fonned 

by polishing the already existing ones. An example for this type is. 

"Continued Fractions." This polished key might look like an unpolished 

one to some people. It may be used again and again in the consideration 

of different mathematical problems to open many unopened mathematical 

results so far overlooked or neglected by the simple and the great who 

have preceded us. 

In starting this thesis work. this brightened key of continued 

fractions was used to see whether the fraction 5 (which is made up of the 
3" 

first two odd primes) might give any interesting results. It was found 

that it does. Later the reference of some books revealed that the 

mathematician, Hero, of the school of Alexandria, used 5 as his first 
j 

approximation to tf3. In fact the four Heronian approximations to 6 
are ~, 26, 265, and 1351 where the last two approximations are conver­

3 15 153 780 
gents of a continued fraction for~ [5, p. 152-157]. It is to be noted 

that the continued fractions may be used to obtain approximations to 



---

---

---

2 

i~rational numbers, [9,p,459] 

It is interesting to note that this thesis work starts with explo~ 

ration of the uses of	 ~ which is a fraction of antiquity. 
3 

1.2	 Definition, types and convergents of continued fractions 

An expression of the form 

al + bl 
a2	 + b2 

a3 +b3 
a4 + ... 

is called a continued fraction. In general, the ai and bi may be unre­

stricted in character, and the number of terms may be finite or infinite. 

A simple continued fraction is one in which each bi = 1 and the 

ai are positive integrers, except that al may be positive, negative, or 

zero. A more convenient way of writing a simple continued fraction is 

al + _1 _1 _1 or, yet P10re simply, (al,a2,a3,a4, ... ). [21, 
a2 + a3 + a4 + 

p.	 l5J 

Another way of writing the expression at the beginning of the 

section 1.2 is al +~ ~ ~ 
a2+ a3+ a4+ 

The a i are called terms or the partial quotients of the continued 

fraction. [13,p.47] There are some types in the continued fractions; 

for exampl e: 

1.) Simpl e conti nued fracti ons: 
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Definition: The continued fraction 

a + 1 
1 ~+-.J 

a3 + -.J 
a4 + 

Where each b, is equal to 1 and each ai is an integer such that 

alO for i 71, is a simple continued fraction. [21 ,p.1S ] 

Example: -3 + 1 
2+ 1 

4 + 1 
5 + 1 

2 [ 11 ,p.97 J 

2.) Periodic continued fraction: 

Definition: A periodic continued fraction is one of the form 

(bo,bl ,b2,····· ,bn-l ,cO,cl"" ,cm-l) 

for some nonnegative integer n and for some positive integer m. It 

shall be assumed that nand m are chosen as small as possible. It 

might then be said that cQ,cl,c2, ... cm_l is the period (of length m)
 

and that the period begins after n terms. If n = 0, one has a purely
 

periodic continued fraction.
 

ExamPle:0 = (l,l ,2,1 ,2,1 ,2,1 ,2, ... )
 

The terms 1,2 repeat indefinitely. This is usually written as~ = (1,1;2)
 

and this continued fraction has the period 1,2 and that the period begins
 

after one term. [13,p.12S J
 

3.) Symmetric continued fractions: 

Definition: A symmetric continued fraction is a finite simple continued 
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fraction in which the partial quotients read the same both ways. 

Example 1: 247 = (3,4,1,4,3) 
77 

Example 2: 425 = (3,4,1,1,4,3) 
132 

[21,p.21J 

4.) Finite continued fraction:
 

Definition: If the number of terms is finite, then the continued fraction
 

is called a finite continued fraction.
 

Example: t = (1,1,2)
 

[13,p.97] 

5.) Infinite continued fraction: 

Definition: If the number of terms of a continued fraction is infinite 

then it is called an infinite continued fraction. 

Exampl e: rf3 = (1,1,2) 

[13, p. 11 0-116J 

Convergents of Continued Fractions 

Let zO,zl,z2"",zk be real numbers, all of which, except possibly 

the first, are positive, and consider the continued fraction 

x = zQ + _l~__
 
zl + _,_
 

z2 +..•• + 1 

zk- l +.J 
zk (A) 

Now clearly x is determined completely by the ZIS, so one can abbreviate 

the cumbersome equation (A) by writing x = (zO;zl,z2, ... ,Zk)' The reason 
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for the semicolon in this notation is to emphasize the distinction between 

(A) and the continued fraction 

1 = (0 ; Zo •zl' z2' ... , zk) 
Zo + -1 

z1 +-.J 
z2 + I ..... + 1 

zk 
Moreover, the number preceding the semicolon plays a rather difficult 

role from the other ZIS in that it can be zero or negative. By placing 

parentheses around the fraction zk-1 + __1__ at the bottom of (A). one 
zk 

gets 

(zO;zl,z2,z3,···,zk_1· zk) = 

(zO;z1,z2,z3,···,zk_2· zk_1 + 1 
zk 

The continued fractions 

(zO;)'(zO;z1)'(zO;Z1'z2)'···· (zO;z1,z2,z3,···,zk) 

are called the convergents of the expansion (A). If one simplifies the 

first few to ordinary fractions, the following equations are obtained. 

( z,,;) = Zo u ­
1 

(ZO;z1) = zO zl + 1
 
z1
 

(zO;Z1,z2) = zOz1 2 2 +zO + z2
 
z1z2 + 1
 

Now define the numbers Pn and q , for n = 1, ... ,k, as being the n
 

numerators and denominators of the fractions just written, so that
 

Po = zO' qo = 1 
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Pl = zOzl + 1, ql = zl
 

P2 = zOzlz2 + Zo + z2' q2= zl z2 + 1
 

and refer to P and q as the numerator and denominator of the nth 
n n 

convergent of (A). [11 ,p.77-78] 

1.3 Scholars and their contributions to the history of continued fractions 

1.) Euclid (300 B.C.): Euclid found the greatest common measure of two 

lines and used the same principle to find the greatest common divisor 

of two numbers. [16, p. 418 ] 

The algorithm for expanding ~ into a continued fraction is identical 
q 

with the Euclidean Algorithm for finding the greatest common divisor of 

p and q. This algorithm gives the equations 

p = alq + rl (ai' ri are integers and 0 ~ r i L.. q) 

q = a2 r l + r 2 

rl = a3 r2 + r3 

which may be written
 

Q = a, + r 1
 
q q 

.9.- = a2 
+~ 

r1r 1 
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r1 + r 3- = a
r2 3 r 2 

and when these are combined the continued fraction is secured, [21,p,16-17J 

Example: Let p = 11 and q = 7 

11=1'7+4 

7 = 1 ' 4 + 3 

4=1 '3+1 

which may be written 

411 = 1 + 
7 7 

3L = 1 + 
4 4 

L = 1 + 1 
3 3 

when these are combined one gets the following expression 

11 4
"7 = 1 + 7"
 

= 1 + 1
 
~ 

4 

1 
= 1 + , + } 

4 

= 1 + 1 
+ ~1_ 

4 
"3 

= 1 +
 
1 +
 1- ­

1 + 1
 
3 
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This is the earliest important step in the theory of continued 

fractions. Further traces of the general idea are found occasionally 

in the Greek and Arab writings. D6,p.419 ] 

2.) Aryabhata (b.476): Continued fractions both ascending and descend­

ing appear to have been known already to the Hindus, though not in our 

present notation. [3,p.188 ] 

Hindus, Aryabhata in particular had used continued fractions to 

solve linear indetenninate equations. [9,p.254] 

3.) Bombelli (1572): The modern theory of continued fractions may be 

said to have begun with Bombelli (1572). 

He is the first mathematician who tried to use the concept of 

continued fractions. He used this concept in finding the approximate 

values of the square roots of numbers that are not perfect squares. 

[18,p.80J 

4.) Cataldi (1613): The next writer who considered these fractions 

and put them in modern form was Cataldi (1613). 

5.) Daniel Schwenter (1625): Daniel Schwenter was the first to make 

any material contribution towards determining the convergents of con­

tinued fractions. He devoted his attention to the reduction of fractions 

involving large numbers and determined the rules now in use for calcu­

lating the successive convergents. [6,p.131J 



--
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6~) Lord William Brouncker (1620-1684): Lord Brouncker's beautiful 

equality is 

71- = 4 
+	 1
 

2 + 9
 
2 + 25
 

2 + 49
 
2 +
 

Brouncker's expression increased interest in the theory of continued 

fractions. [3,p.188J 

7.) Wallis (1695): John Wallis, an English mathematician, in his OPERA 

Mathematica, I (1695), introduced the term, "Continued Fractions" for 

the fir s t time. [ 9, p.25 5J 

8.) Euler (1707-1783): The theory also attracted the attention of 

mathematical giants such as Euler who also bowed down and became a 

contributor. 

The foundations of the theory of continued fractions were stated 

by Euler in his INTRODUCTIO (Chapter 18). There he showed how to go 

from a series to a continued fraction representation of the series, and 

conversely. Some of Euler's interesting results are 

(1)	 e = 2 + .
 
1 --__ o


1 + - 1 

2 + 1 

+"4 + ... 
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(ii)	 Every rational number can be expressed as a finite continued 

fraction. l-9 ,p.459-460 J 

9.)	 Johann Heinrich Lambert (1728-1777): 

Lambert proved that if x is rational but not zero, then neither 

eX nor tan x can be a ra tiona 1 number. Lambert's proofs res t on the 

expression for e as a continued fraction, given by L. Euler. [ '3,p.246.J1 

10.) Lagrange (1736 - 1813): Lagrange used continued fractions to find 

approximations to the irrational roots of equations and he also got approx­

imate solutions of differential equations in the form of continued frac­

tions. In a 1768 paper, Lagrange proved the converse of a theorem that 

Euler had proved in his 1744 paper. The converse states that a real root 

of a quadratic equation may be written as a periodic continued fraction. 

[9, p. 460 ] 

It is to be noticed that continued fractions can be converted into 

divergent or convergent series and conversely. It is very important 

to listen to Morris Kline who said, liThe continued fraction is the only 

intermediary between the series and the integral; that is, given the 

series one obtains the integral through the continued fraction. II 

11.)	 Laguerre (1879): In 1879 Laguerre proved that the integral 

o<l 

tf xe ­
dty = 1+xt 

o 

could be expanded into the continued fraction 
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x x x 2x 2x 3x 3x
1+ 1+ 1+ 1+ 1+ 1+ 1+ 

12.) Stieltjes (1856-1895): Stieltjes used continued fractions as a 

tool to find a "sum " for divergent series. He studied continued fraction 

expansions of divergent series and wrote two celebrated papers during 

1894-95 on this subject. This work, which is the beginning of an Analy­

tic theory of continued fractions, considered questions of convergence 

and the connection with definite integrals and divergent series. 

[9 , p. 1114-1116 J 

Thus the simple and the great are attracted by the theory of 

continued fractions and thus make its story a longer one. 

1.4 Some important uses of continued fractions 

1.) Continued fractions may be used to obtain approximCltions to irra., 

tional numbers. For example, to approximate 1)2 one can write 

(1)r2=1+~ 

From this one finds 

y = 1 +{2 (2) 

By adding 1 to both sides of (1) and using (2) it follows that 

y = 2 + .!.. 
y (3) 

Hence again by (1) and (3) 

rf2 = 1 + 
12 +­
Y 
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and since y is given by (3) 

~2 = +
2 
1 

+
 
1


2+ ­
y 

By repeated substitution of the value of y one obtains 

{2 = 1 +
 
2 +-' ­

2+ ---,-_
 
2+ 1
 

2 + 

This continued fraction is simple because the numerators are all 1. It 

is periodic because the denominators repeat. [9,p.25sJ 

2.) Continued fractions may be used in a method of approximating the 

real roots of an equation. 

3.) Laplace proved that the solution of an equation in the finite 

differences of the first degree and the second order may be always 

obtained in the form of a continued fraction. [2,p.411,419J 

4.) Aryabhata used continued fractions to solve linear indeterminate 

equations. [8,p.254] 

5.) Periodic continued fractions may be used to attack some difficult 

number theoretical questions. [5,p.151J 
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Chapter II: The Fraction j and some Related Theorems 

2.1 A note on M 
N 

In this thesis the fraction of the form ~ always satisfies the 
N 

following conditions, unless mentioned otherwise. 

1.) Mand Nare natural numbers 

2.) M,?N 

2.2 The fraction 5 and numbers 5 and 3. Their contribution to 
3
 

Mathematics and to the theory of continued fractions.
 

It is to be noted that the fraction ~ is made up of the first two 
3 

odd primes. Also ~ = (1,1,2), has 3termsinits continued fraction 
3 

expansion. 

The denomi na tor of "5" is 3
 
3
 

The sum of the terms in the continued fraction 

of 5 is equa 1 to the number of pos i ti ve
 
1"
 

divisors of 5 plus the number of positive
 4 

divisors of 3. i.e.
 

"5"
The numerator of is 5
3 

The integers 3, 4, and 5 were special integers to the ancient Greek 

mathematicians, because these integers were involved in the construction 

of a right angled triangle. The set of integers 3, 4, and 5 can be 

called the first primitive Pythagorean Triple because they satisfy the 

following definition. 
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Defi ni tion of Primitive Pythagorean Trip] e 

222A set of integers x,y,z such that x + y = z and (x,y,z) = 

is called a Primitive PythagJrean Triple. [1,p.190J 

It is also to be noticed that the terms in the continued fraction 

of ~, namely 1,1,2 can be used in the construction of a right angled 
3 

triangle, where hypotenuse would be ~ and the sides being 1 and 1. 

It is quite obvious that ~ = 1.6666 ... is an approximation to 
3 

the 'golden proportion,' d, where d = 1.6180 ... 

t = 1.666 (Correct to 3 decimal places) 

d = 1 + ~ = 1.618 (Correct to 3 decimal places) 
2 

Because of this striking association of ~ with the golden ratio, a 
3 

brief history of golden ratio is given below for it helps the reader to 

understand its significance in mathematics. 

Brief history of golden ratio 

A great invention of the Greeks was a certain rectangle called 

the golden rectangle. The proportions of the golden rectangle have 

made it famous. Euclid (300 B.C.) suggested the problem of constructing 

the regular pentagon with compass and straight edge. This ultimately 

involves the ratio 

d = 1 +~!5 = 1.6180 
2 

d is called the golden ratio because it is significant both in mathe­

matics and in its applications. One observes that the value d is the 

2positive root of the quadratic equation x - x - 1 = O. So the char­

acteristic property of the number from which much of its usefulness 
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is derived--is the relation 

2
d = d + 1 

i .e. d = 1 + 1 
d 

The golden rectangle is then defined as a rectangle whose sides are 

in the ratio	 a = 1 
b d 

Figure 1 

b = da 

a 

golden rectangle 

The Greeks regarded the above figure as divinely inspired and held 

that among all rectangles the golden rectangle was the most pleasing to 

the eye. [ 8, p. 6J 

The following properties are worthy to be noticed, because they 

exp1ain some properties shared by numerator and denomi nator of IJ~" 

3 
with the first three nonzero decimal numbers of golden ratio. (The first 

three nonzero decimal numbers of the golden ratio are 6, 1 and 8) 

1.) The third decimal number of the golden ratio namely 8, is the sum 

of the numerator and denominator of II~II i.e. 8=5+3 
3 

2.) The sum of the first three decimal numbers of the golden ratio is 

equal to the product of the numerator and denominator of II~II. i.e. 6 + 
3 

1 + 8 = 5 . 3 = 15. It is to be noticed that 15 is the magic constant 
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which is explained in the information given before theorem 23 of 

Chapter 3. 15 is the magic constant of the 3rd order magic square 

(Figure 8), whose members include 6,1,8 and whose middle term is always 

6 + 1 + 8 
3 = 5 

(This is proved in the proof of theorem 23 of Chapter 3) 

The third chapter begins with the study of 'certain numbers' which 

when arranged in the form of a fraction yield values that become approxi­

mations to the golden proportion. (Some of them become approximations 

to i also). When these numbers are observed in the light of continued 
3 

fractions, they yield an interesting property that is associated with 

the set of natural numbers. This property is explained as the first 

theorem in third chapter. 

In this manner the tool i paves the way for the study of some 
3 

properties in the continued fractions. 

The following information is worthy to note. 

The difference between the first two odd primes namely 5 and 3 is 

2. The sum of the terms in the continued fraction of 5 is 1 + 1 + 2 = 4. 
3 

Consider the least pair of primes whose difference is equal to the sum 

of the terms in the continued fraction of ~. Such a pair is 7 and 11. 
3 

It is somewhat interesting to note that the two pairs of primes 

(3,5) and (7,11) are related with each other through the continued 

fractions. 
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Consider ~ + 11 
3 7 

~ + ]1= 35 + 33 68 
"" ­3 7 21 21 

Now 68 5 
21=3+ 2i
 

= 3 + 1
 
~-

4 + 1 
5 

So ~ + 11 = (3,4,5}
3 7 

The following facts are noted from the above information. 

1.) The number of terms in the continued fraction of (t + li) is the 

same as the number of terms in the continued fraction of j 

2. ) The first and last terms in the continued fraction of ~ + li are 

3 and 5, and the middle term is equal to the average of 3 and 5. 

3.) The importance of the terms in the continued fraction of t + 1; 
is already mentioned in the beginning of the section 2.2. They were 

well known to the ancient Greek mathematicians because of the relation 

32 + 42 = 52 . 

5 11 554. ) "3·7 = 21 = (2,1,1,1,1,1,2) 

The number of terms in the continued fraction of 5 11 is equal
"3·7 

to the sum of the numbers3 and 4 where 3 is the number of terms in the 

continued fraction of ~ and 4 being the number of terms in the continued 
3 

fraction of 11 
7 
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In this way the fraction ~_ is strangely associated with the 
3 

fraction " . Besides, the history of each fraction is equally old. 
7 

Some mathematical giants pointed out that 11 is an approx imation to 
____	 7 

II i.e. to the ratio of the semicircumference of a circle to its dia­t 

2 
meter. They claim that the designers of Pyramids had chosen this 

proportion because they viewed the semicircle as a figure unexcelled in 

beau ty . [5, p. 50 J 

It is already explained in section 1.1, how important was the 

fraction ~ to Greek mathematicians for they used it as an approximation 
3 

to 3. It is an approximation to the golden proportion also. 

It is interesting to know how these fractions of ancient history 

are related with each other through the theory of continued fractions, 

as explained above. 

2.3	 The fraction ~ and the Pascal Triangle 
3 

Pascal was a great mathematician. He introduced the following 

triangle which became famous in the world of mathematics. It is called 

the Pascal	 Triangle. 

Figure 2 

1 
1 1 

1 2 1 
1 3 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1 
1 7 21 35 35 21 7 1 
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Explanation of Figure 2 

The above figure is called Pascal ~s triangle in which each number 

is the sum of the two ill1T1ediately above a. [9,p.272] 

The numbers in the Figure 2 could also be arranged in the follow~ 

i ng way. 

Figure 3 

1	 1 1 1 1 1 , 

2 3 4 5 6 

1 3 6 10 15 21 

4 10 20 35 56 , 

5 15 35 70 126 

1	 6 21 56 126 252 

7 28 84 210 462 

The mathematician, Leibnitz, called the above numbers in Figure 3, as 

'combinatory numbers.' [4,p.32 ] 

Because each horizontal line is formed from the one above it by 

making every number in it equal to the sum of those above and to the 

left of it in the row immediately above it. For example the fourth 

number in the fourth line, namely 20, is equal to 1 + 3 + 6 + 10. 

[2, p. 284 J 

The interesting fraction ~ can also be obtained as a product of 
3 

two series of numbers given below. 
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1+1+_' + _, + _1 +--.1 1+ + • . . (A)
1	 5 15 35 70 126 210 

l+l+_l + _1 +_1_+_1_+_1_+	 (B)
1	 6 21 56 126 252 462 ... 

The	 den 0 min at 0 r s 0 f the f r act; 0 ns 0 f the s e r i es (A) and 

(8)	 are given below. 

1, 5, 15, 35, 70, 126, 210, ... (c) 

1, 6, 21, 56, 126, 252, 462, (D) 

These numbers in (C) and (D) are the fifth and sixth horizontal 

rows of Figure 3. 

Claim 1: 

~_(1+1+_1+_1+_1+ ~(1+ 1+_1 +_1 + )
3 -	 1 5 15 35 70 . . . 1 6 21 56 ... 

Proof of the Claim 

Part 1: To show that 1 + 1 +_1 + _1 + .1-+ ... = ~. Consider the 
1 5 15 35 70 3 

denominators of the above fractions. Tiley are 

5 15 35 70 126 

The successive orders of differences are 

4 10 20 35 56 

6 10 15 21 

4 5 6 

1 

Clearly terms in the fourth order of difference are equal. So according 
th 

to the theorem namely, "if the terms in the p order of differences 
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are equal, the nth term of the series is a rational integral function 

of n of p dimensions. 1I [7,p.327] the nth term of the series 

1,5,15,35,70,126, ... 

can be assumed as 

U = A + Bn + Cn2 + On3 + En4 
n 

Then 

u = 1 = A + B + C + 0 + E 
1 

U2 = 5 = A + 2B + 4C + 80 + 16E 

U3 = 15 = A + 38 + 9C + 270 + 81E 

U = 35 = A + 48 + 16C + 640 + 256E4 

U5 = 70 = A + 5B + 25C + 1250 + 625E 

When the above equations are solved the following values are obtained. 

1 11 1 1 = ­A = 0, 8 = 4 ' C = 24' 0= 4 ' E 24 
2 3 411U =O+!!.+_n +.!l-+ .!!...-. 

n 4 24 4 24 

= n4 + 6n3 + 11 n2 + 6n 
24 

50 the nth term, Tn' of the series l + 1 +_1 + _1 + _1 + 
1 5 15 35 70 

is given by 

Tn = 24 
f)4 + 6n3 + 11n2 + 6n 

= 4! 
n(n + l)(n + 2)(n + 3) 

In order to find the sum of n terms, 5 , of the series under considera­
R 

tion, the following rule could be followed. [7,p.316] 
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The rule 

Write down the nth term, strike off a factor from the beginning, 

divide by the number of factors so diminished and by the common difference, 

change the sign and add a constant. 

5 :: C _ 1 . 24 _50 n ') . ""f .... ..L ",. .... ..L ?\I .... ..L ')) 

51 :: 1 :: C 1 • 24 
3'2'3·4 

11 :: C 
3 

C :: 1 + l:: 4 
3 3" 

5 :: 4 _ 1 . 24 
n 3 -3-'-:-(-n-+-1:-C)(:-n-+-2""--)-=-(r-I-+-3) 

If the symboloO stands for infinity then 

8~ ~ ~~ U-(n + 1) (n + 2)(n + ~ 
_4 ­- - - 8 . lim L 1 J 

3 n~o? (n+l)(n+2)(n+3) 

:: 4 
- 8.03
 

:: 4
 
3
 

50 1 + 1 +_1 + _1 + J +_1_ + _,_ + :: 1 
1 5 15 35 70 126 210 3 

Part 2 : 

Following the above procedure exactly it could be shown that 

1 + 1 + _1 + _1 +_1_ + _1_ + _1_+ ... :: .§.. 
1 6 21 56 '26 252 462 4 
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Hence 

(t +~- + 115 + is+ ··)(t+k+ 2\ + i6 + ... J 
5 5= ~ - = ­

3 4 3 

50 the claim is proved. 

Claim 2: j can also be obtained due to the division of a series by 

another series where the two series are related with the Pascal Triangle. 

Proof of the claim: Form a finite arithmetic series with the first term 

and the common difference being 5. Form another finite arithmetic series 

with the first term and the common difference being equal to 3. Let 51 

and 52 represent the sums of those series. 

It is interesting to note that 

~ = i 
52 3 

51 = 5 + 10 + 15 + 20 + 35 + ... + 5n 

52 = 3 + 6 + 9 + 12 + 15 + ... + 3n 

5 n(n + 1)
 
51 = 2 5
 

= 52 3 n(n + 1) 3
 
2
 

note: 51 = 5(1 + 2 + 3 + 4 + 5 + .,. + n} 

52 = 3(1 + 2 + 3 + 4 + 5 + .•• + n) 

The numbers 1, 2, 3, 4, 5, 6, ..• ,n are the first n terms of the second 

oblique column of numbers in Pascal Triangle. 



24 

2.4 The fraction % and some related theorems 

The	 difference between the numerator and the denomi na tor of 115" 1s 
3 

2 and the number of terms in the continued fraction of is 3 for 5 =5 
3 3 

(1 ~l ~2). This helps to formulate the following theorem. 

Theorem 1 : Consider the fraction ~ where N is an odd number and the 

difference between M and N is 2. Prove that the number of terms in 

the continued fraction of ~ is 3. 

Proof: Under the given conditions N is of the form 2n + 1 where n 

is a natural number. Consequently M = (2n + 1) + 2 

Now	 M _ (2n + 1) + 2 
N - 2n + 1 

2 
= 1 + 2n + 

= 1 + 2n~ 

2 

1 
= 1 + 1n +­

2 

MN = (1 ~n~2) 

The number of terms in the continued fraction of ~ is 3.
N 

It is to be	 noticed that the above theorem still holds~ even if 

Mis 2 more	 than a multiple of N. 
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Information for	 Theorem 2 

"4"Consider 3 where 4 is the sum of the terms in the continued 

fraction of ~ . 4 is 1 more than 3 and ! has two terms in its con­
3 3 

tinued fraction expansion. This helps to formulate the following theorem. 

Theorem 2: Consider !i where M is 1 more than a multiple of N. Prove 
N 

that the number	 of terms in the continued fraction of !i is the same as 
N 

the number of terms in the continued fraction of Ml where N = 2 and
1Nl 

M1 being an odd number. 

Proof: Under the given conditions 

. N + 1~ = k	 where k is a natural number 
N N 

= k + 1
N 

M MN= (k,N) • Nhas 2 terms 

in its continued fraction expansion. 

Now !:4- = 2n + 1	 where n is a na tura 1 number 
N.; 2 

1 

M	 Ml1"Nl= (n,2). N has 2 terms
 
1
 

in its continued fraction expansion. Hence the theorem is proved. 

Information for Theorem 3 

The difference between 5 and 3 is 2. Now consider all the fractions 

of the similar	 type. 
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Table 1 

Fraction number of terms in the continued fraction 
(F) (n) 

5 
3 

3 

7 
- 3 
5 

9 
37 

11 3 
9 

. . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . 

Theorem 3: Consider all fractions ~,giVen in column 1 of Table 1. 

The difference between M and N is 2. In Theorem 1, it is obtained 

that ~ = (1,n,2). Collect all the middle terms in the continued frac-
N 

tion of	 ~ . Prove that the collection is the set of natural numbers. 
~ 

Proof: From the given information one has 

M = (2n + 1) + 2 = 1 + I = (1,n,2)
N (2n + 1) 1 

f, 2 

= (2n + 2) + 2Let f(n) = (1,n,2)
(2n + 1) 

By giving values to n, one obta~ns the following table. 
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Table 2 

n f(n) (1,n,2) 

1 f(l ) (1,1,2) 

2 f(2) (1,2,2) 

3 f(3) (1.3,2) 

4 f(4) (1,4,2) 

.. . . . . . . . .. . . .. 

.. . . . . . ~ . . . . . 

This is a 1-1 correspondence between the natural numbers and the fractions 

of the desired form. 

A small result: It is obtained in Theorem 1 that ~ = (1,n,2). Given 
N 

the fraction ~, can one give a formula that gives the middle term,
 

namely n ~
 
Answer: Yes. There are three formulas
 

(l) Middle term = t [ numerator ~ denominator]_ 

(2)	 Middle term = numerator - 3 
2 

(3 )	 Middle term = denominator ­
2 

Theorem 4: Consider any fraction of column 1 of Table 1. Let that frac­

tion be represented by M2 . Prove that the number of terms in the 
N2 

continued fraction of M2 ± kN 2 is 3. (k is a natural number). 
N2 
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Proof; Let M2 and N2 represent the numerator and denominator of any 

fraction of column 1 of Table 1. The denominator N2 is of the form 2n + 1, 

where n is a natural number. Also M = N 22 2
+ 

Now M2 ± kN 2 (N 2 + 2) ± kN 2=
 
N2 N2
 

N2 (1 ± k) + 2 
= N2 

= (1 ± k) + __2
 
N2
 

1
 
= (l ± k) + N2
 

2
 

= (l ± k) + 2n +
1 

1
 Since N2 = 2n + 1
2 

= (1 ± k) + _1
 
n + l
 

2 

M2 
+- kN 2
 = ((1 ± k),n,2)

N2 

The number of terms in the continued fraction of M2 ± kN2 is 3. 
N2 

Theorem 5: In Theorem 4, it is obtained that M2	 ± kN2 = (1 ± k,n,2) 
N2 

Collect all the middle terms, namely n. Prove that the collection is the
 

set of natural numbers.
 

Proof: This proof is similar to the proof of Theorem 3.
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Theorem 6: Consider any fraction of column 1 of Table 1. Let that frac­

tion be represented by M2 Show that the number of terms in the 
N2 

continued fraction expansion of M2 . N2 is 3. 
M2 + N2 

Proof: Let M2 and N2 represent the numerator and denominator of any 

fraction of column 1 of Table 1. It is to be noticed that N2and M2 are 

of the following form. 

N2 = 2n + 1 where n is a natural number
 

M2 =(2 n+ l) + 2
 

M2 . N2 = ((2n + 1) + 2) . (2n + 1)
 
M2 + N2 ((2n + 1) + 2) + (2n + 1)
 

= (2n + 1)2 + 2(2n + 1)
 
4(n + 1)
 

= 4n2 + an + 3 = 4n(n + 1) +4n + 3
 
4(n +1) 4(n + 1)
 

= n + 4n + 3
 
4n + 4
 

= n + 1
 
4n + 4
 
4n + 3
 

= n + 
, 

1
 
1+ 4i1 + 3
 

M • N
2 2
 

M + N = (n,l ,(4n + 3))

2 2 

The number of terms in the continued fraction expansion of 

M • N 
2 2 is 3. 

M2 + N2 
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Theorem 7; In Theorem 6 it is proved that ~12 . N2 = (n 1 (4n + 3)) 
M2 + N2 -" 

Collect all the first terms in the continued fraction of M2 . N2 
M2 + N2

Prove that the collection is the set of natural numbers. 

Proof: The proof is very simi 1ar to the proof of Theorem 3. 

Theorem 8: In Theorem 6 it is proved that M2 . N2 = (n,l ,(4n +3)). 
M2 + N

2 

Collect all the third terms in the continued fraction of M2 . N2 
M2 + N2 

Then the following set 51 is obtained. 

51 = {4n + 3 I n is a natural nurnber~ 

51 = ~7,1l ,15,19,23, ... t 
Let 51 be represented by the set {al'a2,a3, ... j where a1 = 7, 

a = 11, a3 = 5, ... , and so on.
2 

Prove the following 

1.) The number of terms in the continued fraction of ai + 1 is equal 
ai 

to the difference - ai .a i +1 

2.) The collection of all second terms in the continued fraction of 

ai	 + 1 is the set of natural numbers. 
a·, 

1.) Proof: It is to be noticed that every element in the set 51 is an 

odd number and the difference between two successive elements of 51 is 4. 

50 if ai is of the form 2n + 1, then a. 1 is (2n + 1) + 4 ,+ 
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ai+l (7 + (n	 - 1)4) + 4 = 7 + (n - 1)4ai 

(4n + 3) + 4 4=	 = 1 + 4n	 + 3 4n + 3 

1= 1 + 
4n	 + 3
 

4
 

1= 1 + 
3n + 4 

= 1 + -
n + 1
 

1
1+­3
 

ai+l
 
= (l,n,l,3)a. 

1 

The number of terms in the continued fraction of ai+1 is equa1 
a. 

to 4. Since ai+1 - ai = 4 , the theorem is proved. 
1 

2.) Proof: The	 proof is very similar to the proof of Theorem 3. 

Information for Theorem 9 

In the fraction ~ , 3 does not divide 5 but 3 divides 5 + 1. This 
3 

helps to formulate the following theorem. 

Theorem 9: Let	 !i be a fraction satisfying the following conditions. 
N 

1.) N~2 

2.) M>N and	 N divides M+ 1 

Then the number of terms in the continued fraction of ~ is 3. 

Proof: Under the given conditions it is obvious that M is (N - 1) 
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more than a multiple of N. 

So 
M _N ­ N . n + N - 1 

N n is a natural number such that 

M= N . n + N - 1 

N - 1
=n+-N­

1 
= n + N 

N - 1 

1= n + N - 1 + 1 
N - 1 

= n + _ 1 
1 + _1 

N - 1 

MN= (n,l,N - 1)
 

The number of terms in the continued fraction of ~ is 3.
 

As it is proved before, it is easy to verify that, the collection
 

of all the first terms in the continued fraction of ~ is the set of 
N 

natural numbers. In the same way if we collect all the third terms in 

the continued fraction of ~ and include 1 in that collection that set 
N 

would also turn out to be the set of natural numbers. 

Ihformation for Theorem 10 

Consider the squares listed below 

o 1 4 9 16 15
 

First order of difference are 

1 3 5 7 9 

Note: It is to be noted that the numbers 3 and 5 are occurring in the 
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first order of difference.
 

Consider the sum of numbers in the first order of difference
 

i.e. 1 + 3 + 5 + 7 + 9 = 25 - 0 = 25 

3 + 5 + 7 + 9 = 25 - 1 = 24 

Also the number of terms in the continued fraction expansion of ~~ is 

equal to the common difference of the series of numbers that are given as 

the 'first order of difference ' above. [4, p. 31 J 

This helps to formulate the following theorem. 

Theorem 10: Consider the series 

1,3.5,7,9,11,13, 

Let S = 1 + 3 + 5 + 7 + 9 + 11 + 13 + . . . 
n 

Prove that the number of terms in the continued fraction expansion 

Sn
of is equal to the common difference of the given arithmetic Sn ­

progression. 

Proof ~ Sn =~[2a + (n - l)dJ (formula). 2 1 

S = ~ [2 . 1 + (n - 1)2J
n 2 

= ~2 + 2n - 2J = n2
2
 

2
Sn = nNow 
S - 1 ni----=-l n 

Sn is 1 more than Sn - 1. So by Theorem 2 of Section 2.2.
 

Sn
 
has two terms in its continued fraction. Since the common

Sn - 1
 

difference of the given arithmetic progression is 2, the theorem is proved.
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Introduction to Theorem 11 : 

It is obvious that ~ + 5 F ~ . 5 In other words the 
2 2 

numbers t and 5 are not qualified to be called escalator numbers. 

(Escalator numbers are studied in the fourth chapter), Yet the numbers 

(% + 5) and ( ~ . 5) share a common property in the light of continued 

fractions. 

~ + ~ = 5 + 10 =li = (7, .2)
2 1 2 2
 

5 5 = 25 = (12,2)

2 2 

The number of terms in the continued fraction expansion of ( ~ + 5)
2 

and (~. 5) is same. This helps to formulate the following theorem. 

Theorem 11: Consider ~ where M is 1 more than a multiple of N. Show
N 

that for m being the natural number, the number of terms in the con­

tinued fraction expansion of 

mN + 1 + (mN + 1) and mN + 1 . (mN + 1)
N N 

is the same. 

Proof.~ mN + 1 + (mN + 1) = mN + 1 + mN2 + N 
N N 

= N(m + mN + 1) + 1 
N 

= ((m + mN + l),N) 

(mN ~. 
N 

(mN +1) = m2N2 + 2rnN + 1 
N 

= 

= 

N(m 2N + 2m,) + 1 
N 

(m 4J + 2m) + ~_ 
N 
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= ((m2N + 2m),N)
 

The number of terms in the contirued fraction expansion of
 

(mN + 1 + mN + 1 \ and (mN + N (mN + 1) ) 
N I N 

is 2. Hence the theorem is proved. 

Theorem 12: Let a = b~ + r where r L b ~ a and r,b and a are nat­

ural numbers, greater than 1. If the number of terms in the continued 

fraction of ~ is k then the number of terms in the continued fraction 
b 

of ~ r is k - 1 . 

Proof: Given a = bq + r 

a_ = q + rb -b 

= q +_1__
 
b
 
r
 

Since the natural number b is greater than r, let ~ have m 
r 

in its continued fraction expansion. Since the number of terms in 

-the continued fraction expansion of ! is given to be k,
b 

1 + m = k 

i.e. m = k - 1 

~ has (k - 1) terms in its continued fraction expansion.
r 

!,Theorem 13: Consider the following series ~,~, Q, l§., ... . Prove that 
1 3 7 15 

nth tenT! has two terms in its continued fraction expansion. 

For n ~ 1, the numerator of each fraction of the given seri es of 

is 1 more than the denominator. Hence by Theorem 2 of this 
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section nth term has two terms in its continued fraction expansion. 

Theorem 14: Consider the series given by 

2 3 2 3 2 3-5 = - +- + - + - + + + 
3 32 33 34 35 36 

Prove that 5 has two terms in its continued fraction expansion. 

3 3 3Proof: 5=(£ £+£+ ) + ( - + - + - + ... )3 + 33 35 ... 32 34 36 

2 2 
3 .- + 32= 

1 - (1 ) l-(-k)'J2 

2 9.2- + ~= 
3 8 9 8 

= 1 + 1 = 6 + 3 = ~ 
488 8 

The numerator of the fraction given by 5 is 1 more than its denominator. 

50 by Theorem 2 of this section 5 has two terms in its continued 

fraction expansion. 

n + 2 whenTheorem 15: Prove that j is the onl y fracti on of the form n 

expanded in the form of a continued fraction has terms in its expansion 

whose sum is equal to the average of n + 2 and n. 

Proof: Assume that there exists a pair of numbers (n + 2,n), other than 

the pair (5,3) such that i1_~ 
n 

has terms in its continued fraction 

expansion whose sum is equal to 

n + n + 2 = (n + 1)2 
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1n + 2	 = 1 + ~Now	 = 1 +­
n	 nn ­

2 

- 1 + 1 
- (n-l)+ .1
 

2 2
 

= (1	 n - 1 2), 2	 ' 

= 2	 + n - 1 + 4 = Now n + 1 = 1 + n - 1 + 2	 !l..:!:...2 
2	 22 

i.e.	 n + 5 = 2n + 2
 

2n - n = 5 - 2
 

i.e. n = 3 so n + 2 = 3 + 2 = 5 

This is a contradiction, so the assumption is wrong. So (5,3) is 

the only such pair. 
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Chapter III: 25 Interesting Theorems 

Introduction to Theorem 1: The interesting fraction ~ 
3 

can be expressed 

in the following manner. 

5 2- = 1 +­
3 3 

The symbols that are involved in the right hand side of the equation are 

shown below. 

1 
2 First three natural numbers 
3 

+ The add i ti on operation 

When the binary operation, + , takes place among the numbers 1, 2 and 3 

the result could also be expressed, by means of the same numbers and 

another binary operation, namely multiplication. 

It is obvious that 

1 + 2 + 3 = 1 x 2 x 3 = 6 

6 is called a perfect number because the number 6 is equal to the sum 

of its proper factors. 

The symbols 1,2,3 and + could be arranged in the following way. 

Figure 4 

+ 

1 

2 3 
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Note that the numbers 1,2 and 3 are arranged above in the form of a 

triangle. CallI, 2 as side 1 and callI, 3 as side 2. Let the binary 

operation, addition, + , take place on the numbers of the side 1 and 

on the numbers of the side 2. These resulting numbers, namely 1 + 2 = 3 

and 1 + 3 = 4 are arranged on the corresponding sides as she,m below. 

Figure 5 

+ 

1 
J'.

\. ',,-./Q'.

:.oV 2 3 sy ~ 
3 4 

Let the binary operation take place between this resulting number and 

the one above it. These new resulting numbers are arranged in the same 

way as 3 and 4 are arranged. When this process is continued one obtains 

the following triangle. 

Figure 6 

+ 

1
 

2 3
 

3 4
 

Y 5 7 ~.cz,1 
~ 

'?~ 8 1'1 \~ 

13 '18 
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Let x represent the difference between any two numbers of the above 

figure, which are placed horizontally. Let z represent the sum of 

any two numbers of the above figure which are placed horizontally. Let 

x =y. One could arrange the numbers y and z along the sides 1 

and 2 of Figure 6 as shown below. 

Figure 7 

+ 

1
 

2 1 5 3
 

3 1 7 4

.~~/ ,~s)7 5 2 12 7
 

8 3 19 11
 

13 5 31 18
 

21 8 50 29
 . . .
. . . ... . . .
 
The newly obtained series of numbers, namely 1, 1,2,3,5,8, ... is 

well known in the world of mathematics as Fibonacci numbers. It is quite 

obvious that the set of Fibonacci numbers ;s the set of numbers on the 

side 1 of Figure 7. The other seri es of numbers, 1, 5, 7, 12, 19, ... , 

and 2, 3, 4, 7, 11, ... , share a common property with respect to the set 

of natural numbers. How they share it, is explained by means of con­

tinued fractions in the subsequent theorems. 

Consider the set of numbers on the side 1 of Figure 7. In other 
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consider the set of Fibonacci numbers. The following theorem 

be formulated. 

Let s = ul' u2, u3' u4""
 

where = 1
u1
 

u2 = 2 and
 

un = un- 1 for n) 2
 

et ui+1 = (cl,c2,c3"") where (Q,c2,c3"") is the continued frac­
ui ui+l 

ion expansion of ~ (Note: Some Ci may be zero). Note the number 

f terms in the continued fraction expansion of ui +1 and call it n. 
u·1 

rove that the set of all n1s, say M is the set of all natural numbers. 

S ={ 1, 2, 3, 5, 8, 13, 21, 34, ... j 
The following table is formed with the help of the elements of S 

Table 3 

Continued Fraction 
Expans ion 

Number of terms in the 
Continued Fraction Expansion 

(1 ,2 

(1,1,1,2 

(1,1,1,1,2 

(1,1,2 

(1,1,1,1,1,2 

5 
3 

2
i I (2 

3 
2" 2 

5 

4 

3 

6 
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U 

From the table it is suggested that ~+1 has n nonzero components
n 

in its continued fraction expansion. For n = 1, one gets 

Ul+l U2 =Z = (2,0,0, ... ) (There is one nonzero term
U1 = D1 1 

in the continued fraction) 
U 

Now for n = k ~ 2, assume k+1 has k nonzero components in its con­
Uk 

tinued fraction expansion. 

k terms 
• At....,Uk+l 

= (1,1, ... Ck, 0, 0, 0, ... )
Uk
 

Uk+2 Uk+1 + Uk Uk
Then = = 1 +
 
Uk
 Uk+1 Uk+1 

1= 1 +
 
Uk+l
 

Uk 
1 + k terms Uk+2 ,•50 

Uk+1 
= (l,l,l, ... ,Ck,O,O, ... ) 

Hence by finite mathematical induction one concludes that, the set 

M which consists of the number of terms in the continued fraction expan­

sion of each Un+1 includes all the natural numbers. 
Un 

Note: It is to be noted that, a natural number in the third column of 

Table 3 represents the position of 2 in the corresponding expression of 

the second column. Also the same natural number is 1 less than the sum 

of those terms of the corresponding expression of column 2. 

Theorem 2; Consider the numbers that are on the side 2 of Figure 7.
 

The set of those numbers is 5 = 11 ,3,4,7,11, ... t. Define S
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the following way. 

S = ul' u2,u3,u4 ' ... 

ul = 1 

u2 = 3 and 

un = u _1 + u _2 for n > 2n n

Ui+l = (c1,C2'C3, ... ) where (c1'c2,c3, ... ) is the continued fraction 

U·, 

U·, 
expansion of Ui+l 

U., (Note: Some ci may be zero). Note the number of 

in the continued fraction expansion of 
U'+ l-' ­ and call it n. 

that the set of all n's, say M, is the set of all natural numbers. 

S ={ 1,3,4,7, 1l, ... J 
The following table is formed with the help of the elements of S. 

Table 4 

Number ofterrns 
Expansion 

Continued Fraction Fraction 
in the Conti nued 
Fraction expansion 

3 (3 ) 1 
1 

4 2(1 ,3 )
3" 

7 (1,1,3 ) 34
 

11
 (1,1,1,3 ) 4
7 

18 (1,1,1,1,3) 5 
11 

. . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
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The rest of the proof is very similar to the proof of Theorem 1. 

Note: It is to be noted that, a natural number in the third column of 

Table 4, represents the position of 3 in the corresponding expression 

of the second column. Also the same natural number is 2 less than the 

sum of those terms of the corresponding expression of column 2. 

Theorem 3: Consider the numbers that are on the side 2 of Figure 5. 

The set of those numbers is S = f1,5,7,12,19,31, 50, ... j. 
Define S in the following way. 

S = { ul'u2,u3,u4"" }
 

u1 = 1
 

u = 52
 

u = 7
3 

and un = u - 1 + u for n '> 3n_n 2 
ui+l

Let --u--.-- = (c1,c2'c3,···) where (c1,c2,c3"") is the conti nued 
1 

fraction expansion of ui+1 (Note: Some c. may be zero). Note 
1u'1 u'+l

the numb~r of terms in the continued fraction expansion of ~ and 
1 

call it n. Prove that the set of all n1s, say M includes all the
 

natural numbers greater than 2, and 1. In other words prove that M=
 

ll, 3,4,5, 6, ... J
 
Proof: The proof is very similar to the proof of Theorem 1.
 

Theorem 4: Consider the set S in Theorem 1. The number of terms in 

the continued fraction of U8~1 is equal to the number of divisions in 
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finding (u +1'u ) by Euclidean Algorithm. n n

Note: (u n+1 'u n) is the greatest common divisor of un+ and un'1 

Proof: 

First Part: This part consists of the proof that the number of 

terms in the continued fraction of un+l is n. 
un 

The proof is exactly the same as that of Theorem 1. 

Seco~d Part: The following proof shows that the number of divisions in 

finding (u n+1'u ) by the Euclidean Algorithm is n.n

For n = 1, one computes 

(un+l'u n) = (u1+1,ul) = (u2,u1) = (2,1) 

2 = 1 . 2 + 0 (1 division) 

For n = 2 

(u n+1'u n) = (u 2+1u2) = (u 3,u 2) = (3,2) 

3 = Z . 1 + 1 

2 = 1 . 1 + 1 (2 divisions) 

For n = k >2 Suppose that, in finding (uk+l'u k) by the Euclidean 

Algorithm, k divisions are necessary. 

u(k+l )+1 = 1 . uk+1 + uk
 

uk+1 = 1 . uk + uk-l
 

k divisions
 

u3 = Uz + u1
 
(u k+2'u k+1) requires k + 1 divisions
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By finite mathematical induction one concludes that, in finding 

(un+1,U ) by Euclidean Algorithm, n divisions are necessary.n

Hence the theorem is proved. 

Note: The following information is useful in understanding the Theorem 

5 that follows. 

A note on Theon diameters: Theon of Smyrna (C.12~ was a noteworthy 

- writer who contributed a lot to arithmetic. One of his propositions 

is listed below. 

Consider two groups of numbers arranged as follows 

n1 = I + 0 d = 1 + 0 = 11
 

n2 = 1 + 1 d2 = 2 + 1 = 3
 

n3 = 2 + 3 d3 =4+3=7
 

n4 = 5 + 7 d4 = 10 + 7 = 17
 

. . . . 

nr = nr-l + dr-1 dr = 2n r_l + dr _1 

Then d2 is of the form 2n2 + 1 . For exampl e d2 = 1 = 2nl 2 - 11 ' 

d~ = 9 = 2n~ + 1. The numbers d were called Theon diameters.r 

[17,p.5-6] 

Consider the following table. This table is associated with the 

information given above. 
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i d. n 
1 i 

1 

2 

3 

4 

5 

6 

7 

.
 

.
 

Theorem 5: 

are 1, 2, 

1 1 

3 2 

7 5 

17 12 

41 29 

99 70 

239 169 

Table 5 

d·n+
 
1 

(1 

(1 ,2 

= (cl'cZ'c3,· .. ) 

)
 

)
 

(1,2,2) 

(1,2,2,2) 

(1,2,2,2,2) 

(1,2,2,2,2,2) 

(1,2,2,2,2,2,2) 

. . . . . . . . . .·
 

. . . . . . . . .
· 

could define the following set. 

Let	 S1 = u1,u2,u3,u4"" where 

u1 = 

u2 = 2 and 

un = 2 . u -1 + u _ for n 2n n 2 

Let 
U. 

1 
fraction expansion of ui+1 (Note:-u-.- · 

1 

number of terms in the continued fraction 

Number of terms 
in column 4 

1 

2 

3 

4 

5 

6 

7 

. . 

. 

Consider the numbers in the third column of Table 5. 

5, 12, 29, 70, 169, ... From this series of numbers 

They 

one 

ui +1 = (Q,c2'C3, .. ·) where (c1,c2,c3' ... ) is the continued 

Some ci may be zero). Note the 

ui+1expansion of and call u. 
1 
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it n. Prove that the set of all n's, say M, is the set of all natural
 

numbers.
 

Proof: One obtains the set SI as shown below.
 

S1 = ll, 2, 5, 12, 29, 70, 169,···1
 

Consider the following table.
 

Table 6 

Fraction 

2 
T 

5 
"2 

12 
5 

29 
12 

70 
29 

. . 

Continued Fraction 
Expansion 

(2) 

(2,2)
 

(2,2,2)
 

(2,2,2,2)
 

(2,2,2,2,2)
 

. . . .
 

. . . . . 

From the above Table 6 one notices that 

in its continued fraction expansion. 

For n = 1, one gets 

Number of Terms 
in the Conti nued 
Fraction Expansion 

1 

2 

3 

4 

5 

. .
 

. .
 

un+l has n nonzero componentsun­

ul+l _ u2 
U1 - Uf 

= 2
 _ (- - 2,0,0,0, ... )
1 

(There is one nonzero term in the 
continued fraction expansion) 
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For n = k ~ 2, assume 

fraction expansion. 

U~-l 
k 

has k nonzero components in its continued 

i .e. 
uk+l 

Uk = 
k terms 

(2,2,2, ... ,2,0,0, ... ) 

uk+2 = 2 . uk+l + uk 
Then uk+l uk+l 

= 2 + uk
 
uk + 1
 

= 2 +
 

uk+l
 
-u-;-­

k 
+ k terms 

uk+2
So = (2,2,2, ... ,2,0,0, ... )

uk+l 

Hence by finite mathematical induction one concludes that the set M, which 

consists of the number of terms in the continued fraction expansion of 

un+leach includes all the natural numbers.-un 
An interesting result: If one tries to form a set, whose elements are 

the sum of the terms in each expression of column 4 of Table 5, the 

followirl9 set, say A, is obtained. 

A = { 1, 1+2, 1+2+2, 1+2+2+2, 1+2+2+2+2, ... } 

i.e. A= t 1,3,5,7,9, ... J 
If one tries to form a set, whose elements are the sum of the terms 

in each expression of column 2 of Table 6, the following set, say B, is 

obtained. 

B =i 2,2+2,2+2+2,2+2+2+2, ... J 
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i.e.	 B ={2, 4,6,8, lo, ... f 
It is obvious that A union B is the set of natural numbers. 

d· 
Theorem 6: Consider Theon diameters. Let nt = (c1,c2,c3"") where 

d . 
(c1,c2,c3"") is the continued fraction expansion of n~ . (Note: 

Some ci may be zero). Note the number of terms in the continued fraction 

. f d.expans10n 0 nt and call it n. Prove that the set of all nls is the 

set of	 natural numbers. 

Proof: Consider the Table 5. From the table one notices that di has 
--	 n7 

1 

i nonzero components in its continued fraction expansion. 

One small result namely di = 1 + ni-1 needs to be established. 
~ ~ 1 

It is given that di = 2n. 1 + d. 1 and n = n. 1 + d. 11- 1- i 1- 1­

.. d. - n. = n. 1 i.e. d. = n· + n· 1
1 1 1- 1 1 1­
di
So = 1 + ni-l 
~ n'1 

or dk = 1 + nk-1 
Tlk nk 

1= 1 +	 (k ~ 1)
nk
 

nk··1
 ~ (A) 

From Table 5 

For' k = 1, 

d1	 1-=	 = (1,0,0, ... ) (There is one nonzero termlTl 1 
in the continued fraction 
expansion) . 
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For k :::	 2, 

nk n2:::	 n2 - 2 ::: 2::: ----ny	 - Tnk-1 "2-1 
So for k ::: 2, 

~ has 1 term in its continued fraction expansion. Using (A)nk-1 

one finds that dk has 2 terms in its continued fraction expansion. 
~ 

For k :::	 2 

nk ::: n3 ::: n3::: ~:::2+ 1=(2,2)---. 2ll"k="1	 n3-1 n2 2 

nk 
has 2 terms in its continued fraction expansion. Conse­

~1 

quently, because of (A), 
dk
nk has 3 terms in its continued fraction 

expansion. 

The above result may be summed up in the following table. 

Table 7 

k nk dk 
rlknk-1 , , 

2 1 2 

3 2 3 

Now assume for k ::: n~ 4 nm has (rn-1) terms in its continued 
---nm=-1 

fraction expansion. Because of (A) one obtains 

dm	 ....._ 1 +-,­TC - nm	 _m
 
nm-1
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So dm has (m - 1)+ 1 = m terms in its continued fraction 
nm

expansion. 

Hence by finite mathematical induction, one concludes that the set 

which consists the number of terms in the continued fraction expansion 

of each di includes all the natural numbers. 
ffi""1 

- Theorem 7 Consider the numbers in the second column of the Table 5. 

They can be written in the form of a series as 

1, 3, 7, 17, 41, 99, 239, ... 

The following pattern is noticed. 

Table 8 

Fraction Continued Fraction 
Expansion 

3 
1 

7 
3 

17 
7 

(3 ) 

(2,3 ) 

(2,2,3) 

41 
17 

99 
41 

. 

. 

. 

. 

. 

. 

. 

. 

(2,2,2,3) 

(2,2,2,2,3) 

. . . . 

. . 

. 

. 

Number of Terms in the 
Continued Fraction 
Expansion 

1 

2 

3 

4 

5 

. . . .
 

. .
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The set S which consists the numbers in the above series could be 

defined in the following way. 

S = where1u1 'u 2 ,u3'u4 '···.]
 

u = 1

1
 

u = 3
2
 

un = 2u 1 + U 2 for n > 2
 n- n-

Let ui+l = (cl,c2,c3' ... ) where (cl,c2,c2' ... ) is the continued --u-:;­
1 

fraction expansion of ui+l . (Note: Some c· may be zero) . Note the
---u:j 1 

ui+l
number of terms in the continued fraction expansion of and ca 11ui 

it n. Prove that the set of all n1s, say M is the set of all natural 

numbers. 

Proof: The proof is very similar to the proof of Theorem 3 of this 

chapter. 

An interesting result: Compute the sums of the terms of each expression 

in the Table 8. The following set, say D is obtained. 

o -= { 3, 2+3, 2+2+3, 2+2+2+3, ... J 
= {3, 5, 7,9,11, 13, ... ~ 

It is to be noticed that the first two elements of Dare 3 and 5, the 

numbers with which this thesis work started. 

Theorem 8: Consider the series 1, 2, 4, 8, 16, 32, 64, ... The sum 

gn-lof the n terms of the series could be given by the formula Sn = a 
q-l 

where a = 1 and q = 2. Prove that the number of terms in the continued 
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fraction of 
S
~+l (for n> 1) is equal to the common ratio of the above 

n 
geometric series. 

Proof; The common ratio of the geometric series t 1, 2t 4, 8 t 16 t 32 t o •• 

is 2. The series SpS2tS3tS4' ... is given by 1t 3, 7t 15 t 31 t 63 t ... 

for n) It it needs to be proved that S~+l has 2 terms in its continued 
n 

fraction expansion. 

One could find the nth term of the series 3, 7 t 15, 31 t 63 t ... by 

the following method. 

The series is 

3 7 15 31 63 

The first order of difference is 

4 8 16 32 

It is to be noticed that the series of numbers in the first order 

of difference are in geometric progression. In order to find the nth 

term of the given series one could follow the following rule. [7 tP .330 J 

The rul e: "If the first few terms of a series are given, and if the pth 

order of differences of these terms form a geometrical progression whose 

common ratio is r t then it could be assumed that the general term of the 

given series is a r n- 1 + f(n) where f(n) is a rational integral function 

of n of p - 1 dimentions." 

So assume that the nth term is 

u = a . 2n-1 + b where the constants a and b are to be determined. 
n 

ul = 3 = a + b 
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U ::
2 

Now 

7 ~ a . 

a + b ::: 

2 t 

3 

b 

2a + b ::: 7 

a ::: 4 and b :: -

u ::: 4 n-lHence • 2n 

For n > 1 ~ put Sn+l ::: 

1 

1-

un and Sn = un-l 

So Sn+l 
Sn -

un 
un-l 

:: 
4 
4 

2n­ 1 _ 1 :: 
2n-1-1 _ 1 

2n­ 1 +2 
2n­ I - 1 +2 

1 
- 1 

:: 2n+1 - 1 
2n - 1 

Sn+l 
Sn 

:: 2 + 2 
n 1 

So Sn+l--- (2~2n - 1)
Sn 

For n > 1 ~ Sn+l has 2 terms in its conti nued fraction expans i on. 
Sn 

Theorem 9: Consider ~ where Mis square of an integer and N ::: 3. If 

Mis not a multiple of 3~ then prove that the number of terms in the 

continued fraction of M is the same as the number of terms in the ~ 

3 
continued fraction of M where Mis not a multiple of 4. 

4 

Proof: 

Part 1 Let a be any integer. Use the division algorithm with 

b :: 3. There are three possible cases namely a:: 3q~ a :: 3q + 1 and 

a :: 3q + 2. Corresponding to these cases there are three possible 

2values of a . 
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(3q)2 = 9q2 = 3 . (3q2)
 

(3q + 1)2 = 9q2 + 6q + 1 = 3( 3q2 + 2q) + 1
 

(3q + 2)2 = 9q2 + 12q + 4 = 3 . (3q2 + 4q + 1) + 1
 

2
In the first case a = M is a multiple of 3. In the second and 

third cases a2 = M is one more than a multiple of 3. Now if a2 = Mis 

not a multiple of 3, then M is of the form 3Q + 1 

~ = 3Q + 1 where Q is an integer.
3 3
 

= Q + 1
 
3
 

M

So 3" = (Q,3)
 

So if M is not a multiple of 3 then the number of terms in the con­


tinued fraction of ~ is 2.
 

Part 2: To prove that the number of terms in the continued fraction
 

expansion of ~ is also 2, provided M is not a multiple of 4.
 

Let a be any integer. Use the division algorithm with b = 4. 

There are 4 possible cases; a = 4q, a = 4q + 1, a = 4q + 2 and a = 4q + 3. 

Corresponding to these cases are 4 possible values of a2. 

(4q)2 = 16q2 = (4q2)4
 

(4q + 1)2 = l6q2 + 8q + 1 = (4q2 + 2q)4 + 1
 

(4q + 2)2 = 16q2 + 16q + 4 = (4q2 + 4q + 1)4
 

(4q + 3)2 = 16q2 + 24q + 9 = (4q2 + 6q + 2)4 + 1
 

2In the first and third cases a = M is a multiple of 4. In the 

2second and fourth cases, a = M is 1 more than a multiple of 4. Now if 
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2 a = Mis not a multiple of 4 then Mis of the form 4Q + 1 where Q is an 

integer. 

Now ~ = 4Q + 1 = Q + 1 
444 

So ~ = (Q,4). ~ has 2 terms in its continued fraction expansion. 

Hence the theorem is proved. 

3 
Theorem 10: Consider r- where n is an integer greater than 7. If 

n3 is not a multiple of 7 then the number of terms in the continued 

fraction of n~ is either 2 or 3. 

Proof· If n is greater than 7, then the division algorithm could be--' 

used with b = 7, n has one of the following forms. 

n = 7x + 1 

n = 7x + 2 

n = 7x + 3 

n = 7x + 4 

n = 7x + 5 

n = 7x + 6 

Case 1: Let n = 7x + 1 

n3 = (7x + 1)3 = 343x3 + 1 + 3 . 7x . 1(7x + 1)
 

= 343x3 + 147x2 + 21x + 1
 

= 7(49x3 + 21x2 + 3x) + 1
 

Case 2: Let n = 7x + 2 

333n = (7x + 2) = 343x + 8 + 42x(7x + 2) 
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= 343x3 + 7 • 42x2 + 2 • 42x + 8
 

= 7(49x3 + 42x 2 +12x + I} + 1
 

Case 3: Let n = 7x + 3 

3 n	 = (7x +3}3 = (7x)3 + 27 + 3 . 7x • 3(7x +3)
 

= (7x)3 + 7 . 9x(7x+3) + 27 + 1 - 1
 

= 7(72x3 + 9x(7x + 3) + 4) - 1
 

.	 3 2 )=7(49x + 63x	 + 27x + 4 - 1 

Case 4: Let n = 7x + 4 

3 n = (7x + 4)3 = (7x)3 + (4)3 + 3 . 7x . 4(7x + 4)
 

= 7(7 2x3 + 9 + 12x (7x +4») + 1
 

= 7l49x3 + 84x2 + 48x + 9) + 1
 

Case 5: Let n = 7x + 5 

n3 = (7x + 5)3 (7x)3 + (5)3 + 3 . 7x . 5(7x + 5)F 

3= 7(72x + 17 + 15x (7x + 5)) + 6 + 1 - 1
 

= 7(49x3 + 105x2 + 75x + 18) - 1
 

Case 6: Let n	 = 7x + 6 

n 
3 = (7x + 6)3	 = (7x)3 + (6)3 + 3' 7x . 6(7x + 6) 

= 7(72x3 + 30 + 18x (7x + 6)) + 6 + 1 - 1 

= 7(49x3 + 126x2 + l08x + 31) - 1 

From the preceding information it is obvious that, when n is not a 

multiple of 7, n3 is of the form 7Q + 1 or 7Q - 1 where Q is an integer. 
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Case 1; Let n3 ~ 7Q + 1 

Then	 n3 ::: 7Q + 1 ;:: Q + 1
 
7 7 7
 

n3
-7 ::: (Q,7) 

3 
So ~ has 2 terms in its continued fraction expansion.

7 

Case 2: Let n3 = 7Q - 1 

Then ~ = 7Q - 1 = 7Q - 1 - 6 + 6
 
777
 

= 7(Q - 1) + 6 
7 

=(Q-1)+.2­
7 

= (Q - 1) + 1
7 
6 

- (Q - 1) + 1 
- 1 + "6 

3 
!!...- = ((Q - 1),1,6)
7 

3 
7n has 3 terms in its continued fraction. So the number of terms 

3 
in the continued fraction expansion of ~ is either 2 or 3. 

3 
Theorem 11: Consider ~ where n is an integer greater than 9. If 

n3 is	 not a multiple of 9, then the number of terms in the continued fraction 

n3 
of 91 is either 2 or 3. 

Proof: The proof is very similar to the proof of Theorem 10. 
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. n4 
Theorem 12; Conslder !5 where n is an integer greater than 5. 

4T has always 2 terms in its continued fraction expansion. 

Proof: The integer n takes one of the foll owi ng forms because of 

the division algorithm. 

5x + 1 

5x + 2 

5x + 3 

5x + 4 

If n = 5x + 1 then n4 = (5x + l}4 = 5(125x4 + lOOx3 + 30x2 + 4x) + 1 

If n = 5x + 2 then n4 = (5x + 2}4 = 5(125x4 + 200x3 + 120x2 + 32x + 3) + 1 

If n = 5x + 3 then 

n4 = (5x + 3}4 = 5(l25x4 + 300x3 + 270x2 + 54x + l6) + L 

If n = 5x + 4 then 

4 3 2 
n = (5x + 4}4 = 5(l25x4 + 400x + 480x + 64x + 51) + 1 

In all the above cases n4 is of the form 5Q + 1, where Q is an integer. 

So fl-
4 = 5Q + 1 = Q + 1
5 5 5
 

4
 n = (Q,5)
 
5
 

4So	 n has 2 terms in its continued fraction expansion. 
5 

3
 
Theorem 13: Consider ~ where N is an odd positive integer and Mbeing
 

1 more than a multiple of N. Prove that M3 has 2 terms in its continued 
N 

fraction expansion. 
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froof; Since N is an odd positive integer N is of the form 2n + 1 where 

n is a positive integer. So M= (2n + l)x + 1 where x is an integer. 

Now M3 = ((2n + l)x + 1)3
 

3
= (2n + 1)3x + 1 + 3(2n + 1)x((2n + 1)x + 1) 

= (2n + 1)[(2n + 1)2x3 + 3x((2n + 1)x + 1)J + 1 

3
So M is of the form NQ + 1 where Q is an integer.
 

So M3 =NQ + 1
 
N N
 

= Q + 1
 
N
 

M3
 
N = (Q,N) 

M3 

N has 2 terms in its continued fraction expansion. 

Theorem 14: Consider ~ where p is prime and Mis greater than p. Let 
P 

~ has n terms in its continued fraction expansion, i.e. ~ = (c1,c2,c3"" 

c ) . Prove that ap - aP + M a1so has n t erms ln" lts cont'lnued f rac t'lonn

expansion, no matter whatever the integer a may be. 

Proof: The following Fermat's theorem is used in this proof. 

Fermat's Theorem: If p is a prime number, then the difference aP ~ a is, 

for any integer a, divisible by p. [15,p.56] 

Hence there exists an integer x such that a P - a = xp. 

MP ::: (c1'c 2,c 3, .. ·c ) implies n
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t1 ;::: cI+ .!.p 
c2 + 1
 

c +

3 • 

• 
+	 1 

cn 

Now a P - a + M xp + M= x + ~ = x + c1 + 1
 
P P P c + J
2 

c +3 
•.. 
• 

+ I 
c n 

= (x + c1) + 1 
c2 + 1: 

c +
3 

•.. 
• 
+	 1 

c 
n 

.a P - a + Mi.e.	 
P 

= (x + cl'c2,c3P""'cn)
 

P
a - a + M h t .. . d f' .P as n erms ln ltS contlnue ractlon expanSlon. 

Information for Theorem 15: A modern version of one of Zeno's paradoxes 

is as follows. 

Achilles can run 1000 yards a minute while a turtle can run 100 

yards a minute. The turtle is placed 1000 yards ahead of Achilles. 

Zeno's argument states that Achilles can never overtake the turtle for 

when Achilles has advanced 1000 yards, the turtle is still 100 yards 

ahead of him. By the time Achilles has covered these 100 yards, the 

turtle is still ahead of him and so on, ad inifinitum, as the accompanying 

table shows. [10,p.293-294] 
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Table 9 

Postion Achi 11 es Tortoise 

1 0 1000 

2 1000 1100 

3 1100 1110 

4 1110 1111 

5 1111 1111 . 1 

6 1111 . 1 1111 . 11 

7 1111 . 11 1111 . 111 

etc. etc. 

Theorem 15: Consider the Table 9. Let Mand N represent the distances
 

covered by the turtle and Achilles respectively. Prove that ~ (N 'f 0)
 

has 2 tenns in its continued fraction expansion.
 

Proof! For N 'f Ot Mis 1 more than a multiple of N. So by Theorem 2
 

of Section 2.4 t ~ has 2 terms in its continued fraction expansion.
 

Theorem 16: Consider the series 

1 2 3 n-l
 
i
Lx.lO i 2:. x lO i ~ x lO L.x lO i t t ... tt 

i=O i=O i=O i =0 

where x is a natural number less than or equal to 9. Prove that for 

n 1 t the number of terms in the continued fraction of 

th f h .n term 0 t e serles 
is 2. 

(n_l)th term of the series 



Proof: nth term = -- (n-l) th term 

n-l 
~ 
; =0 
n:::2 
E:: 
;=0 

x 

x 

• 10; 

. 
. 10' 

64 

n-l 
r 

x· ; =0 
n-2 

x • L 
;=0 

. 
10' 

10; 

n-2z: 
;=0 

n- ; 
r 
;=0 

10; 

10; 

o 
10 + 

n-l
l:. 10; 
;=1 
n- 2
L 10; 
;=0 

n-l z= 10 . 
; =1-­

n- 2 
E 
i=O 

;-1 
10 

10; 

+ 1 

n2 
10.z::. 

i=1 
n- 2 
r: 
i=O 

lO i - 1 + 1 

10i 

. 1 
10'­ is lOn-I-I, i.e. 10n-2. Hence 

n-l 
~ 
i=1 

10;-1 
n-l 

Now the last term of ~ 
i=1 

n-2can be written as z:: 10; 

i =0 
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n-2 

10 .th ?= 10i + 1 
50 n term , =0= 

(n-l) th term n-2 
t= 10i 
i=O 

10 + 
n-2 . 
L 10' 
i =0 

n-2 
nth term of the series = (lOt E lO i )
(n-l)th term of the series i=O
 

th
 
n ti~ has 2 terms in its continued fraction expansion.
(n-l) term 

Theorem 17; Consider the relation 

s = 1 + r + r2 + r3 + ... + rn + 

where the common ratio r is of the form __1__ (the natural number rl
rl 

t 

is greater than 2). Prove that the continued fraction of 5 has 2 terms. 

Proof: 5 = 1 
-1~--1-

rl 

= 1
 
r 1 - 1
 

y:r 
rl 

= 
rl - 1
 

rl - 1 + 1
 = 
q - 1
 

1
= 1 +
 
rl - 1
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5 = (1,r - 1)1 

50 5 has 2 terms in its continued fraction expansion. 

Theorem 18; Consider the following equation. 

5n = 1 + 2 + 3 + 4 + 5 + ... + n 

Prove the following: 

For n> 1 (n + l)th term has 2 terms in its continued(i) , nth'
 
fraction expansion.
 

S + 1
 
(i i) For n> 2, prove that _n__ has at most 3 terms in its 

Sn 
continued	 fraction expansion.
 

n 2
 
( iii) Prove	 that z:: k has at most 3 terms in its continuedk=1 

n 
~k 
k=1 

fraction expansion. 

Proof; (i) For n> 1, let (n+1)th term and nth term be represented 

by Mand N respectively it is to be noticed that Mis 1 more than N. 

So by Theorem 2 of Section 2.4, *has 2 terms in its continued 

fraction expansion. 

(ii) 5 = n(n + 1) 
n 2 

5 = (n + 1)(n + 2)
 
n+1 2
 

(n + 1)(n + 2)Sn+1 
=	 2 

5n n(n + 1)
 
2
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= n + 2 
n 

= 1 + (2/n) 

= 1 + (1 )/(n/2) 

Case 1: n is even 

So Sn+l 
S n 

Therefore 

= 1 + l Since 
n1 

Sn+l = (1, n
1

) 

Sn 

n = 2n 1 for some integer n 
1 

Case 2: n is odd 

Sn+l 
s;­

= 1 + 
1 

2 

2nl + 1 

= 1 + 1 
n1 + (1/2) 

Sn+l =Therefore (1, n1 ' 2) 
Sn 

So Sn+l has at most 3 terms in its continued fraction expansion.
S 

n
 
n
 n

(iii) ~ K
2 1 (l+2n) LK 

K=l = 3 K=l = 2n+l = M 
n n 3 3
l::K l:K 
K=l K=l 

where M= 2n + 1 

Now use the division algorithm with b = 3. So Mis one of the following 

forms: 

M = 3q 

M= 3q + 1 where q is an integer. 

M = 3q + 2 
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!1 _ 3g _ qIf M:: 3q then -3 ~3 ~ 

If M:: 3q+1 then r1 :: 3q+1 :: q + 1 
333 

If M:: 3q+2 then !i :: 39+2 :: q+£ :: q + 1 
3 3 3 , + 1:­

2 

In this case ~:: (q, 1,2).
3 

It is obvious that ~ has at most 3 terms in its continued fraction 
3 

n
expansion. In other words has at most 3 terms in itsLk2 

k::1 
n 
~k 
k=l 

continued fraction expansion. 

Theorem 19: Let ~ be a fraction of natural numbers where M and N 

satisfy the following conditions. 

(i) N is a positive odd number other than 1. 

(ii) Mis (N - 1) more than a multiple of N. 

( iii) Then ~ has 3 terms in its continued fraction expansion. 

Proof: Let N :: 2m + 1 where m is a positive integer. 

~ = n(2m+1) + ((2m+1) - 1) , n is a positive integer 
N 2m+1 

= n + (2m+l) - 1
 
2m+1
 

= n + ~ 2m+1 
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::; n + 1 
1+ 2m 

M )N = (n, 1, 2m 

Therefore ~ has 3 terms in its continued fraction expansion. 

Theorem 20: In Theorem 19, the following result ;s obtained. 

MN ::; (n, 1, 2m). 

Let the natural numbers nand m be greater than 1 and Sn' S2m 

stand for the sums of n terms and 2m terms respectively. Prove that 

~ has at most 3 terms in their continued fraction expansion.
n-I 

Proof: n( n+l) 
Sn ::; 2 ::; ~I ::; (n-I) + 2 

(n-l) . n n - 1 n - 1Sn-I 
2 

SnS is 2 more than S 1 By Theorem 1 of Section 2.9, has n n-
Sn-l 

at most 3 terms in its continued fraction expansion. 

The sum of k terms of an arithmetic progression is given by 

Sk ::; t [2a +(k-I}d] where a is the first term and d is the common
1 1

2 
difference. 

S ::; 2m [2 . 2 + (2m - I)2JNow 2m 2
 
::; m(4 + 4m - 2) ::; m(4m + 2)
 

= 2m(2m + 1) 

S2m 2m(2m+l) 2m(2m+l}
::; 

(2m - I}(2m - 1 + I) (2m - 1)(2m)S2m-l 
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_ 2m + 1
 
~ 2m - 1
 

(2m-I) + 2 = 
2m - 1 

S2m is 2 more than S2m-l So by Theorem 1 of Section 2.4,	 S2m has 
S2m-l 

at most 3 tenns in its continued fraction expansion. 

Infonna ti on for Theorem 21: Let the symbo100, stand for i nfi nity . 

Theorem 2': Let S = 1 - 1 + 1 _ 1 +
2 4 8 ... 

Prove	 that J has 2 terms in its continued fraction expansion.
S 

Proof: S _ 1 _ 1 + 1 _1 + ... 
- 248 

S - , _ 1 __'_=_2_ 
- , - (- 1) - 1 - 3 3 

2" ' + 2 2 

, 
=_1_= 1 = 1 +1 = (1,2)

S	 2 2 2
 
3
 

,
So -S- has 2 terms in its continued fraction expansion. 

Theorem 22: Consider the fraction Mi , i = 1,2,3, ... where N ;> 1 
N 

and Mi ;> N. If Ndivides into each M" leaving the same remainder, 

then the number of terms in the continued fraction of each Mi is the same. 
N 

Proof: Let r i represent the remainder when N divides into Mi' Let 

N 
have k terms in its continued fraction expansion. Now M.1 = n + 

r.
1r.

1	 T N 

1where	 n is a natural number. Now Mi = n + 
N N 

r·1 
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Since i! 
r i 

has k terms in its continued fraction expansion M·, 
N 

has (k + 1) terms in its continued fraction expansion. 

Information for Theorem 23: 

Magic Square: Magic square is a square divided into n2 cells in which 

numbers from 1 to n2 are placed in such a manner that the sums of the 

rows, columns and both diagonals are identical. 

The order of a magic square is the number of rows or columns. Hence 

a magi c square of n2 cell s has order n. If the order, n, can be expressed 

as 2m+1, where m is a natural number, one has a magic square of odd 

order. [20,p. 59-60J Call the sum of each row, column and diagonal 

by the name M.C. (M.C. stands for "magic constant"). 

The contribution of the fraction ~ to the theory of continued 
3 

fractions is studied in earlier sections. The numbers 5 and 3 appear 

in magic squares of the following type, (Table 8). 

It is to be noticed that the central number of the 3rd order 

magic square must be 5. 3 and 5 appear in the magic square, (Figure 8), 

and the magic constant of this magic square is equal to 3'5 = 15. 

Figure 8 

8 1 6 

3 5 7 

4 9 2 
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Theorem 23: Consider any magic square of order 3. Let M.C. represent 

the magic constant of the magic square. Let n be any number in the 

magic square. 

Prove that the number of terms in the continued fraction 

expansion of ~C. is less than or equal to the order of the magic 
n 

square. 

Proof: The order of the magic square is 3. 

Claim: The central number in the magic square is 5. 

Proof of the Claim: Denote the elements of the square as shown below. 

Figure 9-

a b c 

d e f 

g h i 

If one adds the row, column, and the diagonals containing the center 

element, e, one finds 

(a + e + i) + (g + e + c) + d + e + f) + (b + e + h) 

= 3e + (a + b + c + d + e + f + 9 + h + i) 

But the sum of all the elements in the square must be the sum of the 

first nine natural numbers. 

a + b + c + .•. + i = 1 + 2 + 3 + ... + 9 

= 9 (9 + 1) 
2 

= 45 
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Hence 

3e + (a + b + c + ... + i) = 3e + 45 

The magic constant is 15,hence the sum of the row. column and 

two diagonals containing e must be 4'15 = 60. 

Then 

3e + 45 = 60 

e = 5 

So the claim ;s proved. 

= sum of the elements in the sguare Here, the magic constant 
order of the square 

= 1 + 2 + 3 + ..• + 9 
3 

_ 9 (9 + 1}/2 
- 3 

= 45 
3 

= 15 

Let T represent the number of terms in the continued fraction expansion 

of M.e. 
n 

Now 15 7
8 = 1 + 8
 

1
 
= I +T 

-
7 

1
 
= 1 + --

1 =(1,1,7)

1+­7 

Here T = 3. T is equal to the order of the magic square., i.e. 3 = 3. 
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\5 = (l5). T ~ 1 and T~ 3 

15 5 1- =-=2+­6 2 2 

c (2,2). T = 2 and T" 3 

Ii =5=(5). T = 1 and T~ 3
 
3
 

153 =3=(3). T = 1 and T'::' 3 

15 1"7 = 2 + .y = (2, 7). T = 2 and TL 3 

15 
= 3 + 1 = 1 + 1 

= (1, 1, 3). T = 3 and T = 3
4 4 1 

1~ 

15 5 2 ____1 = - 1 + - = 1 + 1 (1, 1, 2). T = 3 and T = 3 
9 = 3 - 3 1~ 

~5 = 7 + ~ = (7, 2). T = 2 and T~ 3 

Hence the number of terms in the continued fraction expansion of 

M.e. is less than or equal to the order of the magic square. 
n 

= 22n+1 + 1 Theorem 24: Let A( n) 

A(n + 1)
Prove that has exactly three terms in its continued

A(n) 

fraction expansion. 
A(n + 1) 22(n+1)+1 + 1 

Proof: - - = =---­
------ A(n) 22n+1 + 1 

_ 22n+3 + 1
 
- 22n+1 + 1
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8'22n + 1 
;::: 2_22n + 1 

2'22n _ 2 
;::: 3 + 2n + 12-2 

1 
;::: 3 + 2.22n + 1 

2-22n - 2 

;::: 3 +-----­
1 + __3_ 

2-22n - 2 

= 3 + 1 
+ 1 
?(22n _ 1) 

3 

A(n + 1)
A(n) 

= 3 + 
1 + 

1 

2((22)n _ (l)n) 
• _...... (B) 

22 - 1 

Now consider (22)n - (l)n 

(22)n _ (l)n = (22 _ 1)[(22)n-1 + (22)n-2 + (22)n-3 ~ ... (1)n-1J 

= (22 - l)N where 

N = [(22)n-1 + (22)n-2 + (22) n-3 + ... + (1)n-1 ] 

So the equation (B) could be written as follows: 

A(n + 1) 
A(n) ;::: 3 + 1 +__1__ 

2'(22 - l)N 
22 - 1 (N is given above) 
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= 3 + 1 
+1 

2N 

Therefore A(n+l) 
A(n) (3, 1,2N)

_ 
-

A(n+l) 
has exactly 3 terms in its continued fraction expansion.A(n) 

Theorem 25: Let A(n) = 22n+2 + 1 • Prove that Ai(~~) has exactly 

5 terms in its continued fraction expansion. 

Proof: 

22(n+l)+2 + 1A(n+l)
 
A( n) = 22n+2 +
 1 

= 16 • 22n + 1 
4 . 22n + 1 

= 3 + 4·22n - 2
 
4·22n + 1
 

= 3 + 1
 
4.22n + 1
 
4·22n - 2
 

1= 3 + 
31 + ~ 

= 3 + 1
 
1 + 1
 

4·22n - 2 
3 

= 3 + 1
 
1 + 1
 

4·22n - 2 - 2 + 2 
3 
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A(n+l) 1 == 3 +A(n) 1
1 + 

4(22n - 1) + 2 
3 ....... (C) 

Consider 22n - 1 

22n _ 1 == (22)n _ (l)n 

==t22 - 1)[(22)n-l + (22)n-2 . 1 + (22)n-3 . 12 + ... 

+ (22)n-n . (1)n-lJ 

== 3 Nwhere N = [(22)n-l + (22)n-2 + (22)n-3 + ... + 1 J 

using this resul t in (C). one gets 

A(n+l) = 3 + 1 
A(n) 

1 + --,-'- ­

4·3N + 2
 

3
 

= 3 + 1
 
1 +_1
 

4N + £
 
3 

1 

1 + __ 1
 
4N + __1
 

1 + 1:.
 
2
 

So A(ntl1 =(3,',4N,',2)
A(n)
 

A(n+l}
Hence has exactly 5 terms in its continued fraction expanston, A(n) 
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Chapter IV:	 Observations and Suggestions 
For Further Study 

4.1 Combinatory Numbers 

Cons i der the combi na tory nurnbers of the Figure 3. The numbers 

in the fifth row are 1, 5, 15, 35, 70, The sum of the fractions 

where denominators are the above numbers is given below. 

1 1 1 1 1 1+ + 15 + 35 + 70 + 126 +1 5 

By a tedious procedure it is shown in the Section 2.3 that 

1 1	 44- +l+l+l+_l_+ = ­15 35 70 126 ...1 5 3
 

By adopting the same procedure, one could show the following results.
 

(It is to be noticed that the deonminators of the fractions in each
 

of the following series are the combinatory numbers taken from Figure 3).
 

Table 10 

---=' 
Series 

1 
1 

+ 1 
3 

+ 1 
6 

1 1 
+10+15+"'= 

1 + 1 +l+-.L+l+ ... = 
1 4 10 20 35 

1 
1 

+ 1 
5 
+l+l+l+

15 35 70 ... 
= 

Sum of the Series 

2 
1 

3 
2 

4-
3 

[4, p.50J 
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Now the question is, is there any other easy way to get the same results 

that are in the second column of the above Table 10, without going through 

the tedious procedure for calculating them? (This tedious procedure 

is already explained in Section 2.3). 

The answer is yes, and the theory of continued fractions serves 

as an easy way. This easy way is shown below. The combinatory numbers 

from the Figure 3 are given in the first column of the following Table 11. 

Tabl e 11 

Combinatory Numbers nth term 

'1,1, 1, 1, 1, 1, 

1, 2, 3, 4, 5, ... 

... 1 

n 

1,3,6,10,15,21, ... 

1, 4, 10, 20, 35, 56, ... 

1, 5, 15,35,70, 126, .•. 

n(n+l) 
2! 

n(n+l)(n+2L n(n+l) . (n+2) 
3! 2! 3 

n(n+l)(n+2)(n+3) _ n(n+l )(n+2) -4! 31 
. n+3-4 

I 

I 

1,6,21,56,126,252, ... n(n+l)(n+2)(n+3)(n+4) = n(n+l)(n+2)(n+3) . (n+4) 
51 41 5 

and so on 

Consider the numbers in the second column of the Table 11. 

They are listed in the second column of the Table 12. Now one could use 

the theory of continued fractions as shown below. 

It is obvious that the 4th column of the Table 12 and the second 

column of the Table 10 represent the same numbers. 



i 

1 

2 

3 

4 

5 

numbers 

1 

n 

n(n+l) 
2! 

n(n+l) . (n+2) 
2! 3 

n( n+l)( n+2) 
3!
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Table	 12 

For n	 :: 2,Terms	 in the 
continued the third 
fraction of co1umn	 becomes 
mi+l/mi 

(n) (2) 

(n+l)
. 2 (l)

2 

(n;2 ) 4
( "3 ) 

( n+3 ) 
4 

. 5 )( ­
4 

(n+3) 
4 

( n+4 ) 
5 

( §. )
'5 

and so	 on 

For n :: 2, the numbers that are obtained in the fourth column of 

2 l,!,~, §.,the Table 12 are	 These numbers are the sums of'2 3 4 5 ... 

the series where the denominators of the fractions of the series are 

associated with the famous Pascal triangle and Leibnitz's combinatory numbers. 

Suggestions for Further Study: It might be interesting to investigate 

the properties of numbers obtained in the same way for natural numbers 

greater than 2. 

4.2	 Triangular Numbers 

The numbers in the fourth column of Table 12 are ,£, l, !' ~, §.,
1 234 5 

... , n+1 , ... n 
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In the ~bove fractions, if one multiplies the numerator by the 

denominator and finds the average, the following numbers are obtained. 

2'1 • 3'2 4·3 5.4 6·5 (n+lli!­
-2'-2-'2'-2-' ' ...2 ... , 2 

i.e. 1,3,6,10,15, ... n(n+l) 
2 ' ... (8) 

The numbers in the series (B) are wellknown in the mathematical 

world as trlangular numbers, because the objects represented by those 

numbers could be arranged in the form, namely triangular form. 

Figure 10 
• 

• 

• . . . . . . 
1 3 6 10 et cetera 

These triangular numbers, 1,3,6, 10, ... could be found to be 

the third oblique series of numbers in Pascal's triangle (Figure 2). 

By adopting the proof of Theorem l8(ii), it could be very easily 

shown that the number of terms in the continued fraction expansion of 

(n+1) th term f th t' 1 b . t t 3oe r1angu ar num ers 1S amos . nth t erm 

Now consider the series aI' a a a •.• (C)
2

, 
3

, 4 , 

where the number of terms in the continued fraction expansion of 

ai+l is at most 3. 
a'

Suggestions for Further Study: It might be interesting to investigate 

whether the numbers in the series (C) behave like triangular numbers; 

1 
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in other words, could the objects that represent the numbers in (C), 

be arranged in a good looking figurative representation? Does such a 

series (C) exist? If yes, what is it? 

4.3 Escalator Numbers 

Introduction: Amazingly enough, the numbers in the fourth column of 

Table 12 also satisfy the requirements of certain numbers called 

escalator numbers. Every number in the fourth column of Table 12 is 

n + 1of the form where n is a natural number. By Theorem 2 of 
n
 
n + 1
Section 2.4, has 2 terms in its continued fraction expansion. 

n
 
n + 1
(n + 1) and satisfy the requirements of escalator numbers whose 

n 

definition is given below. 

Definition: Certain numbers are called escalator numbers or simply 

escalators, because they can be climbed in n steps by summation or 

in one step of n factors by multiplication. 

An escalator number An could be defined by the relation An = r. an 

= ]Tan where an is the gradual sum of any number n of rational 

summands an' whose sum at any point must equal to their gradual product. 

Such as for instance 

3 9 6561A = 3 + l + ~ + §l = 3 §l=
4 2 7 67 2 7 67 938 

It is easy to see that for any arbitrary Al = a f 1 one can get a21 

by the requirement A2 = a1 + a = a1a2.2 



Hence 

aIa2 - a2 = al 

a2 = al = Al 
-­
arl AI-I 

Similarly 

a3 = A2 
A2- I 

and in general an+I = An 
An-1 

This is a recurrence formula which permits one to compute con­

secutively as many summand-factors an as one pleases, whose gradual 

sums or products are the successive escalators An' [14, p. 91J 

Every number in the fourth column of Table 12 is of the form 

n+1 
and it contributes to the theory of 'escalator numbers· for 

n 

~ + (n + 1) = .!l-.!..l (n + 1) 
n n 

In this way the theory of continued fraction leads one to notice 

how certain numbers possess certain qualities. 

Suggestions for Further Study: 

(1) Does every fraction ~ that has 2 terms in its continued 

fraction expansion serve as an escalator number? The answer is no. 

Because ~ has 2 terms in its conti nued fraction expans ion and 

5'5~~ +5."2 r 2 
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Then is there any other fraction that has 2 terms	 in its con-

n+l servetinued fraction expansion and which is not of the type - , 
n 

as an escalator number? If yes what are those escalator numbers? 

What is their contribution to the theory of continued fractions? Do 

they share any property with the Leibnitzls combinatory numbers or with 

the numbers in the Pascal IS triangle? 

(2) The reader must have noticed above that 

A4 = 3 + 1 + ~ + [L = 3 3 9 81 = 6561 
2 7 67 2 7 67 938 

Choose the numbers ~~ and 6561. Writing them in the continued 
938 

81 ) 6561fraction expansion one gets 67 = (1,4,1,3,1,2 and 938 = (6, 1, 

186, 1, 1, 2). 

It is to be noticed that the number of terms in the continued 

fraction expansion of ~~ and ~;6; is the same. 

Do all escalator numbers possess such type of property; or in other 

words given escalator numbers 

a1 + a2 + a3 + ... + ai = al . a2 . a3 . . .. ai = A 

does there always exist an ai such that the number of terms in its con­

tinued fraction expansion is the same as the number of terms in the 

continued fraction expansion of A. 

If there exist some, find them and test their behavior in the light 

of continued fractions. 
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4.4 Magic Hexagon 

A hexagonal array of the numbers 1 through k into k cells, such 

tha t a11 of the rows sum to the same number, is ca 11 ed a mag ic hexagon. 

The number of cells in a shortest row is called the order of the hexagon. 

A magic hexagon of order 3 is shown below. It is proved that it is the 

only hexagon of any order that exists. [12,p.1l6J 

Fi gure 11 

Consider the above hexagon of order 3. Is there any way that one can 

get a magic square of order 3, from the magic hexagon of order 3? The 

answer is yes and the theory of continued fractions helps. The procedure 

is given below. 

Let n represent the order of the magic hexagon, i.e. n = 3. 

Let N represent any number in the magic hexagon. Let m represent the 

sum of the terms in the continued fraction expansion of ~. Now con­

sider the following table. 
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Chapter V; Summary 

The material so far introduced emphasizes the significance 

of the numbers 3'5 
5 and 3 in the world of mathematics. It also tells 

about the contribution made by eminent mathematicians to the theory 

of continued fractions. It is made clear in this little book how 

certain numbers such as Fibonacci numbers, Theon diameters, et cetera, 

share a common property with the natural numbers when they are studied 

in the light of continued fractions. It is interesting to know the 

procedure of obtaining a magic square of 3rd order from the magic 

hexagon of 3rd order. 
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Tabl e 13 

N Continued Fraction Expansion of ~ 
3 

m 

1 (0, 3) 3 
2 (0, 1, 2) 3 
3 (0, 1) 1 
4 (I, 3) 4 
5 (1,1,2) 4 
6 (2) 2 
7 (2, 3) 5 
8 (2, 1, 2) 5 
9 (3) 3 

10 (3, 3) 6 
11 (3,1,2) 6 
12 (4) 4 
13 (4, 3) 7 
14 (4,1,2) 7 
15 (5) 5 
16 (5, 3) 8 
17 (5,1,2) 8 
18 (6) 6 
19 (6, 3) 9 

Now consider the set M, 

M= m m is a number in the third column of Table 13 

i.e. M= 1,2,3,4,5,6,7,8,9 

In order to find the magic square of order 3 t one could use the 

elements of the set Mand also the 'trial and error process.· One might 

get the figure that looks like Figure 8. (In fact Figure 8 is a magic 

square of order 3). 

Suggestions for Further Study: Consider the figures of the above type, i.e. 

magic hexagon, magic square, et cetera. The reader might employ the 

procedure suggested above and he could try to derive one figure from the 

other. 
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